ANR/RSF project NORMA: Efficient simulation of noise of rotating machines
(scientific start: March 1, 2020)

Bruno Koobus1, Alain Dervieux2, Tatiana Kozubskaya3

1 IMAG, University of Montpellier, France,
2 INRIA Sophia-Antipolis, France,
3 Keldysh Institute of Applied Mathematics of RAS, Russia.

Paris, November 13, 2019
Consortium

2 French partners, expert in CFD (funded by the ANR, 48 months):

- INRIA Sophia-Antipolis, ECUADOR team:
 - A. Dervieux (scientific leader) + 1 PhD student (to hire)
 - Skills: Numerical methods / Mesh adaptation / HPC

- University of Montpellier, IMAG laboratory:
 - B. Koobus (coordinator) + 1 PhD student (to hire)
 - Skills: Turbulence modeling / Numerical methods / HPC

1 Russian partner, expert in CAA and CFD (funded by the RSF, 36 months):

- Keldysh Institute of Applied Mathematics of RAS, Moscow:
 - T. Kozubskaya (coordinator), I. Abalakin, P. Bakhvalov, V. Bobkov, A. Duben, A. Gorobets, L. Kudryavtse, P. Rodionov, V. Tsvetkova, N. Zhdanova
 - Skills: Computational aeroacoustics / Numerical methods / Turbulence models / HPC

- Long experience of collaboration between the partners
Context and objectives

Context

Ecology of urban/extra-urban areas increasingly deteriorated by noise emission generated by rotating machines (helicopters, future aerial taxis, unmanned aerial vehicles, wind turbines...)

Need/challenge

Necessity for large/small companies building such machines to have accurate and efficient tools for the simulation of the acoustic radiation generated by single-rotor/multi-rotor systems

⇒ A difficult numerical challenge
Objectives of this project

- Development of new high-accurate and parallel implicit algorithms for predicting rotating machines noise with scale-resolving turbulent flow simulations and far field acoustics

- Three key ingredients that must be combined:
 - Hybrid turbulence modeling
 - High accurate low dispersion/dissipation schemes for unstructured meshes
 - Immersed boundary methods

 with adaptation of these methods to aeroacoustic analysis in various rotating machines

- Challenging applications: Single-rotor with fuselage / multi-rotor systems
Scientific obstacles

- Development of performant hybrid turbulence models for aeroacoustics
- Combination of compressible hybrid turbulence modeling and immersed boundary methods
- Adaptation of turbulent boundary layer treatment to immersed boundary
- Development of high-order approximations for very irregular unstructured meshes
- Combination of high accurate low dispersion/dissipation schemes and immersed boundary methods
- All turbulence/numerical models developed in a parallel context

To address these scientific obstacles

- The French teams bring: know-how in turbulence modeling, highly accurate schemes for unstructured meshes, multirate methods for massively separated flows
- The Russian team brings: know-how in immersed boundary methods, rotating machines, applications to aeroacoustics with unstructured meshes, very massive parallel computing