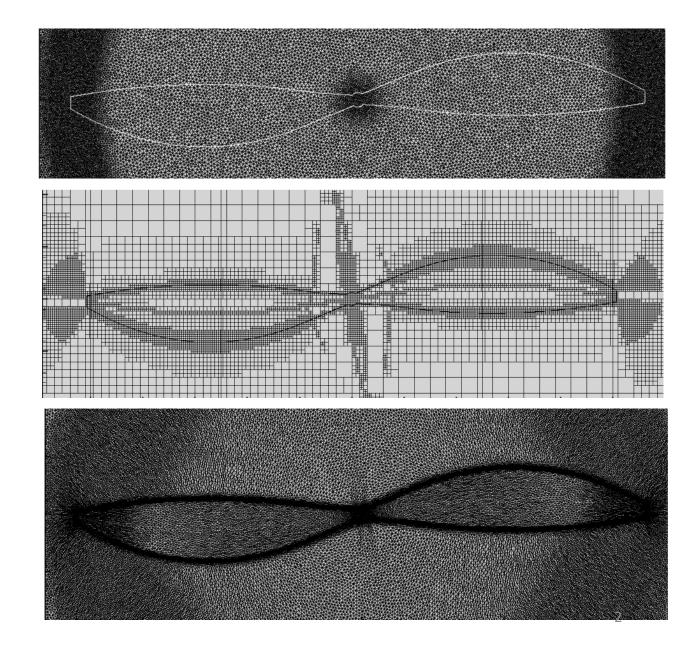
Simulation of flow near rotating propeller defined by immersed boundary method on adaptive meshes

Ilya Abalakin, Vladimir Bobkov, Tatiana Kozubskaya, Liudmila Kudryavtseva, Valeriia Tsvetkova and Natalia Zhdanova *Keldysh Institute of Applied Mathematics of RAS*

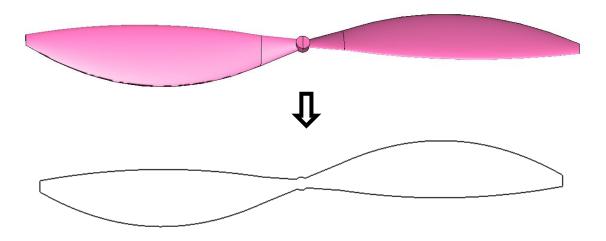
NORMA Meeting, February 2021

Main features of the technique

- Simply connected domain
- Geometry is defined by interpolation grid (level-set tree)
- Immersed boundary method (IBM) Brinkman penalization
- The shape of the body is approximated using adaptation of rtype (nodes are redistributed while topology remains the same)
- Adaptation produces anisotropic cells



Statement of the problem



Propeller* of size R = 0.256 m is rotating clockwise with f = 3000 rpmUpstream flow $U_0 = 10 m/s$

Projection of 3D geometry on z=0

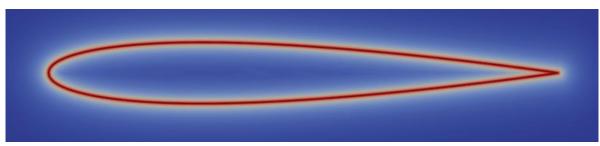
Features of the adaptation technique

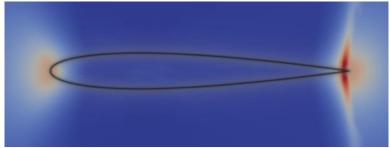
- Level-set function u(x,t) defines the solid body location and is close to signed distance function near the boundary
- Metric tensor G(x,t) is built upon u(x,t) as

$$G(x,t) = \sigma_1^2 I + (\sigma_2^2 - \sigma_1^2) \nabla_x u \nabla_x u^T \frac{1}{|\nabla_x u|^2} \xrightarrow{\sigma_2 = \sigma_1} G(x,t) = \sigma_1^2 I$$

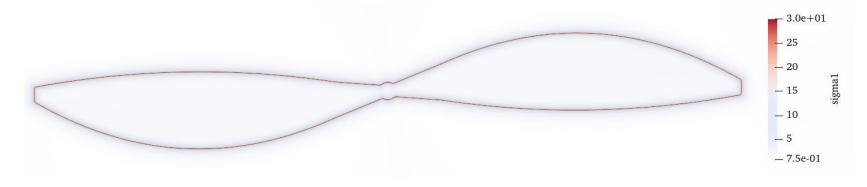
• On highly curved fragments of the boundary or near sharp vertices $\sigma_2 = \sigma_1$, otherwise $\sigma_2 = \sigma_1/K$. K is user-defined anisotropic ratio.

