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Lecture 1

Motivation

We start by stating an important theorem in 3-manifold topology.

Theorem 1 ([28, 24, 21, 25, 11, 6]). Let M be a closed, orientable, irre-
ducible 3-manifold. If my M has an infinite cyclic normal subgroup, then M
is Seifert fibered.

Since Seifert manifolds are easily seen to be geometric in Thurston’s sense,
this theorem can be viewed as a partial answer to the Geometrization Con-
jecture. It was known in some circles as the ‘Seifert Conjecture’ (although I
doubt that Seifert ever conjectured this.)

Here is an outline of proof: let Z be an infinite cyclic normal subgroup
of ;M and set T := mM/Z. Let M be the covering space of M such that
mM = Z. Then I acts on M with quotient space M.

Step 1 The 3-manifold M is tame, i.e. homeomorphic to S* x R2.

Step 2 The group I is quasi-isometric to a complete Riemannian metric
on R2. (The definition of quasi-isometric will be given later.)

Step 3 Any finitely generated group quasi-isometric to a complete Rieman-
nian metric on R? is virtually Z? (i.e. has a finite index subgroup isomorphic
to Z?,) or is quasi-isometric to the hyperbolic plane H?.



Step 4 Any finitely generated group quasi-isometric to H? acts geometri-
cally on H?. (This means that the action is isometric, properly discontinuous,
and cocompact.)

Step 5 The fundamental group of M is isomorphic to the fundamental
group of some irreducible Seifert fibered space N.

Step 6 M is homeomorphic to N, hence Seifert fibered.

The goal of these lectures is to explain Step 4 in some detail, putting it
into the more general context of hyperbolic groups and convergence groups.
Before that, we make some brief comments about the other steps, in the
chronological order of their proofs.

Step 5 is classical: the class of groups that are virtually Z? or act geo-
metrically on H? has been well-known for some time: they are called ‘planar
discontinuous groups’ in [31]. Extensions of Z by these groups can be clas-
sified using group cohomology [32]. When such a group is torsion free, it is
not hard to construct a Seifert fiber space realizing it.

Step 6 is due to Peter Scott [24]: he proves that if M, N are closed,
orientable, irreducible 3-manifolds with isomorphic fundamental groups, and
one of them is Seifert, then M and N are homeomorphic. Hence at that time
the Seifert Conjecture was reduced to proving that I' is planar discontinuous.

Steps 1-3 are due to Mess [21]. In fact, the conclusion of Step 2 and
hypothesis of Step 3 in his original approach is that I' is quasi-isometric to a
quasihomogeneous metric on R?. That Step 3 is valid without this additional
hypothesis is proved in [19].

Step 1 uses many important results in 3-manifold topology: the Meeks-
Simon-Yau theorem about irreducibility of covering spaces, the Scott com-
pact core theorem, the theory of characteristic submanifolds due to Jaco-
Shalen and Johannson... Step 2 uses minimal surfaces. Complete proofs of
more general results can be found in [20] (see [1] for an introduction). I also
refer you to Juan Souto’s lectures in this summer school for an introduction
to open 3-manifolds.

Step 3 consists of intricate 2-dimensional arguments. A simpler proof was
given in [19].

Step 4 can be further decomposed into 2 substeps: if I' is quasi-isometric
to H2, then Mess observed that I' acts on the circle S' as a convergence
group. More generally, if I' is a hyperbolic group in the sense of Gromov,
then it acts in a natural way on a compact topological space OI' called its
boundary, and this action is a convergence action. This will be explained in
Lectures 1 and 2.



To finish the proof of Theorem 1, one needs:

Theorem 2 (Convergence Group Theorem [25, 11, 6]). Let ' be a
group. If ' acts as a convergence group on S*, then I' has a finite normal
subgroup F' such that T'/F is Fuchsian.

Recall that a Fuchsian group is a discrete subgroup of isometries of H2,
Hence the conclusion is equivalent to saying that I' acts properly discontin-
uously and isometrically on H?. If I" is quasi-isometric to H?, then one can
see that such an action has to be cocompact, hence we get the conclusion of
Step 4 as stated above.

In lectures 3 and 4, I will discuss the proof of Theorem 2, following Tukia
and Casson-Jungreis.

For other (more group-theoretic) approaches to the Seifert Conjecture
and related questions, see e.g. [9, 4, 18|.

Hyperbolicity according to Rips and Gromov

Let (X, d) be a metric space. A geodesic segment in X is an isometric em-
bedding of a compact interval [a,b] C R into X. We say that X is geodesic if
for all z,y € X, there is a geodesic segment ¢ : [a,b] — X such that ¢(a) =
and ¢(b) = y.

