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Abstract: In this work we consider a stabilized Lagrange multiplier method in order to approxi-
mate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is
that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution
of the discrete problem.
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1. Introduction and notation

The numerical approximation of frictional contact problems occurring in structural mechanics is
generally achieved using the finite element method (see [23, 26, 36, 38, 49]). An important aspect
in these simulations consists of choosing finite element methods which are both easy to implement
in practice and accurate from a theoretical point of view. The frictionless unilateral contact prob-
lem (or the equivalent scalar valued Signorini problem) shows the nonlinearity on the boundary
corresponding to the non-penetration of the materials on the contact area which leads to a varia-
tional inequality of the first kind. When considering friction in addition to the contact model, there
are supplementary nonlinearities which have to be taken into account. We consider in what follows
the simplest model: linear elasticity, small strains and Coulomb friction. Although there exist sim-
plified and/or different models: Tresca’s friction, normal compliance...(see [36, 47]), we consider
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the so-called static friction problem introduced in [19, 20] which roughly speaking corresponds to
an incremental problem in the time discretized quasi-static model. Let us mention that a detailed
study of several mixed finite element methods for frictionless and frictional contact problem can
be found in [25, 26]. We can find also numerical analysis and convergence analysis in [16, 33].

For this elementary model without friction, some results were improved and/or generalized in
many directions using different kind of multipliers [9, 10, 18], quadratic finite elements [8, 32]
or an augmented Lagrangian [14]. In fact, any of the mixed methods cited above need an inf-sup
condition (see [3, 12, 13]) and a number of convenient choices are ruled out by this condition.
In the present work we consider a mixed finite element method which does not require an inf-
sup condition. Such methods which provide stability of the multiplier by adding supplementary
terms in the weak formulation have been originally introduced and analyzed in [4, 5]. The great
advantage of such methods compared to original one in [3] is that the finite element spaces on
the primal and dual variables can be chosen independently. In penalty methods, the penetration
between two contacting boundaries is introduced and the normal contact force is related to the
penetration by a penalty parameter ([2, 45]). Moreover, contrary to penalization techniques, in the
method of Lagrangian multipliers, the stability is improved without compromising the consistency
of the method. Later, the connection was made in [48] between the stabilized method of Barbosa
and Hughes [4, 5] and the former one of Nitsche [44]. The studies in [4, 5] were generalized to
a variational inequality framework in [6] (Signorini type problems among others). This method
has also been extended to interface problems on nonmatching meshes in [7, 24] and more recently
for bilateral (linear) contact problems in [29]. My aim in this paper is to extend the work of Hild
and Renard in [34] to the more general and currently used Coulomb’s frictional contact model but
without convergence analysis.

The paper is outlined as follows. In section 2, we introduce the equations modelling the fric-
tional unilateral contact of a linear elastic body with a rigid foundation under the small strains
hypothesis. We write the problem using a mixed formulation where the unknowns are the dis-
placement field in the body and the frictional contact pressures on the contact area. In section 3,
we propose an extension of "Barbosa-Hughes-Nitsche’s” concept to the frictional contact problem
and we study the properties of the discrete problem.

Finally, we introduce some useful notations and several functional spaces. In what follows,
bold letters like u, v, indicate vector or tensor valued quantities, while the capital ones (e.g.,
V,K,...) represent functional sets involving vector fields. As usual, we denote by (L?(.))¢ and
by (H*(.))%, s € R,d = 1,2, 3 the Lebesgue and Sobolev spaces in one, two or three space di-
mensions (see [1]). The usual norm of (H*(D))¢ (dual norm if s < 0) is denoted by || - ||s.p and
we keep the same notation when d = 1, d = 2 or d = 3. Finally the notation ¢ < b means
here and below that there exists a positive constant C' independent of a and b (and of the meshsize
of the triangulation) such that ¢ < C' b. The notation a ~ b means that a < b and b < «a hold
simultaneously.
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2. The frictional contact problem in elasticity

