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Abstract Let M be a closed, orientable, irreducible, non-simply connected 3-
manifold. We prove that if M admits a sequence of Riemannian metrics which
volume-collapses and whose sectional curvature is locally controlled, then M

is a graph manifold. This is the last step in Perelman’s proof of Thurston’s
Geometrisation Conjecture.
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1 Introduction

Thurston’s Geometrisation Conjecture states that any closed, orientable, ir-
reducible 3-dimensional manifold M is hyperbolic, Seifert fibred, or con-
tains an incompressible torus. This conjecture has been proved recently by
G. Perelman [31–33] (see also [6, 23, 26]) using R. Hamilton’s Ricci flow. In
this paper, we shall be concerned with the case where π1M is nontrivial.

The last step of Perelman’s proof in this case relies on a “collapsing theo-
rem” which is independent of the Ricci flow part. This result is stated with-
out proof as Theorem 7.4 in [33]. A version of this theorem for closed 3-
manifolds is given in the appendix of the paper [36] by Shioya and Yamaguchi
using deep results of Alexandrov space theory, including Perelman’s stability
theorem [30] (see also the paper [21] by V. Kapovitch) and a fibration theo-
rem for Alexandrov spaces, proved by Yamaguchi [39]. A different approach
has been proposed by Morgan and Tian [27] and Cao and Ge [5]. Yet another
proof has been announced by Kleiner and Lott [22].

Our main result, Theorem 1.1 below, is the special case of Theorem 7.4
of [33] where the manifold M is assumed to be closed, irreducible and not
simply-connected. This is sufficient to complete the proof of the Geometrisa-
tion Conjecture since the case where M is simply-connected can be proved by
the so-called extinction argument, which does not use the collapsing result.
The proof of Theorem 1.1 combines arguments from Riemannian geometry,
algebraic topology, and 3-manifold theory. It uses Thurston’s hyperbolisation
theorem for Haken manifolds [25, 28, 29, 38], but avoids the stability and
fibration theorems for Alexandrov spaces (which are not used by Perelman in
the simply connected case).

In the next two definitions, M is a 3-manifold.

Definition Let g be a Riemannian metric on M and ε > 0 be a real number.
A point x ∈ M is ε-thin with respect to g if there exists 0 < ρ ≤ 1 such that
on the ball B(x,ρ) the sectional curvature is greater than or equal to −ρ−2,
and the volume of this ball is less than ε ρ3.

A sequence of Riemannian metrics gn on M is said to collapse if there
exists a sequence εn → 0 such that, for every n, every point of M is εn-thin
with respect to gn.

The following is a technical condition which guarantees the regularity
of certain limits of Riemannian manifolds. The Riemann tensor is denoted
by Rm.

Definition Let {gn} be a sequence of Riemannian metrics on M . We say that
{gn} has locally controlled curvature in the sense of Perelman if it has the
following property: for all ε > 0 there exist r̄(ε) > 0, K0(ε) > 0, K1(ε) > 0,
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such that for n large enough, for each 0 < r ≤ r̄(ε), if x ∈ (M,gn) satisfies
vol(B(x, r))/r3 ≥ ε, and if the sectional curvature on B(x, r) is greater than
or equal to −r−2, then |Rm(x)| < K0r

−2 and |∇ Rm(x)| < K1r
−3.

Theorem 1.1 Let M be a closed, orientable, irreducible, non-simply con-
nected 3-manifold. If M admits a sequence of Riemannian metrics that col-
lapses and has locally controlled curvature in the sense of Perelman, then M

is a graph manifold.

Sequences of metrics satisfying the hypotheses of Theorem 1.1 are pro-
vided by Perelman’s construction of Ricci flow with surgery and its study
of the long time behaviour of the Ricci flow with surgery (see Theorem 7.4
of [33]).

Before ending this introduction, we would like to mention the book [1],
which presents a proof of the Geometrisation Conjecture that uses Perelman’s
work and the arguments of the present paper.

2 Sketch of proof of Theorem 1.1

For classical 3-manifold theory, we use [20], [17] as main references, as well
as [3] for post-Thurston results. To avoid any confusion between metric balls
and topological balls, we shall call 3-ball a 3-manifold homeomorphic to the
closed unit ball in R3. By contrast, our metric balls B(x, r) are open.

Throughout the paper we work in the smooth category. Recall that a Haken
manifold is a connected, compact, orientable, irreducible 3-manifold which
contains an incompressible surface. Any connected, compact, orientable, ir-
reducible 3-manifold whose boundary is not empty is Haken (its boundary
may be compressible). It follows from deep work of W. Thurston and earlier
work of Jaco-Shalen and Johannson that every Haken manifold has a canon-
ical decomposition along incompressible tori into Seifert fibred and hyper-
bolic pieces (see e.g. the references given in [3]). We call this decomposition
the geometric decomposition of the Haken manifold M . Moreover, a Haken
manifold is a graph manifold if and only if all pieces in its geometric decom-
position are Seifert fibred.

Another key notion used in the proof of Theorem 1.1 is the simplicial vol-
ume, sometimes called Gromov norm, introduced by M. Gromov in [13]. Our
proof relies on an additivity result for the simplicial volume under gluing
along incompressible tori (see [13, 24, 37]) which implies that the simpli-
cial volume of a 3-manifold admitting a geometric decomposition is propor-
tional to the sum of the volumes of the hyperbolic pieces. In particular, a
Haken manifold has zero simplicial volume if and only if it is a graph mani-
fold.
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We also use in an essential way Gromov’s vanishing theorem [13, 18, 19]:
if a n-dimensional closed manifold M can be covered by open sets Ui such
that the covering has dimension less than n and the image of the canonical
homomorphism π1(Ui) → π1(M) is amenable for all i, then the simplicial
volume of M vanishes. (Recall that the dimension of a finite covering Ui is
the dimension of its nerve, i.e. the minimal d such that every point in M

belongs to at most d + 1 open subsets of the covering.)
Below we outline the proof of Theorem 1.1.
Before discussing the proof proper, we give an example of a covering ar-

gument which can be used to deduce topological information on M (namely
that M has zero simplicial volume) from the collapsing hypothesis.

For n large enough, thanks to the local control on the curvature, each point
has a neighbourhood in (M,gn) which is close to a metric ball in some man-
ifold of nonnegative sectional curvature (Proposition 3.1), and whose vol-
ume is small compared to the cube of the radius (by the collapsing hypoth-
esis). These metric balls will be called local models throughout the paper
and by extension it will also refer to the neighbourhoods which are homeo-
morphic to these balls. From the classification of manifolds with nonnegative
sectional curvature, we deduce that these local models have virtually abelian,
hence amenable fundamental groups. A technique introduced by Gromov [13]
yields a covering of M , whose dimension is at most 2, by open sets contained
in these neighbourhoods. As a consequence, Gromov’s vanishing theorem
implies that the simplicial volume of M vanishes.

