# Ph.D Student presentation

F. Miralles

# IMAG, Université de Montpellier

15 octobre 2020



3 k 3

# Presentation



#### General

- 25 years old
- Studied at Montpellier University
- Graduate of M2 Modelisation and Numerical Analysis

#### Stage

M2 project : I worked at the C.E.A, on ultrasonic ray for determine an optimal acoustic lens geometry



#### Master

- Error a posteriori estimation of numericals schemes
- Numerical Analysis of Hybrid High Order method
- Optimal control
- Advanced programmation for mathematicians
- Numerical modelisation of the compressible Navier-Stokes équation by finite-Volume methods

A >

A B > A B >

э

#### Context

Ecology of urban/extra-urban areas increasingly deteriorated by noise emission generated by rotating machines (helicopters, drone delivery, winds turbines ...)



### Goal

Make efficient prediction of noise by aerodynamics and aeroacoustics simulations of rotating machines

・ 同 ト ・ ヨ ト ・ ヨ ト

э

## How?

Combination of :

Hybrid turbulence model (RANS/VMS-LES)  $\oplus$  Immersed boundary method and/or chimera method

PANS VIIS-LES MIC-LES



< ∃ →

э

Adaptation of these methods to aeroacoustics

Development of AIRONUM parallel code

### RANS/VMS-LES

< W > : variables related to RANS approach

 $W^c$ : fluctuation resolved

W' : small scale variables resolved

$$\left(\frac{\partial W}{\partial t},\chi_i\right) + \left(\nabla\cdot\mathcal{F}_c(W),\chi_i\right) + \left(\nabla\cdot\mathcal{F}_v(W),\phi_i\right) =$$

$$-\theta\big(\tau^{RANS}(\langle W \rangle),\phi_i\big)-(1-\theta)\big(\tau^{LES}(W'),\phi_i'\big)$$

$$\begin{split} \mathcal{F}_c &: \text{convectif flux treat by finite volume} \\ \mathcal{F}_v &: \text{viscous flux treat by finite element} \\ \tau^{LES}(W') &: \text{closing LES term} \\ \tau^{RANS}(<W>) &: \text{closing RANS term} \\ \theta &: \text{RANS}/\text{VMS-LES hybridation function in [0,1]} \end{split}$$

프 문 문 프 문

3

# A priori planning

- 1<sup>st</sup> year :
  - Bibliography (numericals models used, chimera method, immersed boundary method)
  - Getting started with the AIRONUM code
  - Adaptation of hybrid turbulence model for aeroacoustics
- 2<sup>nd</sup> year :
  - Multirate time advancement method
  - Implementation of the immersed boundary method
  - Flow simulations arround a helicopter rotor
- **3**rd year :
  - Finalization of flow simulations
  - Thesis redaction