Current state of k-R WL cylinder, $k-\varepsilon-\gamma$ model and Imersed boundary method

F. Miralles

IMAG, Université de Montpellier

23 mai 2022

Problem Averaged Navier-Stokes compressible equations with $k - \varepsilon$ closure model : Find $(\rho, \rho \mathbf{u}, \rho E, \rho k, \rho \epsilon)$ solution of :

$$\begin{cases} \frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) &= -\nabla p + \frac{1}{Re} \nabla \cdot \sigma + \nabla \cdot \tau, \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho E + p) \mathbf{u} &= \frac{1}{Re} \nabla \cdot \sigma \mathbf{u} + \nabla \cdot \tau \mathbf{u} + \left(\frac{\gamma}{PrRe} + \frac{\gamma}{Pr_{t}Re_{t}}\right) \nabla h \\ \frac{\partial \rho k}{\partial t} + \nabla \cdot (\rho \mathbf{u}k) &= \tau : \nabla \mathbf{u} + \nabla \cdot [(\mu + \mu_{t}\sigma_{k}) \nabla k] - \rho \varepsilon, \\ \frac{\partial \rho \varepsilon}{\partial t} + \nabla \cdot (\rho \mathbf{u}\varepsilon) &= \left(c_{\varepsilon}^{(1)} \frac{\varepsilon}{k} \tau : \nabla \mathbf{u} - c_{\varepsilon}^{(2)} \rho \frac{\varepsilon^{2}}{k} + C^{(2)}\right) C^{(1)} + \nabla \cdot [(\mu + \mu_{t}\sigma_{\varepsilon}) \nabla \varepsilon] \end{cases}$$
(1)
with $\mu_{T} = c_{\mu} f_{\mu} \frac{k^{2}}{\epsilon}.$

-

Change $k - \varepsilon$ by a simplified k - R closure model :

$$\frac{\partial \rho k}{\partial t} + \nabla \cdot (\rho \mathbf{u} k) = \mu_t \mathfrak{S}^2 + \nabla \cdot \left[(\mu + \mu_t \sigma_k) \nabla k \right] + \rho \frac{k^2}{R},$$

$$\frac{\partial \rho R}{\partial t} + \nabla \cdot (\rho \mathbf{u} R) = c_1 T_t \mu_t \mathfrak{S}^2 - \min\left(\rho c_2 k, \mu_t \frac{|\Omega|}{a_1}\right) + \nabla \cdot \left[\left(\mu + \frac{\mu_t}{\sigma_{\varepsilon}} \right) \nabla R \right].$$
(2)

With eddy viscosity

$$\mu_t = \rho c_\mu f_\mu \left[\underbrace{k T_t (1 - f_c)}_{\mu_t^{(1)}} + \underbrace{R f_c}_{\mu_t^{(2)}} \right].$$
(3)

э

Using [Jaeger and Dhatt, 1992] and [GOLDBERG and OTA, 1990] works :

if
$$y^+ > 10$$
: $k = \frac{u_f^2}{\sqrt{C_\mu}}, \quad \varepsilon = \frac{|u_f|^3}{\kappa\delta}$ (4)

< D > < B > < E > < E > < E</p>

Using [Jaeger and Dhatt, 1992] and [GOLDBERG and OTA, 1990] works :

$$\text{if } y^{+} > 10: \quad k = \frac{u_{f}^{2}}{\sqrt{C_{\mu}}}, \quad \varepsilon = \frac{|u_{f}|^{3}}{\kappa\delta}$$
(5)

$$\text{if } y^{+} < 10: \quad k = \frac{u_{f}^{2}}{\sqrt{C_{\mu}}} \left(\frac{y^{+}}{\delta}\right)^{2}, \quad \varepsilon = Re \frac{u_{f}^{4}}{10\kappa} \left[\left(\frac{y^{+}}{\delta}\right)^{2} + 0.2 \frac{\kappa}{\sqrt{C_{\mu}}} \left(1 - \left(\frac{y^{+}}{\delta}\right)^{2}\right) \right]$$
(6)

