Updates of hybrid 3D simulations on cylinder at Re=1M and review of transitional model

F. Miralles, S.Wornom, B.Koobus, A.Dervieux

IMAG, Université de Montpellier

8 novembre 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Brief description

- DVMS side : Subgrid model
 - Smagorinsky :

$$\mu_{\text{sgs}} = \overline{\rho} (C_{\text{S}} \Delta)^2 \sqrt{2S:S}, \quad \Delta = \left(\int_{T} d\mathbf{x} \right)^{1/3}$$

with S the deformation tensor.

- Wall Adapting Local Eddy

$$\begin{split} \mu_{\text{sgs}} &= \overline{\rho} (\boldsymbol{C}_{\boldsymbol{W}} \Delta)^2 \frac{(S^d : S^d)^{5/2}}{(S : S)^{5/2} + (S^d : S^d)^{5/4}}, \\ S^d_{ij} &= \frac{1}{2} (\boldsymbol{g}^2_{ij} + \boldsymbol{g}^2_{ji}) - \frac{1}{3} \delta_{ij} \boldsymbol{g}^2_{kk}, \ \boldsymbol{g}^2_{ij} &= \sum_k \frac{\partial \mathbf{u}_i}{\partial \mathbf{x}_k} \frac{\partial \mathbf{u}_k}{\partial \mathbf{x}_j} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Brief description : suite of previous presentation

- DVMS side : Subgrid model
 - Smagorinsky :

$$\mu_{\text{sgs}} = \overline{\rho} (C_{\text{S}} \Delta)^2 \sqrt{2S:S}, \quad \Delta = \left(\int_{T} d\mathbf{x} \right)^{1/3}$$

with S the deformation tensor.

- Wall Adapting Local Eddy

$$\begin{split} \mu_{\text{sgs}} &= \overline{\rho} (\boldsymbol{C}_{\boldsymbol{W}} \Delta)^2 \frac{(S^d : S^d)^{5/2}}{(S : S)^{5/2} + (S^d : S^d)^{5/4}}, \\ S^d_{ij} &= \frac{1}{2} (g^2_{ij} + g^2_{ji}) - \frac{1}{3} \delta_{ij} g^2_{kk}, \ g^2_{ij} &= \sum_k \frac{\partial \mathbf{u}_i}{\partial \mathbf{x}_k} \frac{\partial \mathbf{u}_k}{\partial \mathbf{x}_j} \end{split}$$

RANS side : $k - \varepsilon$ with menter correction

$$\mu_{t} = \frac{\overline{\rho}k\sqrt{c_{\mu}f_{\mu}}}{\max\left(\frac{\varepsilon}{k\sqrt{c_{\mu}f\mu}}, \left|\frac{\partial u}{\partial y}\right| \tanh(\psi^{2})\right)},$$

$$\psi = \max\left(2\frac{k^{3/2}}{y\varepsilon}, \frac{500\mu c_{\mu}k}{\overline{\rho}\varepsilon y^{2}Re}\right)$$

3/14

Model used : RANS/DVMS with :

- Blending :
$$\theta = 1 - f_d \times (1 - \overline{\theta}); \quad \overline{\theta} = \tanh\left(\left(\frac{\Delta_T}{k^{3/2}}\varepsilon\right)^2\right),$$

- Subgrid model for VMS : WALE,
- Closure model for RANS : $\begin{cases} k \varepsilon & \text{Goldberg} \\ k \varepsilon & \text{with Menter correction} \end{cases}$

Simulation set up :

- mach number : 0.1 (subsonic flow)
- reference pressure : 101300 $[N/m^2]$
- density : 1.225 $\rm [kg/m^3]$
- minimal mesh size is such that $y_w^+ = 1$