The previous scheme, together with the additivity of the simplicial volume
under gluing along incompressible tori, shows that a manifold which admits
a geometric decomposition and a sequence of collapsing metrics is a graph
manifold. This is however insufficient to prove Theorem 1.1 since we do not
assume that M admits a geometric decomposition! Hence we need a trick
similar to those of [4] and [2], which we now explain.

In the first step, Proposition 4.1, we find a local model U such that all
connected components of M �U are Haken. This requirement is equivalent to
irreducibility of each component of M �U , because each component of M �

U has nonempty boundary. Since M is irreducible, it suffices to show that U

is not contained in a 3-ball. This is in particular the case if U is homotopically
nontrivial, i.e. the homomorphism π1(U) → π1(M) has nontrivial image.

The proof of the existence of a homotopically nontrivial local model U

is done by contradiction: assuming that all local models are homotopically
trivial, we construct a covering of M of dimension less than or equal to 2 by
homotopically trivial open sets (Assertion 4.4). By a result of J.C. Gómez-
Larrañaga and F. González-Acuña [11], corresponding to Corollary 4.3 here,
a closed, irreducible 3-manifold admitting such a covering must have trivial
fundamental group. This is where we use the hypothesis that M is not simply
connected.
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The second step (Section 4.2) is again a covering argument, but done rel-
atively to some fixed homotopically nontrivial local model U . It shows that
any manifold obtained by Dehn filling on Y := M � U has a covering of di-
mension less than or equal to 2 by virtually abelian open sets, and therefore
has vanishing simplicial volume. We conclude using Proposition 4.15, which
states that if Y is a Haken manifold with boundary a collection of tori and
such that the simplicial volume of every Dehn filling on Y vanishes, then Y

is a graph manifold.1 This finishes the sketch of proof of Theorem 1.1.

3 Local structure

Throughout the paper, we consider a 3-manifold M and a sequence of Rie-
mannian metrics gn satisfying the hypotheses of Theorem 1.1. For the sake
of simplicity, in the sequel we use the notation Mn := (M,gn). It is implicit
that any quantity depending on a point x ∈ Mn is computed with respect to
the metric gn and thus depends also on n.

By hypothesis, there exists a sequence εn → 0 such that Mn is εn-thin. For
all x ∈ Mn, we choose a radius 0 < ρ(x) ≤ 1, such that on the ball B(x,ρ(x))

the curvature is not smaller than −ρ(x)−2 and the volume of this ball is
greater than εnρ(x)3.

Recall that a diffeomorphism f : X → Y is (1 + δ)-bi-Lipschitz if f and
f −1 are (1+ δ)-Lipschitz. Two Riemannian manifolds X and Y are said to be
δ-close if there exists a (1 + δ)-bi-Lipschitz diffeomorphism between them.

In the following proposition we use Cheeger-Gromoll’s soul theorem [8].

Proposition 3.1 For all D > 1 there exists n0(D) such that if n > n0(D),
then we have the following alternative:

(a) Either Mn is 1
D

-close to some closed nonnegatively curved 3-manifold,
or

(b) for all x ∈ Mn there exists a radius ν(x) ∈ (0, ρ(x)) and a complete non-
compact Riemannian 3-manifold Xx , with nonnegative sectional curva-
ture and soul Sx , such that the following properties are satisfied:
(1) B(x, ν(x)) is 1

D
-close to a metric ball in Xx .

(2) There exists a map fx : B(x, ν(x)) → Xx which is a (1 + 1
D

)-bi-
Lipschitz diffeomorphism onto its image and such that

max{d(fx(x), Sx),diamSx} ≤ ν(x)

D
.

1As already mentioned in [2, 4], Proposition 4.15 is a consequence of the geometrisation of
Haken manifolds, additivity of the simplicial volume mentioned above, and Thurston’s hyper-
bolic Dehn filling theorem.
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(3) vol(B(x, ν(x))) ≤ 1
D

ν3(x).

Remark Since ν(x) < ρ(x), the sectional curvature on B(x, ν(x)) is greater
than or equal to − 1

ρ2(x)
, which is in turn bounded below by − 1

ν2(x)
. We shall

say, by extension, that the metric balls B(x, ν(x)) are the local models.

Remark The only closed, orientable, irreducible 3-manifold containing a pro-
jective plane is RP 3, which is a graph manifold. Therefore if the manifold
M is not homeomorphic to RP 3, then the soul Sx can be homeomorphic to
a point, a circle, a 2-sphere, a 2-torus or a Klein bottle. In this case, the ball
B(x, ν(x)) is homeomorphic to R3, S1 ×R2, S2 ×R, T 2 ×R or to the twisted
R-bundle on the Klein bottle respectively.

Before starting the proof of this proposition, we prove the following lemma
and its consequence:

Lemma 3.2 There exists a small universal constant C > 0 such that for all
ε > 0, for all x ∈ Mn, and for all r > 0, if the ball B(x, r) has volume ≥ ε r3

and curvature ≥ −r−2, then for all y ∈ B(x, 1
3r) and all 0 < r ′ < 2

3r , the ball
B(y, r ′) has volume ≥ C · ε(r ′)3 and curvature ≥ −(r ′)−2.

We use the function v−κ2(r) to denote the volume of the ball of radius r in
the 3-dimensional hyperbolic space of curvature −κ2. Notice that v−κ2(r) =
κ−3v−1(κ r).

Proof The lower bound on the curvature is a consequence of the monotonicity
of the function −r−2 with respect to r . In order to estimate from below the
volume we apply Bishop-Gromov’s inequality twice (cf. [35, Lemma 9.1.6]).
First to the ball around y, increasing the radius r ′ to 2

3r :

vol(B(y, r ′)) ≥ vol

(
B

(
y,

2

3
r

))
v−r−2(r ′)
v−r−2(2

3r)
.

Using that v−r−2(r ′) = r3v−1(
r ′
r
) ≥ r3( r ′

r
)3C1 for C1 > 0 uniform, v−r−2(2

3r)

= r3v−1(
2
3), and that the ball B(y, 2

3r) contains B(x, 1
3r), we have

vol(B(y, r ′)) ≥ vol

(
B

(
x,

1

3
r

))(
r ′

r

)3

C2.

Applying again the Bishop-Gromov inequality:

vol

(
B

(
x,

1

3
r

))
≥ vol(B(x, r))

v−r−2(1
3r)

v−r−2(r)
≥ r3ε

v−1(
1
3)

v−1(1)
= r3ε C3.
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Hence vol(B(y, r ′)) ≥ (r ′)3 ε C4. �

We next deduce an “improvement” of the controlled curvature in the sense
of Perelman, in which the conclusion is valid at each point of some metric
ball, not only the centre. The only price to pay is that the constants can be
slightly different.

Corollary 3.3 For all ε > 0 there exist r̄ ′(ε) > 0, K ′
0(ε),K

′
1(ε) such that for

n large enough, if 0 < r ≤ r̄ ′(ε), x ∈ Mn and the ball B(x, r) has volume
≥ ε r3 and sectional curvature ≥ −r−2 then we have for all y ∈ B(x, 1

3r),
|Rm(y)| < K ′

0 r−2 and |∇ Rm(y)| < K ′
1 r−3.

