Numerical scheme Rotating machine with mesh adaptation

High-order scheme for rotating machines Norma Meeting

Matthieu Gschwend

15/10/2020

Ínnía_

 $1/11 \cdot \Box \rightarrow \cdot \Box \rightarrow \cdot \Xi \rightarrow \cdot \Xi \rightarrow \cdot \Xi \rightarrow \circ Q$

- Study of numerical high-order scheme
- Rotating machine with mesh adaptation

Finite volume formulation

Advection equation :

$$\frac{\partial u}{\partial t}(x,y,t) + \nabla \cdot \mathbf{f}(u(x,y,t)) = 0$$

We can integrate over C_i and use the Green formula :

$$\frac{d}{dt}\int_{C_i}u(x,y,t)dxdt+\int_{\partial C_i}\mathbf{f}(u(x,y,t))\cdot\mathbf{n}ds=0$$

Main Property

In order to evaluate flux, we construct a quadratic polynomial P_i^n on every cells C_i .

It's necessary that the mean of P_i^n and u^n are equal on cell *i*. This condition writes $\bar{P}_i^{i,n} = \bar{u}^{i,n}$, with :

$$\begin{cases} \bar{P}_{i}^{i,n} = \frac{1}{\operatorname{aire}\left(C_{i}\right)} \int_{C_{i}} P_{i}^{n}(x,y) dx dy \\ \bar{u}^{i,n} = \frac{1}{\operatorname{aire}\left(C_{i}\right)} \int_{C_{i}} u^{n}(x,y) dx dy \end{cases}$$

Before evaluating each coefficient of the polynomial function, we need to introduce the molecular partition of our mesh.

Moleculecular Partition

Figure – Molecular partition : each color area represent a molecule

Least square approximation

For a given cell *i* we note *M* the molecule such that $C_i \subset M$. Then the polynomial approximation P_i^n is defined as :

$$\operatorname{argmin} \sum_{C_{k \neq i} \subset M} \left(\bar{P}_i^{k,n} - \bar{u}^{k,n} \right)^2$$

Algorithm structure

The initial CENO scheme requires a molecule construction for every cells : the number of molecules is equal to the number of cells. The new version will be more efficient.

At the end of the study we shall consider the h, p mesh adaptation. This method varies not only the local mesh size h, but also the degree p of polynomials reconstruction.

Chimera

We focus on a mesh method that can be used for rotating machines study.

Figure – Suitable mesh construction for rotating machines. On the left : top view of the mesh geometrie, center area represents the spinning part. On the right : mesh inner surfaces.

The main difficulty is to evaluate the solution at the border between both areas.

Figure – Mesh configuration.

As the mesh can be non-conforming, we use an interpolation technique to evaluate values from one mesh to another.

Example of calculation

Figure – Solution and mesh for a mixer. On the left the density. Right, the fluid velocity.

- Currently done.
- Specification of new CENO.
- Inceflow training with rotating machine.
- Next.
- Ceno 3D coding.
- 2 New geometry.