# Application of hybrid RANS/VMS modeling to massively separated flows and rotating machines

#### <u>F.Miralles</u><sup>1</sup>, B.Sauvage<sup>3</sup>, S.Wornom<sup>1</sup>, B.Koobus<sup>1</sup>, A.Dervieux<sup>2,3</sup>

<sup>1</sup>IMAG, Université de Montpellier, France,
 <sup>2</sup> Société LEMMA, Sophia-Antipolis, France
 <sup>3</sup>INRIA Sophia-Antipolis, France

The 18th International Conference on Fluid Flow Technologies, Budapest, 2 september, 2022



## Goal and overview

#### Goal

This work is motivated by the development of accurate and efficient tools for simulation of acoustic radiation generated by rotating machines

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

We focus this presentation on modeling issues

1 Hybrid approach

2 Discussion circular cylinder cases

**3** Application on rotating frame

Why massively separated flows and rotating machines?



Figure - Helicopter blades application, wind turbines and taxi drone

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

#### Modeling of turbulent flow : RANS description (1)

Compressible Reynolds Averaged Navier-Stokes Equations :

$$\frac{\partial W_h}{\partial t} + \nabla \cdot F_c(W_h) - \nabla \cdot F_d(W_h) = \tau(W_h)$$
(1)

**RANS**  $k - \varepsilon$  Goldberg<sup>1</sup> and k - R of Zhang<sup>2</sup>  $\left(R = \frac{k^2}{\varepsilon}\right)$  closure term :

$$\tau^{k-\varepsilon}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\tau:\nabla \mathbf{u} - \rho \varepsilon}^{\rho k}, \overbrace{(C_1 \tau:\nabla \mathbf{u} - C_2 \rho \varepsilon + E)T^{-1}}^{\rho \varepsilon}\right)$$

$$\tau^{k-R}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\mu_t \mathfrak{S}^2 - \rho \frac{k^2}{R}}^{\rho k}, \overbrace{c_1 T_t \mu_t \mathfrak{S}^2 - \min\left(\rho c_2 k, \mu_t \frac{|\Omega|}{a_1}\right)}^{\rho R}\right)$$

1. U. Goldberg, O. Peroomian et S. Chakravarthy. "A wall-distance-free  $k - \varepsilon$  model with Enhanced Near-Wall Treatment". In : Journal of Fluids Engineering 120 (1998), p. 457-462.

2. Y. Zhang, Md Mizanur Rahman et Gang Chen. "Development of k-R turbulence model for wall-bounded flows". In : Aerospace Science and Technology 98 (2020), p. 105681. issn : 1270-9638. doi : https://doi.org/10.1016/j.ast.2020.105681. url :

https://www.sciencedirect.com/science/article/pii/S12709638193272821 > < 🗇 > < 🖻 > < 🛓 > 🛬

#### Modeling of turbulent flow : RANS description (2)

**RANS**  $k - \varepsilon$  Goldberg and k - R closure term :

$$\tau^{k-\varepsilon}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\tau: \nabla \mathbf{u} - \rho \varepsilon}^{\rho k}, \overbrace{(C_1 \tau: \nabla \mathbf{u} - C_2 \rho \varepsilon + E) T^{-1}}^{\rho \varepsilon}\right)$$

$$\tau^{k-R}(W_h) = \left(\overbrace{0, 0}^{\rho}, \overbrace{0}^{\rho u}, \overbrace{0}^{\rho E}, \overbrace{\mu_t \mathfrak{S}^2 - \rho \frac{k^2}{R}}^{\rho k}, \overbrace{c_1 T_t \mu_t \mathfrak{S}^2 - \min\left(\rho c_2 k, \mu_t \frac{|\Omega|}{a_1}\right)}^{\rho R}\right)$$

DDES <sup>3</sup> closure term  $\rho \varepsilon$  or  $\rho \frac{k^2}{R}$  is replaced by  $\rho \frac{k^{3/2}}{l_{ddes}}$  where :

$$I_{ddes} = \frac{k^{\frac{3}{2}}}{\varepsilon} - f_{ddes} \max\left(0, \frac{k^{\frac{3}{2}}}{\varepsilon} - 0.65\Delta\right), \quad \begin{array}{l} f_{ddes} = 1 - \tanh((8r_d)^3), \\ r_d = \frac{\nu_t + \nu}{\kappa^2 y^2 \max(\sqrt{\nabla u} \cdot \nabla u, 10^{-10})} \end{array}$$

 3. P.Spalart et al. "A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities". In : Theoretical and Computational Fluid Dynamics 20 (juil. 2006), p. 181-195. doi: 10.1007/s00162-006-0015-0.

