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Updates of hybrid 3D simulations on cylinder at Re=1M and review of transitional model

Brief description

B DVMS side : Subgrid model

- Smagorinsky :
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-
with S the deformation tensor.
- Wall Adapting Local Eddy
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Updates of hybrid 3D simulations on cylinder at Re=1M and review of transitional model

Brief description : suite of previous presentation

B DVMS side : Subgrid model
- Smagorinsky :

1/3
Hogs = P(CsA)?V2S 1S, A= (/ dx)
-
with S the deformation tensor.
- Wall Adapting Local Eddy
(Sd . Sd)5/2
(S:5)5/2 4 (S9: Sd)5/4’
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B RANS side : kK — ¢ with menter correction
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Updates of hybrid 3D simulations on cylinder at Re=1M and review of transitional model

B Model used : RANS/DVMS with :
— —_ 2
- Blending: § =1 —fy x (1—0); = tanh ((kﬁjza) )

- Subgrid model for VMS : WALE,

k —e Goldberg
k —e with Menter correction

- Closure model for RANS : {

B Simulation set up :
- mach number : 0.1 (subsonic flow)
- reference pressure : 101300 [N/m?]
- density : 1.225 [kg/m3]

- minimal mesh size is such that y;; =

a/14
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Name Mesh size yvt y; Cy C/' —Cpb Ly 6
Present simulation

URANS k — ¢ 4.8M 1 o 0.50 0.24 0.61 0.77 109
DDES k — ¢ Goldberg WL 4.8M 20 100 0.20 0.04 0.22 0.87 138
DDES k — ¢ Goldberg WL 4.8M 20 25 0.40 0.05 0.56 1.46 113
DDES k — ¢ Goldberg ITW 4.8M 1 o 0.50 0.07 0.54 1.22 103
DDES k — & menter ITW 4.8M 1 0 0.69 0.21 0.80 1.26 102
DVMS

cubic Smagorinsky ITW 4.8M 20 [ 0.49 0.17 0.42 0.71 92
DDES/ DVMS

k - £ / cubic WL Smagorinsky 4.8M 20 100 0.20 0.02 0.22 0.82 135
k - € / cubic WALE WL 4.8M 1 100 0.20 0.02 0.26 0.80 132
k - € / cubic WALE ITW 4.8M 1 [ 0.49 0.06 0.60 1.56 104
k - £ menter/ cubic WALE ITW 4.8M 1 0 0.57 0.11 0.69 1.80 103
RANS / DVMS

k - £ / cubic Smagorinsky WL 4.8M 20 100 0.24 0.05 0.22 0.62 133
k - £ / cubic Smagorinsky WL 4.8M 1 100 0.25 0.09 0.25 0.64 132
k - £ / cubic WALE WL 4.8M 1 100 0.26 0.11 0.22 0.65 134
k - £ / cubic WALE ITW 4.8M 1 ] 0.48 0.11 0.55 1.14 109
k - £ menter/ cubic WALE ITW 4.8M 1 o 0.54 0.15 0.64 1.16 106
Other simulations

RANS Catalano [1] 2.3M - - 0.39 - 0.33

LES Catalano [1] 2.3M - - 0.31 - 0.32

LES Ono [2] 4.5M - - 0.27 0.13 -

LES Kim [3] 6.8M - - 0.27 0.12 0.28 - 108
Expériences

Shih et al [5] 0.24 - 0.33

Schewe [4] 0.22 - -

Szechenyi [6] 0.25 - 0.32

Galling [9] - 130
Zdravkovich [8] 0.2-0.4 0.1-0.15 0.2-0.34

Table — Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, gj
holds for the mean drag coefficient, C/ is the root mean square of lift time fluctuation, C, is
the pressure coefficient at cylinder basis, L, is the mean recirculation lenght, 0 is the mean

c /14 separation angle.
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M Pressure coefficient

meanflow pressure coefficient Re= 1M (WL)

meanflow pressure coefficient Re= 1M (ITW)

DDES WL Re= 1M
DDES-DVMS WL Re= 1M
RANS-DVMS WL Re=1M

DDES ITW ——
DDES-DVMS WALE ——

RANS-DVMS WALE

1 DDES-DVMS WALE WL Re= 1M RANS-DVMS WALE menter
™ RANS-DVMS WALE WL Re=1M '\ DDES-DVMS WALE menter
\\ Exp Warschauer Re=1.26 Exp Warschauer Re=1.26
A aironum-3D \\ aironum-3D
0 \
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Figure — Distribution of mean pressure as a function of polar angle. Comparaison between

experiment. Wall law on the left and integration to the wall on the right.



