A new $k - \varepsilon - \gamma$ model

F. Miralles

IMAG, Université de Montpellier

14 septembre 2022

★ 문 → ★ 문 → ...

Introduction

Flow past a circular cylinder

Figure - Illustrate picture of flow separation

(4月) (4日) (4日)

Akhter 2015 transitional model using $\varepsilon = \beta^* \omega k$, equations can be transformed in :

$$\frac{\partial \rho \gamma}{\partial t} + \nabla \cdot \rho \mathbf{u} \gamma = \underbrace{C_{g1} \gamma (1 - \gamma) \frac{P_k}{k}}_{\epsilon} + \underbrace{\rho C_{g2} \frac{k^2}{\varepsilon} \nabla \gamma \cdot \nabla \gamma}_{\epsilon} \tag{1}$$

$$+ \nabla \cdot \underbrace{[\sigma_{\gamma}(1-\gamma)(\mu+\mu_{t})\nabla\gamma]}_{\mathcal{D}_{\gamma}}$$
(2)

with $C_{\mu g} = 10^{-7} = c_{\mu g} (\beta^*)^2$ and the turbulent viscosity

$$\mu_t^* = \left[1 + C_{\mu g} \frac{k^3}{\varepsilon^2} \gamma^{-2} (1 - \gamma) \|\nabla \gamma\|^2 \right] c_\mu f_\mu \frac{k^2}{\epsilon}$$
(3)

Initial and boundary condition :

$$\gamma_{\partial C} = 1$$
, and $\gamma_{\infty} = 0.01 = \gamma(\mathbf{x}, \mathbf{0}) \quad \forall \mathbf{x} \in \Omega_f$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Name	Mesh size	y_w^+	\overline{C}_d	C'_l	$-\overline{C}_{pb}$	Lr	$\overline{\theta}$
Present simulation							
URANS $k - \varepsilon$	0.6M	1	0.50	0.24	0.51	1.00	109
URANS $k - \varepsilon - \gamma$	0.6M	1	0.51	0.23	0.49	1.10	110

Table - Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M

Figure – Gamma field

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Why the model does not work?

 idea 1) Too much production : the production term must be defined with the shear stress

$$P_{\gamma} = \mu_t^* \frac{\partial \mathbf{u}}{\partial y}$$

the production term related variation of velocity with body topology.

• idea 2) $\gamma=1$ on the boundary means that the flow is completely turbulent, replaced by Neumann B.C

$$abla \gamma \cdot \mathbf{n} = 0$$

 γ must be free on the boundary.

• idea 3) Gamma influence on others variables is too small, modify the turbulent viscosity is not sufficient. We propose the following k equation based on the transitional Menter model :

$$\frac{\partial \rho k}{\partial t} + \nabla \cdot (\rho \mathbf{u} k) = \max(\gamma, \alpha_1) P_k - \max(\gamma, \alpha_2) D_k + \nabla \cdot [(\mu + \mu_t \sigma_k) \nabla k]$$

ヘロト 人間ト ヘヨト ヘヨト

Problem Averaged Navier-Stokes compressible equations with $k - \varepsilon$ closure model : Find $(\rho, \rho \mathbf{u}, \rho E, \rho k, \rho \epsilon, \rho \gamma)$ solution of :

$$\begin{cases} \frac{\partial \rho k}{\partial t} + \nabla \cdot (\rho \mathbf{u} k) = \max(\gamma, \alpha_1) P_k + \nabla \cdot [(\mu + \mu_t \sigma_k) \nabla k] - \max(\gamma, \alpha_2) D_k, \\ \frac{\partial \rho \varepsilon}{\partial t} + \nabla \cdot (\rho \mathbf{u} \varepsilon) = \left(c_{\varepsilon}^{(1)} \tau : \nabla \mathbf{u} - c_{\varepsilon}^{(2)} \rho \varepsilon + C^{(2)} \right) \frac{1}{T(k, \varepsilon)} + \nabla \cdot [(\mu + \mu_t \sigma_{\varepsilon}) \nabla \varepsilon] \\ \frac{\partial \rho \gamma}{\partial t} + \nabla \cdot (\rho \mathbf{u} \gamma) = C_{g1} \gamma (1 - \gamma) \frac{P_{\gamma}}{k} + \rho C_{g2} \frac{k^2}{\varepsilon} \nabla \gamma \cdot \nabla \gamma \\ + \nabla \cdot [\sigma_{\gamma} (1 - \gamma) (\mu + \mu_t^*) \nabla \gamma] \end{cases}$$
(4)

with $\mu_t^* = \left[1 + C_{\mu g} \frac{k^3}{\varepsilon^2} \gamma^{-2} (1 - \gamma) \|\nabla \gamma\|^2 \right] c_\mu f_\mu \frac{k^2}{\epsilon}$ and $P_k = \tau : \nabla \mathbf{u}$ and $D_k = \rho \varepsilon$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Parameter α_1 and α_2