 (D) 1007/s00162-006-0015-0.

#### Modeling of turbulent flow : RANS description (3)

RANS Spalart-Allmaras<sup>4</sup> closure term :

$$\tau^{S.A}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho u}, \overbrace{0}^{\rho E}, \overbrace{\rho c_b |\Omega| - c_{\omega 1} f_{\omega} \left(\frac{\nu}{d}\right)^2}^{\rho \nu}\right)$$

DDES closure term *d* is replaced by *l*<sub>ddes</sub> where :

$$\mathfrak{l}_{ddes} = \frac{k^{\frac{3}{2}}}{\varepsilon} - f_{ddes} \max\left(0, \frac{k^{\frac{3}{2}}}{\varepsilon} - 0.65\Delta\right), \quad \begin{array}{l} f_{ddes} = 1 - \tanh((8r_d)^3), \\ r_d = \frac{\nu_t + \nu}{\kappa^2 y^2 \max(\sqrt{\nabla u}: \nabla u, 10^{-10})} \end{array}$$

4. P. SPALART et S. ALLMARAS. "A one-equation turbulence model for aerodynamic flows". In : 30th Aerospace Sciences Meeting and Exhibit. doi: 10.2514/6.1992-439. eprint: https://arc.aiaa.org/doi/abf/10.2514/6.1992-439. ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ∩ ∩ ∩ □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ∩ ∩ ∩ ▷ ∩ □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ← □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩ □ ▷ ∩

## LES component : Dynamic Variational Multi Scale



Our VMS  $^5$  uses 2 embedded grids in order to dissipate solely the numerical scales which are the smallest represented by the mesh and not the larger ones.

Dynamic VMS<sup>6</sup> is a combination of VMS with Germano-type dynamic algorithm adapting in space and time the SGS coefficient :

$$C_s \longrightarrow C_s(\mathbf{x}, t)$$

6. C. Moussaed et al. "Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy simulation of bluff-body flows". In : Acta Mechanica 225 (2014), p. 3309=3323.  $\bigcirc$   $\Rightarrow$   $\Rightarrow$   $\Rightarrow$   $\Rightarrow$ 

<sup>5.</sup> B.Koobus et C. Farhat. "A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding". In : Computer Methods in Applied Mechanics and Engineering 193.15 (2004). Recent Advances in Stabilized and Multiscale Finite Element Methods, p. 1367-1383.

#### LES WALE vs VMS WALE



Figure – Flow past a circular cylinder at Re = 1M : SGS viscosity



#### Why Dynamic VMS?

Figure – Flow past a circular cylinder at  $Re = 20K \pm SGS$  wiscosity  $\rightarrow A \equiv A = A = A$ 

Hybrid description with finite volume/ finite element method

$$\begin{pmatrix} \frac{\partial W_h}{\partial t}, \chi_i \end{pmatrix} + (\nabla \cdot F_c(W_h), \chi_i) = (\nabla \cdot F_d(W_h), \phi_i) \\ + \theta \left( \tau^C(W_h), \phi_i \right) + (1 - \theta) \left( \tau^{DVMS}(W_h^{small \ scales}), \phi_i^{small \ scales} \right)$$

\* 
$$\tau^{\circ} \in \{\tau^{1,0,00}, \tau^{2,0,00}\}$$
  
\* Blending :  $\theta = 1 - f_d \times (1 - \overline{\theta}); \quad \overline{\theta} = \tanh\left(\left(\frac{\Delta}{k^{3/2}}\varepsilon\right)^2\right),$ 

$$\star$$
  $f_d = f_{ddes}$ 

- C RANS

DDES



Figure - Hybrid RANS blending surface.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Set up

- Model used : RANS, DDES, VMS, RANS/DVMS, DDES/DVMS with :
  - Subgrid model for VMS : Smagorinsky, WALE
  - Closure model for RANS  $k \varepsilon$  of Goldberg, or k R or Spalart-Allmaras model.