We consider the deformation of an elastic body occupying, in the initial unconstrained confi-
guration, a domain €) in R? where plane small strain assumptions are assumed. The Lipschitz
boundary 0f) of (2 is polygonal and we suppose that 0¢) consists in three nonoverlapping parts
I'p, I'y and the frictional contact boundary I'c with meas(I'p) > 0 and meas(I'¢) > 0. The
normal unit outward vector on 0f) is denoted n = (n1, n2) and we choose as unit tangential vector
t = (—ng,n1). The body is clamped on I'p for the sake of simplicity. It is subjected to volume
forces f = (f1, f2) € (L*(2))? and to surface loads g = (g1,92) € (L*(T'w))%. The contact
boundary is supposed to be a straight line segment. In its initial stage, the body is in contact on
I'c with a rigid foundation (the extension to two elastic bodies in contact can be easily made, at
least for small strain models). The contact is assumed to be frictional and the stick, slip and se-
paration zones are not known in advance and we suppose that the unknown final contact zone after
deformation will be included into I';. We denote by 1 > 0 the given friction coefficient on I'c.
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Figure 1: Setting of the problem. The domain (2 and its boundary divided in three open disjoint
parts: I'p, 'y and I'c.

The unilateral contact problem with Coulomb’s friction law in linear elasticity consists in fin-
ding the displacement field u : 2 — R? verifying the equations and conditions (2.1)—(2.6):

divo(u)+f = 0 in (2.1)
o(u) = Ae(u) in Q, (2.2)

u =20 onl'p, 2.3)

oclun = g on 'y, (2.4)

where o = (0y5), 1 < i,j < 2, stands for the stress tensor field and div denotes the divergence
operator of tensor valued functions. The notation e(v) = (Vv+Vv')/2 represents the linearized
strain tensor field and A is the fourth order symmetric elasticity tensor having the usual uniform
ellipticity and boundedness property. For any displacement field v and for any density of surface
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forces o (v)n defined on 0f2, we adopt the following notations:
v=uv,n+unt and o(v)n=o0,(v)n+ o(v)t.
On I' ¢, the three conditions representing unilateral contact are given by:
u, <0, o0,(u) <0, o,(u)u, =0, (2.5)
and the Coulomb friction law is summarized by the following conditions:

up = 0= |ov(u)| < plo,(u)]

2.6
w # 0= oy,(u) = —plon(u) % (20)

The weak variational formulation of (2.1)—(2.6) uses the Hilbert spaces
V= {V € (Hl(Q))2 vV = OonFD}, W, = {Un|rc 1V E V} , W, = {Ut|rc 1V E V} ,

and their topological dual spaces V', W/, W/, endowed with their usual norms. Since ['¢ is a
straight line segment, we have H/?(I'c) C W,, C H'/*(T'¢) (resp. H/*(Tc) € W, € HY*(I'¢))
which implies W/ ¢ H~Y/2(I'c) (resp. W/ € H~'/%(I'¢)). Classically, H'/>(T¢) is the space of
the restrictions on I'¢ of traces on 992 of functions in H'(2), and H~/?(I'¢) is the dual space of
H!/?(T'¢) which is the space of the restrictions on I'c of functions in H'/?(9€2) vanishing outside
['c. We refer to [39] and [1] for a detailed presentation of trace operators and/or trace spaces.

We introduce the following convex cone of multipliers on I'c: M(u\,) = M, x M;(uA,)
where

M, = {VE W' v> OonFC},

and, for any g € M,
Mt(g) = {UE Wt,v —9 < VSQOHFC}7

and the inequality conditions incorporated in the definitions of A/, and M;(g) have to be under-
stood in the dual sense.
We adopt the following notations:

a(u,v) = /J(u) e(v) dSQ, b(v,v) = <1/n,vn>w, w. t <1/t,vt>W, W,
Q o f’

L(v) = /f—de—i—/ g-vdl,
Q I'n

for any u and v in V and v in W/ x W/. In these definitions, the notations - and : represent
the canonical inner products in R? and S, (the space of second order symmetric tensors on R?)
respectively and the notation (., .)y,, v, represents the duality pairing between W, and W/,.
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The mixed formulation of the unilateral contact problem with Coulomb friction (2.1)—(2.6)
consists then in finding u € V and A € M(u)\,,) such that

a(u,v) + b(A,v) = L(v), Vvev,
{ b(v — A,u) <0, Vv = (Un,vp) € M(uAy,).

