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Hybrid turbulence models favored by INRIA and univ. of
Montpellier in the NORMA project

Three hybrid turbulence models belonging to the category of hybrid RANS/LES
approaches (i.e. LES does not extend all the way to the wall as for
wall-stress-models), seamless or zonal, used/developed by the french partners in
the NORMA project :

DDES

RANS/DVMS

DDES/DVMS

In numerical applications, use of these models in their natural mode (RANS in
the entire boundary layer, i.e. no wall-modeled LES) in order to avoid log-layer
mismatch.
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DDES

DDES/k − ε
Based on the low Reynolds k − ε model proposed by Goldberg, Peroomian
and Chakravarthy (1998), which can be written briefly :

∂W

∂t
+∇ · Fc(W ) +∇ · Fv (W ) +∇ · FRANS

v (W ) = Ω(W ) (RANS eq.)

The dissipation term DRANS
k = ρε in the RHS of the k − ε equations is replaced

by:

DDDES
k = ρ

k3/2

lDDES

with lDDES =
k3/2

ε
− fdmax

(
0,

k3/2

ε
− CDDES∆

)
, CDDES = 0.65, ∆ is a measure

of local mesh size, and fd is the shielding function (fd ' 0 in the BL).

Resulting DDES eq.:
∂W

∂t
+∇·Fc(W )+∇·Fv (W )+∇·FRANS

v (W ) = ΩDDES(W )
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Dynamic Variational Multiscale (DVMS)

For turbulent wakes, many LES models are well performing.
A particular one, the Variational Multiscale (VMS) model, can be built in order
to dissipate solely the numerical scales which are the smallest represented by the
mesh and not the larger ones.
In this approach, the effects of the unresolved structures are only modeled in the
equations governing the small resolved scales :

VMS governing equations :(
∂Wh

∂t
,Ψi

)
+ (∇ · Fc(Wh),Ψi ) + (∇ · Fv (Wh),Φi ) = −

(
τLES(W ′

h),Φ′
i

)

W ′
h = Wh −Wh = small resolved scales, where Wh=spatial averaged of Wh on

agglomerated cells : .
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Dynamic Variational Multiscale (DVMS)

VMS still slightly depends on the uniform SGS coefficient used for this
dissipation.
In previous works we identified DVMS, a combination of VMS with
Germano-type dynamic algorithm adapting in space and time the SGS
coefficient (CSGS → CSGS(x , t)), as more accurate than VMS.

Flow around a circular cylinder at Reynolds number 20,000: viscosity ratio for
VMS (left) and for DVMS (right)

DVMS introduces less dissipation than classical LES ⇒ good candidate for
aeroacoustic computation.
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Hybrid RANS/DVMS model

Seamless hybridization of Goldberg k − ε model and DVMS through a
blending function.

Hybrid RANS/DVMS governing equations :(
∂Wh

∂t
,Ψi

)
+ (∇ · Fc(Wh),Ψi ) + (∇ · Fv (Wh),Φi ) =

−θ
(
τRANS(Wh),Φi

)
− (1− θ)

(
τLES(W ′

h),Φ′
i

)

θ = 1− fd(1− θ̄) ∈ [0, 1] is a blending function where

fd is the DDES shielding function
fd ' 0 in the BL ⇒ RANS mode activated (θ ' 1)
fd ' 1 outside the BL ⇒ θ = θ̄ with hybridization parameter θ̄ ' 0 if the
fineness of the grid is sufficient for DVMS ⇒ DVMS mode activated in this
case (θ ' 0).
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DDES/DVMS

Zonal combination of DDES and DVMS

Compute all DDES fluxes on the whole computational domain.

Define the DVMS region : Y + ≥ 1000 ⇒ DVMS activated in the wake.

In this region, re-evaluate the DDES turbulent viscous fluxes with DVMS.

DDES/DVMS governing equations :

(
∂Wh

∂t
,Ψi

)
+ (∇ · Fc(Wh),Ψi ) + (∇ · Fv (Wh),Φi ) +

θ
(
∇ · FRANS

v (Wh),Φi

)
+ (1− θ)

(
∇ · F LES

v (W ′
h),Φ′

i

)
=

(
ΩDDES(Wh),Φi

)
where θ = 0 in the DVMS region, and θ = 1 elsewhere, with a smooth
fitting between the two regions.
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Numerical model

Specificities of the Mixed finite-Element/finite-Volume (MEV) discretization

Combination of a Finite-Element method (FEM) with a vertex-centered
Finite Volume method (FVM)

Applicable to a general class of tetrahedrizations

Low order numerical methods: second-order accuracy in space

A high-derivative model mastering numerical dissipation:

a very low numerical dissipation made of sixth-order derivatives
and directly controled by a scaling factor γ
⇒ further enhance the complementarity between the SGS model and the
MUSCL stabilization and further reduce their competition.

Specifities of the time discretization

Implicit time integration by a second order backward difference scheme
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NUMERICAL EXPERIMENTS

Circular cylinder at Reynolds number 140,000 ⇒ subcritical regime.