Basic examples of geodesic spaces are complete Riemannian manifolds, in
particular Euclidean space E" and hyperbolic space H". Note however that
our notion of ‘geodesic segment’ is commonly called ‘minimizing geodesic’ in
Riemannian geometry. A nonminimizing geodesic (such as a large portion of
the equator in the round 2-sphere) is not a geodesic segment in our sense.

Other basic examples are graphs, i.e. connected 1-dimensional cellular
complexes: let X be a graph. The distance between two vertices x,y is
defined to be the minimal number of edges in an edge-path connecting = to
y. This defines a distance on the set of vertices of X. It can be extended to
a distance on all of X by fixing a parametrization of each edge, and counting
the length of the pieces of edges in a path connecting the two points.

Next we define hyperbolicity in the sense of Rips: the definition involves
looking at geodesic triangles. Before this, we give some general definitions in
metric spaces: if A is a subset of X and C' > 0, the C-neighborhood of A is
the set No(A) :={z € X | d(z,A) < C}. If x € X, the C-neighborhood of
{z} is also called the ball of radius C' around z, and denoted by Be(x).

A geodesic triangle in X is a triple (aq, ag, a3) of geodesic segments such
that there exist points w1, x, x3 such that «; connects x;y; to x;4o (with
indices in Z/3.) It is d-thin if o; lies in the d-neighborhood of a;11 U ayya.



Definition. Let 6 > 0. A geodesic metric space is d-hyperbolic if all its
geodesic triangles are d-thin. It is hyperbolic in the sense of Rips, or simply
hyperbolic, if it is d0-hyperbolic for some 9.

Ezxamples.

e H" is hyperbolic; E" is not hyperbolic for n > 2. Pinched negatively
curved manifolds are hyperbolic, as well as their convex subsets.

e Simplicial trees (i.e. 1-connected graphs) are 0-hyperbolic.

e Any bounded geodesic space is hyperbolic. Any product of a hyperbolic
space and a bounded space, e.g. S? x H? is hyperbolic. These examples
show that the definition of Rips hyperbolicity captures the geometry
of negative curvature only ‘in the large’.

Exercice 1. If X is 0-hyperbolic, then for all x,y € X, there is a unique
topological arc connecting x to y, i.e. topological embedding ¢ : [a,b] —
X such that c¢(a) = = and ¢(b) = y. (Of course, the uniqueness is up to
parameterization.)

A metric space is proper if all metric balls are compact. Basic examples
of proper spaces are complete Riemannian manifolds and locally finite metric
graphs.

A group action is called geometric if it is isometric, properly discontinu-
ous, and cocompact.

Definition. A hyperbolic group is a group that acts geometrically on some
proper hyperbolic space.

Ezxamples.
e Convex cocompact Kleinean groups, in particular surface groups.

e Free groups, because they act geometrically on trees.

Remark. Any finitely generated group I' acts geometrically on some
proper geodesic space. The simplest construction is called the Cayley graph:
let S be a finite generating set of I'. Then the Cayley graph is the graph
whose vertices are elements of I', and there is an edge between 7, and vy if
and only if y7 1y, € S.

Exercice 2. Let F; be the free group on two generators. Describe the Cayley
graph of Fy with respect to a generating system of your choice.



Quasi-isometries; quasi-isometry invariance of hyper-
bolicity

Definition. Let (X, d;) and (X, ds) be two metric spaces. We say that a
map f : X1 — Xy is a quasi-isometric embedding if there exist A > 1 and
C > 0 such that the inequality

AN dy(z,2)) — C < do(f(2), f(2') < Ndy(z,2") + C

holds for any x,2’ € X;.

If in addition, the C-neighborhood of the image of f is all of X5, we say
that f is a quasi-isometry.

We say that (X1, dy) is quasi-isometric to (Xa, ds) if there exists a quasi-
isometry f: X; — Xs. Sometimes we just say that (X, d;) and (X, ds) are
quasi-isometric.

Exercice 3. Prove that if (X1, d;) is quasi-isometric to (Xa, d3), then (Xs, do)
is quasi-isometric to (X, dy).

Prove that if (X,d;) is quasi-isometric to (Xs,ds) and (Xs, ds) is quasi-
isometric to (X3, ds), then (X1, d;) is quasi-isometric to (X3, ds3).

Theorem 3. Let X be a hyperbolic space. Let'Y be a geodesic metric space.
If X and Y are quasi-isometric, then Y is hyperbolic.

The proof of Theorem 3 relies on the following fundamental property of
hyperbolic spaces.

A (X, O)-quasigeodesic segment in a space X is a quasi-isometric embed-
ding of a compact interval [a, b] in X.

