Hybrid 3D simulations on cylinder at Re=1M

F. Miralles, S.Wornom, B.Koobus, A.Dervieux

IMAG, Université de Montpellier

13 juillet 2021

Brief description

RANS closure term

$$\tau^{RANS} = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\tau: \nabla \mathbf{u} - \rho \epsilon}^{\rho k}, \overbrace{(C_1 \tau: \nabla \mathbf{u} - C_2 \rho \epsilon + E) T^{-1}}^{\rho \epsilon}\right)$$

DDES closure term $\rho\epsilon$ is remplaced by $\rho \frac{k^{3/2}}{l_{ddes}}$ where :

$$\mathfrak{l}_{ddes} = \frac{k^{\frac{3}{2}}}{\epsilon} - f_{ddes} \max\left(0, \frac{k^{\frac{3}{2}}}{\epsilon} - 0.65\Delta_{T}\right), \quad \begin{array}{l} f_{ddes} = 1 - \tanh((8r_{d})^{3}), \\ r_{d} = \frac{1 - \tanh((8r_{d})^{3})}{\epsilon^{2}y^{2}\max(\sqrt{\nabla u}:\nabla u, 10^{-10})} \end{array}$$

VMS closure term with dynamics coefficients $C_s = C_s(\mathbf{x}, t)$ and $Pr_t = Pr_t(\mathbf{x}, t)$

$$au^{DVMS}(W_{h}) = \left(0, \mathbf{M}_{S}(W_{h}, \phi_{h}^{'}), M_{H}(W_{h}, \phi_{h}^{'}), 0, 0\right)$$

where :

$$\begin{split} \mathbf{M}_{S}(W_{h},\phi_{i}') &= \sum_{T\in\Omega_{h}}\int_{T}\rho_{h}(\mathcal{C}_{s}\Delta_{T})^{2}|S'|\mathcal{D}(S')\nabla\phi_{i}'d\mathbf{x}, \\ M_{H}(W_{h},\phi_{i}') &= \sum_{T\in\Omega_{h}}\int_{T}\rho_{h}\frac{C_{p}(\mathcal{C}_{s}\Delta_{T})^{2}}{P_{t}}|S'|\nabla T'\cdot\nabla\phi_{i}'d\mathbf{x} \end{split}$$

and $\phi'_h = \phi_h - \overline{\phi_h}$ where $\overline{\phi_h}$ is computed from macro cells. Hybrid description

$$\left(\frac{\partial \overline{W}_{h}}{\partial t}, \chi_{i}\right) + \left(\nabla \cdot F(\overline{W}_{h}), \chi_{i}\right) = \theta\left(\tau^{C}(\overline{W}_{h}), \phi_{i}\right) + (1 - \theta)\left(\tau^{DVMS}(W_{h}^{'}), \phi_{i}^{'}\right).$$
$$\tau^{C} \in \{\tau^{RANS}, \tau^{DDES}\}$$

Hybridation function

Definition of blending function

$$\theta = 1 - f_{ddes}$$

Figure – Comparaison between $\theta = 1 - f_{ddes}$ blending function, on left used for hybrid DDES and on right used for hybrid RANS.

Zonal approach with length scale

$$heta = \exp\left(-rac{1}{2\epsilon_0}d(\mathbf{x},V_{k,\epsilon})^2
ight),$$

where $V_{k,\epsilon} = \{ x \in \Omega_f \mid \frac{k^{3/2}(x)}{\epsilon(x)} < \Delta_{les} \}$

Figure - Blending surface.

Blending function with protection zone

$$\theta = 1 - f_{ddes} \times (1 - \overline{\theta}),$$

Figure - Hybrid RANS blending surface.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Simulation with the wall law at Reynolds 1M

Reichardt wall law :

$$U^{+} = \frac{1}{\kappa} \ln \left(1 + \kappa y^{+}\right) + 7.8 \left[1 - \exp \left(\frac{-y^{+}}{11}\right) - \frac{-y^{+}}{11} \exp \left(\frac{-y^{+}}{3}\right)\right]$$

Simulation set up :

- mach number : 0.1 (subsonic flow)
- reference pressure : 101300 $\rm [N/m^2]$
- density : 1.22 $[kg/m^3]$

