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Motivations

Our motivation is the mesh adaptive simulation of unsteady flows, with a particular
final target, LES and hybrid RANS/LES flows. We restrict to time advancing
methods.
The Transient Fixed Point algorithm(*) was proposed for specifying automatically a
succession of nadap meshes over a decomposition in sub-intervals (in green) used for
the transient process (timesteps in red).

(*)F. Alauzet, P.J. Frey, P.-L. George, and B. Mohammadi. 3D transient fixed point mesh adaptation for

time-dependent problems: Application to CFD simulations. J. Comp. Phys.,222:592-623, 2007.
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Motivations(2)

In the case of explicit time-advancing, the heuristics (with theoretical proofs for
simple models) was to consider maximal Courant number =1 as a good principle for
time adaptation (*)(**).

For our target set of flows, only implicit time advancing is affordable. Small
timesteps are CPU costly. Large timesteps may loose the accuracy of the spatial
resolution.

Our purpose is to define a space-time global error and optimize it simultaneously in
terms of spatial meshes and timestep length.

(*) F. Alauzet, A. Loseille, G. Olivier, Time-accurate multi-scale anisotropic mesh adaptation for
unsteady flows in CFD, Journal of Computational Physics 373 (2018) 28-63.

(**) A. Belme, A. Dervieux, F. Alauzet, Time accurate anisotropic goal-oriented mesh adaptation for

unsteady flows, Journal of Computational Physics 231 (2012) 6323-6348.
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Space-time metric

In space-time domain Ω× [0,T[, the Transient Fixed Point mesh-adaptation method
relies on the notion of space-time continuous mesh or space-time metric, Mst,

Mst = ((ti)i=0,nadap ,τ,M ) (t0 = 0)
defined by:
(i) The splitting (ti)i of [0,T] into nadap subintervals:

[0,T] =
nadap⋃
i=1

[ti−1, ti[.

(ii) A continuous timestep length τ : t ∈]0,T[7→ τ(t).

(iii)A time-dependant spatial metric M (t) = Mi for t ∈ [ti−1, ti[ , where Mi is
defined as the field (Mi(x),x ∈Ω) with Mi(x) a positive definite symmetric 3×3
matrix.
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Complexity of a space-time metric

The complexity Cst(Mst), or computational effort, of a space-time metric

Mst = ((ti)i=0,nadap ,τ,M )

is the sum of complexities Ci on each time sub-interval [ti−1, ti[, each Ci being
evaluated as the product of the spatial complexity,

Cspace(Mi) =
∫

Ω

√
det(Mi(x))dx

which is the continuous analog of the number of vertices of spatial discretization,
by the time complexity, namely the number of timesteps, therefore:

Cst(Mst) =

i=nadap

∑
i=1

Cspace(Mi)
∫ ti

ti−1

τ(t)−1dt.
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Error model

Given a metric Mst = ((ti)i=0,nadap ,τ,M ) and a unit mesh ((ti)i,τ,H ) of it. We
can compute on ((ti)i,τ,H ) a discrete solution W(x, t) of the Navier-Stokes
equations in Ω× [0,T[, with an approximation error E which we consider as a
function of Mst.

The error model can be based on a goal-oriented analysis, with functional and
adjoint. Instead, for simplicity, we consider a Lp feature-based analysis with a
sensor M (typically the Mach number).

E (Mst) = Etime(Mst)+Espace(Mst)

Etime(Mst) =
∫ T

0
∫ +∞

−∞
[τ2| ∂ 2M

∂ t2 |]
pdtdx

Espace(Mst) = ∑
nadap
i=1

∫ ti
ti−1

E i(t)dt with

E i(t) =
∫

Ω

[
trace

(
(M i)−

1
2 (x)HM(x, t)(M i)−

1
2 (x)

) ]p
dx

and HM = |Hessian(M)|.
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Adaptation optimality

We solve the following optimal problem :{
min
Mst

E (Mst),

Cst(Mst) = Nst.

We prescribe:

(a) the time subintervals: nadap and (ti)i=0,nadap and

(b) an integer Nst (prescribed space-time complexity).

There exists
M opt

st =
(
(ti)i=0,nadap ,τopt,(M opt

i )i

)
,

where τopt and M opt
i can be expressed in terms of the error data:

| ∂ 2M
∂ t2 | and HM,

which minimizes the error E (Mst) under the constraint Cst(Mst) = Nst .

7 B. Sauvage et al. CFC2023



Space-time Transient Fixed-Point Algorithm

Choose nadap, (ti)i=1,nadap , prescribe Nst, initial H 0
st

...

Compute CFD solution WCFD solver

Compute h̃(Hinter(W))Space error analysis

Compute ũ(W)Time error analysis

Compute new optimal space-time metric M k
st:

(a)- Compute time step τk

(b)- Compute spatial metrics M k
i

Compute space-time unit mesh H k
stMesh generator

k → k+1?

End
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First numerical experiment

2D computation of a flow around a cylinder at Reynolds number 3900, Mach
number 0.1, with Spalart-Allmaras turbulence model.

Mesh adaptation options are :
- only one adapted spatial mesh, i.e. nadap = 1
- Space-Time complexity Nst is prescribed to 2M and 32M.

Figure: Flow past a circular cylinder at Re = 3900 : adapted mesh (left) and velocity field
(right) in cross-section.
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First numerical experiment(2)

Nst k TFP Cspace(nodes) # timesteps Espace Etime E
− 0 (38K) 16K (CFL100) − − −
2M 1 7.6K (10K) 261 6.4 10−2 1.2 10−4 6.4 10−2

2M 10 21K (22K) 94 2.9 10−2 1.3 10−2 4.2 10−2

32M 1 48K (61K) 658 1. 10−2 1.2 10−4 1. 10−2

32M 10 78K (83K) 408 8.3 10−3 8.4 10−4 9.1 10−3

Nst : space-time complexity prescribed

k : index of the current fixed point iteration

Cspace : space complexity

# timesteps : number of time steps

Espace : theoretical space error.

