Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

F. Miralles

IMAG, Université de Montpellier, France,

december 16th, 2022
Motivation of this work

- We would like to catch aerodynamic coefficient and pressure distribution over a NACA0018 at multiple angles of attack
- we would like to reproduce separation and reattachment
- In a second time we want to simulate the noise generated by the flow.
Set up

- 0° NACA0018 set up:
 - chord = 0.08[m]
 - $\rho_0 = 1.225[kg/m^3]$, $P_0 = 101300[Pa]$
 - $U_0 = 30[m/s]$
 - $Tu = 1\%$
 - $\frac{\mu}{\mu_t} = 0.1$
 - $tref = \frac{chord}{U_0}$
 - Structured mesh non dimensional $y_w^+ = 1$ 1.4M Nodes.

Figure – Trailing edge meshes.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

<table>
<thead>
<tr>
<th>Name</th>
<th>Mesh size</th>
<th>y_w^+</th>
<th>C_D</th>
<th>C_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine mesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDES $k - \varepsilon$</td>
<td>1.8M</td>
<td>1</td>
<td>0.018</td>
<td>0.02</td>
</tr>
<tr>
<td>DDES $k - R$</td>
<td>1.8M</td>
<td>1</td>
<td>0.015</td>
<td>0.02</td>
</tr>
<tr>
<td>DDES $k - \varepsilon$/DVMS</td>
<td>1.8M</td>
<td>1</td>
<td>0.018</td>
<td>0.03</td>
</tr>
<tr>
<td>DDES $k - R$/DVMS</td>
<td>1.8M</td>
<td>1</td>
<td>0.015</td>
<td>0.03</td>
</tr>
<tr>
<td>Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Du 1</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Boutilier 2</td>
<td></td>
<td></td>
<td>-</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table – Coefficients aérodynamique à 0° d’incidence pour un nombre de Reynolds 1.6×10^5.

Figure – Recirculation bubble using DDES $k - \varepsilon$/DVMS.

1. LDu2016.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

Figure – Meanflow pressure coefficient distribution over NACA0018 airfoil at 0°.

![Meanflow pressure coefficient distribution](image)
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

Aeroacoustic 0 AOA

Sound Pressure Level $SPL = 10 \log_{10} \left(\frac{p^2 - p_{ref}^2}{p_{ref}^2} \right) \ [dB]$, where $p_{ref} = 2 \times 10^{-5} [Pa]$

Figure – Sound pressure level in [dB], DDES/DVMS on left, DDES k-R /DVMS on right.

Figure – Directivity graph of SPL, along r=5.
Spectrum analysis: Experimental data given by Nakano 2000 [Hz] for 0° – 6° AOA.

Figure – Spectrum Analysis of the lift coefficient fluctuation, DDES $k - \varepsilon$/DVMS on left, DDES $k - R$/DVMS on right.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

Set up

- NACA0018 6° set up:
 - chord = 0.08[m]
 - AOA = 6°
 - $\rho_0 = 1.225[kg/m^3]$, $P_0 = 101300[Pa]$
 - $U_0 = 30[m/s]$
 - $Tu = 1\%$
 - $\frac{\mu}{\mu_t} = 0.01$
 - $tref = \frac{chord}{U_0}$
 - Unstructured mesh non dimensional $y_w^+ = 1$ 1.4M Nodes.

![Trailing edge meshes.](image)

Figure – Trailing edge meshes.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

<table>
<thead>
<tr>
<th>Name</th>
<th>Mesh size</th>
<th>y_w^+</th>
<th>$\overline{C_D}$</th>
<th>$\overline{C_L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine mesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDES $k - \varepsilon$</td>
<td>1.4M</td>
<td>1</td>
<td>0.02</td>
<td>0.47</td>
</tr>
<tr>
<td>DDES $k - R$</td>
<td>1.4M</td>
<td>1</td>
<td>0.02</td>
<td>0.52</td>
</tr>
<tr>
<td>DDES $k - \varepsilon$/DVMS</td>
<td>1.4M</td>
<td>1</td>
<td>0.03</td>
<td>0.57</td>
</tr>
<tr>
<td>DDES $k - R$/DVMS</td>
<td>1.4M</td>
<td>1</td>
<td>0.02</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Measurements				
Du3		0.03	0.65	
Boutilier4		-	0.71	

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, $\overline{C_D}$ holds for the mean drag coefficient, $\overline{C_L}$ is the root mean square of lift time fluctuation.

