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DYNAMICS OF RED BLOOD CELLS IN 2D

Cuc Bui1, Vanessa Lleras2 and Olivier Pantz3

Abstract. Blood is essentially composed of red blood cells, white blood cells and platelets suspended
in a fluid (blood plasma). If it can be considered as a homogeneous fluid when circulating in vessels
of large diameter, this approximation is no longer valid when it reaches vessels with diameter of an
order of magnitude comparable to that of the cells it carries. In this case, the influence of the cells
on the flow can no longer be homogenized. Therefore, the mechanical behavior of red blood cells
(which account for 99% of the cells presenting in the blood), their interaction with the surrounding
fluid or between themselves (by contact) must be taken into account. Numerical tool plays thus an
essential role: it enables to validate the advanced physical models, to access to data difficult to obtain
experimentally and to determine the dependence of the flow behavior on the parameters of the model.
In this article, we propose a numerical method which allows to take into account these three essential
aspects (mechanical behavior of red blood cells, fluid/structures interactions and structures/structures
contact interactions). Our study is limited to the two-dimensional case which, although simplistic,
allows us to reproduce a quite large range of experimental observations as shown in the numerical
simulations obtained.

Résumé. Le sang est pour l’essentiel composé de globules rouges, blancs et de plaquettes en suspen-
sion dans un liquide (le plasma sanguin). S’il peut être considéré comme un fluide homogène lorsqu’il
circule dans des vaisseaux de diamètre important, cette approximation n’est plus valable dès qu’il at-
teint des vaisseaux dont la taille est d’un ordre de grandeur comparable aux cellules qu’il transporte.
Dans ce cas, l’influence de ces dernières sur l’écoulement ne peut plus être homogénéisée (”moyennée”).
Le comportement mécanique des globules rouges (qui comptent pour 99% des cellules présentent dans
le sang), leur interaction avec le fluide environnant ou entre eux même (par contact) doivent être pris
en compte. L’outil numérique joue alors un rôle primordial: il permet de valider les modèles physiques
avancés, d’accéder à des données difficiles à obtenir expérimentalement et de déterminer la dépendance
du comportement de l’écoulement en fonctions des paramètres du modèle. Dans cette note, nous
proposons une méthode numérique permettant de prendre en compte ces trois aspects essentiels (com-
portement mécanique des globules rouges, interactions fluide/structures et interactions de contacts
structures/structures). Nous limitons notre étude au cas bidimensionnel qui, bien que simplificateur,
nous permet de reproduire une palette assez importante d’observations expérimentales comme l’illustre
les simulations numériques obtenues.
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France
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1. Introduction

If the blood could be considered as a homogeneous fluid in large domains, such an approximation is mean-
ingless in small vessels of same characteristic scale than the cells it convects. Those are essentially (for 99% of
the volume) Red Blood Cells (RBCs) plus some white blood cells and platelets. Almost half of the blood is
composed of RBCs, thus they are playing a key role in the blood rheology. This role depends on the mechanical
behavior of the RBCs, on the interactions between their membrane and the surrounding fluid, and possible
interactions between the RBCs themselves. In this context, numerical simulations could be a useful tool as
they enable to test different modelings, to perform ”numerical” experiments maybe difficult to realize in ”vitro”
or in ”vivo”, to determine different physical parameters by comparing numerical and experimental results, to
study the effects of a modification of those parameters, which are, in vivo, possible sources of diseases. This has
stimulated an intense activity in recent years and a large range of numerical methods has been proposed, most
of them in bi-dimensional context: Immersed Boundary [17], Penality [16], Lattice Boltzmann [20, 28], Multi-
particle collision Dynamics [21,22], Integral Method [15,24,25], Level Set and phase field [3,4,8], Finite Element
conformal method [6]. In parallel, many experiments have been performed, enabling a better understanding of
vesicles’ dynamics and bringing to light different kinds of phenomenon: lift (vesicles tend to concentrate in the
middle of the vessels, pushed by the hydrodynamic forces induced by the walls of the vessels [1,5]), various be-
havior of the vesicles in a shear flow (tumbling, tank-treading or vacillating breathing [13,14,18,19]), formation
of rouleaux (aggregation of vesicles), parachute shape of the vesicles under Poiseuille flow [27]. Finally, several
theoretical studies have focused on the analytical resolution of simplified versions of the equations governing
vesicles dynamics in particular flows.

