Caradonna-Tung rotor*

NOise of Rotating Machines (NORMA)

WP1 Evaluation of hybrid RANS-LES methods of scale-resolving simulation of turbulent flows developed by partners, their further development and adaptation to the problems of turbulent flow past rotating rotor blades of helicopters.

*Caradonna F. X., Tung C. Experimental and analytical studies of a model helicopter rotor in hover: tech. rep. ; NASA. — Ames Research Center, Moffett Field, California, Sept. 1981. — NASA-TM-81232.

Case description

2	N – blades number
1.143 m	R – rotor radius
0.1905 m	<i>b</i> – blade chord length
NACA-0012	blade base airfoil
8 °	pitch angle
650 RPM	rotation speed
77.8 m/s	blade tip velocity V_{tip}
0.228	tip Mach

$$\rho_0 = 1.2041 \text{ kg/m}^3, \mu_0 = 1.827 \times 10^{-5} \text{N} \cdot \text{s/m}^2$$

Re = $\frac{\rho_0 V_{tip} b}{\mu_0} = 0.97 \times 10^6$

RANS case: mesh

3.5M nodes, 13.7 elements

RANS case: aerodynamics

NORMA Progress Meeting, October 15th, 2020

RANS case: flow & tip vortex

RANS case: flow & tip vortex

Summary

What we have?

- experimental case setup
- experimental data (aerodynamics)
- rotor geometry (CAD: IGES)
- RANS case mesh (CGNS)
- RANS numerical results
- Preliminary DES case mesh (refined near rotor blades)

To do

- Preliminary DES calculations
- Refined DES mesh(es)
- Final DES case calculation