Name	Mesh size	y_w^+	у <mark>+</mark>	⊂ _d	c'_{l}	$-\overline{c}_{pb}$	Lr	$\overline{ heta}$
Present simulation								
URANS $k - \varepsilon$	4.8M	1	0	0.50	0.24	0.61	0.77	109
DDES $k - \varepsilon$ Goldberg WL	4.8M	20	100	0.20	0.04	0.22	0.87	138
DDES $k - \varepsilon$ Goldberg WL	4.8M	20	25	0.40	0.05	0.56	1.46	113
DDES $k - \varepsilon$ Goldberg ITW	4.8M	1	0	0.50	0.07	0.54	1.22	103
DDES $k - \varepsilon$ menter ITW	4.8M	1	0	0.69	0.21	0.80	1.26	102
DVMS								
cubic Smagorinsky ITW	4.8M	20	0	0.49	0.17	0.42	0.71	92
DDES/ DVMS								
k - ε / cubic WL Smagorinsky	4.8M	20	100	0.20	0.02	0.22	0.82	135
k - ε / cubic WALE WL	4.8M	1	100	0.20	0.02	0.26	0.80	132
k - ε / cubic WALE ITW	4.8M	1	0	0.49	0.06	0.60	1.56	104
k - ε menter/ cubic WALE ITW	4.8M	1	0	0.57	0.11	0.69	1.80	103
RANS / DVMS								
k - ε / cubic Smagorinsky WL	4.8M	20	100	0.24	0.05	0.22	0.62	133
k - ε / cubic Smagorinsky WL	4.8M	1	100	0.25	0.09	0.25	0.64	132
k - ε / cubic WALE WL	4.8M	1	100	0.26	0.11	0.22	0.65	134
k - ε / cubic WALE ITW	4.8M	1	0	0.48	0.11	0.55	1.14	109
k - ε menter/ cubic WALE ITW	4.8M	1	0	0.54	0.15	0.64	1.16	106
Other simulations								
RANS Catalano [1]	2.3M	-	-	0.39	-	0.33		
LES Catalano [1]	2.3M	-	-	0.31	-	0.32		
LES Ono [2]	4.5M	-	-	0.27	0.13		-	
LES Kim [3]	6.8M	-	-	0.27	0.12	0.28	-	108
Expériences								
Shih et al [5]				0.24	-	0.33		
Schewe [4]				0.22	-	-		
Szechenyi [6]				0.25	-	0.32		
Gölling [9]							-	130
Zdravkovich [8]				0.2-0.4	0.1-0.15	0.2-0.34		

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, $\overline{\underline{C}}_d$ holds for the mean drag coefficient, C'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, L_r is the mean recirculation lenght, $\overline{\theta}$ is the mean separation angle.

Pressure coefficient

Figure – Distribution of mean pressure as a function of polar angle. Comparaison between experiment. Wall law on the left and integration to the wall on the right.

Skin friction coefficient :

$$C_f = \frac{\tau_w}{1/2\rho_\infty U_\infty^2}, \quad \text{with } \tau_w \text{ the wall shear stress}$$
(1)

Figure – Distribution of skin friction coefficient as a function of polar angle. Comparaison between experiment.

Review of transition modeling

Algebraic relation [11][13][10][12], main work of Addison, Narasimha :

Narasimha1985 :
$$\gamma(\mathbf{x}) = 1 - \exp\left(-0.412\frac{(x-x_t)^2}{\lambda^2}\right) \quad x \ge x_t, \gamma = 0 \text{ otherwise}$$

Addison1992 : $\gamma(\mathbf{x}, t) = 1 - \exp\left(-\int_{\mathcal{A}(\mathbf{x}, t)} \frac{\nu N}{\sigma \theta}(x_t, z, t) dz dt\right)$

 x_t : start of transition point ($\gamma(x_t) = \frac{1}{2}$), $\sigma = 0.25$ and N depend of λ_{θ} : the pressure gradient of boundary layer.

$$\mu_{\text{eff}} = \mu + \overline{\gamma}(\mathbf{x})\mu_{\mathcal{T}}, \quad \mu_{\mathcal{T}} \text{ turbulente viscosity}$$
(2)

Arround $k - \varepsilon - \gamma$, main works are Kollman 1986 [16], Cho-Chung 1992 [17], Steelant 1996 [19], Suzen 2000 [18], we present work of Akter 2007 [14] :

Akter 2007 :
$$\frac{\partial \rho \gamma}{\partial t} + \nabla \cdot \rho \mathbf{u} \gamma = C_{g1} \gamma (1 - \gamma) \frac{P_k}{k} + \rho C_{g2} \frac{k^2}{\varepsilon} \nabla \gamma \cdot \nabla \gamma - C_{g3} \rho \gamma (1 - \gamma) \frac{\varepsilon}{k} \Gamma + \nabla \cdot [\sigma_{\gamma} (1 - \gamma) (\mu + \mu_t) \nabla \gamma]$$

