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Overview

Goal
This work is motivated by the development of accurate and efficient tools for
simulation of acoustic radiation generated by rotating machines

1 Hybrid approach

2 Discussion on airfoil in deep stall

3 Application on rotating frame
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� Why massively separated flows and rotating machine ?

Figure – Helicopter blades application, wind turbines and taxi drone
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Modeling of turbulent flow : RANS description

� Compressible Reynolds Averaged Navier-Stokes Equations :

∂Wh

∂t
+∇ · Fc (Wh)−∇ · Fd (Wh) = τ(Wh) (1)
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Modeling of turbulent flow : RANS description

� Compressible Reeynolds Averaged Navier-Stokes Equations :

∂Wh

∂t
+∇ · Fc (Wh)−∇ · Fd (Wh) = τ(Wh) (2)

� RANS k − ε Goldberg 1 and k − R 2 closure term :

τk−ε(Wh) =

 ρ︷︸︸︷
0 ,

ρu︷︸︸︷
0 ,

ρE︷︸︸︷
0 ,

ρk︷ ︸︸ ︷
τ : ∇u− ρε,

ρε︷ ︸︸ ︷
(C1τ : ∇u− C2ρε+ E)T−1



τk−R(Wh) =


ρ︷︸︸︷
0 ,

ρu︷︸︸︷
0 ,

ρE︷︸︸︷
0 ,

ρk︷ ︸︸ ︷
µtS

2 − ρ
k2

R
,

ρR︷ ︸︸ ︷
c1TtµtS

2 −min

(
ρc2k, µt

|Ω|
a1

)

1. U. Goldberg, O. Peroomian et S. Chakravarthy. “A wall-distance-free k − ε model with Enhanced
Near-Wall Treatment”. In : Journal of Fluids Engineering 120 (1998), p. 457-462.
2. Yang Zhang, Md Mizanur Rahman et Gang Chen. “Development of k-R turbulence model for

wall-bounded flows”. In : Aerospace Science and Technology 98 (2020), p. 105681. issn : 1270-9638.
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Modeling of turbulent flow : RANS description

� RANS k − ε Goldberg and k − R closure term :

τk−ε(Wh) =

 ρ︷︸︸︷
0 ,

ρu︷︸︸︷
0 ,

ρE︷︸︸︷
0 ,

ρk︷ ︸︸ ︷
τ : ∇u− ρε,

ρε︷ ︸︸ ︷
(C1τ : ∇u− C2ρε+ E)T−1



τk−R(Wh) =


ρ︷︸︸︷
0 ,

ρu︷︸︸︷
0 ,

ρE︷︸︸︷
0 ,

ρk︷ ︸︸ ︷
µtS

2 − ρ
k2

R
,

ρR︷ ︸︸ ︷
c1TtµtS

2 −min

(
ρc2k, µt

|Ω|
a1

)
� DDES 3 closure term ρε or ρ k2

R
is replaced by ρ k3/2

lddes
where :

lddes =
k

3
2

ε
− fddes max

(
0,

k
3
2

ε
− 0.65∆

)
,

fddes = 1− tanh((8rd )3),
rd = νt+ν

κ2y2 max(
√
∇u:∇u,10−10)

3. P.Spalart et al. “A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid
Densities”. In : Theoretical and Computational Fluid Dynamics 20 (juil. 2006), p. 181-195.
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Modeling of turbulent flow : RANS description

� RANS Spalart-Allmaras 4 closure term :

τS.A(Wh) =


ρ︷︸︸︷
0 ,

ρu︷︸︸︷
0 ,

ρE︷︸︸︷
0 ,

ρν︷ ︸︸ ︷
ρcb|Ω| − cω1fω

( ν
d

)2
� DDES closure term d is replaced by lddes where :

lddes =
k

3
2

ε
− fddes max

(
0,

k
3
2

ε
− 0.65∆

)
,

fddes = 1− tanh((8rd )3),
rd = νt+ν

κ2y2 max(
√
∇u:∇u,10−10)

4. P. SPALART et S. ALLMARAS. “A one-equation turbulence model for aerodynamic flows”. In :
30th Aerospace Sciences Meeting and Exhibit.
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Dynamic Variational Multi Scale-LES description

� VMS formulation 5(
∂Wh

∂t
, χi

)
+ (∇ · Fc (Wh), χi ) = (∇ · Fd (Wh), φi ) +

(
τDVMS (Wh), φ

′
i

)
. (3)

� VMS closure term with dynamics coefficients Cmodel = Cmodel (x, t) and
Prt = Prt(x, t)(

τDVMS (Wh), φ′i

)
=
(
0,MS (Wh, φ

′
h),MH(Wh, φ

′
h), 0, 0

)
where :

MS (Wh, φ
′
i ) =

∑
T∈Ωh

∫
T ρ(CS∆)2|S|︸ ︷︷ ︸

µsgs

P∇φ′idx, P = 2S − 2
3Tr(S)Id

MH(Wh, φ
′
i ) =

∑
T∈Ωh

∫
T

Cp

Prt
ρ(CS∆)2|S |︸ ︷︷ ︸

µsgs

∇T ′ · ∇φ′idx, ∆ =
(∫

T dx
)1/3

and φ
′
h = φh − φh where φh is computed from macro cells.