< E ト < E ト

3

Using [Jaeger and Dhatt, 1992] and [GOLDBERG and OTA, 1990] works :

$$\text{if } y^{+} > 10: \quad k = \frac{u_{f}^{2}}{\sqrt{C_{\mu}}}, \quad \varepsilon = \frac{|u_{f}|^{3}}{\kappa\delta} \tag{7}$$
$$\text{if } y^{+} < 10: \quad k = \frac{u_{f}^{2}}{\sqrt{C_{\mu}}} \left(\frac{y^{+}}{\delta}\right)^{2}, \quad \varepsilon = Re \frac{u_{f}^{4}}{10\kappa} \left[\left(\frac{y^{+}}{\delta}\right)^{2} + 0.2 \frac{\kappa}{\sqrt{C_{\mu}}} \left(1 - \left(\frac{y^{+}}{\delta}\right)^{2}\right) \right] \tag{8}$$

Using equations 7, 8 and $R = \frac{k^2}{\varepsilon}$:

$$\begin{array}{ll} \text{if } y^+ > 10: & R = \frac{|u_f|}{C_{\mu}} \kappa \delta, \\ \text{if } y^+ < 10: & R = \frac{10\kappa}{C_{\mu}Re} \left[\frac{\alpha}{\alpha + 0.2 \frac{\kappa}{\sqrt{C_{\mu}}} (1-\alpha)} \right], & \text{with } \alpha = \left(\frac{y^+}{\delta} \right)^2. \end{array}$$

<ロ> <四> <四> <四> <四> <四> <四</p>

• Mesh : $y_w^+ = 1 \Leftrightarrow \delta = 2 \times 10^{-4}$

Set up

- Mach = 0.1, Re = 3900
- $U_{\infty} =$ 34.025, $\rho_{\infty} =$ 1.225
- turbulence intensity : $I_k = 0.5\%$
- $k_{\infty}=rac{3}{2}\left(I_{k}U_{\infty}
 ight)^{2}$, $arepsilon_{\infty}=k_{\infty}/10$

Boundary conditions :

$$R_{\partial C} = 0$$
, and $R_{\infty} = \frac{k_{\infty}^2}{\varepsilon_{\infty}}$

Figure - Cylinder mesh

Name	Mesh size	δ_W	\overline{c}_d	c'_{l}	$-\overline{c}_{pb}$	Lr	$\overline{\theta}$	St
Present simulation								
$k - \varepsilon$ Goldberg 3D	176K	0.002	0.96	0.11	0.85	1.56	111	0.20
k - R	176K	0.002	1.00	0.11	0.86	1.53	93	0.20
Numerical simulation								
Spalart 3D [?]	-	0.002	0.97	0.11	0.83	1.67	89	0.21
DVMS WALE 3D [?]	1.46M	0.004	0.94	-	0.85	1.47	-	0.22
Experiment								
[Norberg, 1994]	-	-	0.94-1.04	-	0.84-0.93	-	-	0.20
[Parnaudeau et al., 2008]	-	-	-	0.1	-	1.41-1.58	-	-
[Lourenço, 1993]	-	-	-	-	-	-	86	-

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 3900, \overline{C}_d holds for the mean drag coefficient, \overline{C}'_l is the root mean square of lift time fluctuation, \overline{C}_{ρ_b} is the pressure coefficient at cylinder basis, L_r is the mean recirculation length, $\overline{\theta}$ is the mean separation angle.