In this article, we present a numerical method in order to solve the fluid/structure system formed by the
RBCs and the surrounding fluid in a bi-dimensional setting. The RBCs’ membrane energy is assumed to be
proportional to the square of its curvature and the surrounding fluid to be incompressible and Newtonian [7,11].
A finite element method with conformal meshes for both the fluid and the membranes has been implemented
with FreeFem++1, a free finite element software [10]. Several problems have to be taken up. The first problem
consists in taking correctly into account the fluid/structure coupling so to obtain a stable scheme. Due to the
incompressibility of the membrane, the surface of the RBC remains constant in time. Moreover, as the fluid
is incompressible and the membrane assumed to be impermeable, the volume of the vesicle remains constant
as well [26]. Both of these constraints have to be verified with enough accuracy to obtain realistic simulations.
Finally, a robust algorithm has to be able to deal with the eventual formation of contacts between RBCs or
between RBCs and the vessels’ walls. If both RBCs and the walls of the vessels are regular and a non slipping
condition is assumed for the fluid at the boundary of its domain, hydrodynamic forces prevent any contact in
finite time [12]. Nevertheless, it seems that adhesive intercellular interactions (not taken into account in the
present article) competing with hydrodynamic forces could lead to contacts between cells. Anyway, contacts
could always occur ”numerically” because of the discretization of the problem and the important concentration
of RBCs. In order to prevent overlapping of the RBCs, we add a new constraint so that the distance between
two RBCs or between the RBCs and the walls remains great than a small threshold [23].

Our article is organized in three parts. In Section 2, we present the modeling used in our simulation describing
the RBC dynamics. Section 3 is devoted to the conformal method implemented, whereas Section 4 presents
several numerical results obtained. Finally, in the last section, some conclusions are drawn and future possible
work directions are given.

2. Modelling of red blood cells in a flow

2.1. Mechanical behavior of RBCs

The mechanical behavior of a RBC is driven by the nature of its membrane which is mainly made of a lipid
bilayer. Lipid bilayers are self-assembled structures of phospholipids which are small molecules containing a

1http://www.freefem.org/ff++/
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negatively charged phosphate group (called the head) and two highly hydrophobic fatty acid chains (called the
tails). In an aqueous environment, phospholipids spontaneously form a double layer whose configuration enables
to isolate the tails of the phospholipids from the watery environment. Modifying the area of a such lipid bilayer
is very energy costly as it will expose some of the tails to the environment. Thus, their surface (that is the
perimeter in the 2d case as considered here) remains constant. If lipid bilayers set almost no resistance to shear
stress, they do resist to bending. A widely use model is to consider that lipid bilayer could be endowed with an
elastic energy, known as the Helfrich functional (sometimes named after Willmore in other contexts)

J(ϕ) =
1
2

∫
Σ

k|H|2 ds, (1)

where Σ is the surface occupied by the lipid bilayer, ϕ is the deformation of the RBC, ds the surface measure,
H the mean curvature of the layer and k the bending elastic modulus.

Note that beside the lipid bilayer, RBC are also composed of a protein skeleton. This skeleton ensures a
small resistance of the RBCs to shear stress. The total energy of a RBC is given by

JRBC(ϕ) =
1
2

∫
Σ

k|H|2 ds+
1
2

∫
Σ0

W (∇ϕ) ds, (2)

where Σ0 is the reference configuration of the membrane and W the membrane stored-energy function. More-
over the membrane stored-energy W (∇ϕ) only depends on the metric tensor ∇ϕT∇ϕ. In a two-dimensonal
framework, the local inextensibility condition implies the metric tensor to be equal to the identity. It follows
that JRBC = J (up to a constant). The situation is quite different in a three-dimensional setting, where the
local conservation of the area of the membrane does not imply that the metric tensor of the deformation is
reduced to the identity. As we work in a two-dimensinal setting, the distinction between RBCs and vesicles,
whose internal energies are respecticely given by (1) and (2) is irrelevant.

