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1 Introduction

One of the most important results of the past few years in geometry is Grisha
Perelman’s proof of the Poincaré Conjecture using Richard Hamilton’s Ricci
flow. Ricci flow is an evolution equation for a riemannian metric which can
sometimes be used in order to deform an arbitrary metric into a ‘nice’ one,
from which one can determine the topology of the underlying manifold. The
main goal of this article is to discuss some results concerning Ricci flow on
compact 3-manifolds and their application to the Poincaré Conjecture.

Section 2 is a warm-up section about the evolution of closed planar curves
by their curvature vector. This topic has the advantage of being more con-
crete than Ricci flow, as well as requiring less background. Ricci flow is
introduced in Section 3. In Section 4 we come to the main topic, which is
Ricci flow in dimension 3 and its relation with the Poincaré conjecture.

Section 5 deals with the evolution of the scalar curvature, sweep-outs, and
the width of a riemannian manifold. All this is applied to show that any Ricci
flow on a 3-dimensional homotopy sphere develops a singularity. We give a
fairly detailed treatment of these topics since it seems to us that they convey
very well the interplay between topology, geometry, and analysis which is
characteristic of the subject. Section 6 tackles canonical neighborhoods and
metric surgery, and explains how to prove the Poincaré conjecture using these
ideas together with those discussed in Section 5.

We have endeavored to make the exposition as accessible as possible,
sometimes at the expense of precision and mathematical rigor. For instance,
in Section 5 we treat the functions Rmin(t) and W (t) as if they were differ-
entiable, whereas they are only continuous, and the derivatives should be
interpreted as limsups of forward difference quotients. For the same reason,
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we have left out the ε’s from Section 6. A more detailed treatment of the ma-
terial of that section is given in [Mai08], where one can also find a discussion
of William Thurston’s geometrization conjecture.

2 Prelude: the curve shortening flow

Let α0 be a smooth simple closed parametrized curve in the plane. We wish to
construct a deformation of α0 by its curvature vector. Mathematically, α0 is
a map from an interval [a, b] to R2 such that α0(a) = α0(b), or equivalently
a map from the unit circle S1 to R2. We consider a family of curves αt,
where t ≥ 0 is a real parameter, usually called time, satisfying the evolution
equation

∂α

∂t
= K · ν, (1)

where K is the curvature of αt, and ν the inward unit normal vector
(Figure 1).

K · ν

α0(s)

α0(a) = α0(b)

Figure 1: A closed parametrized curvature and its curvature vectors.

The simplest example is when α0 is a circle: then for every t > 0, αt

is also a circle, with the same center, and the length is a strictly decreasing
function of time. It is easy to write down an explicit formula for the solution,
from which one sees that there exists a finite time Tmax such that the solution
is defined only for t ∈ [0, Tmax). We say that there is a singularity at time
Tmax. As t tends to Tmax, the curve shrinks to a point, and its curvature goes
to infinity everywhere (Figure 2).
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t = Tmaxt = 0 t > 0 t ≈ Tmax

Figure 2: A circle shrinking by the curve shortening flow. (All circles are in
fact concentric; they have been drawn separately for ease of visualization.)

More generally, when α0 bounds a convex domain, all points move toward
the interior of this domain, those of higher curvature moving faster. Heuris-
tically, this tends to even up the curvature differences, making the curve look
more and more like a circle (Figure 3).

����

t = Tmaxt = 0 t > 0 t ≈ Tmax

Figure 3: An ellipse shrinking by the curve shortening flow: since the points
of higher curvature move faster, the excentricity of the ellipse decreases; near
the singularity, the naked eye cannot distinguish it from a circle.

