Simulations of the flows over round cylinder at different Reynolds' numbers

Tuesday, April 20, 2021

NOISEtte

- Scale resolving hybrid RANS-LES DDES approach (recent formulation)
 - o shear layer adapted Δ_{SLA} [Shur et al., 2015] is used (to provoke RANS-to-LES transition in SL)
 - o based on SA turbulence model
 - fully turbulent approach $(\frac{v_t}{v} \sim 1)$ at the inflow
- Vertex-centered higher accuracy EBR scheme
 - not higher than 2nd order on arbitrary unstructured meshes (controlvolume method)
 - EBR6 CD + EBR5 upwinding
 - adapting hybrid CD-Upwind-WENO scheme which depends on local flow characteristics [Guseva et al., 2017], σ_{min} =0.05, σ_{max} =1
- Time integration
 - implicit scheme, based on Newton iterations
 - BiCGStab solver
 - o ILUO preconditioner
 - $\circ~$ CFL_{max}=500, CFL<1 in the LES region ($d_w > 0.04D$)

Meshes

Tuesday, April 20, 2021

Instantaneous flow field (fine mesh)

Tuesday, April 20, 2021

Integral characteristics

Re=1.4·10⁵

Re=10⁶

	$\overline{C_d}$	$\overline{C}_{l,\mathrm{rms}}$	$-\overline{C}_{p,\mathrm{b}}$	St	$\theta_{\rm sep},^{\circ}$
Experiments					
Cantwell&Coles (1983) [2]	1.24		1.21	0.179	
Zdravkovich (1997) $\overline{[3]}$				0.2	
KIAM simulations					
fine	0.458	0.243	1.079	0.265	107.5
fine no model	0.154	0.039	0.22		95.65
coarse	0.309	0.048	0.686	0.225	96.5

	$\overline{C_d}$	$\overline{C}_{l,\mathrm{rms}}$	$-\overline{C}_{p,\mathrm{b}}$	St	$\theta_{\rm sep},^{\circ}$
Experiments					
Szechenyi (1975) [4]	0.25		0.32	0.35	
Goelling (2006) [5]				0.35	
Zdravkovich (1997) [3]	0.2 - 0.4	0.1 - 0.15	0.2 - 0.34	0.5	
KIAM simulations					
fine	0.255	0.065	0.618	0.3	107.5
coarse	0.226	0.027	0.568	0.32	107.1

NC=2°10								
	$\overline{C_d}$	$\overline{C}_{l,\mathrm{rms}}$	$-\overline{C}_{p,\mathrm{b}}$	St	$\theta_{\rm sep},^{\circ}$			
Experiments								
Shih et al.	0.24		0.33					
Schewe	0.24	0.02	0.48					
Szechenyi	0.25		0.32	0.35				
Golling				0.35	130			
Zdravkovich	0.17 - 0.4	0.1 - 0.15	0.2 - 0.34	0.5 - 0.18				
KIAM simulations								
fine	0.234	0.051	0.583	0.315	109.5			
coarse	0.215	0.027	0.548	0.34	109.4			

Re=2·10⁶

Re=1.4·10⁵: DDES vs no model ("DNS")

Re= $1.4 \cdot 10^5$: fine vs coarse

8

Conclusions

- Correspondence with the experiment is improving while Re is growing (or reducing) far from critical Re number (~10⁵)
- Reducing $\frac{v_t}{v}$ ratio at the inflow does not lead to variation of the results
 - o the separation remains turbulent (BL upstream is turbulent)
 - o laminar separation (laminar BL and turbulization in shear layer) is challenging
- Re=1.4·10⁵ case is the most challenging: flow aerodynamics is very sensitive to the simulation parameters
 - boundary layer (BL) upstream separation is crucial: laminar/turbulent, transition point if BL is turbulent
 - o shear layer development: KH instability, turbulization
- Mesh resolution is important
 - BL upstream separation: RANS region (while simulation using DDES) depends on the wall-tangent mesh resolution
 - shear layer region