#### Simulation set up :

- Mach number : 0.1 (subsonic flow)
- reference pressure : 101300  $[N/m^2]$
- density : 1.225  $\rm [kg/m^3]$
- Wall boundaries conditions :

$$\mathbf{u} = \mathbf{0}, \quad \nabla E \cdot \mathbf{n} = 0, \quad \nabla \rho \cdot \mathbf{n} = 0,$$
  

$$k - \varepsilon : \quad k = 0, \quad \varepsilon = (\nabla \sqrt{k}) \cdot \mathbf{n},$$
  
or  $k - R : \quad k = 0, \quad R = 0,$   
or  $S.A : \quad \nu_t = 0.$ 

- The mesh is radial with minimal mesh size such that  $y_w^+ \simeq 1$ .

# Circular cylinder Re=3900 : sub-critical regime



| Name                         | Mesh  | $\delta_w$ | $\overline{C}_d$ | $C'_l$ | - <i>C</i> <sub>pb</sub> | $\overline{\theta}$ | St    |
|------------------------------|-------|------------|------------------|--------|--------------------------|---------------------|-------|
| Present simulation           |       |            |                  |        |                          |                     |       |
| $k - \varepsilon$ Goldberg   | 176K  | 0.002      | 0.96             | 0.11   | 0.85                     | 111                 | 0.20  |
| k - R                        | 176K  | 0.002      | 1.00             | 0.11   | 0.86                     | 93                  | 0.20  |
| DVMS WALE                    | 1.46M | 0.004      | 0.94             | -      | 0.85                     | -                   | 0.22  |
| VMS                          | 2.6M  |            | 0.99             | 0.11   | 0.88                     | 89                  | 0.21  |
| VMS Adapted                  | 230K  |            | 1.14             | 0.27   | 1.1                      | 88                  | 0.20  |
| VMS Adapted                  | 2.1M  |            | 1.06             | 0.18   | 1.00                     | 85                  | 0.20  |
| Measurements                 |       |            |                  |        |                          |                     |       |
| Norberg 7 8                  | -     | -          | 1.03             | 0.1    | 0.84                     | -                   | 0.21  |
| Kravchenko-Moin <sup>9</sup> | -     | -          | 0.99             | -      | 0.88                     | 86                  | 0.215 |

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number 3900,  $\overline{C}_d$  holds for the mean drag coefficient,  $\overline{C}'_l$  is the root mean square of lift time fluctuation,  $\overline{C}_{p_b}$  is the pressure coefficient at cylinder basis,  $L_r$  is the mean recirculation length,  $\overline{\theta}$  is the mean separation angle.

C Norberg. Effects of Reynolds Number and Low-Intensity Freestream Turbulence on the Flow Around a Circular Cylinder. Chalmers University of Technology, Gothenburg, Publikation Nr 87/2, mai 1987.

<sup>8.</sup> C Norberg. "Pressure Forces on a Circular Cylinder in Cross Flow, IUTAM Symposium on Bluff Body Wakes, Dynamics and Instabilities". In : sept. 1992. isbn : 978-3-662-00416-6.

#### Pressure coefficient and skin friction



Figure – Distribution of mean pressure on left and skin friction on right side as a function of polar angle.

#### Circular cylinder Re = 1M : supercritical flow



Figure - Hybrid URANS/DVMS, Q-Criterion field using velocity color scale

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●





 $\ensuremath{\mathsf{Figure}}$  – Distribution of mean pressure and mean skin friction coefficient as a function of polar angle.

| Name                        | Mesh | $y_{WL}^+$ | $\overline{C}_d$ | $C'_l$   | $-C_{pb}$ | $\overline{\theta}$ | St   |
|-----------------------------|------|------------|------------------|----------|-----------|---------------------|------|
| Present simulation          |      |            |                  |          |           |                     |      |
| URANS $k - \varepsilon$     | 4.8M | 0          | 0.50             | 0.24     | 0.61      | 109                 | 0.46 |
| DDES $k - \varepsilon$ WL   | 4.8M | 100        | 0.20             | 0.04     | 0.22      | 138                 | 0.18 |
| DDES/ DVMS                  |      |            |                  |          |           |                     |      |
| k - $\varepsilon$ / WALE WL | 4.8M | 100        | 0.20             | 0.02     | 0.26      | 132                 | 0.58 |
| RANS / DVMS                 |      |            |                  |          |           |                     |      |
| k - R / DVMS WL             | 0.5M | 10         | 0.18             | 0.02     | 0.14      | 135                 | 0.56 |
| k - $\varepsilon$ / WALE WL | 4.8M | 100        | 0.26             | 0.11     | 0.22      | 134                 | 0.42 |
| Measurements                |      |            |                  |          |           |                     |      |
| Gölling <sup>10</sup>       |      |            | 0.24             | -        | -         | 130                 | 0.48 |
| Zdravkovich 11              |      |            | 0.2-0.4          | 0.1-0.15 | 0.2-0.34  | -                   |      |

