Hybrid approach

Applications : circular cylinder flow at various regimes

Conclusion O

Assessment of turbulence hybrid models with transition modeling for the simulation of massively separated flows

<u>F.Miralles</u>¹, B.Sauvage³, S.Wornom¹, B.Koobus¹, A.Dervieux^{2,3}

¹IMAG, Université de Montpellier, France,
 ² Société LEMMA, Sophia-Antipolis, France
 ³INRIA Sophia-Antipolis, France

22nd Computational Fluids Conference, April 25-28, 2023, Cannes

Introduction 00	Hybrid approach 00	Applications : circular cylinder flow at various regimes
		Introduction

Motivation of this work

- Development of accurate and efficient tools for the simulation of acoustic radiation generated by rotating machines (NORMA ANR research project).

Figure - Helicopter, wind turbines and taxi drone

- Need for turbulence models which
 - a are accurate for massively separated flows at high Reynolds numbers,
 - b able to take into account transitional boundary layers,
 - c introduce little dissipation in order to perform well in aeroacoustic computations.

Conclusion

tion	Hybrid	approach	
	00		

Introduc

Introduction

Background : main models

- RANS not suited for accurate predictions for flows with massive separation and for aeroacoustic problems.

Figure – Mach field of RANS simulation over a NACA0018.

- LES computationally too expensive, particularly in the near wall regions and with increasing Reynolds numbers.

Figure – Mach field of LES simulation over a NACA0018.

- Hybrid RANS-LES models can be good candidate for aeroacoustic simulations characterized by massive separations, a special attention should be paid to the choice of the LES model, the RANS component and the blending strategy.

Introduction	Hybrid approach	Applications : circular cylinder flow at various regimes	Conclusion
○●	00		O

Purpose of this work

Assessment of different hybrid strategies for the simulation of a circular cylinder flow from sub-critical to super-critical regime, in order to capture drag crisis phenomenon.

Hybrid approach

Applications : circular cylinder flow at various regimes

Conclusion O

URANS component : baseline turbulence model

Based in this work, either on the RANS $k - \varepsilon$ of Goldberg¹ and $k - \varepsilon - \gamma$ model of Akther² can be written briefly :

$$\frac{\partial W}{\partial t} + \nabla \cdot F_{c}(W) + \nabla \cdot F_{v}(W) + \nabla \cdot F_{v}^{RANS}(W) = \tau^{RANS}(W)$$

RANS $k - \varepsilon$ Goldberg³ and a new $k - \varepsilon - \gamma$ based on Akther's model :

$$\tau^{k-\varepsilon}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\mathcal{P}_k - D_k}^{\rho k}, \overbrace{(C_1 \tau : \nabla \mathbf{u} - C_2 \rho \varepsilon + E)T^{-1}}^{\rho \varepsilon}\right)$$

$$\tau^{k-\varepsilon-\gamma}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho u}, \overbrace{0}^{\rho E}, \overbrace{\gamma P_k - \max(\gamma, 0.1)D_k}^{\rho k}, \overbrace{(C_1 \tau : \nabla u - C_2 \rho \varepsilon + E)T^{-1}}^{\rho \varepsilon}\right)$$

The transition onset is given by Abu-Ghannam's correlation

$$Re_{\theta,S} = 163 + \exp(6.91 - Tu)$$

2. Most. Nasrin Akhter, Mohammad Ali et Ken ichi Funazaki. "Numerical Simulation of Heat Transfer Coefficient on Turbine Blade using Intermittency Factor Equation". In : *Procedia Engineering* 105 (2015). The 6th BSME International Conference on Thermal Engineering, p. 495-503. issn : 1877-7058.

3. U. Goldberg, O. Peroomian et S. Chakravarthy. "A wall-distance-free $k - \varepsilon$ model with Enhanced Near-Wall Treatment". In : Journal of Fluids Engineering 120 (1998), p.: (457-46) $\rightarrow 4$ $\Rightarrow \rightarrow 4$ $\Rightarrow \rightarrow 3$

^{1.} U. Goldberg, O. Peroomian et S. Chakravarthy. "A wall-distance-free $k - \varepsilon$ model with Enhanced Near-Wall Treatment". In : Journal of Fluids Engineering 120 (1998), p. 457-462.