2.2. Surrounding Fluid

We assume that the RBCs are surrounded by an incompressible Newtonian fluid characterized by its density
ρ and its viscosity µ. We use Navier-Stokes equation, and, if the inertia of the fluid can be neglected, Stokes
equation instead.

2.3. Variational formulation

We denote by Ω the domain of the fluid. The deformations of the RBCs are denoted by ϕ : Σ0 → Ω, where Σ0

is their reference configuration. The viscosity of the fluid µ is assumed to be constant inside as well as outside
the vesicles respectively equal to µin and µout. The inertia of the membranes is always neglected. The problem
consists in determining the fluid velocity u :]0, T [×Ω→ R2, the deformations of the vesicles ϕ :]0, T [×Σ0 → R2,
the pressure p :]0, T [×Ω → R and the inextensional pressure pinext :]0, T [×Σ0 → R, such that for all test
functions v, q and qinext, we have∫

Ω

ρ
∂u

∂t
v + ρ(u · ∇u)v − (∇ · v)p+ 2µe(u) · e(v)dx+ 〈J ′(ϕ), v ◦ ϕ〉+

∫
Σ

(
τ · ∂v

∂τ

)
pinext ◦ ϕ−1ds = 0, (3)

∫
Σ

(
τ · ∂u

∂τ

)
qinext ◦ ϕ−1 ds = 0, (4)∫

Ω

(∇ · u)q dx = 0, (5)

∂ϕ

∂t
= u ◦ ϕ (6)
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where ρ is the density of the fluid and e(u) = (∇u +∇Tu)/2 is the strain rate. Boundary conditions have to
be added to close the system. The reference configuration Σ0 of the membrane of the RBCs is a union of loops
diffeomorphic to the unit circle S1 and Σ = ϕ(Σ0).

The classical Navier-Stokes equation (3) is supplemented with two additional terms due to the action of the
membrane on the fluid. As the inertia of the membranes of the RBCs is neglected, the forces they exert on
the fluid are equal to their internal stress and have two components. One of them follows directly from the
bending energy J , while the other is due to the membrane incompressibility. The incompressibility constraint
of the membrane is imposed through the introduction of the Lagrange multiplier pinext which we call the
”inextensional pressure” as it plays a similar role like the pressure p ensuring the incompressibility of the fluid.
The incompressibility of the membrane and of the fluid are respectively imposed through equations (4) and (5),
while equation (6) simply expresses that the velocity of the membrane is equal to the velocity of the fluid.

To be more precise, the local inextensibility condition follows both from equations (4) and (6). Deriving (6)
with respect to the s ∈ Σ0, we obtain that

(∇u) ◦ ϕ(t, s)
∂ϕ

∂s
(t, s) =

∂2ϕ

∂s∂t
(t, s).

As the unitary tangential vector to the surface of the RBC reads as

τ ◦ ϕ =
∣∣∣∣∂ϕ∂s

∣∣∣∣−1
∂ϕ

∂s
,

it follows that
∂u

∂τ
◦ ϕ(t, s)

∣∣∣∣∂ϕ∂s
∣∣∣∣ =

∂2ϕ

∂s∂t
(t, s),

and from the equation (4), we obtain
∂ϕ

∂s
· ∂

2ϕ

∂s∂t
(t, s) = 0,

and finally the local inextensibility of the membrane

∂

∂t

∣∣∣∣∂ϕ∂s
∣∣∣∣2 = 0.