2.7)

It is easy to see that if (u, \,,, \;) is a solution of (2.7), then \,, = —o,(u) and \; = —oy(u).
The space W, is equipped with the norm

||w||Wn - VEV:vn1££ on o ||V||1’Q’

and a similar holds for ||.||yy,. We write afterwards integral terms instead of duality pairings.

Another classical weak formulation of problem (2.1)—(2.6) is a variational inequality:
find u such that

weK,  a(uv—u)— u/ on(W) (0] = [w)) dT > L(v —u), WeK,  (28)
e

where K denotes the closed convex cone of admissible displacement fields satisfying the noninter-
penetration conditions:
K= {VEV: vng()onf‘c}.

When friction is omitted (1 = 0) then the condition (2.6) simply reduces to oy(u) = 0 and
the frictionless contact problem admits a unique solution according to Stampacchia’s theorem (see
[37]). The existence of a solution to (2.8) has been proved for small friction coefficients in [43]
and the bounds ensuring existence have been improved in [35] and [21]. In [22] existence is stated
when 1 < /3 —4P/(2 — 2P) where 0 < P < 1/2 denotes Poisson’s ratio. In [30, 31], some
multi-solutions of the problem (2.1)—(2.6) are exhibited for triangular or quadrangular domains.
These multiple solutions involve either an infinite set of slipping solutions or two isolated (stick
and separation) configurations. Note that these examples of non-uniqueness involve large friction
coefficients (i.e. 1 > /(1 — P)/P) and tangential displacements with a constant sign on I'c. Ac-
tually, it seems that no multi-solution has been detected for an arbitrary small friction coefficient
in the continuous case, although such a result exists for finite element approximations in [28], but
for a variable geometry. The forthcoming partial uniqueness result is obtained in [46]: it defines
some cases where it is possible to affirm that a solution to the Coulomb friction problem is in fact
the unique solution. More precisely, if a regular solution to the Coulomb friction problem exists
(here the denomination regular means, roughly speaking, that the transition is smooth when the
slip direction changes) and if the friction coefficient is small enough then this solution is the only
one.

We now introduce the space of multipliers M of the functions ¢ defined on I'¢ such that the
following equivalent norm is finite:

§.uellw,

HéHM: sup H 75” t
wewy ||vellw
v #0
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Since T'¢ is assumed to be straight, M contains for any £ > 0 the space H'/2+¢(T') (see [41] for
a complete discussion on the theory of multipliers in a pair of Hilbert spaces).

The partial uniqueness result is given assuming that A\, = p\,§, with £ € M. It is easy to see
that it implies |£| < 1 a.e. on the support of \,. More precisely, this implies that & € Dir;(u;)
a.e. on the support of \,, where Dir,(.) is the subdifferential of the convex map z; — |x;|. This
means that it is possible to assume that £ € Dir;(u;) a.e. on I'c.

Proposition 1. Let u be a solution to Problem (2.8) such that \;y = pA\,§, with & € M, & € Diry(uy)

a.e. onTc and p < (Col|€]|ar) ™" where Cy is independent of . Then u is the unique solution to
Problem (2.8).

Proof. see [46] [

In two space dimensions (d = 2), the case & = 1 corresponds to an homogeneous sliding
direction and the previous result is complementary to the non-uniqueness results obtained in [30,
31].

The multiplier £ has to vary from —1 to 41 each time the sign of the tangential displacement
changes from negative to positive. The set M does not contain any multiplier having a singularity
of the first kind. The tangential displacement of the solution u cannot pass from a negative value
to a positive value and being zero only at a single point of I'c.

3. Discretization with the stabilized Lagrange multiplier method

3.1. Discrete problem

Let V;, C V be a family of finite dimensional vector spaces indexed by A~ > (0 coming from a
regular family 7, (see [11, 13, 15]) of triangulations of the domain ). For T' € 7, let hy be
the diameter of 7" and h = maxrcg, hr. We choose standard continuous and piecewise affine
functions, i.e.:

V, = {Vh € (C())*: Vi € (P(T))* VT € Ty, vi, = 0 on I‘D}.