Our VMS 4 uses 2 embedded grids in order to dissipate solely the numerical scales which are the smallest represented by the mesh and not the larger ones.

$$\frac{\partial W}{\partial t} + \nabla \cdot F_{c}(W) + \nabla \cdot F_{v}(W) + \nabla \cdot F_{v}^{VMS}(W^{small \ scales}) = 0$$

Dynamic VMS⁵ is a combination of VMS with Germano-type dynamic algorithm adapting in space and time the SGS coefficient :

$$C_s \longrightarrow C_s(\mathbf{x}, t)$$

^{4.} B.Koobus et C. Farhat. "A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding". In : Computer Methods in Applied Mechanics and Engineering 193.15 (2004). Recent Advances in Stabilized and Multiscale Finite Element Methods, p. 1367-1383.

Hybrid approach

Applications : circular cylinder flow at various regimes

Conclusion

Hybrid approach in a finite volume/ finite element framework

$$\begin{pmatrix} \frac{\partial W_h}{\partial t}, \chi_i \end{pmatrix} + (\nabla \cdot F_c(W_h), \chi_i) = (\nabla \cdot F_d(W_h), \phi_i) + \theta \left(\tau^C(W_h), \phi_i \right) + (1 - \theta) \left(\tau^{DVMS}(W_h^{small scales}), \phi_i^{small scales} \right)$$

*
$$\tau^{c} \in \{\tau^{\text{torus}}, \tau^{\text{cours}}\}\$$

* Blending : $\theta = 1 - f_d \times (1 - \overline{\theta}); \quad \overline{\theta} = \tanh\left(\left(\frac{\Delta}{k^{3/2}}\varepsilon\right)^2\right),$

* $f_d = f_{ddes}$ or $f_d = f_{geo} = \exp\left(-\frac{1}{\epsilon}\min(d - \delta_0, 0)^2\right)$

Figure - Hybrid URANS DVMS blending surface.

Applications : circular cylinder flow at various regimes

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Set up

- Simulation set up :
 - Mach number : 0.1 (subsonic flow)
 - reference pressure : $101300 [N/m^2]$
 - density : $1.225 \ [kg/m^3]$
 - Wall boundaries conditions :

$$\mathbf{u} = \mathbf{0}, \quad \nabla T \cdot \mathbf{n} = 0,$$

$$k - \varepsilon: \quad k = 0, \ \varepsilon = (\nabla \sqrt{k}) \cdot \mathbf{n},$$

$$\gamma: \quad \nabla \gamma \cdot \mathbf{n} = 0.$$

- The mesh is radial with minimal mesh size such that $y^+_w\simeq 1$ for $Re=10^6$ (610K Nodes).

Figure - Computational grid zoom close to the surface.

8/20

Hybrid approach

Applications : circular cylinder flow at various regimes ©000000000 Conclusion O

Circular cylinder Re = 20,000 : sub-critical regime

Figure – $k - \varepsilon - \gamma$ /DVMS flow at Reynolds 20K, Q-Criterion field using velocity color scale

uction	Hybrid approach 00	Applications : circular cylinder flow at various regimes 00000000000						Cond O
		\overline{C}_d	$ \overline{C_L} $	C'_	$-\overline{C}_{pb}$	θ_{sep}	St	
	Present simulation Re=20,	000						
	$k - \varepsilon / \text{DVMS}$	1.10	0.00	0.60	0.85	85	0.22	
	$k - \varepsilon - \gamma / \text{DVMS}$	1.22	0.00	0.48	1.19	89	0.21	
	Simulation							
	LES of Aradag ⁶	1.20	-	-	1.25	-	-	
	VMS-LES of Wornom 7	1.27	-	0.60	1.09	86	0.19	
	Experiments							
	Norberg ⁸	1.16	-	0.46	1.19	-	0.19	
	Lim ⁹	1.19	-	-	1.09	-	-	

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number 20,000 (sub-critical regime). \overline{C}_d holds for the mean drag coefficient, $|\overline{C}_l|$ denotes the absolute value of the mean lift coefficient, C'_l is the root mean square of the lift coefficient, \overline{C}_{pb} is the value of the mean base pressure coefficient, θ_{sep} is the mean separation angle, and St is the vortex shedding frequency. $k - \varepsilon / \text{DVMS}$ holds for the hybrid model without intermittency modeling, and $k - \varepsilon - \gamma / \text{DVMS}$ is the present intermittency-based hybrid model.

^{6.} S.ARADAG. "Unsteady turbulent vortex structure downstream of a three dimensional cylinder". In : Isi Bilimi Ve Teknigi Dergisi/ Journal of Thermal Science and Technology 29 (jan. 2009).

^{7.} S. Wornom et al. "Variational multiscale large-eddy simulations of the flow past a circular cylinder : Reynolds number effects". In : *Computers and Fluids* 47.1 (2011), p. 44-50. issn : 0045-7930.