3. Numerical Scheme

3.1. Time discretization

We use a finite difference method for the time discretization. Let ∆t be the time step and un, ϕn, pn and
pninext be the approximations of u, ϕ, p and pinext at time tn = n∆t. Our scheme consists in solving the following
sequence of problems: Find un+1, ϕn+1, pn+1 and pn+1

inext such that for all test functions v, q and qinext:∫
Ω

ρ
un+1 − un ◦Xn

∆t
v − (∇ · v)pn+1 + 2µe(un+1) · e(v)dx

+ 〈J ′(ϕn+1), v ◦ ϕn〉+
∫

Σ

(
τ · ∂v

∂τ

)
pn+1
inext ◦ (ϕn)−1ds = 0, (7)

∫
Ω

(∇ · un+1)q dx = 0,∫
Σ

(
τ · ∂u

n+1

∂τ

)
qinext ◦ (ϕn)−1ds = 0,
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with

ϕn+1 = ϕn + ∆tun+1

and Xn :]−∞,∞[×Ω→ Ω is defined by{
Xn(0, x) = x for all x ∈ Ω
∂Xn

∂t
(t, x) = un(Xn(t, x)) for all (t, x) ∈]−∞,∞[×Ω

3.2. Space discretization

The deformation of the RBCs is discretized using P1-Lagrange finite elements over a mesh S0
h of Σ0 inde-

pendent of the time tn. Accordingly, the inextensional pressure pinext is discretized with P0-Lagrange finite
elements over the same mesh. We denote by Vh and Wh the set of P1 and P0-Lagrange finite elements over S0

h,
that is

Vh = {ϕh ∈ H1(Σ0; R2) such that ϕh|e ∈ P1 for all edges e of S0
h},

Wh = {ph ∈ L2(Σ0; R) such that ph|e ∈ P0 for all edges e of S0
h}.

On the other hand, we use a conformal mesh to compute the velocity and pressure at each time tn. More
precisely, for each iteration n > 0, we introduce the mesh Snh = ϕn(S0

h) of Σnh = ϕn(Σ0). The velocity and
pressure at time n+ 1 are computed on a regular triangular mesh T nh such that Snh is a submesh of T nh , that is,
each edge of Snh is an edge of T nh . A P1-bubble/P1 formulation is used, e.g. P1-bubble for the velocity u and
P1 finite elements for the pressure p. We denote by Pnh and Unh the set of P1 and P1-bubble Lagrange finite
elements over T nh , that is

Pnh = {vh ∈ H1(Ω; R) such that vh|K ∈ P1 for all triangles K of T nh }

and
Unh = (Pnh )2 ⊕Bnh

where

Bnh = {vh ∈ H1(Ω; R2) such that vh|K ∈ P3 for all triangles K and vh|e = 0 for all edges e of T nh }.

3.3. Approximation of the membrane energy

As the membrane of the RBCs are assumed to be inextensible, the Helfrich functional (1) takes a particular
simple form. Indeed, we have

J(ϕ) =
1
2

∫
Σ0

k

∣∣∣∣d2ϕ

ds2

∣∣∣∣2 ds.
Unfortunately, this energy is never finite for elements of the space discretization chosen for the deformation
(that is P1 Lagrange finite elements). In order to overcome this problem, we approximate the functional J by

Jh(ϕh) = inf
Φh∈H2(Σ0;R2)
Φh(xi)=ϕh(xi)

J(Φh), (8)

where (xi) spans the set of vertices of the mesh S0
h of Σ0. The infimum of (8) is achieved for P3 Lagrange finite

elements Φh called the spline cubic associated to ϕ. We set

Rh = {Φh ∈ H1(Σ0; R2) such that Φh|e ∈ P3 for all edges e of S0
h},
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and we have

Jh(ϕh) = inf
{

1
2

∑
e∈En

h

∫
e

k

∣∣∣∣d2(Φn+1
h ◦ (ϕn)−1)
ds2

∣∣∣∣2 ds : Φn+1 ∈ Rh; Φ(xi) = ϕ(xi) for all nodes xi ∈ S0
h

and bn(Φh, qτ ) = 0 for all qτ ∈ Vh
}
, (9)

where

bn(Φh, qτ ) =
∑
e∈En

h

∫
e

d2(Φh ◦ (ϕn)−1)
ds2

· qτ ◦ (ϕn)−1 ds+
∫

Σ

d(Φn+1
h ◦ (ϕn)−1)

ds
· d(qτ ◦ (ϕn)−1)

ds
ds.

The solution of the minimization problem (8) belongs to the set of spline cubic Hermite finite elements of S0
h.

