

B. Sauvage^{1,*}, F. Alauzet², F. Miralles³, S.F. Wornom³, B. Koobus³, A. Dervieux^{4,1}

¹Univ. Côte d'Azur/INRIA Projet Ecuador, Sophia-Antipolis, France, ²INRIA Projet Gamma, Saclay, France, ³IMAG, Univ. Montpellier, CNRS, Place Eugène Bataillon, 34090 Montpellier, ⁴Lemma, Biot, France,

This work was supported by the ANR NORMA project, grant ANR-19-CE40-0020-01 of the French National Research Agency.

Motivations

Our motivation is the mesh adaptive simulation of unsteady flows, with a particular final target, LES and hybrid RANS/LES flows. We restrict to time advancing methods.

The Transient Fixed Point algorithm(*) was proposed for specifying automatically a *succession of n_{adap} meshes* over a decomposition in sub-intervals (in green) used for the transient process (timesteps in red).

(*)F. Alauzet, P.J. Frey, P.-L. George, and B. Mohammadi. 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations. J. Comp. Phys., 222:592-623, 2007.

In the case of explicit time-advancing, the heuristics (with theoretical proofs for simple models) was to consider maximal Courant number =1 as a good principle for time adaptation (*)(**).

For our target set of flows, only *implicit time advancing* is affordable. Small timesteps are CPU costly. Large timesteps may loose the accuracy of the spatial resolution.

Our purpose is to define a space-time global error and optimize it simultaneously in terms of spatial meshes and timestep length.

(*) F. Alauzet, A. Loseille, G. Olivier, Time-accurate multi-scale anisotropic mesh adaptation for unsteady flows in CFD, Journal of Computational Physics 373 (2018) 28-63.

(**) A. Belme, A. Dervieux, F. Alauzet, Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, Journal of Computational Physics 231 (2012) 6323-6348.

In space-time domain $\Omega \times [0, T[$, the Transient Fixed Point mesh-adaptation method relies on the notion of *space-time continuous mesh or space-time metric*, \mathcal{M}_{st} ,

$$\mathscr{M}_{st} = ((t_i)_{i=0, n_{adap}}, \tau, \mathscr{M}) \qquad (t_0 = 0)$$

defined by:

(i) The *splitting* $(t_i)_i$ of [0, T] into n_{adap} subintervals:

$$[0,T] = \bigcup_{i=1}^{n_{adap}} [t_{i-1}, t_i].$$

(ii) A continuous timestep length $\tau : t \in]0, T[\mapsto \tau(t).$

(iii)A time-dependent spatial metric $\mathcal{M}(t) = \mathcal{M}_i$ for $t \in [t_{i-1}, t_i]$, where \mathcal{M}_i is defined as the field $(\mathcal{M}_i(\mathbf{x}), \mathbf{x} \in \Omega)$ with $\mathcal{M}_i(\mathbf{x})$ a positive definite symmetric 3×3 matrix.

The *complexity* $\mathscr{C}_{st}(\mathscr{M}_{st})$, or computational effort, of a space-time metric

$$\mathscr{M}_{st} = ((t_i)_{i=0,n_{adap}}, \tau, \mathscr{M})$$

is the sum of complexities C_i on each time sub-interval $[t_{i-1}, t_i]$, each C_i being evaluated as the product of the *spatial complexity*,

$$\mathscr{C}_{space}(\mathscr{M}_i) = \int_{\Omega} \sqrt{det(\mathscr{M}_i(x))} \mathrm{d}x$$

which is the continuous analog of the number of vertices of spatial discretization, by the *time complexity*, namely the number of timesteps, therefore:

$$\mathscr{C}_{st}(\mathscr{M}_{st}) = \sum_{i=1}^{i=n_{adap}} \mathscr{C}_{space}(\mathscr{M}_i) \int_{t_{i-1}}^{t_i} \tau(t)^{-1} \mathrm{d}t.$$

Error model

Given a metric $\mathcal{M}_{st} = ((t_i)_{i=0,n_{adap}}, \tau, \mathcal{M})$ and a unit mesh $((t_i)_i, \tau, \mathcal{H})$ of it. We can compute on $((t_i)_i, \tau, \mathcal{H})$ a discrete solution $W(\mathbf{x}, t)$ of the Navier-Stokes equations in $\Omega \times [0, T[$, with an *approximation error* \mathcal{E} which we consider as a function of \mathcal{M}_{st} .