- The first term represent the kinetic turbulent energy production : $P_k = \mu_t \|\frac{\partial \mathbf{u}}{\partial y}\|^2$
- The increase of γ is modeled by $\rho\textit{C}_{g2}\frac{k^2}{\varepsilon}\nabla\gamma\cdot\nabla\gamma$
- The third term is an inertial term where :

$$\Gamma = \frac{k^{5/2}}{\varepsilon^2} \frac{1}{\|\mathbf{u}\|} (\mathbf{u} \nabla \mathbf{u}) \cdot \nabla \gamma.$$
(3)

• The last term is a diffusion term

We have the following constants $C_{g1} = 0.19$, $C_{g2} = 0.1$, $C_{g3} = 0.01$, $\sigma_{\gamma} = 1$.

Akter 2007 [14] viscosity : Thus, the transition concept has been incorporated by modifying expression of eddy viscosity, as following :

$$\mu_t^* = \left[1 + C_{\mu g} \frac{k^3}{\varepsilon^2} \gamma^{-3} (1 - \gamma) \|\nabla \gamma\|^2\right] \mu_t, \tag{4}$$

with $C_{\mu g} = 0.1$ and $\mu_t = C_{\mu} f_{\mu} \frac{k^2}{\varepsilon}$ and $f_{\mu} = \left(1 + \frac{3.45}{\sqrt{Re_t}}\right) \left[1 - \exp\left(-\frac{y^+}{70}\right)\right]$ Initial and boundary condition :

$$\begin{cases} \gamma(\mathbf{x}, \mathbf{0}) &= 10^{-3}, \\ \gamma_{|\partial \mathcal{C}} &= 1. \end{cases}$$
(5)

・ロト ・ 日 ・ モ ヨ ト ・ 日 ・ う へ つ ・

■ A recent model : *k* − *R* of Zhang 2020 [20] :

- A two equation model equation on k and $R \simeq \frac{k^2}{\varepsilon}$
- An original production term : $\mathfrak{S} \simeq s \frac{|\eta_1| \eta_1}{c_T}$; $\eta_1 = s v$,
- $\gamma = \tanh\left(\max\left(0, \frac{s}{v} 1\right)\right)$ where $s = \sqrt{2S:S}$ and $v = \sqrt{2\Omega:\Omega}$:

$$\mu_t = \rho c_\mu f_\mu \left[\underbrace{k T_t (1 - \gamma)}_{\mu_t^{(1)}} + \underbrace{R \gamma}_{\mu_t^{(2)}} \right].$$
(6)

- The main particularity is 0 $<\gamma<$ 1 which create a transition between laminar to turbulent flow

Other models has been developed :

- $k \zeta \gamma$ of Warren 1997 [22] developed for high mach computation
- $k k_L \gamma$ of Lardeau 2004 [23] blend laminar and turbulent kinetic energy
- $\gamma-\widetilde{Re}_{\theta}$ of Langtry and Menter [21] two transport equation coupled with $k-\omega$ SST model

- $k-\widetilde{\omega}-\gamma$ of Lorini 2014 [?] separate natural bypass transition and separation induced mode