Theorem 4 (Morse Lemma on quasigeodesic stability). Let §, A > 0.
There is a number D > 0 such that if X is a d-hyperbolic space, then any
(A, d)-quasigeodesic segment lies in the D-neighborhood of a geodesic segment
with the same endpoints.

Exercice 4. Deduce Theorem 3 for spaces from Theorem 4.

(Hint: take a geodesic triangle in B; its image by a quasi-isometry is a “quasi-
geodesic triangle” in A, which by Theorem 4 is close to a geodesic triangle;
then use the hyperbolicity of A to conclude. You will need to prove that
sides of the geodesic triangle lie in the D’-neighborhood of the sides of the
quasi-geodesic triangle for some constant D’.)

Exercice 5. Prove Theorem 4 when X is a simplicial tree.



Consequences for hyperbolic groups

Let I" be a finitely generated group. Let S be a finite generating set. Without
loss of generality, we may assume that S is symmetric, i.e. S = S~ We
define the word metric dg on I' by setting ds(v1,72) equal to the least integer
n > 0 such that v; 'y, can be written as a product of n elements of S. Note
that this is the metric obtained by viewing I' as the 0-skeleton of its Cayley
graph and restricting the graph metric.

Exercice 6. Let S1, 53 be two symmetric generating sets. Show that the
identity map (I',dgs,) — (', ds,) is a quasi-isometry. (Hence it makes sense
to say that a group I is quasi-isometric to some metric space X.)

Show that the inclusion of I' into its Cayley graph is a quasi-isometry.

The link between groups and spaces is provided lzy the following funda-
mental proposition due independently to Efremovi¢, Svarc and Milnor. (See
e.g. [13, 17, 5].)

Proposition 5. Let X be a proper geodesic metric space. Let I' be a group
acting geometrically on X. Then I is finitely generated and quasi-isometric
to X.

Corollary 6. If a finitely generated I' is quasi-isometric to some hyperbolic
space X, then I' is hyperbolic.

In particular:

Corollary 7. If T is quasi-isometric to H?, then T is hyperbolic.

Remarks.

e What we are looking for is a kind of converse to Proposition 5 in the
case where X = H2. In general, given a metric space X, one may ask
whether all groups quasi-isometric to X act geometrically on X, and
if not, what are the groups quasi-isometric to X. For a survey on this,
see Misha Kapovich’s notes [16].

e Hyperbolic groups were introduced by Gromov. The standard refer-
ences are his seminal paper [15] and the books (7, 13, 14|. Hyperbolic
groups are also discussed in the more recent book [5].

e There are striking recent applications of d-hyperbolic spaces to low-
dimensional geometry. Among them, the most famous is probably the
work of Brock, Canary and Minsky on the Ending Lamination Conjec-
ture (see [22] for an introduction).



Lecture 2

The boundary of a hyperbolic space

In all of this lecture, (X, d) is a proper geodesic metric space.
A geodesic ray in X is an isometric embedding of [0, +-00) into X. We say
that two geodesic rays ¢, ¢ are asymptotic if the function t — d(c(t), c(t)) is

bounded.

Definition. Let (X, d) be a proper hyperbolic space. Fix a basepoint p € X.
The boundary of X, denoted by 0,X, is the set of equivalence classes of
geodesic rays ¢ in X such that ¢(0) = p, where two rays are equivalent if they
are asymptotic.

Using properness of X and the Ascoli-Arzela theorem, it is easy to see
that if one chooses a different basepoint ¢, then there is a natural bijection
0,X — 0,X. Hence it is legitimate to drop the basepoint in the notation.
We will henceforth denote the boundary of X simply by 0.X.

We are going to define a topology on X U dX. For this, it is convenient
to make some more definitions: a generalized ray is a map c : [0, +00) — X
such that either c¢ is a geodesic ray, or there exists R > 0 such that the
restriction of ¢ to [0, R] is a geodesic segment, and the restriction of ¢ to
[R,+00) is constant. We consider two generalized rays to be equivalent if
either they are asymptotic geodesic rays, or they are eventually constant and
equal. Hence we can view the set X U JX as a quotient of the set R, of
generalized rays starting at p.

Definition. We endow R, with the compact-open topology, i.e. a funda-
mental system of neighborhoods of a generalized ray c is given by sets of the
form

Vo= {d | d(e(t). ) e Ve [0,
The space X = X U X is given the quotient topology.

Hence a sequence ¢, € R, converges to c if and only if it converges
uniformly on compact subsets.

Proposition 8. The topology on X is independent of the choice of basepoint.
It is a compact Hausdorff space. The inclusion X — X is an embedding with
open image. (Hence 0X is compact.)