Next, let be given X, ..., X,y some distinct points lying in I« (note that we do not suppose that these
nodes coincide with some nodes of the triangulation 7;). These nodes form a monodimensional
family of meshes of I' denoted Ty and we set H = maxo<;<n—1 |Xi+1 — X;|. In order to express
the contact constraints by using Lagrange multipliers on the contact zone, we have to introduce
a finite dimensional space Wy approximating W’. There are two elementary possible choices of
W . We can set either

Won = {,UH € L*(T¢) : HHy ol € Po(Jxs, %i41[), V0 < i < N — 1} :
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or
Wig = {,uH e C(T¢): HH il € Py (]xi, %i1[), V0 < i < N — 1} '

The choice of the space W allows us to define the following closed convex cones:
MHn:{yHEWH: Z/HZO}
and, for g € Mpy,:
Muy(g) = {VH eWg: vyl <y }

The discrete problem is to find u, € Vj, and Ay = (Agp, Agr) € My (pdgn) = My, X
My (pAgy) such that

(

a(up, vp) + b(Ag,vy) + /7(—)\1{” — on(up))o,(vy)dl

|Ne]
—|—/"}/<—>\Ht — O't(uh))O't(Vh)dF = L(Vh), Vvh c Vh,
Te
3.1
b(VH — >\H7 llh) + /’Y(VHn — AHn)(_)\Hn — O'n(llh))dF
Te
T /wm ) (A — o (W))AD <0, (Vg vir) € Mp(darn),
\ I'c

where v is defined constant on each element 7" as v = yyhp where vy, > 0 is independent of .

Remark 2. The particularity of (3.1) is the presence of stabilization term involving .

Remark 3. When v=0, using a fixed point argument, [17] states the existence of a solution and
the uniqueness when ju < C(h) (C'(h) ~ h2).

The method is consistent in the sense that Ay, and —o, (1) (resp. Ag; and —o;(uy,)) are both
some approximations of \,, = —o,(u) (resp. \; = —o(u)) and the additional stabilization term
is vanishing for the solution to the continuous problem. Of course this stabilization term modifies
the discrete solution. In fact, it reinforces the correspondence between Ay, and —o,(uy,) (resp.
)\Ht and —at(uh)).

3.2. Existence and uniqueness of the solution

Proposition 4. For any positive . and for o small enough, problem (3.1) admits at least a solution.
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Proof. Let 1 > 0 be given. We introduce the problem of friction P(gy,) with a given thres-
hold pgy, and gy, € Mpy,. It consists of finding u, € V;, and Ay € My (ugnn) = My, X

My (1ngmy) satisfying:

(

a(uh,vh) + b()\H,Vh) + /7(_)\Hn — O'n(llh))O'n(Vh)dF

le

n / (=M — o) (va)dT = L(vi), Vv € Vi

P(gmn) fe (3.2)
bwi — Amouy) + / (Ut — Attn) (—Agn — 0 (y))dT
|Ne]
+/’Y(VHt — M) (= A — o(uy,))dl <0, Vvg € My (pgmn)-
\ T'e

Problem (3.2) is equivalent of finding a saddle-point (up, Agpn, Age) = (up, Ag) € Vp x
My (pgmyn) verifying

L(up,vy) < Ly(up, Ag) < Ly(Vi, An), Vv, € Vi, Yoy € My (1gmm),

where

1 1 1
(Vi va) = 2a(Va, vi)— L(va) b, vi)— - /fy(VHn—i—an(vh))QdF—— / (Viti+ou(va))dT
2 2 Jr. 2 Jr,
Let F be an edge (of a triangle) on ' and let T € 7}, be the element containing . Note that
we can suppose without loss of generality that ['- is a straight line segment parallel to the z—axis
and we write v = (v, v,). Consequently we deduce, for any v, € V}, :

|E|1/2

|T|—1/2H0yy(Vh)Ho,T

lon(vi)llog = oy (va)llos =
—1/2 —1/2
~ Pl (vi)llor ~ hi oy, (vi)llor

Let hr,, be the function equal to x which is independent of y. By summation on all the edges
Yo
E CT'c we get