In general, it is difficult to develop intuition about the behavior of αt. We
gather some known results in the next theorem:

Theorem 2.1 (Gage-Hamilton [GH86], Grayson [Gra87, Gra89]).
Let {αt}t∈[0,Tmax) be a maximal solution of the curve shortening flow equa-

tion. Then:

i. The length of αt is decreasing in t;

ii. There is a singularity, i.e. Tmax < +∞;

iii. As t goes to Tmax, the diameter of αt goes to 0, and the ratio between
the maximal curvature and the minimal curvature goes to 1.
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Ricci flow, which is the main topic of this article, is not, strictly speaking,
a generalization of the curve shortening flow, since it uses an intrinsic notion
of curvature. However, Theorem 2.1 gives good hints about the type of re-
sults we should (or should not) expect to obtain on Ricci flow. Namely, we
should not expect a closed formula for general initial data, or even a precise
description of a general solution, except for rough qualitative information
(e.g. monotonicity of some geometric quantity as in Conclusion (i) of Theo-
rem 2.1.) By contrast, we can hope to prove the existence or inexistence of a
singularity, and obtain information about the behavior of the solution near
the maximal time.

This construction can be generalized in many ways: one can allow the curve
to have singularities and/or infinite length, or replace the plane by other surfaces.
There are also several important and useful generalizations to higher dimensions,
the most well-known being perhaps mean curvature flow. For more information,
see e.g. [HP99] or the introduction of the book [Eck04].

The curve shortening flow is often considered as a kind of nonlinear heat equa-
tion. In fact, if the curve αt is parametrized by arclength s, then Equation (1) takes

the form ∂α
∂t

= ∂2α
∂2s

, which is formally the classical heat equation. This analogy
is one of the guiding principles in the study of the curve shortening flow. One of
the main tools is the maximum principle: for the heat equation, it says that heat
flows from the parts of highest temperature to the parts of lowest temperature,
making the heat distribution more uniform.

Let us give an example for the curve shortening flow: let αt and βt be two
solutions such that for some time t0, αt0 is surrounded by βt0 and tangent to it
at some point x. Comparing the curvatures of αt0 and βt0 at x, we see that αt

moves faster, so it cannot be caught up by βt; hence this configuration is in fact
impossible! This discussion leads to the important avoidance principle: if two
curves evolving by the curve shortening flow have no point in common at time 0,
then this remains true for all times t > 0.

One can deduce the existence of a singularity (i.e. Conclusion (ii) of Theo-

rem 2.1) from the avoidance principle by simply remarking that any closed curve

lies inside some large circle. This idea of using the maximum principle to obtain

information on a general solution by comparing it to a particular solution whose

behavior is known is also useful for Ricci flow, although it takes more sophisticated

forms.
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3 Ricci Flow

3.1 Generalities

Let M be a manifold. We assume throughout that M is closed, i.e. compact
and without boundary. A Ricci flow on M is a one-parameter family {gij(t)}
of riemannian metrics on M solving the equation

∂gij

∂t
= −2Rij(t), (2)

where Rij(t) is the Ricci tensor of gij(t). This equation was introduced
by R. Hamilton in the early 80’s. One can think of it as a kind of a nonlinear
tensorial heat equation. To keep the notation simple, we will often write
g for a riemannian metric, and g(t) for a one-parameter family of metrics,
although they are in fact tensors. Likewise, we sometimes write Ric for the
Ricci tensor.

Hamilton [Ham82] showed that the pure initial value problem for Equa-
tion (2) always has a unique solution for small time, i.e. for every metric g0

on M , there is a number ε > 0 such that there exists a unique family of met-
rics {g(t)}t∈[0,ε) which solves the Ricci flow equation and satisfies g(0) = g0.
Hence we can talk about the maximal solution {g(t)}t∈[0,Tmax) with given ini-
tial data, with Tmax ∈ (0, +∞]. When Tmax is finite, we say that Ricci flow
develops a singularity. In this case, a result of W.-X. Shi [Shi89] implies that
the norm of the Riemannian tensor is unbounded as t → Tmax; hence one
also says that the curvature blows up at time Tmax.