Exercice 7. Prove that 9H" is homeomorphic to the (n — 1)-sphere S™~1.
Let T" be a Cayley graph of the free group on two generators. Prove that
JdT1" is a Cantor set.



Proposition 9 (Quasi-isometry invariance of the boundary). Let X
and Y be proper hyperbolic spaces. If X andY are quasi-isometric, then 0X
and OY are homeomorphic.

Remark. One can show that the boundary of a proper hyperbolic space is
always metrizable. This will be assumed implicitly in the sequel. In fact one
can construct explicitly a family of metrics on X that induce the topology.
This is important, but will not be discussed in these lectures. See [7] or [13].

From hyperbolic groups to convergence groups

Definition. Let M be an infinite compact metrizable topological space and
I be a group acting by homeomorphisms on M.

We say that I' acts as a convergence group if for each sequence {g,} of
distinct elements of I', there exist points a,b € M and a subsequence {gn, }
such that lim g, - £ = a uniformly on compact subsets not containing b.

Proposition 10 ([3, 10, 27]). Let X be a proper hyperbolic space. Let T
be a group acting properly discontinuously by isometries on X. Then I' acts
as a convergence group on 0X.

Corollary 11. Let I’ be a group quasi-isometric to H2. Then T' acts as a
convergence group on S*.

Basics of convergence groups

Next we discuss an important characterization of convergence groups. De-
note by ©(M) the set of triples (z,y,2z) € M? such that z,y, z are pairwise
distinct, topologized as a subset of M?3.

Proposition 12 ([3]). Let M be an infinite compact metrizable topological
space and I' be a group acting by homeomorphisms on M. Then I' acts as a
convergence group if and only if the induced action of I' on ©(M) is properly
discontinuous.

Exercice 8. Show that O(S') is homeomorphic to two copies of ST x R?.
(Hint: construct a map from ©(S?) to the unit tangent bundle of H?.)

Let T" act as a convergence group on M. An element v € T' is elliptic
(resp. parabolic, resp. hyperbolic) if it has finite order (resp. has a unique
fixed point, resp. has exactly two fixed points).

Proposition 13. Any element of I is either elliptic, parabolic, or hyperbolic.



Remarks.

e We have seen that hyperbolic groups are convergence groups. It is a
natural question to characterize hyperbolic groups among convergence
groups. Such a characterization has been given by Brian Bowditch [2].
This theorem has been extended by Asli Yaman [29] to a characteri-
zation of relatively hyperbolic groups. For more on this, see Francois
Dahmani’s thesis [8].

e Convergence groups on spheres were introduced by Gehring and Mar-
tin [12]. Their original definition is more general: the convergence
groups considered in these lectures are what they call discrete conver-
gence groups.

Lecture 3

In this lecture, I will explain the main ideas of the proof of the following
‘half” of the Convergence Group Theorem.

Theorem 14 ([25]). Let I' be a group acting as a convergence group on S*.
Assume that T is torsion free, and acts preserving orientation and without
parabolic elements. Then T' has a finite normal subgroup F' such that T'/F is
Fuchsian.

An amwis is a pair (a,b) of distinct points of S. We say that two axes
(ay,by), (ag,by) cross if ay and by belong to different components of S* \
{a1,b1}. An axis A is simple if for every g € I', gA does not cross A. An axis
is hyperbolic if it consists of the fixed points of a hyperbolic element of I'.

Here is the key lemma:

Lemma 15. Let I' be as in Theorem 14. Then there is a simple hyperbolic
azis.

Remarks.

e The idea of finding a simple axis goes back to the work of Nielsen [23],
and was further developped by Zieschang [30] in connection with the
Nielsen Realization Problem for mapping classes of homeomorphisms
of surfaces.

e The paper [25] is rather long and technical. The author has given a
nice outline in [26].



Lecture 4

This lecture will be devoted to the other ‘half’ of the Convergence Group
Theorem.

Theorem 16. Let I’ be a group acting as a convergence group on S*. If the
action 1s orientation-preserving and if I' has a torsion element of order at
least 3, then T has a finite normal subgroup F such that T'/F is Fuchsian.

Of course, Theorems 14 and 16 do not imply the Convergence Group
Theorem. However, the methods discussed in the previous lecture extend to
cover all cases not covered by Theorem 16 (see [25]) and even some more.
Roughly, the proof of Theorem 14 extends without difficulties if there are
orientation-reversing elements or elements of order 2. If there are parabolics,
one proves the existence of a simple regular azis (which may not consist in
the fixed points of a hyperbolic element).

[ will follow the Casson-Jungreis approach [6]. For a completely different
proof, see Gabai’s paper [11].

If time permits, I will discuss a proof of the Morse Lemma using ultra-
limits, following [17].
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