Proof It suffices to apply Lemma 3.2, setting r̄ ′(ε) = r̄(Cε), K ′
0(ε) =

K0(Cε) and K ′
1(ε) = K1(Cε), so that we can apply the controlled curvature

condition on y ∈ B(x, 1
3x). �

Proof of Proposition 3.1 Let us assume that there exist D0 > 1 and, after re-
indexing, a sequence xn ∈ Mn such that neither of the conclusions of Propo-
sition 3.1 holds with D = D0.

Set ε0 := v0(1)
v−1(1)

1
D0

< 1. We shall rescale the metrics using the following
radii:

Definition For x ∈ Mn, define

rad(x) := inf{r > 0 | vol(B(x, r))/r3 ≤ ε0}.

Notice that rad(x) < ∞ because Mn has finite volume, and that rad(x) > 0,
because vol(B(x, δ))/δ3 → 4

3π when δ → 0. We gather in the following
lemma some properties of rad(x) which will be useful for the proof:

Lemma 3.4

(i) For n large enough and x ∈ Mn, one has 0 < rad(x) < ρ(x).
(ii) For x ∈ Mn, one has

vol(B(x, rad(x)))

rad(x)3
= ε0.

(iii) For L > 1, there exists n0(L) such that for n > n0(L) and for x ∈ Mn

we have

L rad(x) ≤ ρ(x).

In particular limn→∞ rad(xn) = limn→∞ rad(xn)
ρ(xn)

= 0.
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Proof Property (i) holds as soon as εn < ε0, since rad is defined as an infi-
mum.

Assertion (ii) is proved by continuity.
We prove (iii). For L > 1, we choose n0(L) so that εn <

ε0
L3 for n > n0(L).

Then, for x ∈ Mn and n ≥ n0(L),

vol(B(x,
ρ(x)
L

))

(
ρ(x)
L

)3
≤ L3 vol(B(x,ρ(x)))

ρ(x)3
≤ L3εn ≤ ε0.

Hence ρ(x)/L ≥ rad(x). �

Remark For n large enough, from Lemma 3.4 (iii), we have rad(xn) < r̄ ′(ε0),
where r̄ ′(ε0) (independent of n) is the parameter from Corollary 3.3.

Corollary 3.5 There exists a constant C > 0 such that any sequence of points
xn ∈ Mn satisfies

inj(xn)

rad(xn)
≥ C

for n large enough.

Proof Let us first remark that, since rad(xn) < ρ(xn), the sectional curvature
on B(xn, rad(xn)) is ≥ − 1

ρ(xn)2 > − 1
rad(xn)2 . Moreover, as rad(xn) < r̄ ′(ε0),

Corollary 3.3 shows that the curvature on the ball B(xn,
rad(xn)

3 ) is bounded
above by K ′

0(ε0)/ rad(xn)
2. The rescaled ball

1

rad(xn)
B

(
xn,

1

3
rad(xn)

)

has volume ≥ ε0/27 (because vol(B(xn,
1
3 rad(xn))) ≥ ε0(rad(xn)/3)3 by de-

finition of rad(xn)) and absolute value of curvature ≤ K ′
0(ε0).

We can now apply Proposition A.1 of the Appendix with R = 1/3, K =
K ′

0(ε0) and ε = ε0/27 to get a lower bound for the injectivity radius at xn of
the rescaled metric which is independent of n. �

Having proved Lemma 3.4 and its corollary, we continue the proof of
Proposition 3.1. Let us consider the rescaled manifold Mn = 1

rad(xn)
Mn. We

look for a limit of the sequence (Mn, x̄n), where x̄n is the image of xn.
The ball B(x̄n,

ρ(xn)
rad(xn)

) ⊂ Mn has sectional curvature bounded below by

−(
rad(xn)
ρ(xn)

)2, which goes to 0 when n → ∞, as follows from Assertion (iii)
of Lemma 3.4.
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Given L > 1, the ball B(x̄n,3L) is obtained by rescaling the ball
B(xn,3L rad(xn)). Since 3L rad(xn) < ρ(xn), the sectional curvature on
B(xn,3L rad(xn)) is ≥ − 1

ρ(xn)2 ≥ − 1
(3L rad(xn))2 . Moreover, by Lemma 3.4

(ii), we have

vol(B(xn,3L rad(xn)))

(3L rad(xn))3
≥ vol(B(xn, rad(xn)))

rad(xn)3

1

(3L)3
= ε0

(3L)3
.

By applying Corollary 3.3 for n sufficiently large so that we have
3L rad(xn) ≤ r̄ ′( ε0

(3L)3 ), there exist K ′
0 = K ′

0(ε0,L) > 0 and K ′
1 = K ′

1(ε0,L)>

0 independent of rad(xn) such that for each y ∈ B(xn,L rad(xn)), |Rm(y)| <
K ′

0 · (3L rad(xn))
−2 and |∇ Rm(y)| < K ′

1 · (3L rad(xn))
−3. Thus the curva-

ture and its first derivative are uniformly bounded above on any rescaled ball
B(x̄n,L) ⊂ Mn, where the bounds depend only on the radius L > 1 and on
ε0 > 0.

Since the injectivity radius of the basepoint x̄n is bounded below along
the sequence, this upper bound on the curvature allows to use Gromov’s com-
pactness theorem (cf. [12, Chap. 8, Theorem 8.28], [34], [16, Theorem 2.3] or
[10, Theorems 4.1 and 5.10]). It follows that the pointed sequence (Mn, x̄n)

subconverges in the C 2-topology towards a 3-dimensional smooth manifold
(X∞, x∞), with a complete Riemannian metric of class C 2 with nonnegative
sectional curvature. This limit manifold cannot be closed, because that would
contradict the assumption that the conclusion (a) of Proposition 3.1 does not
hold.

Hence X∞ is not compact. By pointed convergence, Assertion (b) (1) of
Proposition 3.1 holds true. Let S be the soul of X∞. Let us choose

ν(xn) := L rad(xn), where L ≥ 2 diam(S ∪ {x∞})D0.

For n large (to be specified later) we set

Xxn := rad(xn)X∞, and Sxn := rad(xn)S.

We then have

diam(Sxn) = rad(xn)diam(S) < ν(xn)/D0.

Let f̄n : B(x̄n,L) → (X∞, x∞) be a map which is a (1 + δn)-bi-Lipschitz
diffeomorphism onto its image and such that d(f̄n(x̄n), x∞) < δn, where δn

is a sequence going to 0. After rescaling, fn : B(xn,L rad(xn)) → Xxn is also
a (1 + δn)-bi-Lipschitz diffeomorphism onto its image. We get:

d(fn(xn), Sxn) = rad(xn) d(f̄n(x̄n), S)

≤ rad(xn)(d(f̄n(x̄n), x̄∞) + d(x̄∞, S))
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≤ rad(xn)δn + ν(xn)

2D0
≤ ν(xn)

D0
.

