Mesh adaptation for unsteady flow and more

Bastien Sauvage

September 14 2022

Ínría EMMA

Bastien Sauvage Mesh adaptation for unsteady flow and more

Mesh adaptation strategy

Algorithm 1 Transient $\mathbf{L}^{\infty}(0,T;\mathbf{L}^{p}(\Omega))$ fixed-point mesh adaptation algorithm

- The subinterval S_i is chosen such that : $|S_i| \approx \frac{2}{f}$ (*f* the vortex emission frequency)
- Mesh adaptation on the Mach and $\frac{\partial^2 p}{\partial t^2}$

■ Two computations, with a coarse mesh and a finer mesh

Figure – View of the 6th coarse and finer mesh of our adaptation in cross-section (right ~ 230K vertices, left ~ 2.1M vertices).

Figure – Vorticity result for our two meshes.

Bastien Sauvage Mesh adaptation for unsteady flow and more

Figure –
$$\frac{\partial^2 p}{\partial t^2}$$
 view for our two meshes.

Name	Mesh	δ_w	\overline{C}_d	C'_i	- C _{pb}	$\overline{\theta}$	St
Present simulation							
$k - \varepsilon$ Goldberg	176K	0.002	0.96	0.11	0.85	111	0.20
k - R	176K	0.002	1.00	0.11	0.86	93	0.20
DVMS WALE	1.46M	0.004	0.94	-	0.85	-	0.22
VMS	2.6M		0.99	0.11	0.88	89	0.21
VMS Adapted	230K		1.14	0.27	1.1	88	0.20
VMS Adapted	2.1M		1.06	0.18	1.00	85	0.20
Measurements							
Norberg 78	-	-	1.03	0.1	0.84	-	0.21
Kravchenko-Moin ⁹	-	-	0.99	-	0.88	86	0.215

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number 3900, \overline{C}_d holds for the mean drag coefficient, \overline{C}'_{l} is the root mean square of lift time fluctuation, $\overline{C}_{p_{b}}$ is the pressure coefficient at cylinder basis. L_r is the mean recirculation length, $\overline{\theta}$ is the mean separation angle.

Mesh adaptation for unsteady flow and more

Bastien Sauvage

Problem with cylinder at Re=1M

Figure – Mesh problem at the cylinder surface.

Problem with cylinder at Re=1M

Figure – Velocity problem at the cylinder surface.

Bastien Sauvage Mesh adaptation for unsteady flow and more

Naca0018

Figure – Distribution of mean pressure on left and velocity field in cross-section on right.

High order scheme test

■ Gaussian advection test case to compare V4 and V6 schemes in NiceFlow (on regular mesh), with

$$\rho_0 = 1 + e^{-0.25((x-10)^2 + y^2 + z^2)},$$

an advection velocity of 0.5 m/s, explicit computation with CFL = 0.2.

/!\Conclusion : The V6 gave bad results !

Figure – Computational domain for advection.

High order scheme test

Figure – In black result with the old V6 and in red result with the corrected V6 at T = 60s.

Bastien Sauvage Mesh adaptation for unsteady flow and more

New Caradonna-Tung computation

Figure – Caradonna-Tung DDES simulation results : mesh (left) and velocity field (right) incross-section.

Other ongoing and future work

■ Space-time mesh adaptation

- Finish the theory
- Implementation in the WOLF code at Inria Saclay (several months' stay)
- Mesh convergence for LES
 - Write the theory
 - Check feasibility (for the implementation)