Unfortunately, the finite elements software used in this article is retricted to Lagrange finite elements. We
circumvent this limitation by reformulating this minimization problem as in (9) over the Lagrange finite space
Rh. The additional constraint bn(Φh, qτ ) = 0 added ensure the admissible solutions Φh to belong to H2(Σ0).

In order to solve an approximation of (7) we thus introduce Φh ∈ Rh as a new variable in our system.
Moreover, two Lagrange multipliers are also introduced: pτ to ensure that Φh belongs to the space H2 and pc to
ensure the condition Φh(xi) = ϕh(xi). Both multipliers are P1 finite elements with values in R2. The equation
(7) rewritten using this discrete setting has the following form: Find (un+1,Φn+1

h , pn+1, pn+1
inext, p

n+1
τ , pn+1

c ) ∈
Unh ×Rh×Pnh ×Wh×Vh×Vh such that for all test functions (v,Ψh, q, qinext, qτ , qc) ∈ Unh ×Rh×Pnh ×Wh×Vh×Vh,
we have∫

Ω

ρ
un+1 − un ◦Xn

∆t
v − (∇ · v)pn+1 + 2µe(un+1) · e(v)dx−∆t

∑
x∈V0

h

hni v(x) · pn+1
c (x)

+
∫

Σ

(
τ · ∂v

∂τ

)
pinext ◦ (ϕn)−1ds = 0, (10)

∑
e∈En

h

∫
e

k
d2(Φn+1

h ◦ (ϕn)−1)
ds2

d2(Ψ ◦ (ϕn)−1)
ds2

+
d2(Ψ ◦ (ϕn)−1)

ds2
· pn+1
τ ◦ (ϕn)−1 ds

+
∫

Σ

d(Ψ ◦ (ϕn)−1)
ds

· d(pn+1
τ ◦ (ϕn)−1)

ds
ds+

∑
x∈V0

h

hni Ψ(x) · pn+1
c (x) = 0, (11)

∑
e∈En

h

∫
e

d2(Φn+1
h ◦ (ϕn)−1)
ds2

· qτ ◦ (ϕn)−1 ds+
∫

Σ

d(Φn+1
h ◦ (ϕn)−1)

ds
· d(qτ ◦ (ϕn)−1)

ds
ds = 0, (12)

∑
x∈V0

h

hnx(Φn+1(x)− ϕn+1(x)) · qc(x) = 0, (13)

ϕn+1 = ϕn + ∆tun+1, (14)
where Enh is the set of edges of the mesh Snh of Σ, Vnh its set of vertices and

hnx =
1
2

∑
e∈E0h
x∈∂e

|ϕn(e)|.
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3.4. A basic Algorithm

The numerical algorithm we propose is the following one.

Algorithm 3.1. (1) Initialization of the initial velocity u0 of the fluid and deformation ϕ0 of the vesicles;
(2) Computation of the velocity un+1 and the deformations ϕn+1 at time (n+ 1)∆t using (10-14);
(3) Remeshing. Rebuild a mesh T n+1

h of the domain Ω that set of edges contains the edges of the mesh
Sn+1
h = ϕn+1(Σ0);

(4) Go back to (2) until final time T reached.

3.5. Contacts

The previous algorithm fails to take correctly into account possible contacts between the vesicles themselves
or between the vesicles and the boundaries of the domain. It is known that rigid bodies could not get into contact
in finite time in 2d [12]. This suggests that is also impossible for deformable vesicles. Whatever the answer is,
collisions always occur numerically. In order to prevent any mesh generation failure, we have to ensure that at
each iteration the vesicles do not intersect themselves or the boundary of the domain. To this end, we perform
an additional projection step of the deformation ϕn+1 on the set of deformations without (self-)intersection that
does not cross the boundary of the domain. More precisely, instead of step (3) we compute the deformation
ϕn+1 ∈ Ah,ε such that

d(ϕn+1, ϕ̃n+1) = inf
ϕ∈Ah,ε

d(ϕ, ϕ̃n+1) (15)

where ϕ̃n+1 = ϕn + ∆tun+1 ◦ ϕn, Ah,ε is the set of admissible deformations and d(·, ·) is a distance function.
The distance function used is an approximation of the H2 norm of ϕn+1−ϕ̃n+1 – the H2 norm is not correctly

defined as ϕn+1 and ϕ̃n+1 only belong to H1, being P1-Lagrange elements. More precisely, for all elements ϕh
and ψh in Vh, we set

d(φh, ψh) =
(
‖φh − ψh‖2L2 + Jh(φh − ψh)

)1/2
.

