Université de Franche-Comté Licence S1 - STARTER ST Analyse, 2009-2010 Groupe A (V. Lleras)

Exercice 1.

Utiliser la formule d'intégration par parties pour déterminer les primitives :

$$\int \operatorname{Arcsin}(x) \, dx \; ; \qquad \int x \, \sin(x) \, dx \; ; \qquad \int (x^3 + x^2) e^{4x} \, dx.$$

Exercice 2.

- 1. Utiliser la formule d'intégration par parties pour déterminer : $\int \frac{t^2 dt}{(t^2+1)^2}$.
- **2.** En déduire : $\int \frac{\mathrm{d}t}{(t^2+1)^2} = \frac{t}{2(t^2+1)} + \frac{1}{2}\mathrm{Arctan}(x) + C$.

Exercice 3.

On désigne par I et J des primitives

$$I = \int \frac{\sin(x)}{\sin(x) + \cos(x)} dx \quad \text{et} \quad J = \int \frac{\cos(x)}{\sin(x) + \cos(x)} dx.$$

- **1.** Calculer I + J.
- **2.** Calculer I J.
- **3.** En déduire I et J.

Exercice 4.

On considère l'intégrale : $I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan(x)) dx$.

- 1. En posant : $u = \frac{\pi}{4} x$, montrer l'égalité : $I = \int_0^{\frac{\pi}{4}} \ln\left(\frac{2}{1 + \tan(u)}\right) du$.
- 2. En déduire $I=\frac{\pi}{8} \ln(2)$.

Exercice 5.

Pour chacune des fractions suivantes, la décomposer en éléments simples (sur \mathbb{R}) et en donner une primitive.

$$\frac{1}{x^2 + 3x + 2}; \qquad \frac{x}{x^2 + 3x + 2}; \qquad \frac{x^2}{x^2 + 3x + 2}; \qquad \frac{x^2}{x^2 + 3x + 2}; \qquad \frac{x^4}{x^2 + 3x + 2}; \qquad \frac{x}{x^3 + 6x^2 + 11x + 6}; \qquad \frac{1}{x^3 + x}; \qquad \frac{x}{x^3 + 4x^2 + 5x - 2}; \qquad \frac{x}{x^3 - 4x^2 + 5x - 2}$$

Exercice 6.

Evaluer les primitives :

$$\int \frac{dx}{x^2 + 2x + 2}; \qquad \int \frac{x + 2}{x^2 + 2x + 2} dx; \qquad \int \frac{dx}{x^2 + 4}; \qquad \int \frac{x + 1}{x^2 + 4} dx.$$

Exercice 7.

$$\int_0^1 \frac{\mathrm{d}t}{e^t + 3} .$$

1. En utilisant le changement de variable $u=e^t$, évaluer l'intégrale : $\int_0^1 \frac{\mathrm{d}t}{e^t+3} \; .$ 2. En utilisant le changement de variable $x=2+\sin(t)$, évaluer l'intégrale :

$$\int_{2}^{3} \frac{\mathrm{d}x}{\sqrt{-x^{2}+4x-3}} \, .$$

Exercice 8.

Evaluer les primitives de l'intégrale $\int \frac{\mathrm{d}x}{e^{2x} \, \mathrm{sh}(2x)}$ en effectuant le changement de variable $u = e^x$ puis une décomposition en éléments simples.

1