This proves assertion (b) (2) of Proposition 3.1.
Using the facts that ν(xn) = L rad(xn) < ρ(xn), the curvature on the ball

B(xn, ν(xn)) is ≥ −1/ν(xn)
2, L > 1 and the Bishop-Gromov inequality, we

get:

vol(B(xn, ν(xn)))

v− 1
ν2(xn)

(ν(xn))
≤ vol(B(xn, rad(xn)))

v− 1
ν2(xn)

(rad(xn))
= ε0

rad(xn)
3

v− 1
ν2(xn)

(rad(xn))

= ε0

(
rad(xn)

ν(xn)

)3 1

v−1(
rad(xn)
ν(xn)

)
= ε0

1

L3

1

v−1(
1
L
)
.

Since v−1(
1
L
) ≥ v0(

1
L
) = v0(1) 1

L3 , we find that:

vol(B(xn, ν(xn))) ≤ ε0
1

L3

v−1(1)

v−1(
1
L
)
ν3(xn)

≤ ε0
v−1(1)

v0(1)
ν3(xn) = 1

D0
ν3(xn),

where the last equality comes from the definition of ε0.
Hence we get the contradiction required to conclude the proof of Proposi-

tion 3.1. �

4 Constructions of coverings

We begin by making some reductions for the proof of Theorem 1.1.
If case (a) of Proposition 3.1 occurs for some D, then M is a closed, ori-

entable, irreducible 3-manifold admitting a metric of nonnegative sectional
curvature. By [14, 15], M is spherical or Euclidean, hence a graph manifold.
Therefore we may assume that all manifolds Xx produced by Proposition 3.1
are noncompact.

For the same reasons, since lens spaces are graph manifolds, we can also
assume that M is not homeomorphic to a lens space, and in particular does
not contain a projective plane.

4.1 Existence of a homotopically nontrivial open set

We say that a path-connected subset U ⊂ M is homotopically trivial (in M) if
the image of the homomorphism π1(U) → π1(M) is trivial. More generally,
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we say that a subset U ⊂ M is homotopically trivial if all its path-connected
components have this property.

We recall that the dimension of a finite covering {Ui}i of M is the dimen-
sion of its nerve, hence the dimension plus one equals the maximal number
of Ui ’s containing a given point.

Proposition 4.1 There exists D0 > 1 such that for all D > D0, for every
n ≥ n0(D) (where n0(D) is given by Proposition 3.1), there exists x ∈ Mn

such that the image of π1(B(x, ν(x))) → π1(Mn) is not homotopically trivial,
where ν(x) is also given by Proposition 3.1.

In [11] J.C. Gómez-Larrañaga and F. González-Acuña compute the 1-
dimensional Lusternik-Schnirelmann category of a closed 3-manifold. One
step of their proof gives the following proposition (cf. [11, Proof of Proposi-
tion 2.1]):

Proposition 4.2 Let X be a closed, connected 3-manifold. If X has a cov-
ering of dimension 2 by open subsets which are homotopically trivial in X,
then there is a connected 2-dimensional complex K and a continuous map
f : X → K such that the induced homomorphism f� : π1(X) → π1(K) is an
isomorphism.

Standard homological arguments show the following, cf. [11, §3]:

Corollary 4.3 Let X be a closed, connected, orientable, irreducible 3-
manifold. If X has a covering of dimension 2 by open subsets which are
homotopically trivial in X, then X is simply connected.

Proof Following Proposition 4.2, let f : X → K be a continuous map from
X to a connected 2-dimensional complex K , such that the induced homo-
morphism f� : π1(X) → π1(K) is an isomorphism. Let Z be a K(π1(X),1)

space. Let φ : X → Z be a map from X to Z realising the identity homo-
morphism on π1(X) and let ψ : K → Z be the map from K to Z realis-
ing the isomorphism f −1

� : π1(K) → π1(X). Then φ is homotopic to ψ ◦ f

and the induced homomorphism φ∗ : H3(X;Z) → H3(Z;Z) factors through
ψ∗ : H3(K;Z) → H3(Z;Z). Since H3(K;Z) = {0}, the homomorphism φ∗
must be trivial.

X

f

φ

Z

K

ψ
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If π1(X) is infinite, then X is aspherical and φ∗ : H3(X;Z) = Z →
H3(Z;Z) is an isomorphism, contradicting that it is trivial. Therefore π1(X)

is finite.
If π1(X) is finite of order d > 1, then let X̃ be the universal covering of X.

The covering map p : X̃ → X induces an isomorphism between the homo-
topy groups πk(X̃) and πk(X) for k ≥ 2. Since π2(X) = {0} by irreducibil-
ity and the sphere theorem, π2(X̃) = {0}, and by the Hurewicz theorem, the
canonical homomorphism π3(X̃) → H3(X̃;Z) = Z is an isomorphism. It fol-
lows that the canonical map π3(X) = Z → H3(X;Z) = Z is the multiplica-
tion by the degree d > 1 of the covering p : X̃ → X. It is well known that
one can construct a K(π1(X),1) space Z by adding a 4-cell to X in order to
kill the generator of π3(X) = Z, and adding further cells of dimension ≥ 5 to
kill the higher homotopy groups. Then the inclusion φ : X → Z induces the
identity on π1(X) and a surjection φ∗ : H3(X;Z) = Z → H3(Z;Z) = Z/dZ.
Since φ∗ is trivial, X must be simply connected. �

In the proof of Proposition 4.1 we argue by contradiction using Corol-
lary 4.3 and the fact that π1(M) is not trivial. Namely, with the notation of
Proposition 3.1, let us assume the following:

Assumption A For arbitrarily large D there exists n ≥ n0(D) such that the
image of π1(B(x, ν(x))) → π1(Mn) is trivial for all x ∈ Mn.

Then for all x ∈ Mn we set:

triv(x) := sup

⎧⎨
⎩r

∣∣∣∣∣∣
π1(B(x, r)) → π1(Mn) is trivial and
B(x, r) is contained in B(x′, r ′) with
curvature ≥ − 1

(r ′)2

⎫⎬
⎭ .

Notice that triv(x) ≥ ν(x), by Proposition 3.1.
The proof of Proposition 4.1 follows by contradiction with the following

assertion.

Assertion 4.4 There exists a covering of Mn by open sets U1, . . . , Up such
that:

• Each Ui is contained in some B(xi, triv(xi)). In particular, Ui is homotopi-
cally trivial in M .

• The dimension of this covering is at most 2.

Since M is irreducible and non-simply connected, this contradicts Corol-
lary 4.3, hence Assumption A does not hold.
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To prove Assertion 4.4, we define

r(x) := min

{
1

11
triv(x),1

}
.

Lemma 4.5 For every x ∈ Mn:

(1) B(x,11 r(x)) is contained in some ball B(x′, r ′(x)) with curvature ≥
− 1

(r ′)2 and satisfying r(x) ≤ 1
11 triv(x) ≤ 2

11r ′(x).

(2) ν(x)
11 ≤ r(x), where ν(x) < ρ(x) ≤ 1 is given by Proposition 3.1.

Proof To prove (1) we shall show that the ball B(x, triv(x)) is contained in
another ball B(x′, r ′) with curvature ≥ − 1

(r ′)2 and satisfying r ′ ≥ 1
2 triv(x).