The *error model* can be based on a goal-oriented analysis, with functional and adjoint. Instead, for simplicity, we consider a L^p feature-based analysis with a *sensor M* (typically the Mach number).

$$\mathscr{E}(\mathscr{M}_{st}) = \mathscr{E}_{time}(\mathscr{M}_{st}) + \mathscr{E}_{space}(\mathscr{M}_{st})$$
$$\mathscr{E}_{time}(\mathscr{M}_{st}) = \int_{0}^{T} \int_{-\infty}^{+\infty} [\tau^{2} |\frac{\partial^{2}M}{\partial t^{2}}|]^{p} dt dx$$
$$\mathscr{E}_{space}(\mathscr{M}_{st}) = \sum_{i=1}^{n_{adap}} \int_{t_{i-1}}^{t_{i}} \mathscr{E}^{i}(t) dt \quad \text{with}$$
$$\mathscr{E}^{i}(t) = \int_{\Omega} \left[\text{trace} \left((\mathscr{M}^{i})^{-\frac{1}{2}}(\mathbf{x}) \mathbf{H}_{M}(\mathbf{x},t) (\mathscr{M}^{i})^{-\frac{1}{2}}(\mathbf{x}) \right) \right]^{p} dx$$
and $\mathbf{H}_{M} = |Hessian(M)|.$

Adaptation optimality

We solve the following optimal problem :

$$\begin{cases} \min_{\mathcal{M}_{st}} \mathscr{E}(\mathcal{M}_{st}), \\ \mathscr{C}_{st}(\mathcal{M}_{st}) = N_{st}. \end{cases}$$

We prescribe:

(a) the time subintervals: n_{adap} and $(t_i)_{i=0,n_{adap}}$ and

(b) an integer N_{st} (prescribed space-time complexity).

There exists

$$\mathscr{M}_{st}^{opt} = \left((t_i)_{i=0, n_{adap}}, \tau^{opt}, (\mathscr{M}_i^{opt})_i \right),$$

where τ^{opt} and \mathcal{M}_i^{opt} can be expressed in terms of the error data: $|\frac{\partial^2 M}{\partial t^2}|$ and \mathbf{H}_M ,

which minimizes the error $\mathscr{E}(\mathscr{M}_{st})$ under the constraint $\mathscr{C}_{st}(\mathscr{M}_{st}) = N_{st}$.

Space-time Transient Fixed-Point Algorithm

First numerical experiment

2D computation of a flow around a cylinder at Reynolds number 3900, Mach number 0.1, with Spalart-Allmaras turbulence model.

Mesh adaptation options are :

- only one adapted spatial mesh, i.e. $n_{adap} = 1$
- Space-Time complexity N_{st} is prescribed to 2M and 32M.

Figure: Flow past a circular cylinder at Re = 3900: adapted mesh (left) and velocity field (right) in cross-section.

N _{st}	k TFP	$\mathcal{C}_{space}(nodes)$	# timesteps	Espace	Etime	E
-	0	(38K)	16K (CFL100)	-	-	-
2 <i>M</i>	1	7.6K (10K)	261	$6.4 \ 10^{-2}$	$1.2 \ 10^{-4}$	$6.4 \ 10^{-2}$
2M	10	21K (22K)	94	$2.9 \ 10^{-2}$	$1.3 \ 10^{-2}$	$4.2 \ 10^{-2}$
32M	1	48K (61K)	658	1.10^{-2}	$1.2 \ 10^{-4}$	1.10^{-2}
32M	10	78K (83K)	408	8.3 10 ⁻³	8.4 10 ⁻⁴	9.1 10 ⁻³

- N_{st} : space-time complexity prescribed
- *k* : index of the current fixed point iteration
- *C*_{space} : space complexity
- # timesteps : number of time steps
- \mathcal{E}_{space} : theoretical space error.
- \mathcal{E}_{time} : theoretical time error.

Second numerical experiment(2)

2D computation of a flow around a cylinder at Reynolds number 1M, Mach number 0.1, with Spalart-Allmaras turbulence model.

Mesh adaptation options are :

- only one adapted spatial mesh,
- Space-Time complexity is prescribed to 40M and 80M.

Figure: Flow past a circular cylinder at Re = 1M: adapted mesh (left) and velocity field (right) in cross-section.

N _{st}	k TFP	$\mathcal{C}_{space}(nodes)$	# timesteps	Espace	\mathcal{E}_{time}	E
_	0	(38K)	$6K (FTS 5. 10^{-3})$	-	-	-
40M	1	48K	829	$8.1 \ 10^{-3}$	4. 10^{-5}	8.1 10 ⁻³
40 <i>M</i>	5	107K (112K)	374	$5.1 \ 10^{-3}$	$1.3 \ 10^{-3}$	$6.4 \ 10^{-3}$
80M	1	76K	1045	$5.1 \ 10^{-3}$	$4.\ 10^{-5}$	$5.1 \ 10^{-3}$
80M	5	150K (156K)	533	$3.6 \ 10^{-3}$	$4.6 \ 10^{-4}$	$4.1 \ 10^{-3}$

- N_{st} : space-time complexity prescribed
- *k* : index of the current fixed point iteration
- *C*_{space} : space complexity
- # timesteps : number of time steps
- *E*_{space} : theoretical space error.
- \mathcal{E}_{time} : theoretical time error.

Third numerical experiment

2D computation of a flow around a NACA0021 at Reynolds number 270K and an angle of attack of 60° , Mach number 0.1, with Spalart-Allmaras turbulence model.

Mesh adaptation options are :

- only one adapted spatial mesh,
- Space-Time complexity is prescribed to 2M and 32M.