The set of admissible deformations is defined as

Ah,ε = {ϕh ∈ Vh such that dist(ϕ, ∂Ω) ≥ ε and dist(ϕh(a), ϕh(b)) ≥ ε for all edges a and b of Sh, a ∩ b = ∅},

ε > 0 being a small security distance. The admissible set Ah,ε being not convex, problem (15) is not trivial. The
minimizer of d(·, ϕ̃n+1) is computed using an internal approximation method introduced in [23] (see also [2] for
a three dimensional application to aortic valves). It consists in solving a sequence of convex problems defined
by

d(ϕn+1
p+1 , ϕ̃

n+1) = inf
ϕ∈T (ϕn+1

p )
d(ϕ, ϕ̃n+1)

with ϕn+1
0 = ϕn, where T (·) is an application that maps all elements ψ of Ah,ε to a convex neighborhood T (ψ)

of Ah,ε (see [23] for more details). For any ψ ∈ Ah,ε, T (ψ) is defined by

T (ψ) = {ϕh ∈ Vh such that F 0
e,x(ϕh) ≤ 0 and F 1

e,x(ϕh) ≤ 0 for all edges e of S0
h},

where for i = 0, 1,
F ie,x(ϕh) = ε− ne,x(ψ) · (ϕh(ei)− ϕh(x)),

e0 and e1 being the extremities of the edge e and ne,x(ψ) the unitary vector defined by

min
xe∈e

ne,x(ψ) · (ψ(xe)− ψ(x)) = dist(ψ(e), ψ(x)).

The dependence of the functions F 0
e,x and F 1

e,x with respect to ψ in the definition of T (ψ) is implicit and does
not appear in the notations used.
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3.6. Volume and Surface conservation

Even for relatively short time simulations, the algorithm introduced in the previous section failed to correctly
preserve both volume and perimeter of the blood cells. Indeed, it only preserves them up to an order one. To
prevent large deviations of the volume or perimeter from their initial values, we modify the projection step over
the set of deformations without intersection by adding the appropriate constraints to the minimization problem
(15). Thus, at each iteration, the deformation ϕn+1 is computed solving

d(ϕn+1, ϕ̃n+1) = inf
ϕ∈Ah,ε∩V ad

h

d(ϕ, ϕ̃n+1) (16)

where V adh is the set of P1 inextensional deformations with prescribed volume

V adh = {ϕ ∈ Vh such that `e(ϕ) = `e(ϕ0) for all edges e of S0
h and Voli(ϕ) = Voli(ϕ0) for all i ∈ I}

where I is the set of vesicles, Voli(ϕ) is the volume of the i-th vesicle and `e(ϕ) = |ϕ(e)| is the length of the
deformed edge ϕ(e). The volume and inextensibility constraints added in the minimization problem (16) are
both not convex. To solve this problem, we use an iterative scheme, linearizing both constraints at each step.
Thus, ϕn+1 is computed using the following algorithm.

Algorithm 3.2. (1) Initialization. Set ϕn+1
0 = ϕn;

(2) For each k > 0, compute ϕn+1
k such that

d(ϕn+1
k , ϕ̃n+1) = inf

ϕ∈Ah,ε∩V ad
h,k

d(ϕ, ϕ̃n+1)

where

V adh,k = {ϕ ∈ Vh such that Pe,k(ϕ) = Pe,k(ϕ0
h) for all edges e of S0

h and Li,k(ϕ) = Li,k(ϕ0) for all i ∈ I}

with Pe,k = D`e(ϕn+1
k−1) and Li,k = DVoli(ϕn+1

k−1);
(3) Stopping criterion. If |Voli(ϕn+1

k ) − Voli(ϕ0
k)| < δV Voli(ϕ0

k) and ‖ϕn+1
k (e)| − |ϕ0

k(e)|| < δe|ϕ0
k(e)|

for all edges e of S0
h and all vesicles i ∈ I then STOP, else go back to (2).

