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Motivations

Our motivation is the mesh adaptive simulation of unsteady flows,
with a particular final target, LES and hybrid RANS/LES flows. We
restrict to time advancing methods.
The Transient Fixed Point algorithm(*) was proposed for specifying
automatically a succession of nadap meshes over a decomposition in
sub-intervals (in green) used for the transient process (timesteps in
red).

(*)F. Alauzet, P.J. Frey, P.-L. George, and B. Mohammadi. 3D transient fixed point mesh
adaptation for time-dependent problems : Application to CFD simulations. J. Comp.
Phys.,222 :592-623, 2007.
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Motivations(2)

In the case of explicit time-advancing, the heuristics (with theoretical
proofs for simple models) was to consider maximal Courant number
=1 as a good principle for time adaptation (*)(**).

For our target set of flows, only implicit time advancing is affordable.
Small timesteps are CPU costly. Large timesteps may loose the
accuracy of the spatial resolution.

Our purpose is to define a space-time global error and optimize it
simultaneously in terms of spatial meshes and timestep length.

(*) F. Alauzet, A. Loseille, G. Olivier, Time-accurate multi-scale anisotropic mesh
adaptation for unsteady flows in CFD, Journal of Computational Physics 373 (2018)
28-63.
(**) A. Belme, A. Dervieux, F. Alauzet, Time accurate anisotropic goal-oriented mesh
adaptation for unsteady flows, Journal of Computational Physics 231 (2012) 6323-6348.
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Space-time metric

In space-time domain Ω × [0,T[, the Transient Fixed Point
mesh-adaptation method relies on the notion of space-time continuous
mesh or space-time metric, Mst,

Mst = ((ti)i=0,nadap , τ,M) (t0 = 0)
defined by :
(i) The splitting (ti)i of [0,T] into nadap subintervals :

[0,T] =
nadap⋃
i=1

[ti−1, ti[.

(ii) A continuous timestep length τ : t ∈]0,T[ 7→ τ(t).

(iii)A time-dependant spatial metric M(t) = Mi for t ∈ [ti−1, ti[ ,
where Mi is defined as the field (Mi(x), x ∈ Ω) with Mi(x) a positive
definite symmetric 3 × 3 matrix.
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Complexity of a space-time metric

The complexity Cst(Mst), or computational effort, of a space-time
metric

Mst = ((ti)i=0,nadap , τ,M)

is the sum of complexities Ci on each time sub-interval [ti−1, ti[, each Ci
being evaluated as the product of the spatial complexity,

Cspace(Mi) =
∫

Ω

√
det(Mi(x))dx

which is the continuous analog of the number of vertices of spatial
discretization, by the time complexity, namely the number of
timesteps, therefore :

Cst(Mst) =
i=nadap∑

i=1

Cspace(Mi)
∫ ti

ti−1

τ(t)−1dt.
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Error model

Given a metric Mst = ((ti)i=0,nadap , τ,M) and a unit mesh ((ti)i, τ,H) of
it. We can compute on ((ti)i, τ,H) a discrete solution W(x, t) of the
Navier-Stokes equations in Ω × [0,T[, with an approximation error E
which we consider as a function of Mst.

The error model can be based on a goal-oriented analysis, with
functional and adjoint. Instead, for simplicity, we consider a Lp

feature-based analysis with a sensor M (typically the Mach number).

E(Mst) = Etime(Mst) + Espace(Mst)

Etime(Mst) =
∫ T

0

∫ +∞
−∞ [τ 2|∂

3M
∂t3 |]pdtdx

Espace(Mst) =
∑nadap

i=1

∫ ti

ti−1
E i(t)dt with

E i(t) =
∫

Ω

[
trace

(
(Mi)− 1

2 (x) HM(x, t) (Mi)− 1
2 (x)

) ]p
dx

and HM = |Hessian(M)|.
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Adaptation optimality

We solve the following optimal problem :{
min
Mst

E(Mst),
Cst(Mst) = Nst.