1/2
Ihr oV l5r < Clloy (va)llia < Clivall o (3.3)

We have the same inequality with o,(vy,). Hence, from Korn inequality and (3.3), when 7y is small
enough, there exists C' > 0 such that for any v;, € Vy:

a(Va, va) — /ny(an(vh))QdF _ /ny(at(vh))2d1“ > Clvill o (3.4)

By using classical arguments on saddle-point problems as Haslinger, Hlavd¢ek and Necas ([26],
p-338), we deduce that there exists such a saddle-point. Indeed, the existence of a solution to
problem (3.2) when 7, is small enough follows from the fact that
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e V, and My (1gpy,) are two nonempty closed convex sets,
e L.(.,.)is continuous on V;, x W2,

o L. (vp,.) (resp. L,(.,vp)) is strictly concave (resp. strictly convex) for any v, € V, (resp.
forany vy € My (ugun)),

e by taking vy = 0 and by (3.4) with 7, small enough, we obtain

C
Ly(vh;0) = Zlvallia = L1y [vallig

which tends to infinity when ||v||, o — 00. So limy, cv, |vall.a—o0 £y (Vh, 0) = 400

[ ChOOSing Vp = 0 leads to hmVHEMH(Man),||’Yl/2VH||0,F04’00 ‘CV(O? I/H) = —%/’yl/%_]ndr
T'e
— %/W/%Itdf = —00.
I'c

The strict convexity of af(.,.) implies that the first argument uy, is unique.
Besides, suppose that the second argument is not unique. The inequality in (3.2) allow us to write
by choosing vy, = A%, and vy = A%,

/ (X2 — Al ) dT + / V(N2 — o) (—Abgn — 0 (up) )T
Te

|Ne]

T / (X2, — Alyy)une dT + / V(N2 — ) (=ML, — oy (wy))dT < 0
Te

|Ne]
and by choosing vy, = A\, and vy, = AL,
[ O = X 4+ (3N = X (=X~ ()T
I'c ING}

[ = Nune d 3Ny = N (=N = o(w))ar <0
Te

el

By addition we obtain —[|[y*/2(A},, — A3 r, — VY2 (Mg — A4 [I3.r, = 0 and we come to
the conclusion that AL, = X%, AL = )\%,. Consequently, the second argument Ay is unique
and (3.2) admits a unique solution. The next definition is a straightforward consequence of the
definition of problems (3.1) and (3.2).

Definition 1. The solutions of Coulomb’s discrete frictional contact problem (3.1) are the solutions
of P(Amy) where \p, is a fixed point of ©y defined as follows:

Sy My, — Mpuy,

where (uy,, Apy) is the solution of P(gpn)-
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Continuation of the proof: To establish existence of a fixed point of ¢, we use Brouwer’s fixed

point theorem.
Step 1. We prove that the mapping @ is continuous.

Let (Wp, Agn, Arr¢) and (T, A, Ae) be the solutions of (P(gg,,)) and (P(Gw,)) respectively.

On the one hand, we get
12N = ) = [N 0 = 2 st KD+ [T
o o o
By using (3.2) and vy = Ay, we obtain V vy, € My,

/ (it — Attt dT + / Wit — M) (= st — o (w))dT < 0
r

c e

e

e e Pe

and

/ A dl < /@—uHﬂ)u—mdm /an—man(u—h)dm /anA—mdr.
Te

NG} Te |Ne]

Taking vy, = Agyp in (3.5) and v, = Mgy, in (3.6) and (3.3) implies:

||71/2()\Hn _ /\_Hn)“g,l—‘c < /(/\Hn — Aign )Upp dT + /’Y(/\_Hn — Mg )on(uy)dl
r

c I'c
+ / O — Ao )i dT” + / Y Ovin — N )orm (T} dT
T'c |Ne]
< 72O = Aa)loreo et (i — ) llore

1/2),.1/2

(3.5)

(3.6)