5. Charbel Farhat, Ajaykumar Rajasekharan et Bruno Koobus. “A dynamic variational multiscale
method for large eddy simulations on unstructured meshes”. In : Computer Methods in Applied
Mechanics and Engineering 195.13 (2006). A Tribute to Thomas J.R. Hughes on the Occasion of his
60th Birthday, p. 1667-1691. issn : 0045-7825.
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� Why Dynamic VMS ?

Figure – Flow past a circular cylinder at Re = 20K 6

6. C.Moussaed et al. “Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy
simulation of bluff-body flows”. In : Acta Mechanica 225 (2014), p. 3309-3323.
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� Hybrid description with finite volume/ finite element method(
∂Wh

∂t
, χi

)
+ (∇ · Fc (Wh), χi ) = (∇ · Fd (Wh), φi ) (4)

+ θ
(
τC (Wh), φi

)
+ (1− θ)

(
τDVMS (W

′
h ), φ

′
i

)
. (5)

? τC ∈ {τRANS , τDDES}

? Blending : θ = 1− fd × (1− θ); θ = tanh

((
∆

k3/2 ε
)2)

,

? fd = fddes or fd = fgeo = exp
(
− 1
ε

min(d − δ0, 0)2
)

Figure – Hybrid RANS blending surface.
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Set up

� Model used : DDES, RANS/DVMS, DDES/DVMS with :

- Subgrid model for VMS : Dynamic Smagorinsky

- Closure model for RANS k − ε of Goldberg, or k − R or Spalart-Allmaras model.

� Simulation set up :

- Mach number : 0.1 (subsonic flow)

- reference pressure : 101300 [N/m2]

- density : 1.225 [kg/m3]

- Wall boundaries conditions :

u = 0, ∇E · n = 0, ∇ρ · n = 0,

k − ε : k = 0, ε = (∇
√
k) · n,

or k − R : k = 0, R = 0,

or S .A : νt = 0.

- The mesh is radial with minimal mesh size is such that y+
w ' 0.7⇔ δ = 5× 10−5.
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Name Mesh size y+
w C d C l St

Present simulation
DDES SA Lz = 4c, 201 slices 6M 0.7 1.49 0.91 0.20
DDES SA adapted mesh Lz = 5c 0.2M - 1.53 0.97 0.16
DDES k − ε cubic Lz = 1c, 33 slices 0.5M 0.7 1.65 1.00 0.12
DDES k-R Lz = 1c, 33 slices 0.5M 0.7 1.26 1.05 0.30
URANS / DVMS Smagorinsky
Lz = 1c, 33 slices 0.5M 0.7 1.54 0.95 0.30
URANS k-R/ DVMS Smagorinsky fgeo
Lz = 1c, 33 slices 0.5M 0.7 1.86 1.24 0.20
DDES / DVMS Smagorinsky fddes
Lz = 1c, 33 slices 0.5M 0.7 1.64 1.01 0.32
Other simulations
DES/OES k − ω Lz=4c 7 2M - 1.682 1.000
Experiment
Experiments 8 1.517 0.931

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, C d

holds for the mean drag coefficient, C l is the mean of lift time fluctuation.

7. R. El Akoury et al. “Unsteady Flow Around a NACA0021 Airfoil Beyond Stall at 60 degrees Angle
of Attack”. In : t. 14. Jan. 2009, p. 405-415. isbn : 978-1-4020-9897-0. doi :
10.1007/978-1-4020-9898-7_35.
8. K. Swalwell. The effect of turbulence on stall of horizontal axis wind turbines. 2005.
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� Pressure coefficient

Figure – Distribution of mean pressure as a function of polar angle.
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� Vorticity field

Figure – Vorticity field of DDES on top, hybrid DDES DVMS on middle side and hybrid
RANS/DVMS on bottom.14/19
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Model presentation

z

y

x

= t

Three computations :

• RANS-SA (3.5M vertices)

• DES (150M vertices)

• RANS-SA adapted mesh (2.2M vertices)

(*)F. X. Caradonna, C. Tung, Technical Report NASA-TM-81232, 1981.
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MRF method and mesh adaptation

• Mesh adaptation

Figure – H, S andM are respectively the
mesh, the solution and the metric.

• Multiple Reference Frame (MRF)

- Considering the velocity
compositions :

u = u′ + ω × x

we rewrite the Navier-Stokes
equations in absolute velocity
formulation.

- The computational domain is
divided into two sub-domains. A
cylindrical box around the helix
where |ω| = 650 rpm, and an
another cylindrical sub-domain
around the box containing the helix
where |ω| = 0.
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Numerical results

Figure – Caradonna-Tung RANS simulation results : mesh (left) and velocity field (right) in
cross-section.
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Figure – Caradonna-Tung RANS simulation
results : Q-criterion iso-surface.

Figure – Pressure coefficient at r/R = 0.89
(left) and r/R = 0.96 (right) blade sections.
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� Conclusion and perspective

• Bulks coefficients are accurately predicts with RANS/DVMS model and DDES
adapted mesh,

• Hybrid models catch separation of the flow

• Rotation + DDES on adapted mesh gaves a correct shape of the results

� Use the adapted mesh for RANS/DVMS models.

� Compute aeroacoustic using hybrid modeling.
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