C Norberg. "Pressure Forces on a Circular Cylinder in Cross Flow, IUTAM Symposium on Bluff Body Wakes, Dynamics and Instabilities". In : sept. 1992. isbn : 978-3-662-00416-6; C. Norberg. "Fluctuating lift on a circular cylinder : review and new measurements". In : Journal of Fluids and Structures 17.1 (2003), p. 57-96. issn : 0889-9746.

Introd	uction
00	

Pressure coefficient (Exp from Norberg¹⁰)

Figure – Flow past a cylinder at Reynolds number 20,000 (sub-critical regime) : distribution over the cylinder surface of the mean pressure coefficient obtained with the present intermittency-based hybrid model compared to experimental data

^{10.} C Norberg. "Pressure Forces on a Circular Cylinder in Cross Flow, IUTAM Symposium on Bluff Body Wakes, Dynamics and Instabilities". In : sept. 1992. isbn : 978-3-662-004<u>16</u>-6. () + ()

Hybrid approach

Applications : circular cylinder flow at various regimes

Conclusion O

Circular cylinder Re = 250K : critical regime

Figure – $k - \varepsilon - \gamma$ /DVMS flow at Reynolds 250K, Q-Criterion field using velocity color scale

Introduction	Hybrid approach	Applications : circular cylinder flow at various regimes	Conclu
00	00	000000000	0

Name	\overline{C}_d	$ \overline{C_L} $	C'_l	$-\overline{C}_{pb}$	St
Present simulation Re= 2.5×10^5					
$k - \varepsilon / \text{DVMS}$	0.61	0.00	0.31	0.70	0.30
$k - \varepsilon - \gamma / DVMS$	0.86	0.15	0.65	0.87	0.20
Simulation					
LES of Lehmkuhl et al. ¹¹	0.83	0.9	0.49	0.99	0.24
LES of Yeon at al. ¹²	0.56	0.09	0.12	0.44	0.19
Experiments					
Schewe ¹³	1.00	-	0.18	-	0.20

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number 2.5×10^5 (critical regime). Same symbols as in Table 1

^{11. 1.} Rodríguez et al. "On the flow past a circular cylinder from critical to super-critical Reynolds numbers : Wake topology and vortex shedding". In : International Journal of Heat and Fluid Flow 55 (2015), p. 91-103. issn : 0142-727X.

^{12.} S.M. Yeon, J. Yang et F. Stern. "Large-eddy simulation of the flow past a circular cylinder at sub- to super-critical Reynolds numbers". In : Applied Ocean Research 59 (2016), p. 663-675. issn : 0141-1187.

^{13.} G. Schewe. "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers". In : Journal of Fluid Mechanics 133 (1995) (D.:265-285. <)

Pressure coefficient (Exp from Achenbach¹⁴)

Figure – Flow past a cylinder at Reynolds number 2.5×10^{5} (critical regime) : distribution over the upper part (purple) and the lower part (green) of the cylinder surface of the mean pressure coefficient obtained with the present intermittency-based hybrid model (left) and its counterpart without transition (right), compared to experimental data (Achenbach).

Hybrid approach

Applications : circular cylinder flow at various regimes

Conclusion O

Circular cylinder Re = 1M : super-critical flow

Figure – $k - \varepsilon - \gamma$ /DVMS flow at Reynolds 1M, Q-Criterion field using velocity color scale

Introduction	Hyb

	\overline{C}_d	$ \overline{C_L} $	C'_l	$-\overline{C}_{pb}$	θ_{sep}	St
Present simulation Re=10 ⁶						
$k - \varepsilon$ /DVMS	0.54	0.03	0.30	0.50	110	0.34
$k - \varepsilon - \gamma / DVMS$	0.28	0.03	0.04	0.25	128	0.50
Simulation						
LES of Kim et al. ¹⁵	0.27	-	0.12	0.28	108	-
LES of Catalano et al. ¹⁶	0.31	-	-	0.32	-	0.35
Experiments						
Schewe ¹⁷	0.22	-	0.02	-	-	0.44
Gölling ¹⁸	0.22	-	-	-	130	0.12/0.47
Zdravkovich 19	0.2-0.4	-	0.1-0.15	0.2-0.34	-	0.18/0.50

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number 10⁶ (super-critical regime). Same symbols as in Table 1

16. P. Catalano et al. "Numerical simulation of the flow around a circular cylinder at high Reynolds numbers". In : International Journal of Heat and Fluid Flow 24.4 (2003), p. 463-469. issn : 0142-727X.

э

^{15.} S.E. Kim et M. Srinivasa. "Prediction of Unsteady Loading on a Circular Cylinder in High Reynolds Number Flows Using Large Eddy Simulation". In : t. 3. Jan. 2005.