By definition, there exists a sequence of radii rk ↗ triv(x) satisfying
that π1(B(x, rk)) → π1(Mn) is trivial and that B(x, rk) is contained in
some B(x′

k, r
′
k) with curvature ≥ − 1

(r ′
k)

2 . Since π1(Mn) is nontrivial, Mn �⊂
B(x, rk), therefore there is a point yk ∈ Mn such that d(x, yk) = rk . By ap-
plying the triangle inequality to x, yk and x′

k , we get rk ≤ 2r ′
k . Then the claim

follows by taking a partial subsequence so that both x′
k and r ′

k converge, since
we are working in a fixed Mn, that has bounded diameter.

Assertion (2) uses Assumption A and the inequality ν(x) < ρ(x), because
the curvature on B(x,ρ(x)) is ≥ −ρ(x)−2 ≥ −ν(x)−2. �

Lemma 4.6 Let x, y ∈ Mn. If B(x, r(x)) ∩ B(y, r(y)) �= ∅, then

(a) 3/4 ≤ r(x)/r(y) ≤ 4/3;
(b) B(x, r(x)) ⊂ B(y,4r(y)).

Proof To prove (a), we may assume that r(x) ≤ r(y) and that r(x) =
1
11 triv(x) < 1. Since B(x, triv(y) − r(x) − r(y)) ⊂ B(y, triv(y)), we get:

triv(x) ≥ triv(y) − r(x) − r(y),

hence

11 r(x) = triv(x) ≥ 11r(y) − r(x) − r(y) ≥ 9r(y).

Consequently, we have 1 ≥ r(x)/r(y) ≥ 9/11 ≥ 3/4, which shows (a).
Now (b) follows because 2 r(x) + r(y) ≤ (8

3 + 1)r(y) < 4r(y). �

We choose a sequence of points x1, x2, . . . in Mn such that the balls
B(x1,

1
4r(x1)), B(x2,

1
4r(x2)), . . . are pairwise disjoint. Such a sequence is

necessarily finite, since Mn is compact, and Lemma 4.6 implies a positive
local lower bound for the function x �→ r(x). Let us choose a maximal finite
sequence x1, . . . , xp with this property.
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Lemma 4.7 The balls B(x1,
2
3r(x1)), . . . ,B(xp, 2

3r(xp)) cover Mn.

Proof Let x ∈ Mn be an arbitrary point. By maximality, there exists a
point xj such that B(x, 1

4r(x)) ∩ B(xj ,
1
4r(xj )) �= ∅. From Lemma 4.6,

we have r(x) ≤ 4
3r(xj ) and d(x, xj ) ≤ 1

4(r(x) + r(xj )) ≤ 7
12r(xj ), hence

x ∈ B(xj ,
2
3r(xj )). �

Let us define ri := r(xi). For i = 1, . . . , p, we set

Vi := B(xi, ri).

Since ri ≤ 1
11 triv(xi), the Vi are homotopically trivial. The construction of

the open sets Vi and Lemma 4.7 imply the following:

Lemma 4.8 The open sets V1, . . . , Vp cover Mn.

Let K be the simplicial complex that has one vertex for each open set of
the covering {Vi}, and such that n + 1 vertices define an n-simplex of K

iff the intersection of the corresponding n + 1 open sets of the covering is
nonempty. The complex K is called the nerve of the covering {Vi}. To shrink
this covering, we shall start with a map f : Mn → K constructed by means
of a partition of unity, shrink it to the 2-skeleton K(2) and take the pullbacks
of open stars of vertices in K(2). This technique is borrowed from Gromov
[13, §3.4].

The following lemma shows that the dimension of K is bounded above by
a uniform constant.

Lemma 4.9 There exists a universal upper bound N on the number of open
sets Vi which intersect a given Vk .

Proof If Vi ∩ Vk �= ∅, then B(xi, ri) ∩ B(xk, rk) �= ∅ and B(xi, ri) ⊂
B(xk,4rk), by Lemma 4.6 (b). On the other hand, for all i1 �= i2 such
that Vi1 and Vi2 intersect Vk one has d(xi1, xi2) ≥ 1

4(ri1 + ri2) ≥ 3
8rk . Thus

B(xi1,
3

16rk) ∩ B(xi2,
3

16rk) = ∅ and B(xi,
3

16rk) ⊂ B(xk,4rk). This motivates
the following inequalities:

vol(B(xk,4rk))

vol(B(xi,
3
16rk))

≤ vol(B(xi,8rk))

vol(B(xi,
3
16rk))

≤ vol(B(xi,11ri))

vol(B(xi,
ri
8 ))

.

As B(xi,11ri) is included in a ball B(x′, r ′) with curvature ≥ − 1
(r ′)2 by

Lemma 4.5, by the Bishop-Gromov inequality this quotient is bounded above
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by:

v− 1
(r′)2

(11ri)

v− 1
(r′)2

(
ri
8 )

= v−1(
11ri
r ′ )

v−1(
ri

8r ′ )
≤ N.

The existence of a uniform N uses ri
r ′ ≤ 2

11 . This N bounds the number of Vi

that intersect a given Vk . �

Let �p−1 ⊂ Rp denote the standard unit simplex of dimension p − 1. By
using test functions φi supported on the Vi , that are Lipschitz with gradient
≤ 4

ri
, we construct a map:

f = 1∑
i φi

(φ1, . . . , φp): Mn → �p−1 ⊂ Rp.

In particular, the coordinate functions of f are a partition of unity subordi-
nated to (Vi).

We view K as a subcomplex of �p−1, so that the range of f is contained
in K , whose dimension is at most N . We first estimate the Lipschitz constant
of the map f : Mn → K , by choosing the φi ’s.

Lemma 4.10 There exists a uniform L > 0 such that the partition of unity
can be chosen so that the restriction f |Vk

is L
rk

-Lipschitz.

Proof Let τ : [0,1] → [0,1] be an auxiliary function with Lipschitz con-
stant bounded by 4, which vanishes in a neighbourhood of 0 and satisfies
τ |[ 1

3 ,1] ≡ 1. Let us define φk := τ( 1
rk

d(∂Vk, ·)) on Vk and let us extend it triv-

ially on Mn. Then φk is 4
rk

-Lipschitz.

Let x ∈ Vk . The functions φi have Lipschitz constant ≤ 4
3 · 4

rk
on Vk , and

all φi vanish at x except at most N + 1 of them. Since the functions

(y0, . . . , yN) �→ yk∑N
i=0 yi

are Lipschitz on

{
y ∈ RN+1 | y0 ≥ 0, . . . , yN ≥ 0 and

N∑
i=0

yi ≥ 1

}
,

and each x ∈ Mn belongs to some Vk with d(x, ∂Vk) ≥ rk
3 by Lemma 4.7, the

conclusion follows. �
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We shall now inductively deform f by homotopy into the 3-skeleton K(3),
while keeping the local Lipschitz constant under control on each Vk .

We recall that the open star of a vertex of K is the union of the interiors of
all simplices whose closures contain the given vertex.