Unlike the curve shortening flow in the plane, Ricci flow does not always
develop a singularity: for instance, if the initial metric is Ricci-flat, i.e. the
Ricci tensor vanishes, then the solution is constant, and of course defined for
all time! The simplest example of a singularity is the round shrinking sphere,
where the initial metric has constant sectional curvature, and contracts to a
point in finite time. In this case, the sectional curvature of g(t) is constant
for each value of t, and tends to +∞ as t tends to Tmax.

3.2 Ricci flow in two dimensions

In dimension two, the simplest examples are the round shrinking 2-sphere,
and the (constant) flat 2-torus. Remarkably, if one starts with an arbitrary
metric on the 2-sphere or the 2-torus, the behavior of Ricci flow is asymp-
totically the same as in those very simple examples:

Theorem 3.1 (Hamilton [Ham88], Chow [Cho91]).
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i. If g0 is any metric on the 2-sphere, then Tmax is finite, and as t → Tmax,
Ricci flow converges, up to rescaling, to the round metric.

ii. If g0 is any metric on the 2-torus, then Tmax is infinite, and as t → +∞,
Ricci flow converges to a flat metric.

The key point for us is that Ricci flow is sensitive to topology: its qual-
itative behavior depends only on the presence or absence of handles on the
surface, rather than the fine properties of the initial metric (Figure 4).
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(b) flat metric

(a)

Figure 4: (a) Ricci flow shrinks a round sphere to a round point. (b) If you
add a handle, however, it converges to a flat metric in infinite time.

Theorem 3.1 can be extended to surfaces of higher genus as follows: if F is a

surface of genus at least 2, then for any initial condition, Ricci flow is defined for

all time, and as t goes to infinity, g(t) converges, up to rescaling, to a hyperbolic

metric.

4 Ricci flow in three dimensions

Recall that a manifold M is simply-connected if any closed curve on M
can be continuously shrunk to a point. In dimension 2, it follows from the
classification of surfaces, which was already known in the nineteenth cen-
tury, that the only closed simply-connected surface is the 2-sphere. In 1904,
H. Poincaré [Poi04] asked whether the corresponding statement in dimension
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3 also holds. This question became known as the Poincaré Conjecture and re-
mained open for almost a century1 until its positive solution by G. Perelman
using Ricci flow:

Theorem 4.1 (Perelman [Per02, Per03a, Per03b]). Let M be a closed 3-
manifold. If M is simply-connected, then M is (homeomorphic to) the 3-
sphere.

The starting point of the Ricci flow approach to the Poincaré conjecture
is the following result of Hamilton’s:

Theorem 4.2 ([Ham82]). Let M be a closed 3-manifold. Consider a max-
imal solution {g(t)}t∈[0,Tmax) of the Ricci flow on M . If the initial metric
has positive Ricci curvature, then Tmax is finite, and g(t) converges, up to
rescaling, to a metric of constant sectional curvature, as t → Tmax.

It is a classical fact from Riemannian geometry that the only closed,
simply-connected n-dimensional manifold which admits a riemannian metric
of constant sectional curvature is the n-sphere.

At this point of the discussion, there seems to be an obvious program for
proving the Poincaré conjecture: letting g0 be an arbitrary metric on M , we
consider the maximal Ricci flow solution {g(t)}t∈[0,Tmax) with initial condition
g0. Step 1 would be to prove that there is a singularity; Step 2 would be to
prove that an appropriate rescaling of g(t) converges to a round metric as t
tends to Tmax.

2

As it stands, this simple plan does not work, because the result expected
in Step 2 is false. However, Step 1 does work:

Theorem 4.3 (Perelman [Per03b],Colding-Minicozzi [CM05, CM07]). Let
M be a simply-connected closed 3-manifold, and g0 be an arbitrary rieman-
nian metric on M . Then Ricci flow with initial condition g0 develops a
singularity.

The main difficulty for proving Theorem 4.3 is that the hypothesis is purely
topological, rather than geometric as e.g. in Theorem 4.2. In fact, no blow-up
result under purely topological hypotheses is known in higher dimensions.