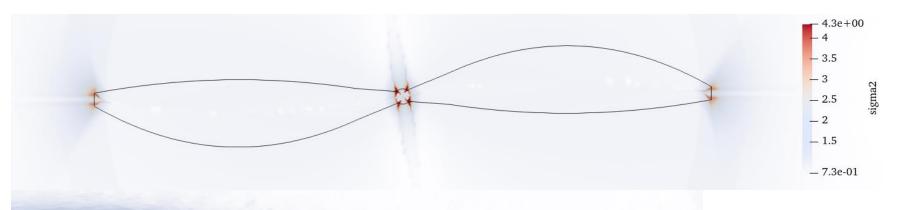
 $\sigma_1 = \sigma_{\text{normal}}(x, t)$ - mesh stretching in the normal direction $\sigma_2 = \sigma_{\text{tangential}}(x, t) \ (\sigma_{2,3} \text{ in 3D})$ - spatial distribution of the anisotropy

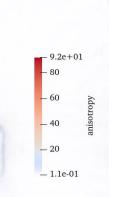




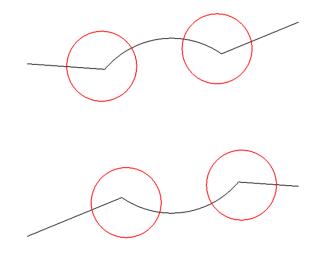
 σ_1 distribution

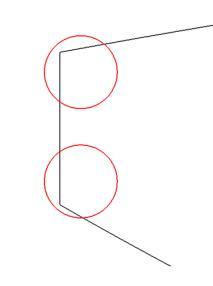


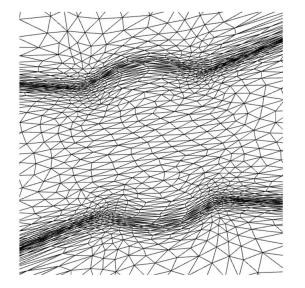


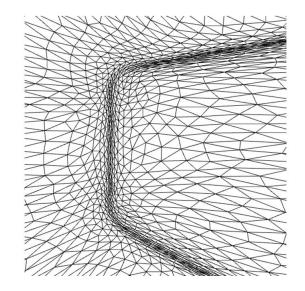


Adaptation for propeller projection

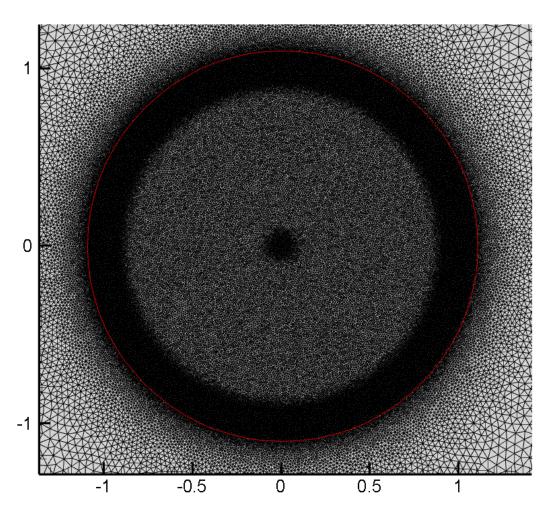




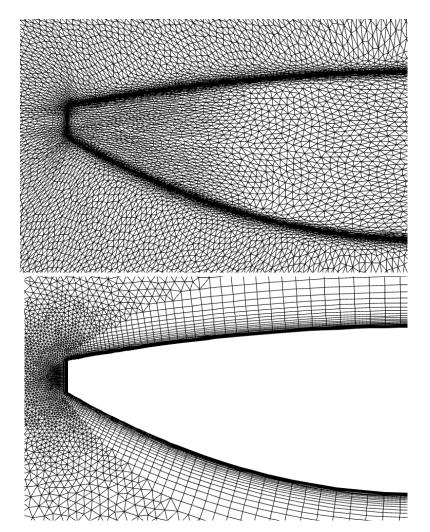




Adaptation for propeller projection



Starting mesh is prepared beforehand. Vertices outside red circle are not moving.