—i—H”yl/z()\Hn — Xim)lloreo [pg (on(un) — on (W) [lore

AN

1/2‘

V2 = A)lloxreyo " lan = Wallve

HIVY2 Nt — M) lorero’lun — Tallio
Hence, we get a first estimate
172N = Xe)llore S (0 47 ) un — Tl

On the other hand, we have from (3.2) Vv, € Vy,

a(up, vp) + / AHnUhn dI' + /7(—/\1% — on(up))on(vy)dl
T'c INe;
+/ Amtvpe dI' + /7(—>\Ht —or(up))or(va)dl = L(vy)
|Ne]

|Ne]
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and

a(ay, vi) + /

Fe

Notmvm dT + / (=N — () (vi)dT

NG}

+ / Nrreone dT + / (= Naze — (@) (va)dD = L(vy) (3.9)
o]

|Ne]
Choosing v;, = u; — uy, in (3.8) and v, = Uy, — uy, in (3.9) implies by addition:

a(up, — 0,0, — @) = /

NG}

vt — Ayt (g — 705 T + / (vare — Auae) (une — ) dT

NG}

+ /w_ﬂn — st — (1) + 0 () ) (i — )T
IV}

—1—/7(/\_Ht — A — o(uy) + oy(y)) o (@, — uy)dl (3.10)

e
Let us notice that the inequality in (3.2) is obviously equivalent to the two following conditions:

/ (it — At )it dT + / (At — () it — Asp)dD <0, Y € My i3.11)
I

c e}
/(VHt — Amre)upe dI + /7(_/\Ht —o(un))(vme — Am)dl' <0,
T'e IV}
Yo € Myy(jgin). (3.12)

According to the definition of My, we can choose vy, = 0 and vy, = 2y, in (3.11) which
gives Yy, € My,

/)\Hnu;m dF+/7(—)\Hn—an(uh)))\HndF = 0 and /I/Hnu;m dF+/7(—)\Hn—0n(uh))l/HndF <0,

T'c T'c e I'e

from which we deduce that

—/ AgnUpy AL+ /’y)\Hnan(uh)dF = —/’y)\%mdl“,
T'e el

NG}

/ Nortim, dU — /vmanmh)drg /w—mﬂndr.
T'e

Ie Pe

Similarly we have

_ / o dU + /w—manm—h)dr . /w—fm%r
el

e INe;

/ Nl dT” — / gt (T T < / AT
Te

I'e o]
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Denoting by « the ellipticity constant of the bilinear form a(_, .), (3.10) becomes
ol — W2, < /mn 0T 42 /vA_HnAHndr - [ar
e e
+/70n uy, — u,)?dl + /(/\_Ht— Amt) (Une — Upe) dT°
r

C

+/F +— Nt — O't(uh) + Ut(uh))gt(u_h _ uh)dr

Ot
_ / (Vi — Az 2T+ ollB 2o, — ) |2, + /(A_m—AHtxuht—u—m) ar
T'c T'c

T / (Ve — Aste — 0o(un) + 02(T5)) (W5 — up)dl
el

IA

Crollun — Wl o + / (hatr — Aure) (e — T7) dT
T

C

T / (Ve — Aste — 04(un) + 02(5))o (W5 — up)dl
el

Moreover from (3.12), (3.3), Yy € Mu(pgmy,) and Vg, € My (ugmm):

/ (Nare = Aage) (e — ) T + / (e = At — o(un) + 02(0) )0 (67 — )T

I'c N6}
/ Naretune T + / Aot T — / Ot + oy(wy) )T
T'o T

/ Mty + o, (0) )dD + 2/7)\_Ht>\thF + /”yat( u;, — uy)%dl
I'c I'c

/ meupe AT + / Aoy (uy)dl — /)\_Htu_m dl’ + / YA w0y (U5)dD
T'c T'c e}

/ eupe AT+ / Ay AT — / YAz (A + o (uy))dl
T To To

st (Nars + o (&) T + 2 / Rl + |20 (up — )2

T'e

/ VHtUnt dF+/ VHt )\Ht + o0y Uh))dr — /’y)\?ﬂdl—‘
I'c Y]

—
Htuht dl' + /’YVHt )\Ht + o (ay))dl — /’Y)\Ht dar
Pe
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< - / Ve (e — Yty — o)) — /7@ s — o () )T

el T'e

+ / Mt (Ut — YA me — yor(0g,) )dT + / Aire(une — YA — yor(uy,))dl

T'c e
—/’V()\_Ht— Ae)*dl + Cyollun — Tlff o (3.14)
e

To evaluate the latter inequality, let us first introduce the matrices My = (m1;;)1<i j<p, Mo =

mly; = [¢ip;dl’;, m2;; = [ @ip;dl, m3;; = [@ix;dl
T'c I'c e

where ¢; and ; are the basis functions on Vh\rc .n and 1); are the basis functions on Wy.