Lemma 4.11 For all d ≥ 4 and L > 0 there exists L′ = L′(d,L) > 0 such
that the following assertion holds true:

Let g : Mn → K(d) be a map that is L
rk

-Lipschitz on Vk and such that the

pull-back of the open star of the vertex vVk
∈ K(0) is contained in Vk . Then g

is homotopic rel K(d−1) to a map g̃ : Mn → K(d−1) which is L′
rk

-Lipschitz on
Vk and so that the pull-back of the open star of vVk

is still contained in Vk .

Proof It suffices to find a constant θ = θ(d,L) > 0 such that each d-simplex
σ ⊂ K contains a point z whose distance to ∂σ and to the image of g is ≥ θ . In
order to push g into the (d − 1)-skeleton, we compose it on σ with the radial
projection from z. This increases the Lipschitz constant by a multiplicative
factor bounded above by a function of θ(d,L), and decreases the inverse
image of the open stars of the vertices.

If θ does not satisfy the required property for some d-simplex σ , then
one can tile an open subset of σ � (θ − neighbourhood of ∂σ) with at least
C′(d) · 1

θd cubes of length 2θ , and each cube contains a point of image(g)

in its interior. By choosing one point of image(g) inside each cube whose
tiling coordinates are even, we find a subset of cardinality at least C(d) · 1

θd of
points in image(g)∩ int(σ ) whose pairwise distances are ≥ θ . Let A ⊂ Mn be
a set containing exactly one point of the inverse image of each of these points.
By hypothesis, A ⊂ Vk = B(xk, rk) for any k corresponding to a vertex of σ .
As g is L

rk
-Lipschitz on Vk , the distance between any two distinct points in A

is bounded below by rk
L

· θ . Hence to bound the cardinality of A, we use the
following inequality for y ∈ A:

vol(B(xk, rk)

vol(B(y,
rkθ
2L

))
≤ vol(B(y,2 rk)

vol(B(y,
rkθ
2L

))
≤

v− 1
(r′)2

(2 rk)

v− 1
(r′)2

(
rkθ
2L

)

= v−1(2
rk
r ′ )

v−1(
θ

2L
rk
r ′ )

≤ C′′
(

L

θ

)3

.

Since rk ≤ 2
11r ′, such a uniform C′′ exists. Thus the cardinality of A is at

most C′′(L/θ)3. In order to apply Bishop-Gromov, we used the fact that
B(xk,11rk) is contained in a ball of radius r ′ with curvature ≥ −1/(r ′)2.
The inequality C(d) · 1

θd ≤ C′′ · (L
θ
)3 gives a positive lower bound θ0(d,L)

for θ . Consequently, any θ < θ0 has the desired property. �
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Lemma 4.12 There exists a universal constant C0 such that the following
holds. Let D > 1 and n > n0(D) be as in Proposition 3.1. Then

vol(B(xi, ri)) ≤ C0
1

D
r3
i for all i.

Proof By Proposition 3.1, we know that vol(B(xi, ν(xi))) ≤ 1
D

ν(xi)
3. Fur-

thermore, by Lemma 4.5 we have ri ≥ ν(xi)
11 and B(xi, ri) is included in a ball

B(x′, r ′) with curvature ≥ − 1
r ′2 . As r ′ ≥ 11

2 ri > ri , the curvature on B(xi, ri)

is ≥ − 1
r2
i

. The Bishop-Gromov inequality gives:

vol(B(xi,
ν(xi )

11 ))

v− 1
r2
i

(
ν(xi)

11 )
≥ vol(B(xi, ri))

v− 1
r2
i

(ri)
.

Equivalently,

vol

(
B

(
xi,

ν(xi)

11

))
≥ vol(B(xi, ri))

v−1(1)
v−1

(
ν(xi)

11 ri

)

≥ vol(B(xi, ri))
1

C0

(
ν(xi)

ri

)3

,

for some uniform C0 > 0. Hence, using Proposition 3.1 (b) (3),

vol(B(xi, ri)) ≤ C0

(
ri

ν(xi)

)3

vol

(
B

(
xi,

ν(xi)

11

))
≤ C0 r3

i

1

D
. �

Finally we push f into the 2-skeleton.

Lemma 4.13 For a suitable choice of D > 1, there exists a map f (2) : Mn →
K(2) such that:

(i) f (2) is homotopic to f rel K(2).
(ii) The inverse image of the open star of each vertex vVk

∈ K(0) is contained
in Vk .

Proof The inverse image by f of the open star of the vertex vVk
∈ K(0)

is contained in Vk . Using Lemma 4.11 several times, we find a map
f (3) : Mn → K(3) homotopic to f and a universal constant L̂ such that

(f (3))−1(star(vVk
)) ⊂ Vk and f

(3)
|Vk

is L̂
rk

-Lipschitz.
It now suffices to show that no 3-simplex σ ⊂ K can lie entirely in the im-

age of f (3). Indeed, once we know this, we can push f (3) into the 2-skeleton
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of K using a central projection in each simplex, with centre in the comple-
ment of this image. Note that here no metric estimate is required in the con-
clusion.

Let us thus assume that there exists a 3-simplex σ contained in the im-
age of f (3). The inverse image of int(σ ) by f (3) is a subset of the intersec-
tion of those Vj ’s such that vVj

is a vertex of σ . Let Vk be one of them. As
vol(f (3)(Vk)) ≤ vol(f (3)(B(xk, rk))), Lemma 4.12 yields:

vol(image(f (3)) ∩ σ) ≤ vol(f (3)(Vk)) ≤
(

L̂

rk

)3

vol(B(xk, rk))

≤ C0L̂
3 1

D

with uniform constants C0 and L̂. Hence, if D is sufficiently large, then one
has vol(image(f (3)) ∩ σ) < vol(σ ). �

The inverse images of the open stars of the vertices vk satisfy (f (2))−1

(star(vVk
)) ⊂ Vk , thus (f (2))−1(star(vVk

)) is homotopically trivial in M . This
proves Assertion 4.4 and ends the proof by contradiction of Proposition 4.1.

4.2 End of the proof of Theorem 1.1

The following is a consequence of Proposition 4.1, where the constants D0
and n0(D) are provided by Propositions 4.1 and 3.1 respectively. For the sake
of simplicity let X0 := Xx0 and S0 := Sx0 be the manifolds given by Proposi-
tion 3.1 for some x0 ∈ M .

Corollary 4.14 There exists D0 > 0 such that if D > D0 and n ≥ n0(D), then
there exists a compact submanifold W0 ⊂ Mn with the following properties:

(i) W0 is 1
D

-close to a tubular neighbourhood of the soul of the manifold
X0 for some point x0 ∈ Mn.

(ii) W0 is a solid torus, a thickened torus or the twisted I -bundle on the
Klein bottle. In particular ∂W0 is a union of (one or two) tori.

(iii) W0 is homotopically non-trivial in Mn.

