SIMULATION OF MASSIVELY SEPARATED FLOWS AND ROTATING MACHINE FLOWS USING HYBRID MODELS

<u>F.Miralles</u>¹, B.Sauvage³, S.Wornom¹, B.Koobus¹, A.Dervieux^{2,3}, A. Duben⁴, V. Bobkov⁴, T. Kozubskaya⁴

¹IMAG, Université de Montpellier, France,
 ² Société LEMMA, Sophia-Antipolis, France
 ³INRIA Sophia-Antipolis, France
 ⁴ CAALAB, Keldysh Institute of Applied Mathematics, Moscow

8th European Congress on Computational Methods in Applied Sciences and Engineering, Oslo, 9 june, 2022

Overview

Goal

This work is motivated by the development of accurate and efficient tools for simulation of acoustic radiation generated by rotating machines

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

1 Hybrid approach

- 2 Discussion on airfoil in deep stall
- **3** Application on rotating frame

Why massively separated flows and rotating machine?

Figure - Helicopter blades application, wind turbines and taxi drone

Compressible Reynolds Averaged Navier-Stokes Equations :

$$\frac{\partial W_h}{\partial t} + \nabla \cdot F_c(W_h) - \nabla \cdot F_d(W_h) = \tau(W_h)$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compressible Reeynolds Averaged Navier-Stokes Equations :

$$\frac{\partial W_h}{\partial t} + \nabla \cdot F_c(W_h) - \nabla \cdot F_d(W_h) = \tau(W_h)$$
⁽²⁾

RANS $k - \varepsilon$ Goldberg¹ and $k - R^2$ closure term :

$$\tau^{k-\varepsilon}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\tau:\nabla \mathbf{u} - \rho\epsilon}^{\rho k}, \overbrace{(C_1 \tau:\nabla \mathbf{u} - C_2 \rho \epsilon + E)T^{-1}}^{\rho \epsilon}\right)$$

$$\tau^{k-R}(W_h) = \left(\overbrace{0, 0}^{\rho}, \overbrace{0}^{\rho u}, \overbrace{0}^{\rho E}, \mu_t \mathfrak{S}^2 - \rho \frac{k^2}{R}, c_1 T_t \mu_t \mathfrak{S}^2 - \min\left(\rho c_2 k, \mu_t \frac{|\Omega|}{a_1}\right)\right)$$

^{1.} U. Goldberg, O. Peroomian et S. Chakravarthy. "A wall-distance-free $k - \varepsilon$ model with Enhanced Near-Wall Treatment". In : Journal of Fluids Engineering 120 (1998), p. 457-462.

^{2.} Yang Zhang, Md Mizanur Rahman et Gang Chen. "Development of k-R turbulence model for wall-bounded flows". In : Aerospace Science and Technology 98 (2020), p. 105691 issn= 1270=9638.

RANS $k - \varepsilon$ Goldberg and k - R closure term :

$$\tau^{k-\varepsilon}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\tau: \nabla \mathbf{u} - \rho \epsilon}^{\rho k}, \overbrace{(C_1 \tau: \nabla \mathbf{u} - C_2 \rho \epsilon + E) T^{-1}}^{\rho \epsilon}\right)$$

$$\tau^{k-R}(W_h) = \left(\overbrace{0, 0}^{\rho}, \overbrace{0}^{\rho u}, \overbrace{0}^{\rho E}, \overbrace{\mu_t \mathfrak{S}^2 - \rho \frac{k^2}{R}}^{\rho k}, \overbrace{c_1 T_t \mu_t \mathfrak{S}^2 - \min\left(\rho c_2 k, \mu_t \frac{|\Omega|}{a_1}\right)}^{\rho R}\right)$$

DDES³ closure term $\rho\epsilon$ or $\rho \frac{k^2}{R}$ is replaced by $\rho \frac{k^{3/2}}{l_{ddes}}$ where :

$$I_{ddes} = \frac{k^{\frac{3}{2}}}{\epsilon} - f_{ddes} \max\left(0, \frac{k^{\frac{3}{2}}}{\epsilon} - 0.65\Delta\right), \quad \begin{array}{l} f_{ddes} = 1 - \tanh((8r_d)^3), \\ r_d = \frac{\nu_t + \nu}{\epsilon^2 y^2 \max(\sqrt{\nabla u}:\nabla u, 10^{-10})} \end{array}$$

3. P.Spalart et al. "A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities". In : Theoretical and Computational Fluid Dynamics 20 (juil. 2006); @ 181-195. ()

= 900

6/19

RANS Spalart-Allmaras⁴ closure term :

$$\tau^{S.A}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho u}, \overbrace{0}^{\rho E}, \rho c_b |\Omega| - c_{\omega 1} f_{\omega} \left(\frac{\nu}{d}\right)^2\right)$$

DDES closure term *d* is replaced by *l*_{ddes} where :

$$\mathfrak{l}_{ddes} = \frac{k^{\frac{3}{2}}}{\epsilon} - f_{ddes} \max\left(0, \frac{k^{\frac{3}{2}}}{\epsilon} - 0.65\Delta\right), \quad \begin{array}{l} f_{ddes} = 1 - \tanh((8r_d)^3), \\ r_d = \frac{\nu_t + \nu}{\kappa^2 y^2 \max(\sqrt{\nabla u}: \nabla u, 10^{-10})} \end{array}$$

 4. P. SPALART et S. ALLMARAS. "A one-equation turbulence model for aerodynamic flows". In :

 30th Aerospace Sciences Meeting and Exhibit.

