Ph.D Student presentation

F. Miralles

IMAG, Université de Montpellier

15 octobre 2020
General

• 25 years old
• Studied at Montpellier University
• Graduate of M2 Modelisation and Numerical Analysis

Stage

■ M2 project: I worked at the C.E.A, on ultrasonic ray for determine an optimal acoustic lens geometry

Master

■ Error a posteriori estimation of numericals schemes
■ Numerical Analysis of Hybrid High Order method
■ Optimal control
■ Advanced programmation for mathematicians
■ Numerical modelisation of the compressible Navier-Stokes équation by finite-Volume methods
Thesis goal

Context
- Ecology of urban/extra-urban areas increasingly deteriorated by noise emission generated by rotating machines (helicopters, drone delivery, winds turbines ...)

Goal
- Make efficient prediction of noise by aerodynamics and aeroacoustics simulations of rotating machines
The challenge

How?

- **Combination of:**

 Hybrid turbulence model (RANS/VMS-LES) ⊕ Immersed boundary method and/or chimera method

- **Adaptation of these methods to aeroacoustics**

- **Development of AIRONUM parallel code**
RANS/VMS-LES

- $\langle W \rangle$: variables related to RANS approach
- W^c: fluctuation resolved
- W': small scale variables resolved

\[
\left(\frac{\partial W}{\partial t}, \chi_i \right) + \left(\nabla \cdot F_c(W), \chi_i \right) + \left(\nabla \cdot F_v(W), \phi_i \right) = \\
- \theta(\tau^{\text{RANS}}(\langle W \rangle), \phi_i) - (1 - \theta)(\tau^{\text{LES}}(W'), \phi'_i)
\]

- F_c: convective flux treated by finite volume
- F_v: viscous flux treated by finite element
- $\tau^{\text{LES}}(W')$: closing LES term
- $\tau^{\text{RANS}}(\langle W \rangle)$: closing RANS term
- θ: RANS/VMS-LES hybridation function in $[0,1]$
A priori planning

- **1st year:**
 - Bibliography (numerical models used, chimera method, immersed boundary method)
 - Getting started with the AIRONUM code
 - Adaptation of hybrid turbulence model for aeroacoustics

- **2nd year:**
 - Multirate time advancement method
 - Implementation of the immersed boundary method
 - Flow simulations around a helicopter rotor

- **3rd year:**
 - Finalization of flow simulations
 - Thesis redaction