Let Ur, Ur, AL Ar, Y7, 370, Gy, Gy denote the vectors of components the element values of
Uty Uhty Nt At 0c(Uy), 0¢(Wy), gan and Gr, respectively. From the definition of My (1gmy),
we get VIV € RP such that |V;| < pu(Gn)i, 1 <i<p

- / Ve (i — s — 70 (1)) dT

= —/Z v (@) 6 () uni()d; — > YAy — > vou(wy)(2)x;)dD
Pg=1 j=1 j=1

Jj=1

- _ Z Ni((MyUp); — v(MaAp); — v(M3X7);).

=1

It is easy to construct a vector N minimizing the sum : if (M,Ur); — y(MaAr); — v(M3X7); > 0,
we choose N; = p(Gy); and if (M1Ur); —v(MaA7); —y(M3%Xr); < 0, we choose N; = —u(Gy);
and it yields the following bound:

_/VHt(uht — YAme — Yo (uy))dl = — Z (G )i| (M Ur); — y(MaAr); — y(MsXr);].

Te

A similar expression can be obtained when integrating the term — | Tz (n; — YAz — you () )dT .
Te
Besides from the definition of My, (pgmy), we get:

/)\Ht(u_ht — YAt — o (W))dl = Y (Ar)i(MyTr); — y(MayAr)i — v(M;Er);)

Tc i=1

> IAD)ll(MTr); = y(MaAr); — v(MsSr)i

i=1

Z (G )il (M Uz); — y(MoAr); — y(MsSr)i|

IN

IN
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A similar expression can be obtained when integrating the term )\_Ht(uht — YAme — yoy(uy))dl.
r
Finally, (3.14) becomes with the Holder inequality: ¢

/ (e = Auze) (une — ) dT + /v(A_Ht Nt — ou(un) + 02 (55)) oo (@ — wp)dT

I Z(GN — Gn)il|(MyUr)i = v(MaAg); — y(MsErp)i| = [(MyUr)i — v(MaAr); — y(Ms¥r),)

Collun — W2 — / (Ve = A2

el

N

1w (G = GN)il(MUr); = v(MaAr); — v(MsSr); — (MyUr)s + 1(MaAr); +5(MsEr)

i=1

Cvollun — Wil / (Vi — Agge) 2T

le

#(Z(GN _G_N)12> (( (M (Ur _U_T>)7,2) + (Z(VMQ(AT _A_T))22>

i=1

AN

=

NE

A

p 2
+ (Z('VMS(ZT - E_T)ﬁ) ) + Collu, — w1 — /'V(A_Ht — Amp)?dl

i=1 T'c

AN

Gy — T ller(1Ur — Trllzeass + Az — Arllgeas + 1150 — 57 lzras)
Oollun — 2 — / (Ve = Agao) 2.

|Ne]

The notation ||.||g» and ||.||re az, represent norms on RP. As a consequence, there exist constants
depending on h such that:

/ (Ve = o) (une — ) T + / (hats = Aate — 2 + o (65))or (65 — wp)dT

Pe T'e

A

Crollun — 2 — / (Ve — Az 2T

ro
+uCr (M) IV (grm — Grm)lo,re 1une — Tnillore
+uCo(h)Yollv"* (gn — Gan) llore 17> (e — Aae) llo.xe
+1Cs(h)Yol17 2 (10 — Tiim) o I (2 (wn) — 02 (W) [lo.re
Collan — Wl o — 172 (At = a8 re, + #Ca(h) (1 + %) 17"*(grm — T o lun — W10