Dynamic Variational Multi Scale-LES description

VMS formulation ⁵

$$\left(\frac{\partial W_h}{\partial t}, \chi_i\right) + \left(\nabla \cdot F_c(W_h), \chi_i\right) = \left(\nabla \cdot F_d(W_h), \phi_i\right) + \left(\tau^{DVMS}(W_h), \phi_i'\right).$$
(3)

VMS closure term with dynamics coefficients $C_{model} = C_{model}(\mathbf{x}, t)$ and $Pr_t = Pr_t(\mathbf{x}, t)$

$$\left(\tau^{DVMS}(W_h),\phi_i'\right) = \left(0, \mathbf{M}_{\mathcal{S}}(W_h,\phi_h'), M_{\mathcal{H}}(W_h,\phi_h'), 0, 0\right)$$

where :

$$\mathbf{M}_{S}(W_{h},\phi'_{i}) = \sum_{T \in \Omega_{h}} \int_{T} \underline{\rho}(\underline{C_{S}}\Delta)^{2}|S| P \nabla \phi'_{i} d\mathbf{x}, P = 2S - \frac{2}{3} Tr(S) Id$$

$$M_{H}(W_{h},\phi'_{i}) = \sum_{T \in \Omega_{h}} \int_{T} \frac{C_{p}}{P_{T_{t}}} \underline{\rho}(\underline{C_{S}}\Delta)^{2}|S| \nabla T' \cdot \nabla \phi'_{i} d\mathbf{x}, \Delta = (\int_{T} d\mathbf{x})^{1/3}$$

and $\phi'_{h} = \phi_{h} - \overline{\phi_{h}}$ where $\overline{\phi_{h}}$ is computed from macro cells.

^{5.} Charbel Farhat, Ajaykumar Rajasekharan et Bruno Koobus. "A dynamic variational multiscale method for large eddy simulations on unstructured meshes". In : *Computer Methods in Applied Mechanics and Engineering* 195.13 (2006). A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday, p. 1667-1691. issn : 0045-7825.

Why Dynamic VMS?

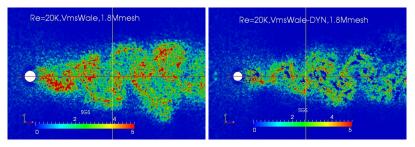


Figure – Flow past a circular cylinder at $Re = 20K^{6}$

Hybrid description with finite volume/ finite element method

$$\left(\frac{\partial W_h}{\partial t}, \chi_i\right) + \left(\nabla \cdot F_c(W_h), \chi_i\right) = \left(\nabla \cdot F_d(W_h), \phi_i\right)$$

$$+ \theta \left(\tau^C(W_h), \phi_i\right) + (1 - \theta) \left(\tau^{DVMS}(W'_h), \phi'_i\right).$$
(5)

$$\star \ \tau^{\mathsf{C}} \in \{\tau^{\mathsf{RANS}}, \tau^{\mathsf{DDES}}\}$$

* Blending : $\theta = 1 - f_d \times (1 - \overline{\theta}); \quad \overline{\theta} = \tanh\left(\left(\frac{\Delta}{k^{3/2}}\varepsilon\right)^2\right),$

*
$$f_d = f_{ddes}$$
 or $f_d = f_{geo} = \exp\left(-\frac{1}{\epsilon}\min(d - \delta_0, 0)^2\right)$



Figure - Hybrid RANS blending surface.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Set up

- Model used : DDES, RANS/DVMS, DDES/DVMS with :
 - Subgrid model for VMS : Dynamic Smagorinsky
 - Closure model for RANS $k \varepsilon$ of Goldberg, or k R or Spalart-Allmaras model.

Simulation set up :

- Mach number : 0.1 (subsonic flow)
- reference pressure : 101300 $\rm [N/m^2]$
- density : 1.225 $\rm [kg/m^3]$
- Wall boundaries conditions :

$$\mathbf{u} = \mathbf{0}, \quad \nabla E \cdot \mathbf{n} = 0, \quad \nabla \rho \cdot \mathbf{n} = 0,$$

$$k - \varepsilon : \quad k = 0, \quad \varepsilon = (\nabla \sqrt{k}) \cdot \mathbf{n},$$

or $k - R : \quad k = 0, \quad R = 0,$
or $S.A : \quad \nu_t = 0.$

- The mesh is radial with minimal mesh size is such that $y_w^+ \simeq 0.7 \Leftrightarrow \delta = 5 \times 10^{-5}$.

