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Abstract: The consequences of rapid and extreme flooding events, such as tsunamis, riverine flooding, and dam breaks show the necessity of
developing efficient and accurate tools for studying these flow fields and devising appropriate mitigation plans for threatened sites. Two-
dimensional simulations of these flows can provide information about the temporal evolution of water depth and velocities, but the accurate
prediction of the arrival time of floods and the extent of inundated areas still poses a significant challenge for numerical models of rapid flows
over rough and variable topographies. Careful numerical treatments are required to reproduce the sudden changes in velocities and water
depths, evolving under strong nonlinear conditions that often lead to breaking waves or bores. In addition, new controlled experiments of
flood propagation in complex geometries are also needed to provide data for testing the models and evaluating their performance in more
realistic conditions. This work implements a robust, well-balanced numerical model to solve the nonlinear shallow water equations (NSWEs)
in a nonorthogonal boundary fitted curvilinear coordinate system. It is shown that the model is capable of computing flows over highly
variable topographies, preserving the positivity of the water depth, and providing accurate predictions for the wetting and drying processes.
The model is validated against benchmark cases that consider the use of boundary fitted discretizations of the computational domain. In
addition, a laboratory experiment is performed of a rapid flood over a complex topography, measuring the propagation of a dam break wave
on a scaled physical model, registering time series of water depth in 19 cross sections along the flow direction. The data from this experiment
are used to test the numerical model, and compare the performance of the current model with the numerical results of two other recognized
NSWE models, showing that the current model is a reliable tool for efficiently and accurately predicting extreme inundation events and long-
wave propagation over complex topographies.DOI: 10.1061/(ASCE)HY.1943-7900.0000881.© 2014 American Society of Civil Engineers.
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Introduction

In recent years, many catastrophic events have involved rapid
flooding over complex topography, such as tsunamis and river
floods. In Chile, for example, several glacial-lake outburst floods
(GLOF) have occurred in Colonia River, a tributary of Baker River
(47°10′S; 73°20′ W), as a consequence of the Cachet II lake

outburst. In fact, two major events in 2008 generated an increase
in the free surface elevation of Baker River above 4.5 m and a peak
discharge over 3,000 m3=s Dirección General de Aguas de Chile
(General Water Office of Chile) (DGA) satellite monitoring station
at Baker River, Dirección General de Aguas Ministerio de Obras
Públicas de Chile (National Water Office of the Public Works
Ministry of Chile) (DGA-MOP), Chile), flooding large parts of
the Colonia and Baker river valleys and putting at risk the town
of Caleta Tortel, located at the mouth of Baker River (Dussaillant
et al. 2009). This event has repeated twice a year since 2008, which
is likely linked to significant increments of temperature that have
been registered on the entire watershed in recent years.

Recently, on February 27, 2010, an 8.8 Mw earthquake occurred
off the coast of south-central Chile (Fritz et al. 2011; Lay et al.
2010), generating a destructive tsunami that affected a significant
portion of the coast, the Juan Fernández archipelago, and Easter
Island, taking the lives of 124 people. As a consequence of these
events, local authorities and the central government are currently
developing new hazard and risk plans in different coastal commun-
ities along Chile, which consider the investigation of the inundation
extent and maximum water depth estimations, peak discharge, and
velocities, among other hydrodynamic variables for riverine floods
and tsunamis.

To study the large and costly consequences of these major rapid
flooding events, it is necessary to develop instruments that can be
used to accurately and efficiently predict the flow velocities and
water depths and to assess their associated hazards and risks.
An accurate estimation of flow features such as run-up, affected
areas, and arrival time of the peak flood will define better mitigation
plans and early warning systems and improve the preparedness of
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people when facing such catastrophic situations, incorporating
hydrodynamic forces into the design of coastal and riverine infra-
structure (FEMA 2011; ASCE 2006; Yeh 2006).

Nonlinear shallow water equations (NSWEs) are usually em-
ployed in these cases to describe the flow dynamics and to model
fairly long waves in a homogeneous and incompressible fluid.
They are obtained by vertically averaging the three-dimensional
Navier-Stokes equations assuming a hydrostatic pressure distribu-
tion, resulting in a set of horizontal two-dimensional hyperbolic
conservation laws that describe the evolution of the water depth and
depth-averaged velocities (Cunge et al. 1980; Stoker 1992).

In the last decades, a significant number of numerical models
have been developed to simulate these complex flows, employing
finite-difference methods (Molls and Chaudry 1995; Molls and
Zhao 2000), finite-element methods (Berger and Stockstill 1995;
Tucciarelli and Termini 2000), or finite-volume methods (Valiani
et al. 2002; Zhou et al. 2004; Loose et al. 2005). In the framework
of finite-volume methods, Godunov-type formulations are very
useful to solve the NSWEs, because they can reproduce complex
discontinuities such as shockwaves or wet–dry interfaces by solv-
ing a Riemann problem at each cell interface of the discretized
domain (Toro 2001; LeVeque 2002).

Many environmental flows such as bore propagation (Hibberd
and Peregrine 1979), tsunami inundations (Yeh 1991), or glacial
lake outburst floods (Cenderelli and Wohl 2001) fall within this
category of extreme flood events that can be represented by the
NSWEs. They are characterized by rapid wetting and drying over
highly variable topographies, giving rise to complex unsteady free
surface dynamics that pose a significant challenge for the numerical
models. Numerical strategies for integrating the governing equa-
tions in these shallow, extreme flows must also address complicated
geometries and the highly complex dynamics of wave breaking and
run-up. Similarly, the discretization of the boundaries of the physi-
cal domain may have a strong influence on the development of the
flow dynamics, introducing errors or numerical instabilities if not
carefully performed (Baghlani et al. 2008).