Conclusions and things to do

- WALE model with $y_w^+ = 1$ gives better results,
- Bulk coefficients are close to experimental data for WL,
- Drag coefficients are over estimated,
- We are implementing $k-R,\ k-\varepsilon-\gamma$ model to improve the transition from laminar to turbulent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	P. Catalano, M.Wang, G. Iaccarino and P. Moin. Numerical simulation of the flow around a circular cylinder
	at High Reynolds numbers. International Journal of Heat and Fluid Flow, 24 :463-469, 2003.
	Y. Ono and T. Tamura. LES of flows around a circular cylinder in the critical Reynolds number region.
_	Proceedings of BBAA VI International Colloquium on : Bluff Bodies Aerodynamics and Applications, Milano, Italy, July 20-24 2008.
	S.E. Kim and L.S. Mohan. Prediction of unsteady loading on a circular cylinder in high Reynolds number
	flows using large eddy simulation. Proceedings of OMAE 2005 : 24th International Conference on Offshore Mechanics and Artic Engin.
	G. Schewe. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to
	transcritical Reynolds numbers. Journal of Fluid Mechanics, 133 :265-285, 1983.
	W.C. L. Shih, C.Wang, D. Coles and A. Roshko. Experiments on Flow past rough circular cylinders at large
	Reynolds numbers. Journal of Wind Engeneering and Industrial Aerodynamics, 49:351-368, 1993.
	E. Szechenyi. Supercritical reynolds number simulation for two-dimensional flow over circular cylinders.
	Journal of Fluid Mechanics, 70 :529-542, 1975.
	O. Guven, C. Farell, and V.C. Patel. Surface-roughness effects on the mean flow past circular cylinders.
	Journal of Fluid Mechanics, 98(4) :673-701, 1980.
	M.M. Zdravkovich. Flow around circular cylinders Vol 1 : Fundamentals. Oxford University Press, 1997.
	B. Gölling. Experimental Investigations of Separating Boundary-Layer Flow from Circular Cylinder at
	Reynolds Numbers from 105 up to 107; three-dimensional vortex flow of a circular cylinder. G.E.A. Meier and K.R. Sreenivasan, editors, Proceedings of IUTAM Symposium on One Hundred Years of Boundary Layer Research, pages 455-462, The Netherlands, 2006. Springer.
	R.E.Mayle. The role of laminar-turbulent transition in gas turbine engines, ASME, 1991.
	S.j.Dhawan, R.Narasimha. Some properties of boundary layer during the transition from laminar to turbulent
	flow motion. Journal of Fluid Mechanics, 3:418-436, 1958.

J.S.Addison, H.P.Hodson. Modeling of unsteady transitional boundary layers. ASME Journal of Turbomachinery. 117 :580-589, 1992.

N.Akter, F.Ken-Ichi. Development of a prediction method of boundary layer bypass transition. International Journal of Gas Turbine, Propulsion and Power Systems. Vol 1 :30-36, 2007.

P.A.Libby. On the prediction of Intermittent Turbulent Flows. Journal of Fluid Mechanics, 68: 273-295.

W.Kollman, W.Byggstoyl. A closure models for conditionned stress equations and its application to turbulent shear flows. *Physics of Fluids*, 1986.

J.R.Cho, M.K.Chung. A $k - \varepsilon - \gamma$ equation turbulence model. Journal of Fluid Mechanics, 237 :301-322, 1992.

Y.B.Suzen, P.G.Huang. Modeling of flow transition using an intermittency transport equation for modelling flow transition. *Journal of Fluid Engineering*, Vol 122 :273-284.

J.Steelant, E.Dick. Modeling of bypass transition with conditionned NS Equation coupled to an intermittency transport equation. *International Journal of Numerical Methods in Fluids*, Vol 23 :193-220, 1996.

Y.Zhang, M.Rahman, G.Chen. A development of k - R turbulence model for wall-bounded flows, Aerospace Science and Technology 98, 105681, 2020.

E.S.Warren, H.A.Hassan. A transition model for swept wing flows. AIAA, 97-2245, 1997.

S.Lardeau, M.A.Leschzimer, N.Li. Modeling bypass transition with low-Reynolds-number non-linear eddy-viscosity closure. *Flow turbulence and Combustion*, 73:49-76, 2004.

Annexe

Definition

(Momentum thickness)

Let $\rho_{\infty}, u_{\infty}$ respectively free stream density and velocity, we define the momentum thickness $\theta : \Omega \times [0, T] \longrightarrow \mathbb{R}$ such that :

$$\theta(\mathbf{x},t) = \int_0^{\overline{y}} \frac{\rho(\mathbf{x},t) \mathbf{u}(\mathbf{x},t)}{\rho_{\infty} u_{\infty}} \left(1 - \frac{\mathbf{u}(\mathbf{x},t)}{u_{\infty}}\right) dy$$

where direction y is the free stream direction.

Definition

(Pressure gradient of boundary layer) We call pressure gradient of boundary layer, the following quantity :

$$\lambda_{\theta} = \frac{\rho \theta^2}{\mu} \frac{\partial u_{\mathsf{x}}}{\partial s},\tag{7}$$

where the derivative is the acceleration in the streamwise direction, and $\boldsymbol{\theta}$ is the momentum thickness.