We prescribe :

(a) the time subintervals : nadap and (ti)i=0,nadap and

(b) an integer Nst (prescribed space-time complexity).

There exists
Mopt

st =
(

(ti)i=0,nadap , τ
opt, (Mopt

i )i

)
,

where τ opt and Mopt
i can be expressed in terms of the error data :

|∂
3M
∂t3 | and HM,

which minimizes the error E(Mst) under the constraint Cst(Mst) = Nst .
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Space-time Transient Fixed-Point Algorithm

Choose nadap, (ti)i=1,nadap , prescribe Nst, initial H0
st

...

Compute CFD solution WCFD solver

Compute h̃(Hinter(W))Space error analysis

Compute ũ(W)Time error analysis

Compute new optimal space-time metric Mk
st :

(a)- Compute time step τ k

(b)- Compute spatial metrics Mk
i

Compute space-time unit mesh Hk
stMesh generator

k → k + 1?

End
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Flow past a cylinder at Reynolds 3900

2D and 3D computation of a flow around a cylinder at Reynolds
number 3900, Mach number 0.3, with Spalart-Allmaras turbulence
model.

Mesh adaptation options are :
- only one adapted spatial mesh, i.e. nadap = 1
- Space-Time complexity Nst is prescribed to 5M, 10M, 20M, 40M in
2D and 750M in 3D.

Figure – Flow past a circular cylinder at Re = 3900 : adapted mesh (left) and Mach number field (right) in cross-section.
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Flow past a cylinder at Reynolds 3900 : Results (2D)

Figure – 2D cylinder flow at Reynolds number 3900. Time Steps as functions of time iteration, for complexities 5M, 40M. On each figure the
successive iterations of the fixed point are depicted.
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Flow past a cylinder at Reynolds 3900 : Results (2D)

Figure – 2D cylinder flow at Reynolds number 3900. Error functionals for complexities 5M, 40M. Complete convergence between time error
and space error is expected only in the continuous case. The corresponding error levels at convergence of fixed point are respectively 0.017,
0.005.
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Flow past a cylinder at Reynolds 3900 : Results (3D)

Figure – 3D cylinder flow at Reynolds number 3900. Time Steps (top) and error functionals (down) for complexity 750M.

B. Sauvage Space-Time Mesh Adaptation : Reminder and new results



Flow past a cylinder at Reynolds 1M

2D and 3D computation of a flow around a cylinder at Reynolds
number 1M, Mach number 0.3, with Spalart-Allmaras turbulence
model.

Mesh adaptation options are :
- only one adapted spatial mesh,
- Space-Time complexity is prescribed to 12.5M, 25M, 50M, 100M in
2D and 725M in 3D.

Figure – Flow past a circular cylinder at Re = 1M : adapted mesh (left) and the Mach number (right) in cross-section.
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Flow past a cylinder at Reynolds 1M : Results (2D)

Figure – 2D cylinder flow at Reynolds number 1M. Time Steps as functions of time iteration, for complexities 12.5M and 100M. On each
figure the successive iterations of the fixed point are depicted.
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Flow past a cylinder at Reynolds 1M : Results (2D)

Figure – 2D cylinder flow at Reynolds number 1M. Error functionals for complexities 12.5M and 100M. Complete convergence between
time error and space error is expected only in the continuous case. The corresponding error levels at convergence of fixed point are
respectively 0.014, 0.004.
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Flow past a cylinder at Reynolds 1M : Results (3D)

Figure – 3D cylinder flow at Reynolds number 1M. Time Steps (top) and error functionals (down) for complexity 725M.
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Flow past a cylinder : Results (3D)

Figure – 3D flow past a cylinder at Reynolds number 3900 : views of the Q-criterion.

Figure – 3D flow past a cylinder at Reynolds number 1M : views of the Q-criterion.
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