Circular cylinder at Reynolds number 1,000,000 ⇒ supercritical regime.
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Sub-critical flow (near critical) : Re=140K

AIRONUM results Cylinder Re= 140K

Flow parameters:
Reynolds = 140K
Mach = 0.1
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————–
Velocity computed from Mach eqn
mesh 165x165x33 (θ, radial, span)
Re = 140K mesh is very coarse
Re = 1M mesh = 256x215x21

Computational grids:
0.892M nodes
52M elements
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Sub-critical flow (near critical) : Re=140K

AIRONUM results Cylinder Re= 140K

Flow parameters:
Mach = 0.1
Reynolds = 140K
mesh (θ,radial,z-direction)
mesh = 165x165x33
Y +
surface = 20

∆radial at surface = 0.002
time steps = 140000
cfl = 40
∆t(adimensional) = 0.0014
V6 γ = 0.3 (3rd-order space)
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————–
Velocity computed from Mach eqn

Computational grids:
0.892M nodes
52M elements
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Sub-critical flow (near critical) : Re=140K

AIRONUM convergence Cylinder Re= 140K

Flow parameters:
58000 = 1.25 sec
144000 = 5.30 sec
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Sub-critical flow (near critical) : Re=140K

C d −C pb Lr St

Experiments
Cantwell-Coles (1983) 1.24 1.21 0.5 0.179
Son-Hanratty (1969), Zdravkovich (1997) ' 0.2

Present simulations
No model 0.43 0.40 0.63 0.142
URANS k − ε 0.77 0.87 1.05 0.218
DDES k − ε 0.97 1.01 0.96 0.217
DDES/DVMS 1.04 1.12 0.91 0.214
DVMS 1.25 1.33 0.88 0.217

Table 1: Bulk quantities for Re = 140, 000 flow around a cylinder.
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Super-critical flow: Re=1M (1.0E+06)

Important paper of Tamura, Ohta, and Kuwahra 1990

Flow parameters:
Showed that Supercritical flows are
basically two-dimensional
Can be computed with
two-dimensional codes
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Super-critical flow: Re=1M

AIRONUM centerplane mesh

Flow parameters:
Can be computed with
two-dimensional codes
Reynolds = 1M(1.0E + 06)
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————-
Velocity computed from Mach eqn

Computational grids:
1.210M nodes
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Super-critical flow: Re=1M (1.0E+06)

AIRONUM Re= 1M 3D vs 2D-per

Flow parameters:
Mesh refined for the aft-cylinder
Reynolds = 1M(1.0E + 06)
Mach = 0.1
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————–
Velocity computed from Mach eqn
————————————–
2D-per mesh 256x215x3 vertices
θ, radial, span

Computational grids:
1.210M nodes
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Super-critical flow: Re=1M (1.0E+06)

AIRONUM Re= 1M results near drag crisis

Flow parameters:
Reynolds = 1M(1.0E + 06)
Mach = 0.1
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————-
Velocity computed from Mach eqn

Computational grids:
1.210M nodes
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Super-critical flow: Re=1M (1.0E+06)

Wall functions/wall-law layers

Flow parameters:
Reynolds = 1M(1.0E + 06)
Mach = 0.1
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————-
Velocity computed from Mach eqn

Computational grids:
1.56M nodes
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Super-critical flow: Re=1M (1.0E+06)

AIRONUM-the effect of Y +
match on the drag

Flow parameters:
Reynolds = 1M(1.0E+06)
Mach = 0.1
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————-
Velocity computed from Mach eqn

Computational grids:
1.56M nodes
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Super-critical flow: Re=1M (1.0E+06)

AIRONUM Re= 1M URANS surface pressure

Flow parameters:
Mach = 0.1
Reynolds = 1M(1.0E + 06)
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————-
Velocity computed from Mach eqn

Computational grids:
1.210MNodes
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Super-critical flow: Re=1M (1.0E+06)

AIRONUM Re= 1M DDES effect of protection shield on surface pressure

Flow parameters:
Mach = 0.1
Reynolds = 1M(1.0E + 06)
DDES fddes PZ designed for wings
- attached flow
- laminar, turbulent flow
- excludes massive separation like
cylinders

Computational grids:
1.210MNodes
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Super-critical flow: Re=1M (1.0E+06)

AIRONUM Re= 1M Effect of protection-zone/shield

Flow parameters:
Mesh refined for the aft-cylinder
Reynolds = 1M(1.0E + 06)
Mach = 0.1
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————–
Velocity computed from Mach eqn
————————————–
δ = 20 ×Y +

match/Re × D

Computational grids:
1.210M nodes
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Super-critical flow: Re=1M (1.0E+06)

AIRONUM Re= 1M geometric protection-zone/shield

Flow parameters:
Mesh refined for the aft-cylinder
Reynolds = 1M(1.0E + 06)
Mach = 0.1
reference density = 1.225 kg/m3

reference pressure = 101300 N/m2

————————————–
Velocity computed from Mach eqn
————————————–

Computational grids:
1.210M nodes
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Supercritical flow : Re=1M

Test case definition

Flow parameters:
Mach = 0.1
Reynolds = 1M

Computational grids:
2.85M nodes
16.6M elements
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Supercritical flow : Re=1M

Cd C ′
l −Cpb St

Experiments
Szechenyi (1975) 0.25 0.32 0.35
Goelling (2006) 0.35
Zdravkovich (1997) 0.2-0.4 .1-.15 .2-.34 0.50
Present simulations
URANS k − ε 0.24 0.07 0.26 0.45
DDES k − ε 0.24 0.04 0.34 0.26
DDES/DVMS 0.23 0.04 0.30 0.33
Other simulation
LES of Kim and Mohan (2005) 0.27 0.12 0.28

Table 2: Bulk coefficients of the flow around a circular cylinder at Reynolds number
106.
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Hybrid turbulence models : future works for improvement

Some tracks to explore :

A transition prediction model (RANS component) in order to more accuratly
compute transitional boundary layers (supercritical regime).

SST k − ω model combined with DDES, RANS/DVMS and DDES/DVMS.

k − R model (Zhang-Rahman-Chen, 2019) combined with DDES,
RANS/DVMS and DDES/DVMS.

Further improve the blending function in the RANS/DVMS approach.

A seamless DDES/DVMS strategy based on a blending function allowing for
an automatic switch from DDES to DVMS and vice versa.

A DDES variant (limitation of the production term, Reddy-Ryon-Durbin,
2014) which avoids the log-layer mismatch issue.
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