It is instructive to consider open manifolds instead of closed ones. The only

simply-connected open surface is the plane, but the corresponding result is false

in dimension 3: J. H. C. Whitehead [Whi35] constructed an example of open,

contractible 3-manifold which is not homeomorphic to R
3. The question of under-

standing what Ricci flow does on such a manifold is wide open.

1For a discussion of the historical significance of the Poincaré conjecture, see e.g. [Mil03]
or [Mor07].

2that this is overoptimistic is suggested by the existence S2 × S1, which, however, is
not simply-connected...
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5 Finite time blow-up

5.1 Evolution of the scalar curvature

Let {g(t)} be a Ricci flow. The Ricci flow equation (2) implies a formula for
the evolution of the Riemann tensor Rijkl. This formula, which was computed
by Hamilton [Ham82], is fairly complicated, and we will not write it down
here. From it one deduces the formula for the evolution of the Ricci tensor
Rij , and finally, for its trace, i.e. the scalar curvature R:

∂R

∂t
= ∆R + 2|Ric |2, (3)

where ∆ is the Laplace-Beltrami operator associated to the metric g(t), and
|Ric | is the norm of its Ricci tensor.

This type of equation is often called a reaction-diffusion equation. The
diffusion term ∆R tends to make R more uniform, while the reaction term
2|Ric |2 tends to make it more positive. Letting Ric0 be the trace-free part
of the tensor Ric, we obtain:

∂R

∂t
= ∆R +

2

3
R2 + 2|Ric0 |2 (4)

≥ ∆R +
2

3
R2. (5)

Let Rmin(t) denote the minimum of the scalar curvature of g(t). Applying
the maximum principle, we get the differential inequality

dRmin

dt
≥

2

3
R2

min, (6)

which in turn yields

Rmin(t) ≥
Rmin(0)

1 − 2tRmin(0)/3
. (7)

If Rmin(0) > 0, the lower bound given by (7) is positive, and goes to
infinity as t → 3/(2Rmin(0)). Hence there must be a singularity before that
time, and Theorem 4.3 is proved in this case.

If Rmin(0) ≤ 0, the lower bound goes to zero as t → ∞. This is a
useful piece of information, but does not suffice to deduce finite time blow-
up. Hence we shall need another quantity, called the width, which relies on
a topological construction called a sweep-out.

We shall ultimately need to define these notions in dimension 3, but for
simplicity we first introduce them in dimension 2.
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2R0

t

Rmin(t)

R0

Figure 5: Possible scenarios for Rmin(t). If the initial value is strictly positive,
then it blows up in finite time.
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s = 1

s = 1
2

s = 0

Figure 6: The standard sweep-out of the 2-sphere.

5.2 Sweep-outs in two dimensions

Definition. A sweep-out of the 2-sphere S2 is a continuous map f from the
cylinder S1 × [0, 1] to S2 such that f(S1 ×{0}) and f(S1 ×{1}) are constant
maps.

One can also think of a sweep-out f as a continuous family of maps
f(·, s) from the circle S1 to S2, where the parameter s varies between 0 and
1. Figure 6 shows a simple example, called the standard sweep-out, which
sends S1 ×{0} to the north pole, S1 ×{0} to the south pole, and the circles
in-between to parallels in the obvious way.

We say that a sweep-out f is nontrivial if it is not homotopic (through
sweepouts) to a constant map. Intuitively, this means that the curves f(S1×
{s}) cannot be continuously shrunk to points in a coherent way (although
of course, S2 being simply-connected, every such curve can be individually
shrunk to a point.) For instance, it follows from degree theory that the
standard sweep-out is nontrivial.

Let us fix a nontrivial sweep-out f0 (e.g. the standard one.) To each
riemannian metric g on S2, we associate its width W (g), defined by the
following formula:

W (g) := inf
f

max
s∈[0,1]

Lengthg(f(·, s)), (8)
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width

Figure 7: Two ways to sweep out an ellipsoid. The second one is more
efficient and realizes the width.

the infimum being taken over all sweep-outs f homotopic to f0.
In order to understand this definition better, let us first consider the

simple example where g is the round metric of unit radius. Then the maximal
length of the circles in the standard sweep-out is attained for s = 1

2
, i.e. at

the equator, where it equals 2π. One can show that this value cannot be
improved by deforming the sweep-out. Hence W (g) = 2π in this case.