Proof By Proposition 4.1, there exists a point x0 ∈ Mn such that B(x0, ν(x0))

is homotopically non-trivial; one of the remarks following Proposition 3.1
shows that B(x0, ν(x0)) is necessarily a solid torus, a thickened torus or a
twisted I -bundle over the Klein bottle. Indeed, the soul S0 of the manifold
X0 can neither be a point nor a 2-sphere, otherwise B(x0, ν(x0)) would be
homeomorphic to B3 or S2 × I , which have trivial fundamental group. Let
fx0 : B(x0, ν0) → X0 denote the (1 + 1

D
)-bi-Lipschitz diffeomorphism onto
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its image, provided by Proposition 3.1. We take W0 = f −1
x0

(Nδ(S0)), the in-
verse image of the closed tubular neighborhood of radius δ of S0, for some
0 < δ < ν0/D. �

As W0 is not contained in any 3-ball, each component Y of its comple-
ment is irreducible, hence a Haken manifold whose boundary is a union of
(possibly compressible) tori. In particular, Y admits a geometric decomposi-
tion. Here is an important consequence of Thurston’s hyperbolic Dehn filling
theorem and Geometrisation for Haken manifolds (cf. [2, Proposition 10.17],
[3, Proposition 9.36]):

Proposition 4.15 Let Y be a Haken 3-manifold whose boundary is a union of
tori. Assume that any manifold obtained from Y by Dehn filling has vanishing
simplicial volume. Then Y is a graph manifold.

In order to prove that Mn is a graph manifold, it is sufficient to show that
each component of Mn � int(W0) is a graph manifold. To conclude the proof
of Theorem 1.1, it suffices to show the following proposition:

Proposition 4.16 For n large enough, one can find a submanifold W0 as
above such that every Dehn filling on each component Y of Mn � int(W0)

has vanishing simplicial volume.

We choose the set W0 as follows. There exists a point x ∈ Mn such that
B(x, ν(x)) is homotopically non-trivial in Mn, where ν(x) > 0 is given by
Proposition 3.1 (b). We choose x0 ∈ Mn such that

ν0 = ν(x0) ≥ 1

2
sup

x∈Mn

{ν(x) | π1(B(x, ν(x))) → π1(Mn) is non-trivial}.

Let S0 be the soul of the manifold X0 of B(x0, ν0), provided by Proposi-
tion 3.1. If fx0 : B(x0, ν0) → X0 is the (1 + 1

D
)-bi-Lipschitz diffeomorphism

onto its image, we choose

W0 := f −1
x0

(Nδ(S0))

where Nδ(S0) denotes the closed metric δ-neighbourhood of S0, with 0 < δ <
ν0
D

, where D > D0 is given by Corollary 4.14.

Notice that for each x ∈ Mn, π1(B(x, νx)) is virtually abelian. We say
that a subset U ⊂ Mn is virtually abelian relatively to W0 if the image in
π1(Mn � int(W0)) of the fundamental group of each connected component
of U ∩ (Mn � int(W 0)) is virtually abelian.
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We set:

ab(x) := sup

⎧⎨
⎩r

∣∣∣∣∣∣
B(x, r) is virtually abelian relatively to W0
and B(x, r) is contained in a ball B(x′, r ′)
with curvature ≥ − 1

(r ′)2

⎫⎬
⎭

and

r(x) := min

{
1

11
ab(x),1

}
.

Remark Corollary 4.14 implies ab(x0) ≥ ν(x0), because B(x0, ν(x0)) is
virtually abelian with respect to W0 and, since ν(x0) ≤ ρ(x0), the ball
B(x0, ν(x0)) has curvature ≥ −ρ(x0)

−2 ≥ −ν(x0)
−2. Hence

r(x0) ≥ 1

11
ν(x0).

We are now led to prove the following assertion:

Assertion 4.17 With this choice of W0, for n large enough, Mn can be cov-
ered by a finite collection of open sets Ui such that:

• Each Ui is contained in a B(xi, r(xi)) for some xi ∈ Mn. In particular, Ui

is virtually abelian relatively to W0.
• The dimension of this covering is not greater than 2, and it is zero on W0.

Let us first show why this assertion implies Proposition 4.16.

Proof of Proposition 4.16 The covering described in the assertion induces
naturally a covering on every closed, orientable manifold Ŷ obtained by
gluing solid tori to ∂Y . By the second point of Assertion 4.17, it is a 2-
dimensional covering of Ŷ by open sets which are virtually abelian and thus
amenable in Ŷ . Gromov’s vanishing theorem [13, §3.1], see also [18, 19],
then implies that the image of the bounded cohomology of Ŷ in the usual co-
homology vanishes in dimension 3. Hence the dual to the fundamental class
of Ŷ (i.e. the generator of H 3(Ŷ ;R)) is not a bounded cohomology class. By
duality this fact is equivalent to the vanishing of the simplicial volume of Ŷ

(see [13, §1.1]) and thus proves Proposition 4.16. �

We now prove Assertion 4.17. The argument for the construction of a 2-
dimensional covering by abelian open sets is similar to the one used in the
proof of Assertion 4.4, replacing everywhere the triviality radius triv by the
abelianity radius ab. The construction of the covering takes care of W0, in
particular we will require Lemma 4.18. Then the direct analogues of Lem-
mas 4.5 to 4.13 hold with three small fixes. Firstly, the proof of Lemma 4.5
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(1) needs to be adapted to this setting (Lemma 4.19). Secondly, Lemma 4.5
(2) must be replaced here by a similar statement with different constants
(Lemma 4.20). Finally the analogue of Lemma 4.7 also needs further dis-
cussion (Lemma 4.21).

We now make this more precise.
We choose x0 ∈ W0 ⊂ Mn and a maximal finite sequence

x0, x1, x2, . . . , xp

such that the balls B(xi,
1
4r(xi)) are disjoint.

We set ri = r(xi), for i = 0, . . . , p and

• V0 := B(x0, r0).
• Vi := B(xi, ri) � W0 for i = 1, . . . , p.

We first need the following result about W0.

Lemma 4.18 If n is large enough, then we have

W0 ⊂ B

(
x0,

4ν(x0)

D

)
⊂ B

(
x0,

r0

9

)
⊂ V0.

Proof The first inclusion uses the properties of Proposition 3.1: diam(S0) <
ν0
D

, d(fx0(x0), S0) <
ν0
D

, the construction W0 = f −1
x0

(Nδ(S0)) with δ <
ν0
D

and

the fact that fx0 is a (1 + 1
D

)-bi-Lipschitz diffeomorphism onto its image.
The second inclusion follows from r0 ≥ 1

11ν(x0) (see the remark before
Assertion 4.17) by taking D ≥ 4 · 9 · 11. �

Then we have the following analogue of Lemma 4.5 (1):

Lemma 4.19 We can assume that for every x ∈ Mn, B(x,11 r(x)) is con-
tained in some ball B(x′, r ′(x)) with curvature ≥ − 1

(r ′)2 and satisfying r(x) ≤
1
11 ab(x) ≤ 2

11r ′(x).

