MP1.1 Caradonna-Tung rotor*

NOise of **R**otating **Ma**chines (**NORMA**)

WP1 Evaluation of hybrid RANS-LES methods of scale-resolving simulation of turbulent flows developed by partners, their further development and adaptation to the problems of turbulent flow past rotating rotor blades of helicopters.

*Caradonna F. X., Tung C. Experimental and analytical studies of a model helicopter rotor in hover: tech. rep. ; NASA. — Ames Research Center, Moffett Field, California, Sept. 1981. — NASA-TM-81232.

Case description

× ×	

$$\rho_0 = 1.2041 \text{ kg/m}^3$$

$$\mu_0 = 1.827 \times 10^{-5} \text{N} \cdot \text{s/m}^2$$

$$\text{Re} = \frac{\rho_0 V_{tip} b}{\mu_0} = 0.97 \times 10^6$$

2	N – blades number
1.143 m	R – rotor radius
0.1905 m	b – blade chord length
NACA-0012	blade base airfoil
8 °	pitch angle
650 RPM	rotation speed
77.8 m/s	blade tip velocity V_{tip}
0.228	tip Mach
21.67 Hz	blade-passing frequency (BPF)

RANS & IDDES

RANS (SA) rotor: 11.5K (single blade) total nodes: 1.3M (half-cylinder)

IDDES rotor: **570K** (2 blades) total nodes: **92.5M** (full cylinder)

Aerodynamics: RANS vs. IDDES

NORMA Progress Meeting, April 20th, 2021

Aerodynamics: RANS vs. IDDES

RANS

Acoustics: FWH control surface

Acoustics: FWH control surface

RANS

Acoustics: FWH control surface

Acoustics: signals

direction: $\theta = 60^{\circ}$

Acoustics: signals

direction: $\theta = 120^{\circ}$

Acoustics: signals

direction: $\theta = 90^{\circ}$

Acoustics: OASPL

NORMA Progress Meeting, April 20th, 2021

NORMA Progress Meeting, April 20th, 2021

NORMA Progress Meeting, April 20th, 2021