Suppose now that g is the ellipsoidal metric obtained by rotating an
ellipse of half-axes a < b around one of its axes. In this case the width is 2πa
(cf. Figure 7).

5.3 Sweep-outs in three dimensions

It is straightforward to extend the above definitions to dimension 3.
Let M be a closed 3-manifold. A sweep-out of M is a continuous map

f : S2 × [0, 1] → M such that f(S2 × {0}) and f(S2 × {1}) are constant
maps. It is nontrivial if it is not homotopic to a constant map. In general, a
3-manifold need not have any nontrivial sweep-out. However, it follows from
standard results in algebraic topology (Poincaré duality and the Hurewicz
isomorphism theorem) that if M is simply-connected, then M does admit
nontrivial sweep-outs. Letting f0 be such a sweep-out, we can define the
width of a riemannian metric g on M by setting

W (g) := inf
f

max
s∈[0,1]

Areag(f(·, s)), (9)

the infimum being again taken over all sweep-outs f homotopic to f0. Of
course, this quantity depends on the choice of f0, but since f0 is fixed through-
out the argument, we omit to mention it.
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Suppose now that {g(t)} is a Ricci flow, and let W (t) denote the width of
g(t). Using the theory of harmonic mappings, Colding and Minicozzi [CM07]
proved the following inequality, which gives control on the evolution of W (t):

dW

dt
≤ −4π −

RminW

2
. (10)

Plugging in the lower bound (7) for Rmin and integrating, one obtains
an upper bound for W (t) which asymptotically decreases linearly (Figure 8).
Since by definition, W is always nonnegative, it follows that Ricci flow cannot
be defined for all time. This proves Theorem 4.3.

t

W (t)

singularity!

a priori upper bound

Figure 8: Evolution of width under Ricci flow.

6 Singularity analysis and surgery

Let M be a closed 3-manifold, and {g(t)}t∈[0,Tmax) be a maximal Ricci flow
solution. We are mainly interested in the case where M is simply-connected,
but this is not essential for the results discussed in this section. For technical
reasons, we assume that M is irreducible, i.e. any embedding of the 2-sphere
into M can be extended to an embedding of the 3-ball. This hypothesis will
spare us the need to discuss connected sums; it is not a serious restriction,
because a classical theorem of H. Kneser [Kne29] reduces the Poincaré con-
jecture to the irreducible case. We also suppose that M is orientable, which
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is not a serious restriction either since every simply-connected manifold is
orientable.

By Theorem 4.3, we know that Tmax is finite. For this to be useful, we
need to study the behavior of the solution for t close to Tmax. Several results
put together (the derivative estimates of Shi, and the Hamilton-Ivey pinching
estimate) imply that as long as the scalar curvature remains bounded, Ricci
flow is defined. Hence the maximum of the scalar curvature is unbounded as t
goes to Tmax. As we already saw, the scalar curvature is bounded from below,
so there must be a sequence of times tk → Tmax such that the maximum of
the scalar curvature of g(tk) goes to +∞. It follows that the key point of the
singularity analysis is understanding points of large scalar curvature.

6.1 Canonical neighborhoods

One of Perelman’s main achievements is a precisely a theorem about the
local structure of Ricci flow at points where the scalar curvature is large.
This theorem says that for any time t < Tmax, if x ∈ M is a point such
that the scalar curvature of g(t) at x is sufficiently large, then (x, t) has a
so-called canonical neighborhood. This neighborhood is a subset U of M ,
which, when endowed with the metric g(t), is of one of the following three
types (Figure 9(a)(b)):

• a neck (almost homothetic to the product of the round 2-sphere of unit
radius with a long interval);

• a cap (a metric on the 3-ball such that a collar neighborhood of the
boundary is a neck), or

• a closed manifold of positive sectional curvature.