3.7. Complete Algorithm

Algorithm 3.3. (1) Initialization of the initial velocity u0 of the fluid and deformation ϕ0 of the vesicles,
set n = 0;

(2) Computation of the velocity un+1 and deformations (before projection step) ϕ̃n+1 at time
(n+ 1)∆t solution of (10-14)2;

(3) Projection step, computation of the deformation ϕn+1 at time (n+ 1)∆t
(a) Initialization. Set ϕn+1

0 = ϕn, ϕ̃n+1 = ϕn + ∆tun+1 and k = 1;
(b) Compute ϕn+1

k such that

d(ϕn+1
k , ϕ̃n+1) = inf

ϕ∈Ah,ε∩V ad
h,k

d(ϕ, ϕ̃n+1);

(i) Set ϕn+1
k,0 = ϕn+1

k−1 and p = 0;
(ii) Compute ϕn+1

k,p+1 such that

d(ϕn+1
k,p+1, ϕ̃

n+1) = inf
ϕ∈T (ϕn+1

k,p )∩V ad
h,k

d(ϕ, ϕ̃n+1);

2ϕn+1 has to be replaced by ϕ̃n+1 in the set of equations (10-14)
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(iii) If

d(ϕn+1
k,p+1, ϕ

n+1
k−1,p+1) < δ/∆t

set ϕn+1
k = ϕn+1

k,p+1 go to (3c), else increase p and go back to 3(b)ii;
(c) Stopping criterion. If

|Voli(ϕn+1
k )−Voli(ϕ0

k)| < δV Voli(ϕ0
k) and ‖ϕn+1

k (e)| − |ϕ0
k(e)|| < δe|ϕ0

k(e)|

for all edges e of S0
h and all vesicles i ∈ I then set ϕn+1 = ϕn+1

k and go to (4), else increase k and
go back to (3b);

(4) Remeshing. Rebuild a mesh T n+1
h of the domain Ω that set of edges contains the edges of the mesh

Sn+1
h = ϕn+1(Σ0);

(5) Increase n and go back to (2) until final time T reached.

4. Numerical Applications

A typical human RBC, or erythrocyte is normally 8− 10 µm in diameter and 2 µm in thickness. The RBCs’
membrane has a bending elastic modulus of k = 1.8 × 10−12 dyn-cm [9]. The RBCs are suspended in a fluid
called blood plasma which is mostly composed of water (92% by volume). In the following simulations, we use
the viscosity of water µout = 1 mPa·s as that of the exterior surrounding fluid.

4.1. Case of a single RBC without external hydrodynamic forces

Figure 1 illustrates a single RBC of 8 µm in diameter in the equilibrium state (without any external hy-
drodynamic forces). As shown on the figure, a conformal mesh is used during the computation. The reduced
volume has been chosen so that the equilibrium shape of the vesicle agrees with the observations [7].

Figure 1. A single vesicle in equilibrium state.
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4.2. In a shear flow

In a shear flow, vesicles and RBCs show several dynamics depending on different parameters, such as the
capillary number, the ratio between external and internal viscosity and confinement [13, 14, 18]. At least three
different dynamics have been exhibited: tumbling, tank-treading and vacillating breathing. Figure 2 displays
at different time steps the deformation of a RBC in a tank-treading motion. After a relaxation time, the shape
of the RBC remains constant and the flow become stationary. Nevertheless, the deformation of the RBC is not
constant as it rotates onto itself. An element of the membrane of the RBC has been marked with a small black
disk, which enables us to visualize its motion. In the stationary state, the RBC forms a small constant angle
with the vessel axis.

Figure 2. Stationary tank-treading motion of a single RBC under a shear flow with the shear
rate of 2 s−1, at different time steps: t = 0 s, 2 s, 4 s, 30 s, 50 s, 70 s, 90 s. Parameters used:
diameter of the RBC=8 µm, k = 1.8× 10−12 dyn-cm, µin = µout = 1 mPa·s.