Updates of hybrid 3D simulations on cylinder at Re=1M and review of transitional model

M Skin friction coefficient :

Tw .
Cr=—5—F5, Wwith 7, the wall shear stress (1)
1/2pc U2,
meanflow skin friction coefficient Re= 1M
0.01
RANS/DVMS WL-100 s
RANS/DVMS ITW
\ES WALE Screenavisan
0.008 LS TBLE Screenavisan
Exp'Bchenbach Re= 3.6e6 .
0.006
5]

0.004

0.002
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Figure — Distribution of skin friction coefficient as a function of polar angle. Comparaison
between experiment.
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Review of transition modeling

B Algebraic relation [11][13][10][12], main work of Addison, Narasimha :

x — xt)?

Narasimhal985: ~(x) =1 — exp (—0.412( 2 ) x > xt,v = 0 otherwise

N
Addison1992 :  (x,t) =1 —exp <—/ V—g(xt,z, t)dzdt)
A

x,t) O

Xt : start of transition point ( y(x¢) = %), o = 0.25 and N depend of Ay : the pressure
gradient of boundary layer.

teff = p+F¥(X)u1, p7 turbulente viscosity (2)

o
A the intersection of the volume of
dependence R with the plane s = sy(1).

Volume of Degendence R
is riangular in cross-section (approximation "=
10 the measured shape of rbulent spots).
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B Arround k — & — ~, main works are Kollman 1986 [16], Cho-Chung 1992 [17],
Steelant 1996 [19], Suzen 2000 [18], we present work of Akter 2007 [14] :

8 K2
Akter 2007 : % + V- puy = Cay(1— ) +pC2 V- Yy

— Cgapy(1— W);r +V- [Uw(l — (k4 pe) VA

e The first term represent the kinetic turbulent energy production : Py = || 8" 12

e The increase of «y is modeled by pCg2 gV'y -Vy
e The third term is an inertial term where :
k5/2 1

&2 ull

——(uVu) - V. 3)

e The last term is a diffusion term

We have the following constants Cg3 = 0.19, G2 = 0.1, C,3 =0.01, 0y = 1.
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B Akter 2007 [14] viscosity : Thus, the transition concept has been incorporated by
modifying expression of eddy viscosity, as following :

: @
i = 14 Gus 5573 = DIV e *)

with C,g = 0.1 and p; = Cpfué and f, = (1 + f}%) [l — exp (—%)]

M Initial and boundary condition :

{'y(x,O) = 1073, (5)

YNoc = L.
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B A recent model : k — R of Zhang 2020 [20] :

2
e A two equation model equation on k and R ~ k?

[m1l=m1.
cr !

e ~ = tanh (max (0,57 1)) where s =v2S:Sand v =v2Q:Q:

e An original production term : & >~ s — n=s-—yv,

pe = pcufy |kTe(l—v)+ R . 6
t = PCulp t( ) Y (6)
(1) (2)
[at3 Ky

e The main particularity is 0 < v < 1 which create a transition between laminar to
turbulent flow
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B Other models has been developed :
- k — ¢ — v of Warren 1997 [22] developed for high mach computation
- k — ki — ~ of Lardeau 2004 [23] blend laminar and turbulent kinetic energy

-y = E;g of Langtry and Menter [21] two transport equation coupled with k — w
SST model

- k — @ — v of Lorini 2014 [?] separate natural bypass transition and separation
induced mode

12/14
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B Conclusions and things to do

o WALE model with y;5 = 1 gives better results,

e Bulk coefficients are close to experimental data for WL,

Drag coefficients are over estimated,

e We are implementing k — R, k — £ — v model to improve the transition from
laminar to turbulent.
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Definition

(Momentum thickness)
Let poo, Uso respectively free stream density and velocity, we define the momentum
thickness 6 : Q x [0, T] — R such that :

0(x, t) = /07 p(x, t)u(x, t) (1 _u(x, t)) dy

Poo Uoo Uoso

where direction y is the free stream direction.

Definition

(Pressure gradient of boundary layer) We call pressure gradient of boundary layer, the
following quantity :
_ P02 duy

uw 0s’ 7

6

where the derivative is the acceleration in the streamwise direction, and 6 is the
momentum thickness.