If the third case ever occurs for some x ∈ M , t < Tmax, then U is equal
to the whole of M . In particular, it implies that g(t) has positive Ricci
curvature, so that Theorem 4.2 applies. In the sequel, we shall assume that
this does not happen.

Let us consider another nice situation: suppose that there exists a time
t0 < Tmax such that all points of M have sufficiently large scalar curvature
at time t0. Then at time t0 all points have canonical neighborhoods, either
necks or caps. The topological assumptions made at the beginning of this
section are easily shown to imply that M is obtained by gluing together two
caps, possibly with a long tube (i.e. a subset of M homeomorphic to S2×[0, 1]
which is a union of necks) connecting them. It follows immediately that M
is homeomorphic to the 3-sphere.
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(c)

(a) (b)

Figure 9: (a) a neck; (b) a cap; (c) the 3-sphere as a union of necks and caps.

6.2 The neck pinch

However, a less nice situation is possible: as one approaches the singular time,
the scalar curvature may become large somewhere, but not everywhere. A
famous example is the neck pinch, where for t0 close to Tmax, the riemannian
manifold (M, g(t0)) consists of two regions M1, M2 of low curvature connected
by a thin tube (Figure 10).

Intuitively, if something like this happens, then it should get worse with
time, since if N is a neck near the middle, then Ricci curvature in the S2

direction is very high and tends to pinch the neck even more (see [AK04]
for a rigorous discussion.) At this point, we still have not learned anything
about the topology of M .

M2M1

Figure 10: A neck pinch.
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region of highest curvature

g(t0)

g+(t0) M2

M1
∼= B3 M2

Figure 11: The manifold before and after metric surgery. An important
feature is that the maximum of the scalar curvature drops by a definite
factor; this ensures that Ricci flow with initial condition g+(t0) exists for a
sufficiently long time so that surgery times do not accumulate.

6.3 Metric surgery

Suppose that a neck pinch occurs, and let t0 be a time such that (M, g(t0))
is as described above. Since we are assuming that M is irreducible, we
know that one of the Mi’s, say M1, is topologically a 3-ball. Since we have
excellent control on the geometry at time t0 around the boundary of M1, we
can produce a new riemannian metric g+(t0) on M which coincides with g(t0)
outside some neighborhood U1 of M1, and such that (U1, g+(t0)) is close to
a round hemisphere. The operation which permits to construct g+(t0) from
g(t0) is called metric surgery.

Having performed metric surgery, we restart Ricci flow, using g+(t0) as
new initial condition. If another neck pinch arises, we repeat this construc-
tion. If this is done carefully enough, the process either stops when all points
have a canonical neighborhood (which as we saw implies that M is the 3-
sphere), or goes on for as much time as we want.

The construction outlined above leads to the following result, which is a
strengthened version of (a special case of) a theorem of Perelman [Per03a].

Theorem 6.1 ([B3MP]). Suppose that M is a closed, orientable, irreducible
3-manifold which does not admit any metric of constant positive sectional
curvature. Then for every metric g0 on M and every number T > 0, there
exists a 1-parameter family {g(t)} of riemannian metrics on M , defined for
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all t ∈ [0, T ], and such that:

i. g(0) = g0;

ii. g(t) evolves by Ricci flow except for finitely many values of t, called
surgery times, where the evolution is discontinuous;

iii. If t0 is a surgery time, then letting g(t0) (resp. g+(t0)) denote the pre-
surgery metric (resp. the post-surgery metric) we have:

(a) Rmin(g+(t0)) ≥ Rmin(g(t0));

(b) g+(t0) ≤ g(t0) (i.e. the identity map from (M, g(t0)) to (M, g+(t0))
is distance-nonincreasing.)