■ Re = 1M using WL

Figure - Mean pressure distribution on body

- TR

Name	Mesh size	δ_W	\overline{C}_d	c'	$-\overline{C}_{pb}$	Lr	$\overline{\theta}$	St
ITW simulations								
$k - \varepsilon$ Goldberg / DVMS 3D	176K	0.002	0.65	0.13	0.63	1.30	100	0.28
k – R / DVMS	176K	0.002	0.60	0.04	0.50	1.74	105	0.30
WL simulations								
$k - \varepsilon$ Goldberg / DVMS 3D	176K	0.002	0.25	0.08	0.25	1.10	125	0.05
$k - R / DVMS y_m^+ = 10$	176K	0.002	0.29	0.08	0.21	0.77	133	0.08
$k - R / DVMS y_m^{+} = 20$	176K	0.002	0.31	0.11	0.20	0.62	140	0.06
$k - R / DVMS y_m^+ = 10$	572K	$5 imes \mathbf{10^{-5}}$	0.18	0.02	0.14	0.84	135	0.56
Experiments								
<i>al</i> [Shih et al., 1993]			0.24	-	0.33			
[Schewe, 1983]			0.22	-	-			
[Gölling, 2006]						-	130	
[Zdravkovich, 1997]			0.2-0.4	0.1-0.15	0.2-0.34			

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 3900, \overline{C}_d holds for the mean drag coefficient, \overline{C}'_{l} is the root mean square of lift time fluctuation, $\overline{C}_{p_{b}}$ is the pressure coefficient at cylinder basis, L_r is the mean recirculation length, $\overline{\theta}$ is the mean separation angle.

3

In summery :

- k R works very well for low Reynolds
- Hybrid wall law k R gives better results using coarse grid.
- ITW computation can't be established for fine mesh.

To do :

- Improved implicitation?
- Modify the mesh?
- given up the k R

4 E b

-

Part 2 : Current status of $k - \varepsilon - \gamma$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Akhter 2015 transitional model :

$$\frac{\partial \rho \gamma}{\partial t} + \nabla \cdot \rho \mathbf{u} \gamma = \underbrace{c_{g1} \gamma (1 - \gamma) \frac{2\mu_t S^2}{k}}_{Production} + \underbrace{\rho \frac{c_{g2}}{\beta^*} \rho \frac{k}{\omega} \nabla \gamma \cdot \nabla \gamma}_{Auxiliary \ production} + \underbrace{\nabla \cdot [\sigma \gamma (1 - \gamma) (\mu + \mu_t) \nabla \gamma]}_{Dissipation}$$
(9)

with $c_{g1}=0.19,~c_g2=1.0=\sigma_{\gamma},~c_{\mu g}=10^{-3}~\mu_t=k/\omega$ and

$$\mu_t^* = \left[1 + c_{\mu g} \frac{k}{\omega^2} \gamma^{-2} (1 - \gamma) \|\nabla \gamma\|^2\right] \mu_t \tag{10}$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ • のへで

Transition $k - \varepsilon - \gamma$

Akhter 2015 transitional model :

$$\frac{\partial \rho \gamma}{\partial t} + \nabla \cdot \rho \mathbf{u} \gamma = \underbrace{c_{g1} \gamma (1 - \gamma) \frac{2\mu_t S^2}{k}}_{Production} + \underbrace{\rho \frac{c_{g2}}{\beta^*} \rho \frac{k}{\omega} \nabla \gamma \cdot \nabla \gamma}_{Auxiliary \ production} + \underbrace{\nabla \cdot [\sigma_\gamma (1 - \gamma)(\mu + \mu_t) \nabla \gamma]}_{Dissipation}$$
(11)

with $c_{g1} = 0.19$, $c_g2 = 1.0 = \sigma_{\gamma}$, $c_{\mu g} = 10^{-3} \ \mu_t = k/\omega$ and

$$\mu_t^* = \left[1 + c_{\mu g} \frac{k}{\omega^2} \gamma^{-2} (1 - \gamma) \|\nabla \gamma\|^2\right] \mu_t \tag{12}$$

Using $\varepsilon = \beta^* \omega k$, equations can be transformed in :

$$\frac{\partial \rho \gamma}{\partial t} + \nabla \cdot \rho \mathbf{u} \gamma = \underbrace{C_{g1} \gamma (1 - \gamma) \frac{P_k}{k}}_{Production} + \underbrace{\rho C_{g2} \frac{k^2}{\varepsilon} \nabla \gamma \cdot \nabla \gamma}_{Auxiliary production}$$
(13)