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number 1M,  $\overline{C}_d$  holds for the mean drag coefficient,  $C'_l$  is the root mean square of lift time fluctuation,  $\overline{C}_{p_b}$  is the pressure coefficient at cylinder basis,  $L_r$  is the mean recirculation lenght,  $\overline{\theta}$  is the mean separation angle.

10. B. Gölling. "Experimental investigations of separating boundary-layer flow from circular cylinder at Reynolds numbers from 105 up to 107". In : 2006, p. 455-462.

11. M.M. Zdravkovich. Flow Around Circular Cylinders : Volume I : Fundamentals. Flow Around Circular Cylinders : A Comprehensive Guide Through Flow Phenomena, Experiments, Applications, Mathematical Models, and Computer Simulations. OUP Oxford, 1997. isbn : 9780198563969. url : https://books.google.fr/books?id=v8tSQwAACAAJ.

э

### Circular cylinder Re=2M : transcritical regime



Figure - Hybrid URANS/DVMS with wall law, Q-Criterion field using velocity color scale

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●





Figure - Distribution of mean pressure and skin friction coefficient as a function of polar angle.

|                                 | Mesh | $y_{WL}^+$ | $\overline{C}_d$ | $C'_l$ | $-\overline{C_{pb}}$ | $\overline{	heta}$ | St   |
|---------------------------------|------|------------|------------------|--------|----------------------|--------------------|------|
| Present simulation              |      |            |                  |        |                      |                    |      |
| URANS $k - \varepsilon$         | 4.8M | 100        | 0.26             | 0.066  | 0.30                 | 128                | -    |
| DDES $k - \varepsilon$ Goldberg | 4.8M | 100        | 0.28             | 0.038  | 0.27                 | 132                | -    |
| DDES/ DVMS                      |      |            |                  |        |                      |                    |      |
| k - $\varepsilon$ / Smagorinsky | 4.8M | 100        | 0.26             | 0.026  | 0.35                 | 130                | 0.33 |
| $k - \varepsilon$ / WALE        | 4.8M | 100        | 0.24             | 0.020  | 0.30                 | 128                | 0.19 |
| RANS / DVMS                     |      |            |                  |        |                      |                    |      |
| k - $\varepsilon$ / Smagorinsky | 4.8M | 100        | 0.24             | 0.030  | 0.30                 | 132                | 0.53 |
| $k - \varepsilon$ / WALE        | 4.8M | 100        | 0.26             | 0.057  | 0.30                 | 128                | 0.46 |
| Other simul.                    |      |            |                  |        |                      |                    |      |
| LES/TBLE <sup>12</sup>          |      |            | 0.24             | 0.029  | 0.36                 | 105                | -    |
| Measurements                    |      |            |                  |        |                      |                    |      |
| E×p. Shih <sup>13</sup>         |      |            | 0.26             | 0.033  | 0.40                 | 105                |      |
| Exp. Schewe <sup>14</sup>       |      |            | 0.32             | 0.029  | -                    |                    |      |

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number  $2 \times 10^6$ .

<sup>12.</sup> A. Sreenivasan et B. Kannan. "Enhanced wall turbulence model for flow over cylinder at high Reynolds number". In : *AIP Advances* 095012 (2019).

<sup>13.</sup> W.C.L. Shih et al. "Experiments on flow past rough circular cylinders at large Reynolds numbers". In : J. Wind Eng. Indust. Aerodyn. 49 (1993), p. 351-368.

<sup>14.</sup> G. Schewe. "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers". In : Journal of Fluid Mechanics 133 (1995) (1945-285. < ) > )

## Application on rotating frame : model presentation

- Set up of computation
  - NACA0012 at 6 angle of attack
  - Rotation speed :  $\omega = 650 rpm$
  - tip *Mach* = 0.22



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Simulation :

RANS-SA adapted mesh (2.2M vertices)

(\*)F. X. Caradonna, C. Tung, Technical Report NASA-TM-81232, 1981.