We now explain how to deduce the Poincaré conjecture from Theorem 6.1.
Let M be a closed, irreducible, simply-connected 3-manifold. If M has a
metric of constant positive sectional curvature, then M is homeomorphic to
S3, so we argue by contradiction and assume it is not the case.

Let g0 be an arbitrary metric on M , and let R0 be the minimum of its
scalar curvature. First consider the case where R0 > 0, and set T := 3/(2R0).
Applying Theorem 6.1, we get a family of metrics {g(t)} defined for all
t ∈ [0, T ] satisfying Conclusion (i)–(iii). By (i) we have Rmin(0) = R0 > 0.
By (ii) and (iiia), the a priori lower bound (7) for Rmin is satisfied. This
contradicts the fact that {g(t)} is defined up to time T . Hence in fact M
does admit a metric of constant positive sectional curvature, and is therefore
homeomorphic to S3.

Suppose now that R0 ≤ 0. Note that (iiib) implies that W (g+(t0)) ≤
W (g(t0)) at a surgery time. Hence the argument using W to prove finite
time blow-up gives a similar contradiction.

On the proof of Theorem 6.1 A thorough discussion of this proof lies
outside the scope of this survey. However, we would like to mention briefly
a few important issues.

In order to understand the local geometry at points of large scalar cur-
vature, one argues by contradiction, taking a sequence of pointed Ricci flows
({gk(t)}, xk, tk) such that R(xk, tk) → +∞ and yet (xk, tk) does not have
a canonical neighborhood. Using a compactness theorem, one finds a sub-
sequence that converges in an appropriate sense. One then shows that the
limit, which is also a pointed Ricci flow, belongs to a special class of Ricci
flows, called κ-solutions, which are known to have canonical neighborhoods.
Hence for sufficiently large k, the point (xk, tk) has a neighborhood close to
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an open subset of a κ-solution. This proves that (xk, tk) has a canonical
neighborhood.

Two crucial ingredients used to establish the existence of a convergent
subsequence are the already mentioned Hamilton-Ivey pinching estimate,
which allows to control the whole Riemann tensor using only the scalar cur-
vature, and Perelman’s no local collapsing estimate. The latter is known to
hold in all dimensions, while the former is special to dimension 3. In fact,
the lack of a similar estimate is one of the biggest obstacles to extending this
theory to higher dimensions.

Another important consequence of Hamilton-Ivey pinching is that the
limit flows coming up in contradiction arguments have nonnegative sectional
curvature. Hence several geometric and analytical techniques can be brought
to bear, such as the Cheeger-Gromoll soul theorem, which ensures that the
underlying manifold has a simple topology, or Hamilton’s Harnack inequality
for Ricci flow.

There are some subtleties involving in doing metric surgery. For a more
detailed discussion, we refer to [Mai08].

7 Further reading

Among the many expositions of Perelman’s work for a general audience of
mathematicians, we suggest the talks of John Lott [Lot07] and John Mor-
gan [Mor07] at the Madrid 2006 ICM, Gérard Besson’s 2005 Séminaire Bour-
baki talk [Bes06], and Laurent Bessières’s 2005 article [Bes05]. Earlier ex-
pository texts which are still worth reading include [And04, Mor05].

Much useful information can be gathered from Terence Tao’s blog for
his 2008 course on the Poincaré conjecture [Tao], as well as his survey ar-
ticle [Tao06]. His viewpoint is quite different from the one adopted in the
present article; in particular there are nice discussions of Harnack inequalities
and Ricci solitons.

There are by now several excellent introductory books on Ricci flow.
We recommend the monographs by Bennett Chow and Dan Knopf [CK04]
and by Peter Topping [Top06], which complement well each other. Richard
Hamilton’s 1993 survey [Ham95] remains a highly valuable introduction to
Ricci flow in general and the Ricci flow approach to geometrization of 3-
manifolds in particular.

For full proofs of the Poincaré conjecture and the geometrization conjec-
ture, the reader may consult [Per02, Per03a, Per03b, CM05, B3MP07, KL06,
MT07, CZ06, CM07, B3MP].
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