Proof If Mn is virtually abelian relatively to W0, then the application of As-
sertion 4.17 holds true by taking a single open set, the whole Mn. Hence
we may assume that Mn is not virtually abelian relatively to W0. Thus for
every x ∈ Mn we have Mn �⊂ B(x, ab(x)). Therefore, by the same argument
as in the proof of Lemma 4.5 (1), there exists a ball B(x′, r ′) that contains
B(x, ab(x)) and has curvature ≥ − 1

(r ′)2 . Moreover r ′ ≥ 1
2 ab(x). �

The next lemma is the analogue of Lemma 4.5 (2), with a new constant c

that just entails a change of constant in the analogue of Lemma 4.12.
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Lemma 4.20 There exists a universal c > 0 such that, if n is sufficiently large,
then ri ≥ c ν(xi) for all i.

Proof One has r0 ≥ 1
11ν(x0) by construction. For all i > 0, if B(xi, ν(xi)) ∩

W0 = ∅, then ab(xi) ≥ ν(xi) so ri ≥ 1
11ν(xi). Hence we assume B(xi, ν(xi))∩

W0 �= ∅, and we claim that d(xi, W0) > c′ ν(xi) for a uniform c′ > 0.
We also assume from now on that ri = 1

11 ab(xi) < 1 (otherwise ri = 1 ≥
ρ(xi) > ν(xi) and we are done). Since W0 ⊂ B(x0,

1
9r0) and B(xi, ν(xi)) has

virtually abelian fundamental group and curvature ≥ −1
ν(xi )

2 ,

ri ≥ 1

11
d(xi, W0) ≥ 1

11

(
d(xi, x0) − 1

9
r0

)
≥ r0/4 − r0/9

11
>

r0

88

≥ ν(x0)

1000
. (1)

We distinguish two cases, according to whether W0 is contained in B(xi,

ν(xi)) or not.
If W0 ⊂ B(xi, ν(xi)), then the image of π1(B(xi, ν(xi))) → π1(Mn) can-

not be trivial, since the image of π1(W0) → π1(Mn) is not. In addition,

ν(x0) ≥ 1

2
ν(xi), (2)

by the choice of x0 and ν(x0). Equations (1) and (2) give ri ≥ ν(xi)/2000.
If W0 �⊂ B(xi, ν(xi)), then since W0 ∩ B(xi, ν(xi)) �= ∅ and W0 ⊂

B(x0,
r0
9 ), we have

11 ri = ab(xi) ≥ d(xi, x0) − r0/9;
ν(xi) ≤ d(xi, x0) + r0/9.

Since d(xi, x0) ≥ 1
4r0, this yields ri

ν(xi)
≥ 1

11 · 1/4−1/9
1/4+1/9 ≥ 1

30 . �

Finally the analogues of Lemmas 4.6 to 4.13 apply with no changes except
for Lemma 4.7. The last result is a version of Lemma 4.7 in the context of
the new boundary created by W0 and it is used in the control of the Lipschitz
constant of the characteristic map, Lemma 4.10.

Lemma 4.21 Each x ∈ Mn belongs to some Vk such that d(x, ∂Vk) ≥ 1
3rk .

Proof of Lemma 4.21 If x ∈ B(x0,
2
3r0) we may choose k = 0. Let us then

assume that x �∈ B(x0,
2
3r0). There exists k such that x ∈ B(xk,

2
3rk), by the

analogue of Lemma 4.7. If Vk and V0 are disjoint, then Vk ∩ W0 = ∅ and
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we are done. Hence we assume that Vk ∩ V0 �= ∅. By Lemma 4.18 and the
analogue of Lemma 4.6, one has:

d(x, W0) ≥ d(x, x0) − 1

9
r0 ≥ 2

3
r0 − 1

9
r0 ≥ 3

4
· 5

9
rk >

1

3
rk.

This implies that d(x, ∂Vk) ≥ 1
3rk . �
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Appendix

In this appendix we give some details for the estimate of the pointwise in-
jectivity radius needed in Corollary 3.5. This is a variation on Cheeger’s pro-
peller lemma. It is however different since the propeller lemma is written for
closed manifolds and just gives a lower bound for the length of the smooth
closed geodesics on M (see [7], Theorem 5.6).

Proposition A.1 Let K > 0, R > 0 and ε > 0, then there exists C =
C(K,R, ε) > 0 satisfying the following property. Let M be a complete Rie-
mannian manifold and let x ∈ M . We assume that the sectional curvature
is bounded above in absolute value by K on the ball B(x,R) and that
vol(B(x,R)) > ε. Then, the injectivity radius of M at x satisfies:

inj(x) ≥ C(K,R, ε).

Proof Here M is a complete manifold (i.e. without boundary). The injectivity
radius of M at x is the largest ρ > 0 such that expx is an embedding on the
open ball of radius ρ in TxM . Equivalently it is the distance from x to its
cut-locus.

Pick a point q in the cut locus of x achieving the minimum distance to x.
Lemma 5.6 of [7] shows that q is either conjugate to x along a minimising
geodesic or there is a geodesic loop based at x and smooth at q (but not
necessarily smooth at x).2

2Notice that there is a misprint in the statement of the lemma, indeed in the last equality p

should be replaced by q . This is clear when looking at the proof that follows.
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We now consider the ball B(x,R); the sectional curvature on this ball is
bounded above in absolute value by K . If q ∈ B(x,R) is conjugate to x along
a minimising geodesic, then by the Rauch Comparison Theorem, d(x, q) ≥
π/

√
K (see Theorem 1.29 of [7] and notice that this just requires a control of

the sectional curvature along the geodesic which is entirely contained in the
ball). If q /∈ B(x,R) is conjugate to x then d(x, q) ≥ R.

We define

r = min(π/
√

K,R).

Note that on B(x, r) the upper bound for the absolute value of the sectional
curvature is still valid.

On the other hand, for any 0 < s ≤ R, a lower bound for vol(B(x, s)) in
terms of ε, s, R and K is obtained by applying Bishop-Gromov’s theorem on
B(x,R) (the proof is again a comparison theorem along geodesics starting
from x which all remain in the larger ball). The inequality is

Vs(x) ≥ ε
v−K(s)

v−K(R)

where v−K(ρ) denotes the volume of a ball of radius ρ in the simply con-
nected space of sectional curvature −K , and Vs(x) is the volume of B(x, s).

We then apply Inequality 4.22 in [9] to B(x, r), with r0 = s = r/4, see
Theorem 4.3 of [9]. It shows that if a geodesic loop based at x has length 2�,
then

� ≥ r0

2

1

1 + v−K(r0 + s)/Vs(x)
= r

8(1 + v−K(r/2)/Vr/4(x))
. (3)

Hence the length is bounded below by a positive constant computed in terms
of ε, R and K . Let us insist on the fact that Theorem 4.3 is local and that we
are dealing with geodesic loops based at x that are not necessarily smooth at
x (see the discussion on p. 45 of [9]).

Finally, if q ∈ B(x, r), the first case in the alternative (q being conjugate
to x) is ruled out by the fact that d(x, q) < π/

√
K . Inequality (3) then gives

a bound from below for the length of the geodesic loop based at x, hence for
d(x, q), depending on ε, K and R only. �
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