Auxiliary production

$$+\nabla \cdot \underbrace{[\sigma_{\gamma}(1-\gamma)(\mu+\mu_t)\nabla\gamma]}_{\mathcal{D}_{\gamma}}$$
(14)

with $C_{\mu g} = 10^{-7} = c_{\mu g} (\beta^*)^2$ and the turbulent viscosity

$$\mu_t^* = \left[1 + C_{\mu g} \frac{k^3}{\varepsilon^2} \gamma^{-2} (1 - \gamma) \|\nabla \gamma\|^2 \right] c_\mu f_\mu \frac{k^2}{\epsilon} \tag{15}$$

Problem Averaged Navier-Stokes compressible equations with $k - \varepsilon$ closure model : Find $(\rho, \rho \mathbf{u}, \rho E, \rho k, \rho \epsilon, \rho \gamma)$ solution of :

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \frac{1}{Re} \nabla \cdot \sigma + \nabla \cdot \tau, \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho E + p) \mathbf{u} = \frac{1}{Re} \nabla \cdot \sigma \mathbf{u} + \nabla \cdot \tau \mathbf{u} + \left(\frac{\gamma}{PrRe} + \frac{\gamma}{Pr_{t}Re_{t}}\right) \nabla h \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho \mathbf{u}k) = \tau : \nabla \mathbf{u} + \nabla \cdot [(\mu + \mu_{t}\sigma_{k})\nabla k] - \rho \varepsilon, \\ \frac{\partial \rho \varepsilon}{\partial t} + \nabla \cdot (\rho \mathbf{u}\varepsilon) = \left(c_{\varepsilon}^{(1)} \frac{\varepsilon}{k} \tau : \nabla \mathbf{u} - c_{\varepsilon}^{(2)} \rho \frac{\varepsilon^{2}}{k} + C^{(2)}\right) C^{(1)} + \nabla \cdot [(\mu + \mu_{t}\sigma_{\varepsilon})\nabla \varepsilon] \\ \frac{\partial \rho \gamma}{\partial t} + \nabla \cdot \rho \mathbf{u}\gamma = C_{g1}\gamma(1 - \gamma)\frac{P_{k}}{k} + \rho C_{g2}\frac{k^{2}}{\varepsilon}\nabla\gamma \cdot \nabla\gamma \\ + \nabla \cdot [\sigma_{\gamma}(1 - \gamma)(\mu + \mu_{t}^{*})\nabla\gamma] \end{cases}$$
(16)

with
$$\mu_t^* = \left[1 + C_{\mu g} \frac{k^3}{\varepsilon^2} \gamma^{-2} (1 - \gamma) \|\nabla \gamma\|^2 \right] c_{\mu} f_{\mu} \frac{k^2}{\epsilon}$$
 and $P_k = \tau : \nabla \mathbf{u}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ● ●

Concatenate equation

$$\frac{\partial \mathbf{W}}{\partial t} + \nabla \cdot F_c(\mathbf{W}) - \nabla \cdot F_v(\mathbf{W}) = \tau^{k-\varepsilon}(\mathbf{W}) + \tau^{\gamma}(\mathbf{W})$$
(17)

E Dac

Concatenate equation

$$\frac{\partial \mathbf{W}}{\partial t} + \nabla \cdot F_c(\mathbf{W}) - \nabla \cdot F_v(\mathbf{W}) = \tau^{k-\varepsilon}(\mathbf{W}) + \tau^{\gamma}(\mathbf{W})$$
(18)

Using a correct definition of Φ :

$$\begin{cases} \Phi_{i}^{\text{Total}} \\ \Phi_{i}(\mathbf{W}_{i} | \mathcal{C}_{i} | + \Phi_{i}(\mathbf{W}_{i}, \phi_{i}, \chi_{i}) - \left(\tau^{k-\varepsilon}(\mathbf{W}_{i}) + \tau^{\gamma}(\mathbf{W}_{i}), \phi_{i}\right) = \mathbf{0} \\ \mathbf{W}_{i}(\mathbf{0}) = \mathbf{W}_{i}^{\mathbf{0}} \end{cases}$$
(19)