When the ratio between the internal and external viscosities µin/µout increases, the dynamics of the RBC
change to a tumbling motion (see Figure 3). The vesicle rotates periodically around its center. Note that, the
rotation velocity is not constant. Close to the vertical position, the RBC is slightly deformed by the strong
torque exerted by the flow and its rotation velocity reaches a maximum. This tumbling motion is combined
with a tank-treading like dynamics when it approaches the horizontal state.

Figure 3. Tumbling motion of a single RBC under a shear flow with the shear rate of 10
s−1, at different time steps: t = 0 s, 2 s, 4 s, 5 s, 5.3 s, 5.5 s. Parameters used: diameter of the
RBC=10 µm, k = 1.8× 10−12 dyn-cm, µin = 10 mPa·s, µout = 1 mPa·s.

4.3. Dynamics through capillary vessels

The high deformability of RBCs enables them to go through vessels smaller than their diameter. To this
end, they adopt a parachute shape as shown on Figure 4, where four RBCs are placed in a Poiseuille flow.
Hydrodynamic forces prevent the RBCs from contacting the walls of the vessel.
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Figure 4. Simulation of 4 RBCs squeezed through a capillary vessel under a Poiseuille flow.
From left to right, top to bottom: t = 0 s, 0.4 s, 0.5 s, 0.6 s, 0.8 s, 1.0 s. Parameters used:
diameter of the RBCs=8 µm, k = 1.8 × 10−12 dyn-cm, µin = µout = 1 mPa·s, velocity of the
input flow at the center of vessel=40 µm/s.

4.4. In a bifurcate vessel

Figure 5 illustrates the initial configuration of four RBCs in a small vessel under a Poiseuille flow. They seem
to get stuck when arriving the bifurcation where contacts between themselves and with the wall of the vessel
are observed (Figure 6a). After a while, this state is overcome: the RBCs continue to go through the two vessel
branches although contacts are still occurring (Figure 6b, 6c, 6d). Finally, each couple of RBCs has chosen a
branch to pass along (Figure 6e, 6f). Due to the management of the contacts between the RBCs, the time of
the computation is significatively increased for this simulation compared with the other cases presented here.
The overall computation time is 4477 seconds of CPU time on a quad core 3GHz PC compared to 139s for the
simulation of the tumbling motion of a single RBC displayed on Figure ??.

Figure 5. Four RBCs in a bifurcate vessel at initial time. Parameters used: diameter of the
RBC=8 µm, k = 1.8× 10−12 dyn-cm, µin = µout = 1 mPa·s.

5. Conclusion

We have presented in this paper a method to simulate the motion of RBCs in the plasma flow in a bi-
dimensional setting. Our algorithm enables to treat contacts between the RBCs themselves or contacts between
the RBC and the walls. Moreover it preserves both the volume and the perimeter of the RBCs. Intersections
between the RBCs’ membrane or between the RBCs and the vessels’ walls are forbidden by the introduction
of an additional constraint that enforces a minimal distance between them. Several complex dynamics have
been reproduced with our algorithm – tank-treading motion, tumbling motion and parachute shape – in good
agreement with experimental observations.
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a
b

c
d

e
f

Figure 6. Simulation of 4 RBCs in a bifurcate vessel. From left to right, top to bottom:
t = 0.32 s, 0.40 s, 0.52 s, 0.68 s, 0.84 s, 1.0 s. Velocity of the input flow at the center of
vessel=40 µm/s.

In the future, we intend to improve our algorithm so to be able to treat the case of a large number of vesicles in
the same simulation. In the present version, the contact algorithm is quite time consuming for large numbers of
vesicles (the number of constraints scales likes the square of the number of vesicles). The number of constraints
taken into account could easly been reduced, as distant vesicles at a given time will not contact each other at
the next time step. Nevertheless, it remains to be implemented. Furthermore, the three-dimensional case is
still challenging, and is of major interest as it will allow to perform qualitative comparaison of the numerical
results with experimental data (and not only qualitative comparaison).

This work was supported by the Marie Curie Research Training Network MRTN-CT-2004-505226 ”Multi-scale modelling
and characterisation for phase transformations in advanced materials” (MULTIMAT).
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