Figure – Computationnal domain on left, size of cell *h* close to the cylinder on the rigth computed such that : $h\frac{Re}{20} = y^+ = 20 \Rightarrow h = 4.10^{-4}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Name	Mesh size	<i>y</i> ⁺	⊂ _d	c'_l	$-\overline{c}_{pb}$	<u>L</u> r	$\overline{\theta}$
Present simulation							
DDES $k - \epsilon$ Goldberg	4.8M	100	0.20	0.03	0.22	0.87	138
DDES/ DVMS Smagorinsky							
$f = 1 - \tanh((8r_d)^3)$ et $\overline{\theta} = \tanh(\left(\frac{\Delta_T}{k^{3/2}}\epsilon\right)^2)$	4.8M	100	0.20	0.016	0.22	0.82	135
$f = 1 - \tanh((8r_d)^{3}) \text{ et } \overline{\theta} = \tanh(\left(\frac{\Delta_T}{k^{3/2}}\epsilon\right)^{2})$	4.8M	200	0.13	0.015	0.05	0.82	135
$\theta = \exp(-\frac{1}{2\epsilon}d(r, V)^2)$	4.8M	100	0.20	0.005	0.24	0.92	132
$\theta = \exp(-\frac{1}{2\epsilon}d(r, V)^2)$	4.8M	200	0.14	0.001	0.05	0.58	144
$\theta = 1 - \tanh((8r_d)^{3})$	4.8M	100	0.20	0.01	0.21	0.82	133
$\theta = 1 - \tanh((8r_d)^{3})$	4.8M	200	0.14	0.01	0.04	0.58	142
Other simulations							
Catalano [1]	2.3M	-	0.31-0.40	-	0.32-0.41		
LES Kim [3]	6.8M	-	0.27	0.12	0.28	-	108
Expériences							
Gölling [9]						-	130
Zdravkovich [8]			0.2-0.4	0.1-0.15	0.2-0.34		

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, $\overline{\underline{C}}_d$ holds for the mean drag coefficient, C'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, $\overline{L_r}$ is the mean recirculation lenght, $\overline{\theta}$ is the mean separation angle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Name	Mesh size	<i>y</i> ⁺	\overline{C}_d	c'_l	$-\overline{C}_{pb}$	$\overline{L_r}$	$\overline{\theta}$
Present simulation							
DDES $k - \epsilon$ Goldberg	4.8M	100	0.20	0.03	0.22	0.87	138
DDES/ DVMS Smagorinsky							
$f = 1 - \tanh((8r_d)^{3}) \text{ et } \overline{\theta} = \tanh(\left(\frac{\Delta T}{k^{3/2}}\epsilon\right)^{2})$	4.8M	100	0.20	0.016	0.22	0.82	135
$f = 1 - \tanh((8r_d)^{3}) \mathbf{et} \ \overline{\theta} = \tanh(\left(\frac{\Delta_T}{k^{3/2}}\epsilon\right)^2)$	4.8M	200	0.13	0.015	0.05	0.82	135
$\theta = \exp(-\frac{1}{2\epsilon}d(r, V)^2)$	4.8M	100	0.20	0.005	0.24	0.92	132
$\theta = \exp(-\frac{\mathbf{\hat{1}}}{2\epsilon}d(r, V)^{2})$	4.8M	200	0.14	0.001	0.05	0.58	144
$\theta = 1 - \tanh((8r_d)^{3})$	4.8M	100	0.20	0.01	0.21	0.82	133
$\theta = 1 - \tanh((8r_d)^{3})$	4.8M	200	0.14	0.01	0.04	0.58	142
RANS / DVMS Smagorinsky							
$f = 1 - \tanh((8r_d)^{3}) \text{ et } \overline{\theta} = \tanh(\left(\frac{\Delta_T}{k^{3/2}}\epsilon\right)^{2})$	4.8M	100	0.24	0.05	0.22	0.62	133
$f = 1 - \tanh((20r_d)^{3}) \text{ et } \overline{\theta} = \tanh((20r_d)^{3})$	4.8M	100	0.24	0.06	0.23	0.58	133
$f = 1 - \operatorname{tanh}((8r_d)^{3})$ et $\overline{\theta} = \operatorname{tanh}((8r_d)^{3})$	4.8M	100	0.24	0.06	0.21	0.60	134
$\theta = \exp(-\frac{1}{2\epsilon}d(r, V)^2)$	4.8M	100	0.20	0.02	0.17	0.78	134
$\theta = 1 - \tanh((8r_d)^{3})$	4.8M	100	0.25	0.06	0.19	0.72	133
Other simulations							
Catalano [1]	2.3M	-	0.31-0.40	-	0.32-0.41		
LES Kim [3]	6.8M	-	0.27	0.12	0.28	-	108
Expériences							
Gölling [9]						-	130
Zdravkovich [8]			0.2-0.4	0.1-0.15	0.2-0.34		