Etime : theoretical time error.
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Second numerical experiment(2)

2D computation of a flow around a cylinder at Reynolds number 1M, Mach number
0.1, with Spalart-Allmaras turbulence model.

Mesh adaptation options are :
- only one adapted spatial mesh,
- Space-Time complexity is prescribed to 40M and 80M.

Figure: Flow past a circular cylinder at Re = 1M : adapted mesh (left) and velocity field
(right) in cross-section.
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Second numerical experiment(2)

Nst k TFP Cspace(nodes) # timesteps Espace Etime E

− 0 (38K) 6K (FTS 5. 10−3) − − −
40M 1 48K 829 8.1 10−3 4. 10−5 8.1 10−3

40M 5 107K (112K) 374 5.1 10−3 1.3 10−3 6.4 10−3

80M 1 76K 1045 5.1 10−3 4. 10−5 5.1 10−3

80M 5 150K (156K) 533 3.6 10−3 4.6 10−4 4.1 10−3

Nst : space-time complexity prescribed

k : index of the current fixed point iteration

Cspace : space complexity

# timesteps : number of time steps

Espace : theoretical space error.

Etime : theoretical time error.
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Third numerical experiment

2D computation of a flow around a NACA0021 at Reynolds number 270K and an
angle of attack of 60◦, Mach number 0.1, with Spalart-Allmaras turbulence model.

Mesh adaptation options are :
- only one adapted spatial mesh,
- Space-Time complexity is prescribed to 2M and 32M.

Figure: Flow past a Naca0021 at Re = 270K : adapted mesh (left) and velocity field (right) in
cross-section.
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Third numerical experiment(2)

Nst k TFP Cspace(nodes) # timesteps Espace Etime
− 0 (18K) 44K (CFL50) − −
2M 1 1.8K (2.6K) 1132 1.7 10−1 2.4 10−6

2M 10 16K (18K) 123 2.6 10−2 1.3 10−2

32M 1 11K (14K) 2852 2.7 10−2 2.4 10−6

32M 10 57K (61K) 558 7.5 10−3 1.8 10−3

Nst : space-time complexity prescribed
k : index of the current fixed point iteration
Cspace : space complexity
# timesteps : number of time steps
Espace : theoretical space error.
Etime : theoretical time error.
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Third numerical experiment(3)

Figure: Evolution of theoretical space error Espace and time error Etime with TFP iterations.
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Third numerical experiment(4)

Figure: Blue: Timestep lengths of initial flow at CFL=50, 44K timesteps on 18K vertices,
and orange: first timestep lengths proposed by the adaptation algorithm, 1132 timesteps on
1766 vertices.
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Concluding remarks

We have proposed an extension of the Transient Fixed Point mesh adaptation
algorithm to space-time adaptation for implicit time stepping.

Best time steps are obtained in a few TFP iterations, with CPU improvement.

Future work is the extension to Large Eddy Simulation.

Most details of implementation (except timestep length adaptation) are already
available in (*).

(*) F. Alauzet, A. Loseille, G. Olivier, Time-accurate multi-scale anisotropic mesh adaptation for
unsteady flows in CFD, Journal of Computational Physics 373 (2018) 28-63.

(**) A. Belme, A. Dervieux, F. Alauzet, Time accurate anisotropic goal-oriented mesh adaptation for

unsteady flows, Journal of Computational Physics 231 (2012) 6323-6348.
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Annexe
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Space-time metric

In space-time domain Ω× [0,T[, the Transient Fixed Point mesh-adaptation method
relies on the notion of space-time continuous mesh or space-time metric, Mst,

Mst = ((ti)i=0,nadap ,τ,M ) (t0 = 0)
defined by:
(i) The splitting (ti)i of [0,T] into nadap subintervals:

[0,T] =
nadap⋃
i=1

[ti−1, ti[.

(ii) A continuous timestep length τ : t ∈]0,T[7→ τ(t).

(iii)A time-dependant spatial metric M (t) = Mi for t ∈ [ti−1, ti[ , where Mi is
defined as the field (Mi(x),x ∈Ω) where Mi(x) is a positive definite symmetric
3×3 matrix. We define the spatial complexity of Mi as:

Cspatial(Mi) =
∫

Ω

√
det(Mi(x))dx.
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Unit mesh of a space-time metric

A space-time metric Mst = ((ti)i=0,nadap ,τ,M ) allows to define (at least) one unit
space-time mesh of the metric:

Hst = ((ti)i=0,nadap ,τ,H )

such that:

(i) For t ∈ [ti−1, ti[, we use Hi , a spatial unit mesh for the metric Mi, i.e. each edge
is of length about 1 for metric Mi.

(ii) Time integration is based on time levels ti,k such that:∫ ti,k

ti,k−1

(τ(t))−1dt = 1.
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Complexity of a space-time metric

The complexity Cst(Mst), or computational effort, of a space-time metric

Mst = ((ti)i=0,nadap ,τ,M )

is the sum of complexities Ci on each time sub-interval [ti−1, ti[, each Ci being
evaluated as the product of the spatial complexity,

Cspace(Mi) =
∫

Ω

√
det(Mi(x))dx

which is the continuous analog of the number of vertices of spatial discretization,
by the time complexity, namely the number of timesteps, therefore:

Cst(Mst) =

i=nadap

∑
i=1

Cspace(Mi)
∫ ti

ti−1

τ(t)−1dt.
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