- $\alpha_1 = 0.5$ deal with the production term
- $\alpha_2 = 0.1$ deal with the destruction term

<回>< E> < E> < E> <

= 990

Approximate viscous jacobian matrix of turbulent model :

$$\begin{pmatrix} 0 & 1 & 0\\ \frac{1}{T(k,\varepsilon)} & 2\frac{c_{\varepsilon}^{(2)}}{T(k,\varepsilon)} & 0\\ 0 & 0 & \frac{\partial \mathcal{P}_{\gamma}}{\partial \rho \gamma} \end{pmatrix}$$
(5)

Approximation of the γ jacobian source term on a tetrahedron :

$$\frac{\partial \mathcal{P}_{\gamma,h}}{\partial \rho \gamma}\Big|_{T} \simeq C_{g1} \overline{\frac{1}{\rho_{h}k_{h}} (1 - 2\gamma_{h})}^{T} P_{k}$$

$$\left(\frac{\partial \mathcal{D}_{\gamma,h}}{\partial \rho \gamma}\Big|_{T}\right)_{i} \simeq \sigma_{\gamma} \left(\mu + \overline{\mu_{t}}^{T}\right) \left[(1 - \overline{\gamma_{h}}^{T}) \sum_{j=1}^{4} \frac{1}{\rho_{j}} \frac{\partial \phi_{j}}{\partial \mathbf{x}_{i}} - \overline{\left(\frac{1}{\rho}\right)_{h}}^{T} \sum_{j=1}^{4} \gamma_{j} \frac{\partial \phi_{j}}{\partial \mathbf{x}_{i}} \right]$$

$$(6)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Set up

- Mach = 0.1,
- regime :

 $\begin{cases} \text{sub-critical } Re = 3900\\ \text{supercritical } Re = 1M\\ \text{transcritical } Re = 2M \end{cases}$

- $U_{\infty}=$ 34.025, $ho_{\infty}=$ 1.225
- turbulence intensity : $I_k = 0.5\%$
- $k_{\infty}=rac{3}{2}\,(I_k\,U_{\infty})^2$, $arepsilon_{\infty}=k_{\infty}/10$

Boundary conditions :

 $\nabla \gamma \cdot \mathbf{n}_{\partial \mathcal{C}} = \mathbf{0}, \quad \text{and} \ \gamma_{\infty} = \mathbf{0.01}$

Mesh :
$$y_w^+ = 1 \Leftrightarrow \delta = 4 \times 10^{-5}$$

Figure - Radial mesh

Name	Mesh size	\overline{c}_d	c'_{l}	$-\overline{c}_{pb}$	Lr	$\overline{\theta}$	St
Present simulation							
$k - \varepsilon - \gamma$	176K	0.97	0.17	0.78	1.68	89	0.21
$k - \varepsilon$ Goldberg	176K	0.96	0.11	0.85	1.56	111	0.20
k - R	176K	1.00	0.11	0.86	1.53	93	0.20
Numerical simulation							
Spalart 3D [Abalakin et al., 2019]	-	0.97	0.11	0.83	1.67	89	0.21
DVMS WALE 3D [Moussaed et al., 2014]	1.46M	0.94	-	0.85	1.47	-	0.22
Experiment							
[Norberg, 1994]	-	0.94-1.04	-	0.84-0.93	-	-	0.20
[Parnaudeau et al., 2008]	-	-	0.1	-	1.41-1.58	-	-
[?]	-	-	-	-	-	86	-

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 3900, \overline{C}_d holds for the mean drag coefficient, \overline{C}'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, L_r is the mean recirculation length, $\overline{\theta}$ is the mean separation angle.

▲御 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Figure - Meanflow pressure distribution at Re = 3900

Figure - Meanflow skin friction distribution at Re = 3900

< (T) >

▲ 문 ► ▲ 문 ►

meanflow skin friction coefficient Re= 3900

Name	Mesh size	y_w^+	\overline{C}_d	c'_l	$-\overline{C}_{pb}$	Lr	$\overline{\theta}$
Present simulation							
URANS $k - \varepsilon$	0.6M	1	0.50	0.24	0.51	1.00	109
DDES $k - \varepsilon$ Goldberg ITW	4.8M	1	0.50	0.07	0.54	1.22	103
k - ε / cubic WALE ITW	4.8M	1	0.48	0.11	0.55	1.14	109
URANS $k - \varepsilon - \gamma$	0.6M	1	0.27	0.0	0.20	0.47	134
URANS $k - \varepsilon - \gamma / DVMS$	0.6M	1	0.30	0.10	0.31	0.90	140
URANS $k - \varepsilon - \gamma$ / DVMS WALE	0.6M	1	0.31	0.12	0.33	0.80	130
Experiments							
[Shih et al., 1993a]			0.24	-	0.33		
[Schewe, 1983]			0.25	-	0.32		
[Gölling, 2006]						-	130
[Zdravkovich, 1997]			0.2-0.4	0.1-0.15	0.2-0.34		

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, $\overline{\underline{C}}_d$ holds for the mean drag coefficient, C'_l is the root mean square of lift time fluctuation, \overline{C}_{p_b} is the pressure coefficient at cylinder basis, L_r is the mean recirculation length, $\overline{\theta}$ is the mean separation angle.

