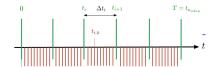
First results for the common paper

B. Sauvage


Mesh Adaptation Strategy

- Application of the Transient Fixed-Point algorithm with one fixed point
- · Mesh adaptation every 2 vortex shedding
- The Mach number is chosen as sensor

Information about simulation conditions:

- Roe solver with γ = 0.3
- V6 MUSCL reconstruction
- Mach number = 0.3
- VMS-LFS Wale Turbulence Model

Algorithm 1.2 — Transient $L^{\infty}\left([0,T], L^{p}(\Omega)\right)$ fixed-point mesh adaptation algorithm. /**Loop over time subintervalls n_{adop} for $i=1, n_{adop}$ for $i=1, n_{adop}$ do ... //*Fixed point adaptation loop for $i=1, n_{pf_{i}}$ of ... 1. $S_{i_{j}}$ = Conservative-SolutionTransfer $(H_{i}^{l-1}, S_{j}^{l-1}, H_{j}^{l})$... 2. $S_{i_{j}}$ = Solve-StateForward $(S_{i_{j}}, H_{i}^{l})$... 3. $M_{i_{j}}$ = ComputeFeatureOrientedMetric $(S_{i_{j}}, H_{j}^{l})$... 4. H_{j+1}^{l} = GenerateAdaptedMesh (H_{i}^{l}, M_{j}^{l}) end for end for

Flow past a cylinder at Reynolds 3900

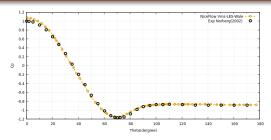


Figure - Distribution over the cylinder surface of the mean pressure coeficient at Reynolds number 3900.

	\overline{C}_d	C'_l	l_r	- \overline{C}_{pb}	$\overline{ heta}$	St
Present simul.						
VMS-LES Wale	1.02	0.09	1.48	0.85	90	0.20
$k - \varepsilon/\text{DVMS}$	0.967	0.11	-	0.85	90	0.20
$k - \varepsilon - \gamma / \text{DVMS}$	0.998	0.11	-	0.86	88	0.21
Other simul.						
VMS-LES [?]	0.99	0.108	1.45	0.88	89	0.21
VMS-LES [?] (1)	1.03	0.377	0.94	1.01	-	0.22
VMS-LES [?] (2)	0.94	0.092	1.56	0.83	-	0.22
LES [?, ?, ?]	[0.99-1.38]	-	[1.0-1.56]	[0.89-1.23]	-	[0.19-0.21]
Experiments						
Exp. [?, ?, ?, ?]	[0.94-1.04]	-	[1.47-1.51]	[0.82-0.93]	-	[0.20-0.22]

Table 1 - Bulk coefficient of the flow around a circular cylinder at Reynolds number 3900.

Flow past a cylinder at Reynolds 3900

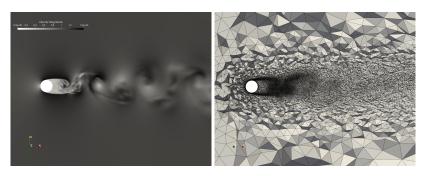


Figure - Cylinder flow at Reynolds number 3900: velocity field (left) and adapted mesh (right) in cross-section.

Flow past a cylinder at Reynolds 20k

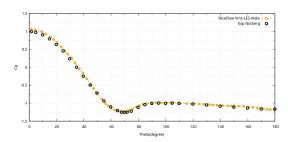


Figure - Distribution over the cylinder surface of the mean pressure coeficient at Reynolds number 20k.

	\overline{C}_d	C'_l	l_r	- \overline{C}_{pb}	$\overline{ heta}$	St
Present simul.						
VMS-LES Wale	1.24	0.45	-	1.08	-	0.193
$k - \varepsilon/\text{DVMS}$	1.102	0.60	-	0.85	85	0.22
$k - \varepsilon - \gamma / \text{DVMS}$	1.227	0.48	-	1.19	89	0.21
Other simul.						
VMS-LES [?]	1.27	0.60	0.80	1.09	86	0.19
Experiments						
Exp.	[1.10-1.20]	[0.4-0.6]	-	[1.03-1.09]	-	0.19

Table 2 – Bulk coefficient of the flow around a circular cylinder at Reynolds number 20,000.

Flow past a cylinder at Reynolds 20k

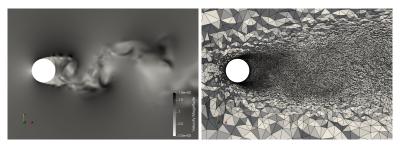
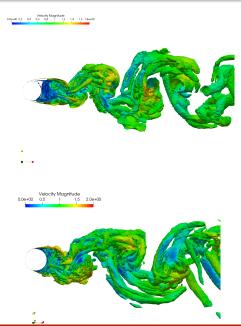



Figure - Cylinder flow at Reynolds number 20k: velocity field (left) and adapted mesh (right) in cross-section.

Flow past a cylinder: Qcriterion

