Aerodynamic and aeroacoustic simulation arround a NACA0018 at various angles of attack

F.Miralles

IMAG, Université de Montpellier, France,

december 16th, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Introduction

Motivation of this work

- We would like to catch aerodynamic coefficient and pressure distribution over a NACA0018 at multiple angles of attack

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- we would like to reproduce separation and reattachment
- In a second time we want to simulate the noise generated by the flow.

Set up

- 0° NACA0018 set up :
 - chord = 0.08[m]
 - $\rho_0 = 1.225[kg/m^3], P_0 = 101300[Pa]$
 - $U_0 = 30[m/s]$
 - Tu = 1%,
 - $\frac{\mu}{\mu_t} = 0.1$
 - tref = $\frac{chord}{U_0}$

• Structured mesh non dimensional $y_w^+ = 1$ 1.4M Nodes.

Figure - Trailing edge meshes.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Name	Mesh size	y_w^+	\overline{C}_D	\overline{C}_L
Fine mesh				
DDES $k - \varepsilon$	1.8M	1	0.018	0.02
DDES $k - R$	1.8M	1	0.015	0.02
DDES $k - \varepsilon$ /DVMS	1.8M	1	0.018	0.03
DDES $k - R/DVMS$	1.8M	1	0.015	0.03
Measurements				
Du ¹			0.01	0.02
Boutilier ²			-	0.04

Table – Coefficients aérodynamique à 0° d'incidence pour un nombre de Reynolds 1.6×10^{5} .

Figure – Recirculation bubble using DDES $k - \varepsilon$ /DVMS.

- 1. LDu2016.
- 2 Dout!!:as2012

4/20

Figure – Meanflow pressure coefficient distribution over NACA0018 airfoil at 0° .

Aeroacoustic 0 AOA

Sound Pressure Level
$$SPL = 10 \log_{10} \left(\frac{\overline{p}^2 - \overline{p^2}}{p_{ref}^2} \right)$$
 [dB], where $p_{ref} = 2 \times 10^{-5}$ [Pa]

 $\begin{array}{l} \mbox{Figure}-\mbox{Sound pressure level in [dB],} \\ \mbox{DDES/DVMS on left, DDES k-R /DVMS on right.} \end{array}$

6/20

Figure – Directivity graph of SPL, along r=5.

Spectrum analysis : Experimental data given by Nakano 2000[Hz] for $0^{\circ} - 6^{\circ}$ AOA.

(日)((同))(日)((日))(日)

Figure – Spectrum Analysis of the lift coefficient fluctuation, DDES $k - \varepsilon$ /DVMS on left, DDES k - R/DVMS on right.

Set up

- NACA0018 6° set up :
 - chord = 0.08[m]
 - AOA = 6°
 - $\rho_0 = 1.225[kg/m^3], P_0 = 101300[Pa]$
 - $U_0 = 30[m/s]$
 - *Tu* = 1%,
 - $\frac{\mu}{\mu_t} = 0.01$
 - tref = $\frac{chord}{U_0}$
 - Unstructured mesh non dimensional $y_w^+ = 1$ 1.4M Nodes.

Figure - Trailing edge meshes.

Aerodynamic and aeroacoustic simulation arround a NACA0018 at various angles of attack

News	Maala alaa	+	\overline{c}	<u> </u>
Name	iviesn size	y _w	CD	CL
Fine mesh				
DDES $k - \varepsilon$	1.4M	1	0.02	0.47
DDES $k - R$	1.4M	1	0.02	0.52
DDES $k - \varepsilon$ /DVMS	1.4M	1	0.03	0.57
DDES $k - R$ /DVMS	1.4M	1	0.02	0.53
Measurements				
Du ³			0.03	0.65
Boutilier ⁴			-	0.71

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, \overline{C}_D holds for the mean drag coefficient, \overline{C}_L is the root mean square of lift time fluctuation.

Figure – Recirculation bubble using DDES $k - \varepsilon$ /DVMS.

Figure – Meanflow pressure coefficient distribution arround body airfoil at 6° incidence.

イロト 不同ト イヨト イヨト

э.

Aeroacoustic 6 AOA

Sound Pressure Level
$$SPL = 10 \log_{10} \left(\frac{\overline{p}^2 - \overline{p^2}}{p_{ref}^2} \right)$$
 [dB], where $p_{ref} = 2 \times 10^{-5}$ [Pa]

Figure – Sound pressure level in [dB], DDES/DVMS on left, DDES k-R /DVMS on right.

Figure – Directivity graph of SPL, along r=5.

■ Spectrum analysis : Experimental data given by Nakano 2000[Hz] for 0 – 6° AOA.

イロト 不得下 イヨト イヨト

э

Figure – Spectrum Analysis of the lift coefficient fluctuation, DDES $k - \varepsilon$ /DVMS on left, DDES k - R/DVMS on right.

Set up

- NACA0018 15° set up :
 - chord = 0.08[m]
 - AOA = 15°
 - $\rho_0 = 1.225[kg/m^3], P_0 = 101300[Pa]$
 - $U_0 = 30[m/s]$
 - *Tu* = 1%,
 - $\frac{\mu}{\mu_t} = 0.01$
 - $tref = \frac{chord}{U_0}$
 - Unstructured mesh non dimensional $y_w^+ = 1$, 1.4M Nodes.

Figure - Trailing edge meshes.

Name	Mesh size	y_w^+	\overline{C}_D	\overline{C}_L
Fine mesh				
DDES $k - \varepsilon$	1.4M	1	0.22	1.02
DDES $k - R$	1.4M	1	0.25	0.77
DDES $k - \varepsilon$ /DVMS	1.4M	1	0.21	0.99
DDES $k - R/DVMS$	1.4M	1	0.26	0.73
Measurements				
Du et al ⁵			0.20	0.50
Boutilier ⁶			-	0.51

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, \overline{C}_D holds for the mean drag coefficient, \overline{C}_L is the root mean square of lift time fluctuation.

6. Boutilier2012.

^{5.} LDu2016.

meanflow pressure coefficient Re= 0.16M

Figure - Meanflow pressure coefficient arround body airfoil.

Aeroacoustic 15 AOA

Sound Pressure Level
$$SPL = 10 \log_{10} \left(\frac{\overline{p^2} - \overline{p^2}}{p_{ref}^2} \right)$$
 [dB], where $p_{ref} = 2 \times 10^{-5}$ [Pa]

 $\begin{array}{l} \mbox{Figure}-\mbox{Sound pressure level in [dB],} \\ \mbox{DDES/DVMS on left, DDES k-R /DVMS on right.} \end{array}$

16/20

Figure – Directivity graph of SPL, along r=5.

■ Spectrum analysis : Experimental data given by Nakano there is no hight frequency tonal peak at 15° AOA.

ъ

Figure – Spectrum Analysis of the lift coefficient fluctuation, DDES $k - \varepsilon$ /DVMS on left, DDES k - R/DVMS on right.