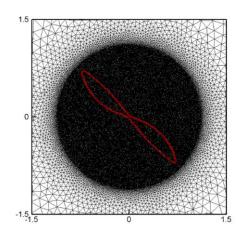


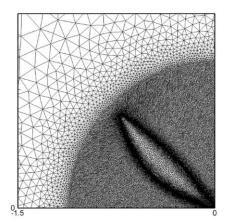
All further comparisons with be performed with use of body-fitted meshes (BFM)

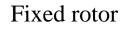
Comparison: with the solution of RANS + SA in non-inertial system of coordinates associated with the propeller performed on bodyfitted mesh

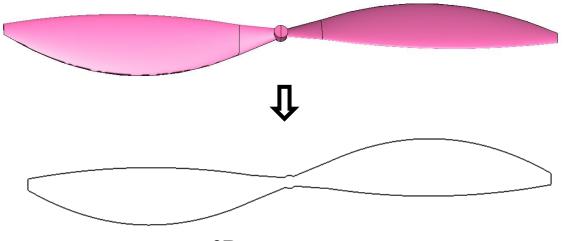
Additional problems:

- 1. Propeller is fixed, upstream flow M=0.23
- 2. Propeller is fixed, upstream flow M=0.029
- 3. Propeller is rotating, no upstream flow M=0







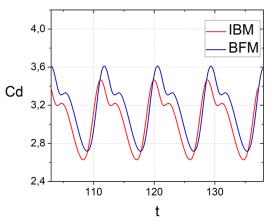


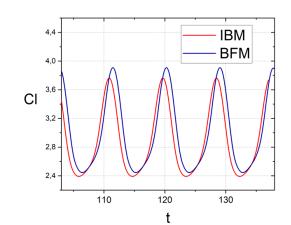
Propeller of size R = 0.256 m is rotating clockwise with f = 3000 rpmUpstream flow $U_0 = 10 m/s$ After normalization: $Re = 1.3 \cdot 10^6$, $M_{flow} = 0.029$, $M_{ref} = 0.23$

Results for single propeller

Problem 3:

Problem 1:

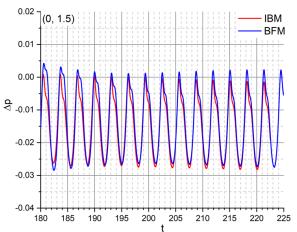


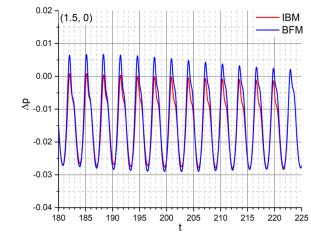


Problem 1,2: p, v, u are taken in (1.5, 0, 0)

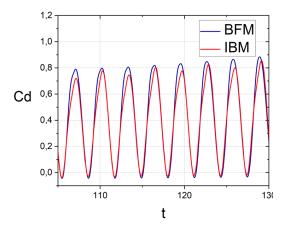
		$\overline{C}_{\scriptscriptstyle D}$	$\bar{C}_{_L}$	St
M = 0.23	IBM	3.063	2.925	0.114
	BFM	3.167	2.994	0.114
M = 0.029	IBM	0.054	0.050	0.012
	BFM	0.058	0.053	0.009

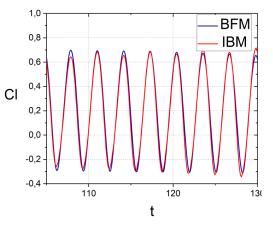
		\overline{p}	\overline{u}	\overline{v}
M = 0.23	IBM	11.91	-0.290	-0.0903
	BFM	11.92	-0.307	-0.0995
M = 0.029	IBM	13.02	-0.023	-0.0158
	BFM	13.02	-0.026	-0.0113