э

Concatenate equation

$$\frac{\partial \mathbf{W}}{\partial t} + \nabla \cdot F_{c}(\mathbf{W}) - \nabla \cdot F_{v}(\mathbf{W}) = \tau^{k-\varepsilon}(\mathbf{W}) + \tau^{\gamma}(\mathbf{W})$$
(20)

Using a correct definition of Φ :

$$\begin{cases} \Phi_i^{\text{Total}} \\ \Phi_i(\mathbf{W}_i | \mathcal{C}_i | + \Phi_i(\mathbf{W}_i, \phi_i, \chi_i) - \left(\tau^{k-\varepsilon}(\mathbf{W}_i) + \tau^{\gamma}(\mathbf{W}_i), \phi_i\right) = \mathbf{0} \\ \mathbf{W}_i(\mathbf{0}) = \mathbf{W}_i^{\mathbf{0}} \end{cases}$$
(21)

Time discretization and implicit scheme

$$|\mathcal{C}_{i}|\left(\mathbf{W}_{i}^{n+1}-\mathbf{W}_{i}^{n}\right)+\Delta t\Phi_{i}^{total}(\mathbf{W}_{i}^{n},\phi_{i},\chi_{i})+\Delta t\frac{\partial\Phi^{Total}}{\partial\mathbf{W}}(\mathbf{W}_{i}^{n})(\mathbf{W}_{i}^{n+1}-\mathbf{W}_{i}^{n})=\mathbf{0}$$
(22)

$$\left(\frac{|\mathcal{C}_i|}{\Delta t}Id - \frac{\partial \Phi^{Total}}{\partial \mathbf{W}}(\mathbf{W}_i^n)\right)(\mathbf{W}_i^{n+1} - \mathbf{W}_i^n) = -\Phi_i^{total}(\mathbf{W}_i^n, \phi_i, \chi_i) \quad (23)$$

イロン イ団 と イヨン イヨン

э.

\blacksquare Approximation of the γ jacobian source term on a tetrahedron :

$$\frac{\partial \mathcal{P}_{\gamma,h}}{\partial \rho \gamma}\Big|_{T} \simeq C_{g1} \overline{\frac{1}{\rho_{h}k_{h}} \left(1 - 2\gamma_{h}\right)}^{T} P_{k}$$

$$\begin{pmatrix} \partial \mathcal{D}_{\gamma,h} \Big|_{T} \end{pmatrix} \simeq C_{g1} \overline{\frac{1}{\rho_{h}k_{h}} \left(1 - 2\gamma_{h}\right)}^{T} P_{k}$$

$$(24)$$

$$\left(\frac{-\frac{i}{\gamma_{h}}}{\partial\rho\gamma}\Big|_{T}\right)_{i} \simeq \sigma_{\gamma} \left(\mu + \overline{\mu_{t}}'\right) \left[\left(1 - \overline{\gamma_{h}}'\right)\sum_{j=1}^{r} \frac{-j}{\rho_{j}} \frac{-j}{\partial\mathbf{x}_{i}} - \left(\frac{-j}{\rho}\right)_{h} \sum_{j=1}^{r} \gamma_{j} \frac{-j}{\partial\mathbf{x}_{i}}\right]$$
(25)

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Set up

- Mach = 0.1, Re = 1M
- $U_{\infty} = 34.025, \ \rho_{\infty} = 1.225$
- turbulence intensity : $I_k = 0.5\%$
- $k_{\infty}=rac{3}{2}\,(I_k\,U_{\infty})^2$, $arepsilon_{\infty}=k_{\infty}/10$

Boundary conditions :