^{17.} G. Schewe. "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds number". In : Journal of Fluid Mechanics 133 (août 1983), p. 265 -285.

^{18.} B. Gölling. "Experimental investigations of separating boundary-layer flow from circular cylinder at Reynolds numbers from 10^5 up to 10^7 ". In : 2006, p. 455-462.

^{19.} M.M. Zdravkovich. Flow Around Circular Cylinders : Volume I : Fundamentals. Flow Around Circular Cylinders : A Comprehensive Guide Through Flow Phenomena, Experiments, Applications, Mathematical Models, and Computer Simulations. OUP Oxford, 1997. □ → (□) → (□) → (□) → (□)

Intro	luction	
00		

Pressure coefficient (Exp from Warschauer²⁰)

Figure – Flow past a cylinder at Reynolds number 10^6 (super-critical regime) : distribution over the cylinder surface of the mean pressure coefficient obtained with the present intermittency-based hybrid model compared to experimental data.

^{20.} J.A. Leene K.A.Warschauer. "Experiments on mean and fluctuating pressures of circular cylinders at cross flow at very high Reynolds numbers". In : 1971, p. 305-315. $\Box \rightarrow \Box = \Box \rightarrow \Box = \Box = \Box$

Hybrid approach

Applications : circular cylinder flow at various regimes ○○○○○○○○●○ Conclusion O

Vorticity fields

Figure – Instantaneous vorticity magnitude in spanwise-cross section for various Reynolds numbers from sub-critical to super-critical flow regimes (from left to right, top then bottom : Re=3900, Re=20,000, Re= 10^5 , Re= 2.5×10^5 , Re= 3.8×10^5 , Re= 7.2×10^5 , Re= 10^6).

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへ⊙

Figure – Impact of the intermittency model (in red) on the drag crisis and Strouhal number prediction, in contrast with the same hybrid model without intermittency modeling (in blue).

Introduction	Hybrid approach	Applications : circular cylinder flow at various regimes	Conclusion
00	00	0000000000	O

Conclusion and perspective

- Investigation of a hybrid method which combines an intermittency-based RANS model and a DVMS approach.
- Application to circular cylinder flows at various regimes.
- Bulk coefficients and important phenomena (like drag crisis and increase in Strouhal number) are properly predicted.
- Significant improvement brought by the intermittency-based hybrid method compared to its non-transitional counterpart.
- Suitability of the hybrid approach at high Reynolds numbers using relatively coarse grids.
- Usability of the proposed hybrid model over a wide range of Reynolds numbers, including moderate ones.

Aeorodynamic and aeoroacoustic simulation of complex flows in rotating machines and over three-dimensional airfoils in incidence.

Applications : circular cylinder flow at various regimes

Conclusion

Appendix VMS

VMS formulation ²¹

$$\left(\frac{\partial W_h}{\partial t}, \chi_i\right) + \left(\nabla \cdot F_c(W_h), \chi_i\right) = \left(\nabla \cdot F_d(W_h), \phi_i\right) + \left(\tau^{DVMS}(W_h), \phi_i'\right).$$
(1)

VMS closure term with dynamics coefficients $C_{model} = C_{model}(\mathbf{x}, t)$ and $Pr_t = Pr_t(\mathbf{x}, t)$

$$\left(\tau^{DVMS}(W_h),\phi_i'\right) = \left(0, \mathbf{M}_{\mathcal{S}}(W_h,\phi_h'), M_{\mathcal{H}}(W_h,\phi_h'), 0, 0\right)$$

where :

$$\begin{split} \mathbf{M}_{S}(W_{h},\phi_{i}') &= \sum_{T \in \Omega_{h}} \int_{T} \underbrace{\overline{\rho}(\mathbf{C}_{S} \Delta)^{2} |S|}_{\mu_{sgs}} P \nabla \phi_{i}' d\mathbf{x}, \quad P = 2S - \frac{2}{3} Tr(S) I d \\ M_{H}(W_{h},\phi_{i}') &= \sum_{T \in \Omega_{h}} \int_{T} \underbrace{\frac{C_{p}}{P_{r_{t}}}}_{\mu_{sgs}} \underbrace{\overline{\rho}(\mathbf{C}_{S} \Delta)^{2} |S|}_{\mu_{sgs}} \nabla T' \cdot \nabla \phi_{i}' d\mathbf{x}, \quad \Delta = \left(\int_{T} d\mathbf{x}\right)^{1/3} \end{split}$$

and $\phi'_h = \phi_h - \overline{\phi_h}$ where $\overline{\phi_h}$ is computed from macro cells.