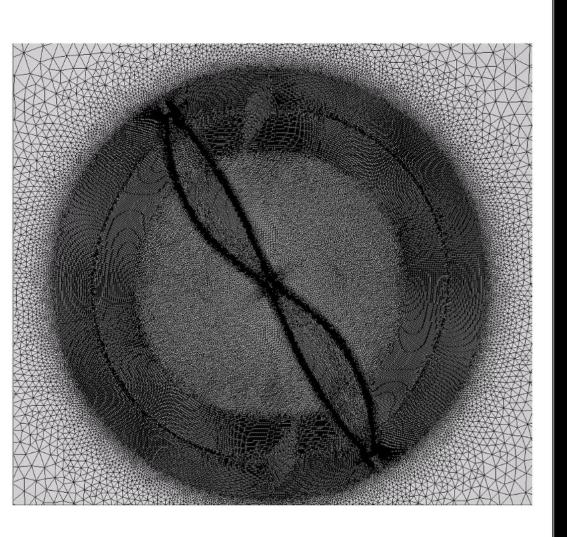


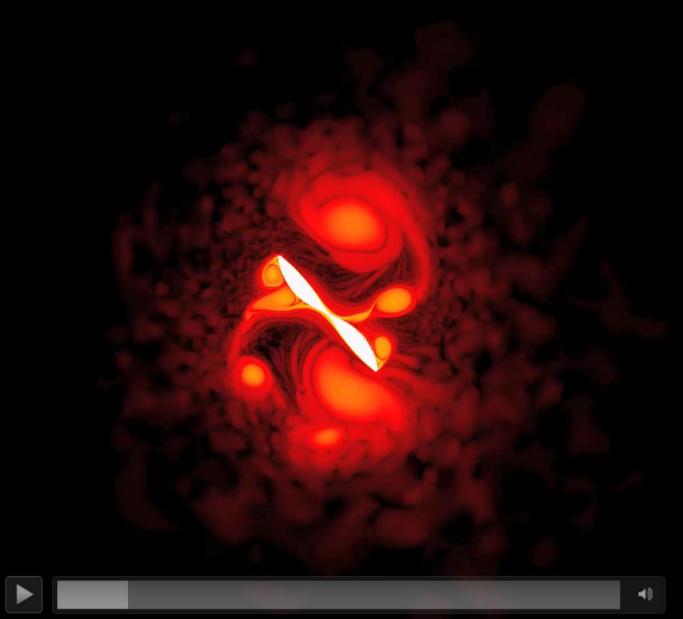


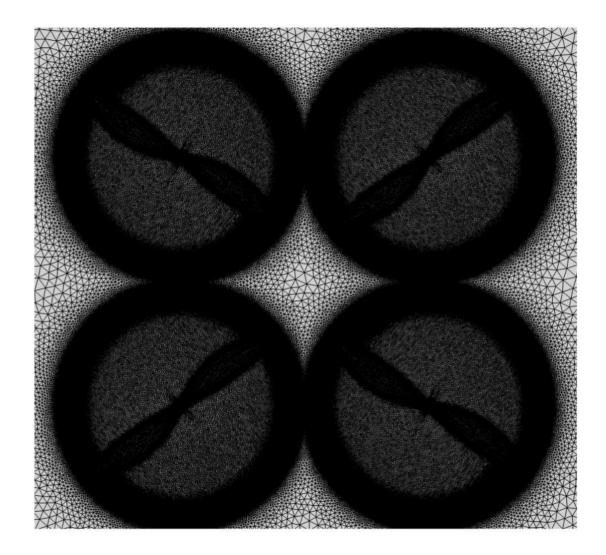
For original formulation:

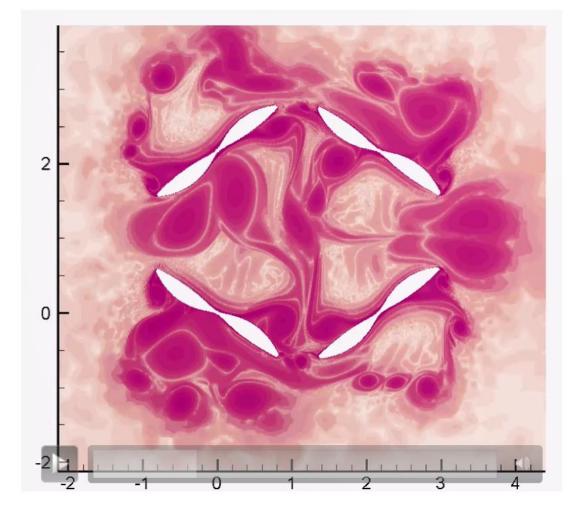




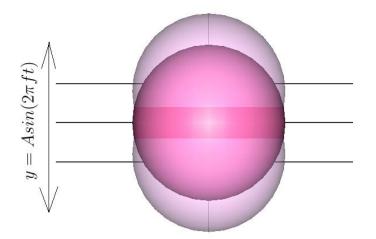






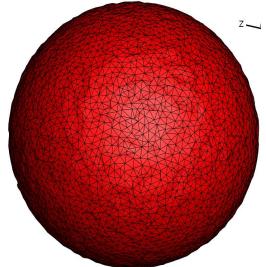


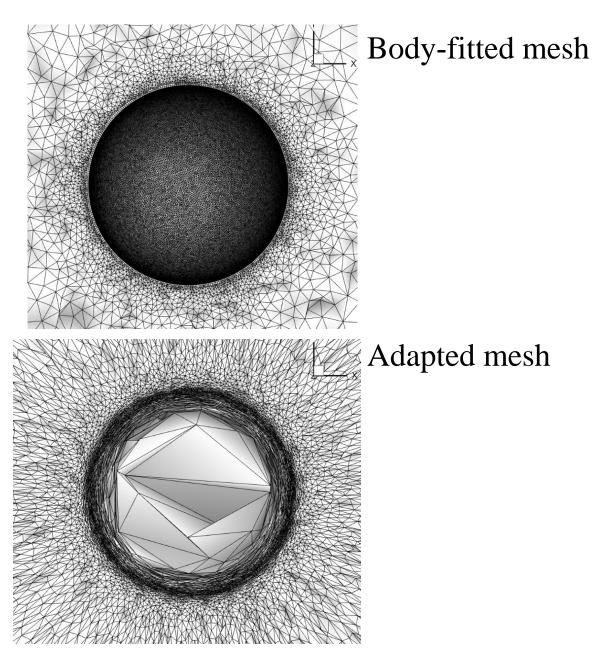
Testing for 3D case



Sphere of size D = 1 is making forced harmonic movement along Oy with f=0.15, A=0.2

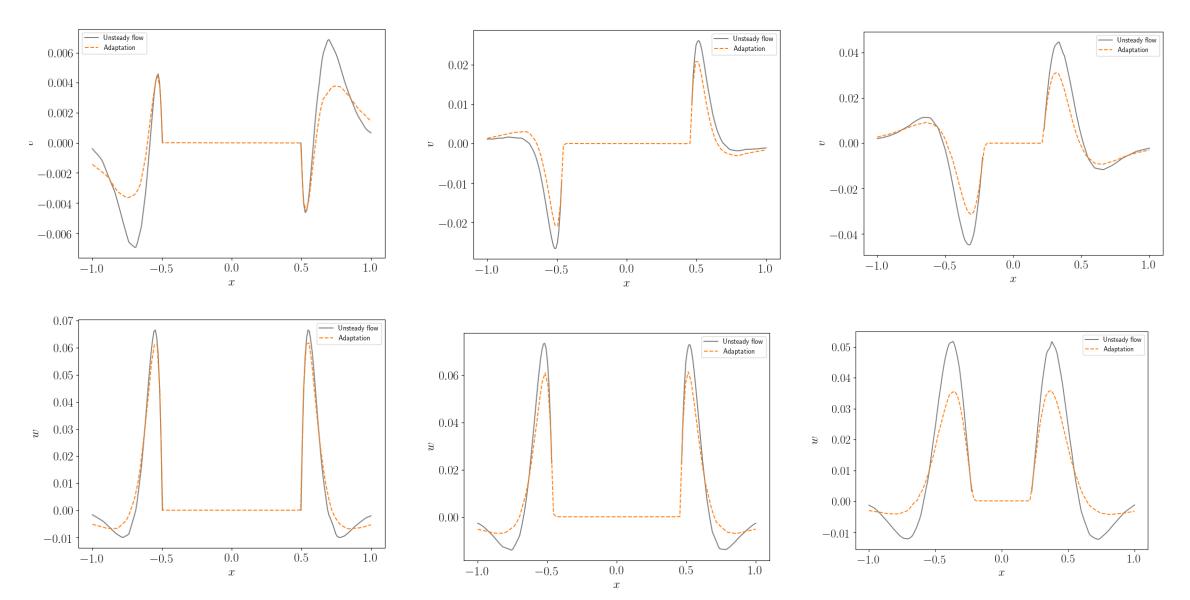
Re=318.8





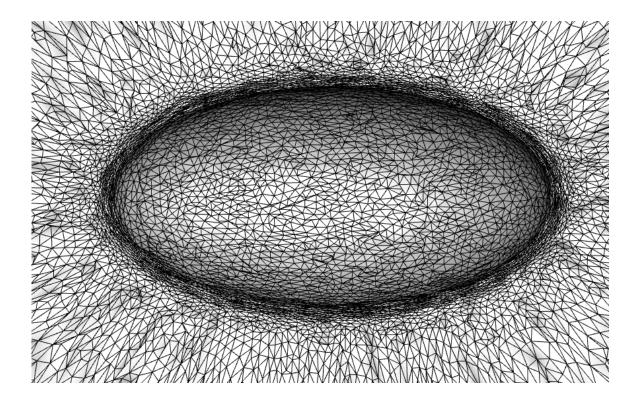
Solid domain

Testing for 3D case: comparison in profiles $y=\{-0.25, 0, 0.25\}$; x=0; -1 < z < 1



13

Adaptation for ellipsoid (solid part is blanked)



Problems to solve

- automatic control of anisotropic adaptation along complicated shapes
- complicated 3D shapes
- efficiency improvements