Figure: Flow past a Naca0021 at Re = 270K : adapted mesh (left) and velocity field (right) in cross-section.

N _{st}	k TFP	$\mathcal{C}_{space}(nodes)$	# timesteps	Espace	\mathcal{E}_{time}
_	0	(18K)	44K (CFL50)	_	—
2M	1	1.8K (2.6K)	1132	$1.7 \ 10^{-1}$	$2.4 \ 10^{-6}$
2M	10	16K (18K)	123	$2.6 \ 10^{-2}$	$1.3 \ 10^{-2}$
32M	1	11K (14K)	2852	$2.7 \ 10^{-2}$	$2.4 \ 10^{-6}$
32 <i>M</i>	10	57K (61K)	558	$7.5 \ 10^{-3}$	$1.8 \ 10^{-3}$

- N_{st} : space-time complexity prescribed
- *k* : index of the current fixed point iteration
- *C*_{space} : space complexity
- # timesteps : number of time steps
- *E_{space}* : theoretical space error.
- \mathcal{E}_{time} : theoretical time error.

Third numerical experiment(4)

Figure: Blue: Timestep lengths of initial flow at CFL=50, 44K timesteps on 18K vertices, and orange: first timestep lengths proposed by the adaptation algorithm, 1132 timesteps on 1766 vertices.

We have proposed an extension of the Transient Fixed Point mesh adaptation algorithm to space-time adaptation for implicit time stepping.

Best time steps are obtained in a few TFP iterations, with CPU improvement.

Future work is the extension to Large Eddy Simulation.

Most details of implementation (except timestep length adaptation) are already available in (*).

(*) F. Alauzet, A. Loseille, G. Olivier, Time-accurate multi-scale anisotropic mesh adaptation for unsteady flows in CFD, Journal of Computational Physics 373 (2018) 28-63.

(**) A. Belme, A. Dervieux, F. Alauzet, Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, Journal of Computational Physics 231 (2012) 6323-6348.

Annexe

Space-time metric

In space-time domain $\Omega \times [0, T]$, the Transient Fixed Point mesh-adaptation method relies on the notion of space-time continuous mesh or space-time metric, \mathcal{M}_{st} ,

$$\mathscr{M}_{st} = ((t_i)_{i=0,n_{adap}}, \tau, \mathscr{M}) \qquad (t_0 = 0)$$

defined by:

(i) The splitting $(t_i)_i$ of [0,T] into n_{adap} subintervals:

$$[0,T] = \bigcup_{i=1}^{n_{adap}} [t_{i-1}, t_i].$$

(ii) A continuous timestep length $\tau : t \in]0, T[\mapsto \tau(t)]$.

(iii)A time-dependent spatial metric $\mathcal{M}(t) = \mathcal{M}_i$ for $t \in [t_{i-1}, t_i]$, where \mathcal{M}_i is defined as the field $(\mathcal{M}_i(\mathbf{x}), \mathbf{x} \in \Omega)$ where $\mathcal{M}_i(\mathbf{x})$ is a positive definite symmetric 3×3 matrix. We define the *spatial complexity* of \mathcal{M}_i as:

$$\mathscr{C}_{spatial}(\mathscr{M}_i) = \int_{\Omega} \sqrt{\det(\mathscr{M}_i(\mathbf{x}))} \mathrm{d}x.$$

A space-time metric $\mathcal{M}_{st} = ((t_i)_{i=0,n_{adap}}, \tau, \mathcal{M})$ allows to define (at least) one *unit space-time mesh* of the metric:

$$\mathscr{H}_{st} = ((t_i)_{i=0,n_{adap}}, \tau, \mathscr{H})$$

such that:

(i) For $t \in [t_{i-1}, t_i]$, we use \mathcal{H}_i , a spatial unit mesh for the metric \mathcal{M}_i , i.e. each edge is of length about 1 for metric \mathcal{M}_i .

(ii) Time integration is based on time levels $t_{i,k}$ such that:

$$\int_{t_{i,k-1}}^{t_{i,k}} (\tau(t))^{-1} dt = 1.$$

The *complexity* $\mathscr{C}_{st}(\mathscr{M}_{st})$, or computational effort, of a space-time metric

$$\mathcal{M}_{st} = ((t_i)_{i=0,n_{adap}},\tau,\mathcal{M})$$

is the sum of complexities C_i on each time sub-interval $[t_{i-1}, t_i]$, each C_i being evaluated as the product of the *spatial complexity*,

$$\mathscr{C}_{space}(\mathscr{M}_i) = \int_{\Omega} \sqrt{det(\mathscr{M}_i(x))} \mathrm{d}x$$

which is the continuous analog of the number of vertices of spatial discretization, by the *time complexity*, namely the number of timesteps, therefore:

$$\mathscr{C}_{st}(\mathscr{M}_{st}) = \sum_{i=1}^{i=n_{adap}} \mathscr{C}_{space}(\mathscr{M}_i) \int_{t_{i-1}}^{t_i} \tau(t)^{-1} \mathrm{d}t.$$