+1Ce(h)yolly* (grn — Gaa) llore 17" Nare = Arro)llo.re

N

where the trace theorem and (3.3) have been used.
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Furthermore, by using Young’s inequality we have for any § > 0:

/ (harr = i) (e — T07) T + / (it = At — oo(un) + 03 (85))or (W — wp) T

T'c e}
S Cyllun =Wl o = 172 = Aa) G re + B2 Cs (W)Y (gan — Gim)[5.r
+%|!71/2(Am = Au)[5.re + B Co(R) (1 +750)* 172 (91m — Grm) 500 + %Huh ~miq
S Cyollun = WwllT g + 8P Cs () IV (grm — Fm) 5 1
+8uCo(h) (1 +70)* 17" (92rn — Taa) [5.r + %Huh - Wi (3.15)
From (3.15), (3.13) becomes:
[up —Wllio S p VA 70);106—(7};)7? 1) 17"*(9#n — Giin)llo,re (3.16)

Combining (3.16) and (3.7) implies that

— . 2Co(h) 1 1205 (h)
1/2 B < 1/2 172,/ (1 +7)2Cy Y005
H7 (>\Hn )‘HTL)HO,FC ~ M(70 + % ) m

19 % (grn — Gam)llo.r3:17)

Hence ® 4 is continuous.
Step 2. Let (up, Agn, Age) be the solution of (P(gy,,)). Taking v, = uy, in (3.2) gives
a(up,up) + / AHnUpp dI' + /7(—>\Hn — on(up))on(uy)dl
Tc Te

+ /F Aot T + /fy(—)\Ht—at(uh))at(uh)dF ~ I(uy).

e
According to
/)\Hnuhn dl’ + /’y(—AHn — oy (up))Agndl =0

o o
and
/)\Htuht dl’ -+ /’}/(—AHt — O't(Uh)))\thF 2 O,
o o
we deduce
o) + [ T = [ra, (w0 [ dE = [y < L)
o o o o

From (3.4) and the continuity of L(.):

Cllwnll o < a(un, up) / o (wy)?dT / You(w)?dT < L(up) < C'lun

Fe |Ne]
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So, we get
Cl
E.

[unle <

In other respects

IV Xl r

INe; Te INe;

—1/2 1/2 1/2
< Y ool wllie + 17 A mallorere Nl on(wn) lore
—1/2 1/2
< 2 A mmllorero llunllne + 1172 Ammllo.reo’ 1unllo
That implies
1/2 ~1/2 1/2 —1/2 1/2,C"
||’Y / )‘Hn”O,Fc 5 (70 + % )HuhHl,Q 5 (70 + Y% )6
Finally

||71/2‘I)H(9Hn)| 0.Tc <1, Varn € M,

This boundedness of @ together with the continuity of @5 proves that there exists at least a solu-
tion of Coulomb’s discrete frictional contact problem according to Brouwer’s fixed point theorem.
]

Proposition 5. When 1 and ~q are small enough, problem (3.1) admits a unique solution.

Proof. From (3.17), we obtain a mesh size dependent uniqueness result when
1/2 —172,V (1 +7)2Cs(h) +15C5(h)

Culn™ + Y ——

1— 2’)/0

when p and 7y, are small enough. [

< 1. This result means that uniqueness holds

Remark 6. When ;1 = 0, there is existence and uniqueness of the solution if 7y is small enough.

4. Conclusion

We adapt the Barbosa-Hughes stabilization technique to the nonlinear small strain elastostatics
problem with frictional contact. We have obtained a result of existence and uniqueness for the
frictional contact problem in elasticity. Afterwards, we can search the theoretical error estimates
for the Coulomb friction model.

The characteristic of the Barbosa-Hughes stabilization method is to circumvent the Babuska-
Brezzi inf-sup condition. The advantages of the stabilization method can be exploited whenever the
Babuska-Brezzi inf-sup condition is difficult or impossible to obtain. Therefore we want to adapt
this technique to the so-called eXtended Finite Element Method for crack problems (see [42]). In
[40], we combine the XFEM approach together with the Barbosa-Hughes stabilized formulation
following the ideas of [27].
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