Name	Mesh size	y_w^+	\overline{C}_d	\overline{C}_{I}	St
Present simulation					
DDES SA $Lz = 4c$, 201 slices	6M	0.7	1.49	0.91	0.20
DDES SA adapted mesh $Lz = 5c$	0.2M	-	1.53	0.97	0.16
DDES $k - \varepsilon$ cubic Lz = 1c, 33 slices	0.5M	0.7	1.65	1.00	0.12
DDES k-R Lz = 1c, 33 slices	0.5M	0.7	1.26	1.05	0.30
URANS / DVMS Smagorinsky					
Lz = 1c, 33 slices	0.5M	0.7	1.54	0.95	0.30
URANS k-R/ DVMS Smagorinsky fgeo					
Lz = 1c, 33 slices	0.5M	0.7	1.86	1.24	0.20
DDES / DVMS Smagorinsky fddes					
Lz = 1c, 33 slices	0.5M	0.7	1.64	1.01	0.32
Other simulations					
DES/OES $k - \omega$ Lz=4c ⁷	2M	-	1.682	1.000	
Experiment					
Experiments ⁸			1.517	0.931	

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, \overline{C}_d holds for the mean drag coefficient, \overline{C}_l is the mean of lift time fluctuation.

7. R. El Akoury et al. "Unsteady Flow Around a NACA0021 Airfoil Beyond Stall at 60 degrees Angle of Attack". In : t. 14. Jan. 2009, p. 405-415. isbn : 978-1-4020-9897-0. doi : 10.1007/978-1-4020-9898-7_35.

Pressure coefficient

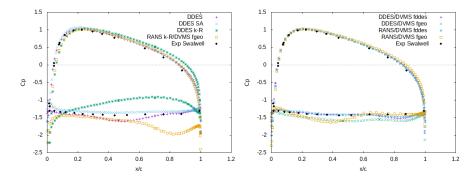


Figure – Distribution of mean pressure as a function of polar angle.

SIMULATION OF MASSIVELY SEPARATED FLOWS AND ROTATING MACHINE FLOWS USING HYBRID MODELS

Vorticity field

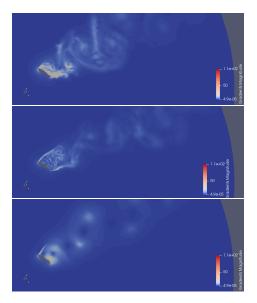
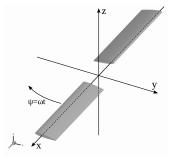


Figure – Vorticity field of DDES on top, hybrid DDES DVMS on middle side and hybrid RANS/DVMS on bottom.

æ

Model presentation



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Three computations :

- RANS-SA (3.5M vertices)
- DES (150M vertices)
- RANS-SA adapted mesh (2.2M vertices)

(*)F. X. Caradonna, C. Tung, Technical Report NASA-TM-81232, 1981.

MRF method and mesh adaptation

Mesh adaptation

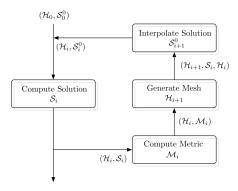


Figure – \mathcal{H} , \mathcal{S} and \mathcal{M} are respectively the mesh, the solution and the metric.

- Multiple Reference Frame (MRF)
 - Considering the velocity compositions :

$$\mathbf{u} = \mathbf{u}' + \boldsymbol{\omega} \times \boldsymbol{x}$$

we rewrite the Navier-Stokes equations in absolute velocity formulation.

- The computational domain is divided into two sub-domains. A cylindrical box around the helix where $|\omega| = 650$ rpm, and an another cylindrical sub-domain around the box containing the helix where $|\omega| = 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

SIMULATION OF MASSIVELY SEPARATED FLOWS AND ROTATING MACHINE FLOWS USING HYBRID MODELS

Numerical results

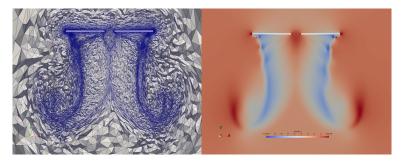


Figure – Caradonna-Tung RANS simulation results : mesh (left) and velocity field (right) in cross-section.

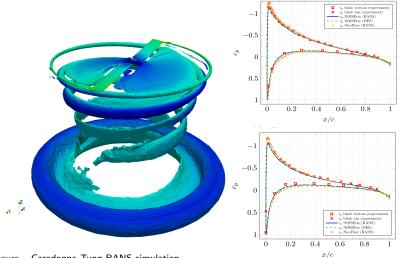


Figure – Caradonna-Tung RANS simulation results : Q-criterion iso-surface.

Figure – Pressure coefficient at r/R = 0.89 (left) and r/R = 0.96 (right) blade sections.

Conclusion and perspective

 Bulks coefficients are accurately predicts with RANS/DVMS model and DDES adapted mesh,

- Hybrid models catch separation of the flow
- Rotation + DDES on adapted mesh gaves a correct shape of the results
- Use the adapted mesh for RANS/DVMS models.
- Compute aeroacoustic using hybrid modeling.