 $\gamma_{\partial C} = 1$, and $\gamma_{\infty} = 0.01$

• Mesh : $y_w^+ = 1 \Leftrightarrow \delta = 2 \times 10^{-5}$

Figure - IBM mesh

Name	Mesh size	y_w^+	\overline{C}_d	C'_l	$-\overline{C}_{pb}$	Lr	$\overline{ heta}$
Present simulation							
URANS $k - \varepsilon$	0.6M	1	0.50	0.24	0.51	1.00	109
URANS $k - \varepsilon - \gamma$	0.6M	1	0.51	0.23	0.49	1.10	110
DDES $k - \varepsilon$ Goldberg ITW	4.8M	1	0.50	0.07	0.54	1.22	103
k - ε / cubic WALE ITW	4.8M	1	0.48	0.11	0.55	1.14	109
Experiments							
[Shih et al., 1993]			0.24	-	0.33		
[Schewe, 1983]			0.25	-	0.32		
[Gölling, 2006]						-	130
Zdravkovich, 1997]			0.2-0.4	0.1-0.15	0.2-0.34		

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, $\overline{\underline{C}}_d$ holds for the mean drag coefficient, C'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, L_r is the mean recirculation lenght, $\overline{\theta}$ is the mean separation angle.

Figure - Pressure distribution

22/34

Problems occurs :

- Low CFL number \Rightarrow low time advancing
- Pressure distribution not better than URANS

To do :

- Improved implicitation?
- Improved transitional model, modify the production?
- Compute hybrid $k \varepsilon \gamma$ model.

= nar

Part 3 : Immersed Boundary Method applied on $k - \varepsilon$

▲ 글 ▶ | ▲ 글 ▶ | |

э

Averaged Navier-Stokes compressible equations with $k - \varepsilon$ closure model and *Brinkman Penalisation* :

Find $(\rho, \rho \mathbf{u}, \rho E, \rho k, \rho \epsilon)$ solution of :

$$\begin{cases} \frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) &= -\nabla p + \frac{1}{Re} \nabla \cdot \sigma + \nabla \cdot \tau - \frac{\chi}{\eta} \rho \mathbf{u}, \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho E + p) \mathbf{u} &= \frac{1}{Re} \nabla \cdot \sigma \mathbf{u} + \nabla \cdot \tau \mathbf{u} + \left(\frac{\gamma}{PrRe} + \frac{\gamma}{Pr_{t}Re_{t}}\right) \nabla h - \frac{\chi}{\eta} \rho \|\mathbf{u}\|^{2} \\ \frac{\partial \rho k}{\partial t} + \nabla \cdot (\rho \mathbf{u}k) &= \tau : \nabla \mathbf{u} + \nabla \cdot [(\mu + \mu_{t}\sigma_{k})\nabla k] - \rho \varepsilon - \frac{\chi}{\eta} \rho k, \\ \frac{\partial \rho \varepsilon}{\partial t} + \nabla \cdot (\rho \mathbf{u}\varepsilon) &= \nabla \cdot [(\mu + \mu_{t}\sigma_{\varepsilon})\nabla \varepsilon] + \left(c_{\varepsilon}^{(1)} \frac{\varepsilon}{k} \tilde{\tau} : \nabla \overline{\mathbf{u}} - c_{\varepsilon}^{(2)} \overline{\rho} \frac{\varepsilon^{2}}{k} + C^{(2)}\right) C^{(1)} \\ - \frac{\chi}{\eta} \left(\rho \varepsilon - \frac{2}{Re} \nabla \sqrt{k} \cdot \mathbf{n}\right) \end{cases}$$
and $\chi = \begin{cases} 1 & \text{if } \mathbf{x} \in C, \\ 0 & \text{otherwise.} \end{cases}$

$$(26)$$

References: I.V.Abalakin,A.P.Duben, N.S.Zhdanova, T.K.Kozubskaya, Simulating an unsteady turbulent flow arround a cylinder by the immersed boundary method, *Mathematical Models ans Computer Simulation*, 2019, vol 11, No 1, pp 74-85.