## MRF method and mesh adaptation <sup>15</sup>

Mesh adaptation



Figure –  $\mathcal{H}$ ,  $\mathcal{S}$  and  $\mathcal{M}$  are respectively the mesh, the solution and the metric.

- Multiple Reference Frame (MRF)
  - Considering the velocity compositions :

$$u = u' + \boldsymbol{\omega} \times \boldsymbol{x}$$

we rewrite the Navier-Stokes equations in absolute velocity formulation.

- The computational domain is divided into two sub-domains. A cylindrical box around the helix where  $|\omega| = 650$  rpm, and an another cylindrical sub-domain around the box containing the helix where  $|\omega| = 0$ .

э

<sup>15.</sup> F.Alauzet et al. "3D transient fixed point mesh adaptation for time-dependent problems : Application to CFD simulations". In : J. Comput. Phys. 222 (2007), p. 592-623. → (Ξ) → (Ξ) → (Ξ)

Application of hybrid RANS/VMS modeling to massively separated flows and rotating machines

#### Numerical results



 $\mathsf{Figure}-\mathsf{Caradonna-Tung}\xspace$  simulation results : mesh (left) and velocity field (right) in cross-section.



Figure – Caradonna-Tung simulation results : Q-criterion iso-surface.

Figure – Pressure coefficient at r/R = 0.89 (left) and r/R = 0.96 (right) blade sections.

Conclusion and perspective

- Bulk coefficients are accurately predicted with hybrid approach
- Hybrid models with wall law catch the separation of the flow
- Rotation + RANS on adapted mesh give a correct shape of the results

- Use the adapted mesh for RANS/DVMS models
- Compute aeroacoustics using hybrid modeling

## Appendix VMS

VMS formulation <sup>16</sup>

$$\left(\frac{\partial W_h}{\partial t}, \chi_i\right) + \left(\nabla \cdot F_c(W_h), \chi_i\right) = \left(\nabla \cdot F_d(W_h), \phi_i\right) + \left(\tau^{DVMS}(W_h), \phi_i'\right).$$
(2)

VMS closure term with dynamics coefficients  $C_{model} = C_{model}(\mathbf{x}, t)$  and  $Pr_t = Pr_t(\mathbf{x}, t)$ 

$$\left(\tau^{DVMS}(W_h),\phi_i'\right) = \left(0, \mathbf{M}_{\mathcal{S}}(W_h,\phi_h'), M_{\mathcal{H}}(W_h,\phi_h'), 0, 0\right)$$

where :

$$\begin{split} \mathbf{M}_{S}(W_{h},\phi_{i}') &= \sum_{T\in\Omega_{h}} \int_{T} \underbrace{\overline{\rho}(\mathbf{C}_{S}\Delta)^{2}|S|}_{\mu_{sgs}} P \nabla \phi_{i}' d\mathbf{x}, \quad P = 2S - \frac{2}{3} \operatorname{Tr}(S) I d \\ M_{H}(W_{h},\phi_{i}') &= \sum_{T\in\Omega_{h}} \int_{T} \underbrace{\frac{C_{p}}{P_{r_{t}}}}_{\mu_{sgs}} \underbrace{\overline{\rho}(\mathbf{C}_{S}\Delta)^{2}|S|}_{\mu_{sgs}} \nabla T' \cdot \nabla \phi_{i}' d\mathbf{x}, \quad \Delta = (\int_{T} d\mathbf{x})^{1/3} \end{aligned}$$

and  $\phi'_{h} = \phi_{h} - \overline{\phi_{h}}$  where  $\overline{\phi_{h}}$  is computed from macro cells.

<sup>16.</sup> C. Farhat, A. Rajasekharan et B. Koobus. "A dynamic variational multiscale method for large eddy simulations on unstructured meshes". In : *Computer Methods in Applied Mechanics and Engineering* 195.13 (2006). A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday, p. 1667-1691. issn : 0045-7825. doi: https://doi.org/10.1016/j.cma.2005.045.url : https://www.sciencedirect.com/science/article/pii/S00457825050030141 > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () > 4 () >