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, $\overline{\underline{C}}_d$ holds for the mean drag coefficient, C'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, $\overline{L_r}$ is the mean recirculation lenght, $\overline{\theta}$ is the mean separation angle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure - Recirculation zone comparaison between hybrid models (WL case).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Name	Mesh size	y ⁺	\overline{C}_d	c'_{l}	$-\overline{C}_{pb}$	Lr	$\overline{\theta}$
Present simulation							
DDES $k - \epsilon$ Goldberg WL	4.8M	100	0.20	0.03	0.22	0.87	138
DDES $k - \epsilon$ Goldberg ITW	4.8M	100	0.50	0.06	0.54	1.22	103
DDES/ DVMS Smagorinsky WL	4.8M	100	0.20	0.016	0.22	0.82	135
DDES/ DVMS Smagorinsky ITW	4.8M	100	0.51	0.07	0.28	0.85	110
RANS / DVMS Smagorinsky WL	4.8M	100	0.24	0.05	0.22	0.62	133
RANS / DVMS Smagorinsky ITW	4.8M	100	0.47	0.08	0.34	0.62	110
Other simulations							
Catalano [1]	2.3M	-	0.31-0.40	-	0.32-0.41		
LES Kim [3]	6.8M	-	0.27	0.12	0.28	-	108
Expériences							
Gölling [9]						-	130
Zdravkovich [8]			0.2-0.4	0.1-0.15	0.2-0.34		

Result summary and comparaison with ITW

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, $\overline{\underline{C}}_d$ holds for the mean drag coefficient, C'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, $\overline{L_r}$ is the mean recirculation lenght, $\overline{\theta}$ is the mean separation angle.

Figure - Recirculation zone comparaison between hybrid models (ITW case).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Pressure coefficient

Figure – Distribution of mean pressure as a function of polar angle. Comparaison between experiment. Wall law on the left and integration to the wall on the right.

Velocity profile

Figure – On the top longitudonal velocity profile at x/D = 1, and on bottom the transverse velocity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Wall Law Q-criteria

Figure – Q-critera contour using velocity color scale.

Integration to the Wall Q-criteria

Figure – Q-critera contour using velocity color scale.

Conclusions and things to do

- Hybrid function with protection zone give better results,
- surface pressure coefficient is close to experimental data for WL,
- Bulks coefficients are good with RANS/DVMS model,
- Improve blend function to catch eddies at starting region of the wake,

• Test influence of WALE SGS model.

	P. Catalano, M.Wang, G. Iaccarino and P. Moin. Numerical simulation of the flow around a circular cylinder
	at High Reynolds numbers. International Journal of Heat and Fluid Flow, 24 :463-469, 2003.
	Y. Ono and T. Tamura. LES of flows around a circular cylinder in the critical Reynolds number region.
	Proceedings of BBAA VI International Colloquium on : Bluff Bodies Aerodynamics and Applications, Milano, Italy, July 20-24 2008.
	S.E. Kim and L.S. Mohan. Prediction of unsteady loading on a circular cylinder in high Reynolds number
	flows using large eddy simulation. Proceedings of OMAE 2005 : 24th International Conference on Offshore Mechanics and Artic Engin.
	G. Schewe. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to
_	transcritical Reynolds numbers. Journal of Fluid Mechanics, 133 :265-285, 1983.
	W.C. L. Shih, C.Wang, D. Coles and A. Roshko. Experiments on Flow past rough circular cylinders at large
	Reynolds numbers. Journal of Wind Engeneering and Industrial Aerodynamics, 49:351-368, 1993.
	E. Szechenyi. Supercritical reynolds number simulation for two-dimensional flow over circular cylinders.
	Journal of Fluid Mechanics, 70 :529-542, 1975.
	O. Guven, C. Farell, and V.C. Patel. Surface-roughness effects on the mean flow past circular cylinders.
	Journal of Fluid Mechanics, 98(4) :673-701, 1980.
	M.M. Zdravkovich. Flow around circular cylinders Vol 1 : Fundamentals. Oxford University Press, 1997.
	B. Gölling. Experimental Investigations of Separating Boundary-Layer Flow from Circular Cylinder at
	Reynolds Numbers from 105 up to 107; three-dimensional vortex flow of a circular cylinder. G.E.A. Meier and K.R. Sreenivasan, editors, Proceedings of IUTAM Symposium on One Hundred Years of Boundary Layer Research, pages 455-462, The Netherlands, 2006. Springer.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��