Figure – Recirculation bubble using DDES $k - \varepsilon$/DVMS.
Figure – Meanflow pressure coefficient distribution around body airfoil at 6° incidence.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

Aeroacoustic 6 AOA

- Sound Pressure Level $SPL = 10 \log_{10} \left(\frac{p^2 - p_{ref}^2}{p_{ref}^2} \right)$ [dB], where $p_{ref} = 2 \times 10^{-5} [Pa]$

Figure – Sound pressure level in [dB], DDES/DVMS on left, DDES k-R /DVMS on right.

Figure – Directivity graph of SPL, along $r=5$.

Figure – Sound pressure level in [dB], DDES/DVMS on left, DDES k-R /DVMS on right.

Figure – Directivity graph of SPL, along $r=5$.

Spectrum analysis: Experimental data given by Nakano 2000[Hz] for $0 - 6^\circ$ AOA.

Figure – Spectrum Analysis of the lift coefficient fluctuation, DDES $k - \varepsilon$/DVMS on left, DDES $k - R$/DVMS on right.
Set up

- NACA0018 15° set up:
 - chord = 0.08[m]
 - AOA = 15°
 - $\rho_0 = 1.225[kg/m^3]$, $P_0 = 101300[Pa]$
 - $U_0 = 30[m/s]$
 - $Tu = 1\%$
 - $\frac{\mu}{\mu_t} = 0.01$
 - $tref = \frac{chord}{U_0}$
 - Unstructured mesh non dimensional $y_w^+ = 1$, 1.4M Nodes.

Figure – Trailing edge meshes.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

<table>
<thead>
<tr>
<th>Name</th>
<th>Mesh size</th>
<th>y_w^+</th>
<th>\bar{C}_D</th>
<th>\bar{C}_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine mesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDES $k - \varepsilon$</td>
<td>1.4M</td>
<td>1</td>
<td>0.22</td>
<td>1.02</td>
</tr>
<tr>
<td>DDES $k - R$</td>
<td>1.4M</td>
<td>1</td>
<td>0.25</td>
<td>0.77</td>
</tr>
<tr>
<td>DDES $k - \varepsilon/DVMS$</td>
<td>1.4M</td>
<td>1</td>
<td>0.21</td>
<td>0.99</td>
</tr>
<tr>
<td>DDES $k - R/DVMS$</td>
<td>1.4M</td>
<td>1</td>
<td>0.26</td>
<td>0.73</td>
</tr>
<tr>
<td>Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Du et al5</td>
<td></td>
<td></td>
<td>0.20</td>
<td>0.50</td>
</tr>
<tr>
<td>Boutilier6</td>
<td></td>
<td></td>
<td>-</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, \bar{C}_D holds for the mean drag coefficient, \bar{C}_L is the root mean square of lift time fluctuation.

5. LDu2016.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

Meanflow pressure coefficient \(Re = 0.16M\)

Figure – Meanflow pressure coefficient around body airfoil.
Aerodynamic and aeroacoustic simulation around a NACA0018 at various angles of attack

Aeroacoustic 15 AOA

- Sound Pressure Level $SPL = 10 \log_{10} \left(\frac{p^2 - p_{ref}^2}{p_{ref}^2} \right)$ [dB], where $p_{ref} = 2 \times 10^{-5} [Pa]$

Figure – Directivity graph of SPL, along r=5.

Figure – Sound pressure level in [dB], DDES/DVMS on left, DDES k-R /DVMS on right.
Spectrum analysis: Experimental data given by Nakano there is no high frequency tonal peak at 15° AOA.

Figure – Spectrum Analysis of the lift coefficient fluctuation, DDES $k - \varepsilon/DVMS$ on left, DDES $k - R/DVMS$ on right.