Inverse processing of Gschwend's advection test

P. Bakhvalov

13.07.2021

Setup overview

- Basic transport equation $u_t + \mathbf{a} \cdot \nabla u = 0$ with $\mathbf{a} = (1, 0, 0)^T$ or [linearized] Euler equations with entropy perturbation only
- Initial conditions: Gaussian pulse for entropy
- Uniform Cartesian meshes

Setup details

Gaussian: $u_0(\mathbf{r}) = A \exp(-\alpha |\mathbf{r}|^2)$.

What is specified in Gschwend's report:

- A = 1;
- advection velocity $\mathbf{a} = (1, 0, 0)^T$;
- meshes: $8 \times 8 \times 8$, $16 \times 16 \times 16$, ..., $128 \times 128 \times 128$.

What is not specified:

- $\bullet \alpha$;
- maximal integration time;
- domain size (only affect scaling other parameters and time, I assume it to be the unit cube).

A look on the Gschwend's results

Initial and final plots:

In the first figure, one can see the contour legend.

Mininal value $5.6\cdot 10^{-7}$ looks to be the value of the pulse at the domain corners. Then $\alpha\approx 28.8$, which yields half-width ≈ 6.44 . From the second figure one can get the maximal integration time.

Misgiving – 1

One the final plot the pulse clearly reached the output boundary. This should affect the accuracy unless a special care is taken during the reconstruction (that is not too hard since Gschwend ran this case on a special code indended for the transport equation only).

However, in the report the following is stated: *The numerical error* is measured before the solution interacts with the boundary.

Misgiving – 2

Even on rather coarse meshes where the "interior" error dominates the "boundary" error, the numerical results for the EBR5 scheme (here it is just the 5th order finite-difference scheme) shows greater numerical error than it is stated in the Gschwend's report.

Mesh	Error (C), Gschwend	Error (C), my results
$8 \times 8 \times 8$	0.00954	0.08854
$16\times16\times16$	0.00237	0.01286
$32 \times 32 \times 32$	0.00039	0.00217
$64 \times 64 \times 64$	0.00006	0.00051
$128\times128\times128$	0.000007	0.00052

Conclusion

- Something is wrong with the setup.
- I can run the calculations as soon the problem will be specified.
- Probably I will need to take larger computational domain or to impose periodical conditions.
- To add my results to the report, I need the style file **RR** (INRIA research report?). Otherwise I will not be able to compile that LATEX file.