・ 同 ト ・ ヨ ト ・ ヨ ト

Figure – Integration to the wall meanflow pressure distribution, without transitional model on left side, within $k - \epsilon - \gamma$ model on right side

イロト イボト イヨト イヨト

Discussion about blending function

Which value of δ ?

The blending function that we choose writes :

$$\theta = 1 - f_{\delta} \left(1 - \tanh\left(\frac{\Delta_T}{k^{3/2}}\varepsilon\right) \right) \tag{8}$$

$$f_{\delta} = \exp\left(-\frac{1}{\epsilon_0}\min(\delta - d, 0)^2\right), \quad \varepsilon_0 > 0 \text{ small}$$
(9)

Figure - Boundary layer [Wilcox, 1994]

 \triangleright δ can be chosen as the end of turbulent boundary layer :

- TR

$$\delta = \frac{Y^+ Re}{20} \tag{10}$$

(七日) (七日) (二

• with $Y^+ = 500$

A new $k - \varepsilon - \gamma$ model

As we can see, larger Y + is, damped are the fluctuations :

 $\mathsf{Figure}-\mathsf{Graphs}$ of the lift coefficient fluctuation, comparison with two boundary layer thickness in hybrid run.

Skin friction coefficient using Achenbach definition :

$$C_f = \frac{\overline{\tau_w}}{1/2\rho_{\infty}U_{\infty}^2}\sqrt{Re}, \quad \text{with } \tau_w \text{ the mean value of wall shear stress}$$
(11)

Figure – Distribution of skin friction coefficient as a function of polar angle. Comparison between experiment.

A ■

- 세 문 ► - 세 문 ►

	Mesh	\overline{C}_d	C'_l	$-\overline{C_{pb}}$	$\overline{\theta}$	St
Present simulation						
URANS $k - \varepsilon$	0.6M	0.52	0.25	0.60	111	-
URANS $k - \varepsilon$ /DVMS WALE	0.6M	0.48	0.27	0.60	109	-
URANS $k - \varepsilon - \gamma$	0.6M	0.25	0.0	0.19	130	-
URANS $k - \varepsilon - \gamma$ /DVMS WALE	0.6M	0.25	0.03	0.26	135	-
Other simul.						
LES/ TBLE [Sreenivasan and Kannan, 2019]		0.24	0.029	0.36	105	-
Measurements						
Exp. [Shih et al., 1993b]		0.26	0.033	0.40	105	
Exp. [Schewe, 1995]		0.32	0.029	-		

Table – Bulk coefficients of the flow around a circular cylinder at Reynolds number 2×10^{6} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Figure – Integration to the wall meanflow pressure distribution, without transitional model on left side, within $k - \epsilon - \gamma$ model on right side

A new $k - \varepsilon - \gamma$ model

- 4 回 ト - 4 回 ト - 4 回 ト

Figure – Distribution of skin friction coefficient as a function of polar angle. Comparison between experiment.

< 注 > < 注 >

Figure - Gamma distribution on cylinder surface.

Figure - Separation of the fluid flow.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ の Q ()

Conclusion and summary

- We shown a new transition model
- It provide a good behavior in sub-critical case
- In super critical flow, pressure distribution and separation of boundary layer are in good agreement with experiment
- But the lift is not caught, it need to be blend with LES-like model
- In order to be efficient, θ must be 0 where $y^+ >$ 500, else lift coefficient is dissipated by RANS effect

(*) = (*) = (*)

Abalakin, I., Duben', A., Zhdanova, N., and Kozubskaya, T. (2019). Simulating an unsteady turbulent flow around a cylinder by the immersed boundary method.

Mathematical Models and Computer Simulations, 11 :74-85.

Gölling, B. (2006).

Experimental investigations of separating boundary-layer flow from circular cylinder at reynolds numbers from 105 up to 107.

pages 455-462.

Moussaed, C., Wornom, S., Salvetti, M. V., Koobus, B., and Dervieux, A. (2014).

Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy simulation of bluff-body flows.

Acta Mechanica, 225 :3309-3323.

Norberg, C. (1994).

An experimental investigation of the flow around a circular cylinder : influence of aspect ratio.

Journal of Fluid Mechanics, 258 :287-316.

Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. (2008).

Experimental and numerical studies of the flow over a circular cylinder at reynolds number 3900.

Physics of Fluids, 20(8) :085101.

Schewe, G. (1983).

A new $k - \varepsilon - \gamma$ model