

Exercice 1. Déterminer dans les cas suivants les intervalles de $\mathbb R$ sur lesquels la fonction f est bijective et donner dans chaque cas l'expression de la bijection réciproque.

1.
$$f(x) = \frac{1}{1}$$

1.
$$f(x) = \frac{1}{1-x}$$

2. $f(x) = x^2 - 2x + 1$

Exercice 2. Fonctions trigonométriques réciproques :

- 1. Montrer que la fonction *sinus* est une bijection croissante de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans [-1, 1].
- 2. On note arcsin (arc sinus) sa bijection réciproque : arcsin : [-1,1]
 ightarrow $[-\frac{\pi}{2},\frac{\pi}{2}]$. Montrer que arcsin est dérivable sur]-1,1[avec $(\arcsin(x))'=$ $\frac{1}{\sqrt{1-\mathbf{x}^2}}$ (utiliser la formule $\cos^2(t)+\sin^2(t)=1$, $\forall t\in\mathbb{R}$).
- 3. Montrer que la fonction *cosinus* est une bijection décroissante de $[0, \pi]$ dans [-1,1]. On note arccos (arc cosinus) sa bijection réciproque : $\arccos: [-1,1] \to [0,\pi]$ Montrer que arccos est dérivable sur]-1,1[avec $(\operatorname{arccos}(x))' = \frac{-1}{\sqrt{1-x^2}}$.
- 4. Montrer que la fonction tan est une bijection croissante de $]-\pi/2,\pi/2[$ dans R. On note arctan (arc tangente) sa bijection réciproque. Montrez que arctan est dérivable sur \mathbb{R} et que $(\arctan(x))' = \frac{1}{1 + x^2}$

Exercice 3.

1. On considère les fonctions f_1 et f_2 définies par :

$$f_1: x \mapsto \arctan \frac{x}{\sqrt{1-x^2}}$$
 $f_2: x \mapsto \arcsin x$

- a) Déterminer les ensembles de définitions de ces deux fonctions et calculer leurs dérivées.
- b) En déduire une relation liant f_1 et f_2 .
- 2. On considère maintenant la fonction $g: x \mapsto \arcsin \frac{x}{\sqrt{1+x^2}}$. Simplifier l'expression de g

Exercice 4. Calculer les intégrales suivantes :

1.
$$\int_0^{2\pi} |\cos x| dx$$
 2. $\int_{-1}^1 x |x| dx$

2.
$$\int_{-1}^{1} x |x| dx$$

3.
$$\int_0^{\pi} \cos(2x) dx$$

4.
$$\int_{-2}^{-1} \frac{1}{x} dx$$

3.
$$\int_0^{\pi} \cos(2x) dx$$
 4. $\int_{-2}^{-1} \frac{1}{x} dx$ 5. $\int_{0}^{1} \frac{1}{1 + 4x^2} dx$ 6. $\int_0^{1} \frac{x^2 - 1}{x^2 + 1} dx$

$$\int_0^1 \frac{x^2 - 1}{x^2 + 1} dx$$

7.
$$\int_0^1 \sqrt{4-x^2} dx$$
 (poser $x=2\cos(t), t \in [\frac{\pi}{3}, \frac{\pi}{2}]$)

Exercice 5. Calculer l'aire de la surface limitée par les droites d'équations y = 0, x = 0, x = 2 et la parabole d'équation $y = x^2 - x$

Exercice 6. Calculer les intégrales suivantes :

1.
$$\int_{-3}^{0} \frac{1}{x^2 - 3x + 2} dx$$
 (écrire $\frac{1}{x^2 - 3x + 2}$ sous la forme $\frac{a}{x - 1} + \frac{b}{x - 2}$)

2.
$$\int_{1}^{2} \ln^{2} x dx$$

3.
$$\int_0^1 \frac{e^x - 1}{e^x + 1} dx$$

4.
$$\int_{1}^{2} \frac{e^{-2x}}{(1+2e^{-x})^2} dx$$

5.
$$\int_0^1 \frac{x^3}{x^2+1} dx$$
 (poser $t = x^2 + 1$)

Exercice 7. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$.

- 1. Calculer I_0 et I_1 .
- 2. Á l'aide d'une intégration par parties, écrire I_n en fonction I_{n-2} pour n > 2
- 3. Déduire des questions précédentes la valeur de I_n .