Simulation of flow near rotating propeller defined by immersed boundary method on adaptive meshes

Ilya Abalakin, Vladimir Bobkov, Tatiana Kozubskaya, Liudmila Kudryavtseva, Valeriia Tsvetkova and Natalia Zhdanova

Keldysh Institute of Applied Mathematics of RAS

October 15, 2020
Outline

- Statement of the problem
- Mathematical model
- Numerical method
- Adaptation algorithm
- Results
- Problems to solve
Problem

- Original formulation

\[R = 0.254 \, m \]
\[f = 3000 \, rpm \]
upstream flow \(U_0 = 10 \, m/s \)

- 2D formulation

Figure 1: Section of original geometry by plane \(z=0 \)

Figure 2: Projection to the plane \(z=0 \)
Outline of the technique

Main features of our technique:
- Simply connected domain thanks to immersed boundary method (IBM)
- Geometry if defined by interpolation grid (level-set tree)
- IBM - Brinkman penalization
- The shape of the body is approximated using adaptation of r-type (nodes are redistributed while topology remains the same)
Mathematical model

The mathematical model for simulating viscous compressible flow over moving obstacles is based on the system of Reynolds-Averaged Navier-Stokes equations with Spalart–Allmaras turbulence model.

Figure 3: Nodes are categorized as solid or fluid points.

The no-slip condition is imposed between solid \(\Omega_B \) and fluid \(\Omega_f \):

\[u \big|_{\partial \Omega_B} = V, \]

where \(V \) - body velocity, \(u \) - fluid velocity. In nodes inside the solid extra source terms are added to the equations.
Numerical method

Research code NOISEtte for simulation of unsteady aerodynamics and aeroacoustics problems.

- Edge-Based Reconstruction scheme (EBR)
- Time integration is performed using an implicit second-order scheme
- At each time step Newtonian iteration is performed: linearized system of equations is solved by biconjugate gradient stabilized method.
Main features of adaptation algorithm:

- Adaptation uses variational approach
- Level-set function $u(x, t)$ defines the solid body and is close to signed distance function near the boundary of the domain
- Metric tensor $G(x, t)$ is built upon $u(x, t)$ as

$$G(x, t) = \sigma_1^2 I + (\sigma_2^2 - \sigma_1^2) \nabla_x u \nabla_x u^T \frac{1}{|\nabla_x u|^2}, \quad (2)$$

- $\sigma_1 = \sigma_{\text{normal}}(x, t)$ - mesh stretching in the normal direction
- $\sigma_2 = \sigma_{\text{tangential}}(x, t)$ ($\sigma_{2,3}$ in 3D) - spatial distribution of the anisotropy.
Adaptation algorithm
Adaptation algorithm
Adaptation algorithm

Figure 4: Original mesh. Mesh outside the red circle remains unchanged
Adaptation algorithm

Stationary adaptation (a) and mesh after 10 periods (b).

Figure 6: Body-fitted mesh.
Results. Stationary propeller

Problem 1. Propeller is fixed.
Upstream flow \(M = M_{BL} = U_{BL}/(\sqrt{\gamma RT_0}) = 0.23. \)

Problem 2. Propeller is fixed.
Upstream flow \(M = M_0 = U_0/(\sqrt{\gamma RT_0}) = 0.029. \)

Problem 3. Propeller is rotating. Upstream flow \(M = 0. \)
\(Re = 1.3 \cdot 10^6 \)

Figure 7: Starting mesh
Results

- Problem 1

![Graph showing Cd and Cl over time for IBM and BFM models.](image-url)
Results. Stationary propeller

Comparison is taken in points (1.5, 0) and (0, 1.5).

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)
Results

<table>
<thead>
<tr>
<th></th>
<th>\bar{C}_D</th>
<th>\bar{C}_L</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 0.23$</td>
<td>IBM</td>
<td>3.063</td>
<td>2.925</td>
</tr>
<tr>
<td></td>
<td>BFM</td>
<td>3.167</td>
<td>2.994</td>
</tr>
<tr>
<td>$M = 0.029$</td>
<td>IBM</td>
<td>0.054</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>BFM</td>
<td>0.058</td>
<td>0.053</td>
</tr>
</tbody>
</table>

In point (1.5, 0):

<table>
<thead>
<tr>
<th></th>
<th>\bar{p}</th>
<th>\bar{u}</th>
<th>\bar{v}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 0.23$</td>
<td>IBM</td>
<td>11.91</td>
<td>-0.290</td>
</tr>
<tr>
<td></td>
<td>BFM</td>
<td>11.92</td>
<td>-0.307</td>
</tr>
<tr>
<td>$M = 0.029$</td>
<td>IBM</td>
<td>13.02</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>BFM</td>
<td>13.02</td>
<td>-0.026</td>
</tr>
</tbody>
</table>

In point (0, 1.5):

<table>
<thead>
<tr>
<th></th>
<th>\bar{p}</th>
<th>\bar{u}</th>
<th>\bar{v}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 0.23$</td>
<td>IBM</td>
<td>12.59</td>
<td>1.364</td>
</tr>
<tr>
<td></td>
<td>BFM</td>
<td>12.62</td>
<td>1.382</td>
</tr>
<tr>
<td>$M = 0.029$</td>
<td>IBM</td>
<td>13.04</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
<td>BFM</td>
<td>13.04</td>
<td>0.165</td>
</tr>
</tbody>
</table>
Results

Problem 3
Results. Rotating propeller

Figure 10: Vorticity

Figure 11: Time evolution of C_d and C_l
Problems to solve

- section instead of projection
- efficiency improvements. Now adaptation takes $\sim 20\%$ of the time step
- 4 rotating propellers
- automatic control of anisotropic adaptation along complicated shapes
- 3D formulation (2021)