Set up Mach = 0.1, Re = 3900

- $U_{\infty} =$ 34.025, $\rho_{\infty} =$ 1.225
- turbulence intensity : $I_k = 0.6\%$
- $k_{\infty}=rac{3}{2}\,(I_k\,U_{\infty})^2$, $arepsilon_{\infty}=k_{\infty}/10$
- Immersed parameter : $\eta = 10^{-2}$

• Mesh : $y_w^+ = 1 \Leftrightarrow \delta = 2 \times 10^{-4}$

Figure - IBM mesh

Current state of k - R WL cylinder, $k - \varepsilon - \gamma$ model and

Name	Mesh size	δ_w	\overline{C}_{d}	C'_l	$-\overline{C}_{pb}$	L _r	$\overline{ heta}$
Present simulation							
$k - \varepsilon$ Goldberg 3D	176K	0.002	0.96	0.11	0.85	1.56	111
IBM $k - \varepsilon$ Goldberg 3D	176K	0.002	0.98	0.12	0.85	1.49	80
Numerical simulation							
Spalart 3D NOisette	-	0.002	0.97	0.11	0.83	1.67	89
IBM Spalart 3D NOisette	-	0.002	1.04	0.11	0.86	1.58	87
Experiment							
[Norberg, 1994]	-	-	0.94-1.04	-	0.84-0.93	-	-
[Parnaudeau et al., 2008]	-	-	-	0.1	-	1.41-1.58	-
[Lourenço, 1993]	-	-	-	-	-	-	86

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 3900, \overline{C}_d holds for the mean drag coefficient, \overline{C}'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, L_r is the mean recirculation length, $\overline{\theta}$ is the mean separation angle.

э.

イロト イボト イヨト イヨト

Figure – Mean pressure distribution

• Moving geometry center parametrized by (0, sin(4t))

Problems occurs :

- low value of η (10^{-2} instead of 10^{-12})
- incorrect pressure distribution

To do :

- Add ghost cell method with Brinkmann penalization?
- Implement Caradonna Thung geometry
- Run Caradonna test case

-

Part 4 : Current state of aeroacoustic post-treatment

B b

Root mean square pressure

$$p_{\sim} = p - \overline{p},\tag{27}$$

$$\rho_{rms}^2 = \frac{1}{T} \int_T (p - \overline{p})^2 dt, \qquad (28)$$

$$=\frac{1}{T}\int_{T}p_{\sim}^{2}dt,$$
(29)

$$p_{rms}^2 = \overline{p_{\sim}^2} = \overline{p}^2 - \overline{p^2},\tag{30}$$

Then

$$d_B = 10 \log \left(\frac{p_{eff}^2}{p_{\infty}^2}\right) = 20 \log \left(\frac{\overline{p_{\infty}}}{p_{\infty}}\right) \quad [dB]$$
(31)

E 990

Results

3 x 3

Radar representation

Figure – On left $\frac{p_{rms}^2}{p_{\infty}^2}$ is shown at r = 5, and on right side we show the acoustic level of the pressure in [dB]

Problems occurs :

- $p_{rms}/p_{\infty} < 1$.
- The mesh density in the wake is not adapted.

To do :

- Adapted the Lemma's mesh to Aironum
- Run the Lemma's adapted mesh
- Compute instantaneous aeroacoustic field using Kirchoff method and/or FWH method.

3

GOLDBERG, U. and OTA, D. (1990).

A k-epsilon near-wall formulation for separated flows.

Gölling, B. (2006).

Experimental investigations of separating boundary-layer flow from circular cylinder at reynolds numbers from 105 up to 107. pages 455–462.

Jaeger, M. and Dhatt, G. (1992).

An extended k-epsilon finite element model. International Journal for Numerical Methods in Fluids, 14(11) :1325–1345.

Lourenço, L. M. (1993).

Characteristics of the plane turbulent near wake of a circular cylinder.

Norberg, C. (1994).

An experimental investigation of the flow around a circular cylinder : influence of aspect ratio.

Journal of Fluid Mechanics, 258 :287-316.

Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. (2008). Experimental and numerical studies of the flow over a circular cylinder at reynolds number 3900.

Physics of Fluids, 20(8) :085101.

Schewe, G. (1983).

On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical reynolds number. Journal of Fluid Mechanics, 133:265 – 285.

35/34