Motivated by these applications, this investigation develops an
efficient numerical model to solve the two-dimensional dynamics
of extreme flows over natural terrains. The method of Marche et al.
(2007) is extended, which has resolved complex features of
free-surface flows by implementing a well-balanced approach.
Well-balanced schemes are specifically conceived to preserve local
and global mass conservation to machine accuracy, maintaining
steady and motionless states. To achieve this requirement, it is nec-
essary to carefully discretize the friction and bed-slope source terms
[more details are provided by Greenberg and Leroux (1996),
LeVeque (1998); Gallouet et al. (2003), Audusse et al. (2004),
Liang andMarche (2009)]. The governing equations are formulated
and solved in a nonorthogonal generalized curvilinear coordinate
framework to model the propagation of extreme flows over natural
terrains. A finite volume well-balanced approach is used, based on
a robust VFRoe (Masella et al. 1999)-relaxation Riemann solver
(Gallouet et al. 2003; Berthon and Marche 2008), calculating mass
and momentum fluxes at cell interfaces and performing the hydro-
static reconstruction method proposed by Audusse et al. (2004).
The source term that accounts for friction effects is treated with
the semi-implicit fractional step approach of Liang and Marche
(2009). Validation of the new model is presented through compari-
son with benchmark tests, which are specifically chosen to assess
the ability of the model to address wet–dry interfaces, complex
geometries, shocks, friction, and bathymetric source terms.

In addition, the future studies of these flows will require new
experiments, representing the complex features of rapid flooding
events over realistic arbitrary geometries, to test and improve

the numerical models. This investigation also includes a dam break
experiment on a scaled physical model, representing the bed and
banks of a mountain river. Time series of water depth are registered
and the results are compared with simulations conducted by using
the new, well-balanced numerical model, showing that it can cap-
ture the most relevant characteristics of the flow. Furthermore,
to compare the performance of the current model with previously
validated numerical models, this experience is simulated by
using two well-known shock-capturing NSWE models, ANUGA
(Mungkasi and Roberts 2013) and GeoClaw (Berger et al. 2011).
From this comparison, the improvements achieved by the new
numerical approach can be established in terms of the overall agree-
ment of the free surface variations in time, the estimation of the
maximum amplitude of the propagated bore, and its arrival time
to different locations.

The paper is organized as follows: the next section presents the
nondimensional governing equations and the partial transformation
to generalized nonorthogonal curvilinear coordinates that are em-
ployed in the model. The numerical scheme and different algo-
rithms used to integrate the NSWEs are briefly described in the
third section. Validation tests and comparisons of numerical sim-
ulations with benchmark cases and previously published experi-
mental data are presented in the fourth section. The penultimate
section describes new dam break experiments conducted in the
Hydraulic Laboratory of the Pontificia Universidad Católica de
Chile, intended to further validate the model over a realistic and
highly variable topographic configuration. Conclusions and future
perspectives of this work are discussed in the final section.

Governing Equations

The two-dimensional NSWEs represent a system of nonlinear
partial differential equations representing the mass and momentum
conservation laws, which were originally derived by Saint-Venant
(1971). The fluid is assumed to be incompressible and homo-
geneous, with hydrostatic pressure distribution. The shallow water
or long-wave hypothesis considers negligible vertical velocities and
depth-uniform horizontal velocities. Hence, the NSWEs are often
applied to river or near-shore flows where the characteristic hori-
zontal wavelength is much longer that the characteristic water depth
[more details are provided by Cunge et al. (1980)].

The following will work with a nondimensionalized set of
NSWEs by choosing characteristic horizontal and vertical length
scales and a velocity scale (L,H;, and U, respectively). By defining
the length and velocity scales of the flow, the time scale is repre-
sented by T ¼ L=U, and the dimensionless Froude number by
F ¼ U=

ffiffiffiffiffiffiffi
gH

p
, which quantifies the relative importance of inertial

effects over gravity (g). The dimensional variables, noted with a
hat (^), are hereafter defined as bx ¼ Lx, by ¼ Ly, bz ¼ Hz, bh ¼
Hh, bu ¼ Uu, bv ¼ Uv, and bt ¼ Tt, where bx and by represent the
Cartesian directions, bz defines bed elevation, bh is water depth, bu
and bv are the depth-averaged flow velocities in each Cartesian
direction, and bt is time. To better reproduce complex arbitrary
geometries, a boundary fitted curvilinear coordinate system is
introduced in two dimensions, denoted by the system ðξ; ηÞ.
Generalized curvilinear coordinates are chosen to follow the boun-
daries of the physical domain, adapting the grid to the geometrical
details of the terrain. This transformation provides better resolution
in zones of interest and an accurate representation of the boundaries,
resulting in an efficient discretization of the flow domain (Lackey
and Sotiropoulos 2005; Liang et al. 2007; Baghlani et al. 2008).

The Cartesian NSWEs can be partially transformed to this
new coordinate system, maintaining the hydrodynamic variables
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referenced to the Cartesian frame. This procedure is known as par-
tial transformation and only modifies the mass and momentum
fluxes of the governing equations. The full transformation would
change the hydrodynamic variable vectors,Q ¼ ½h; hu; hv�T , to the
velocity components in the ξ and η directions, using the so-called
contravariant velocity components, and the derivatives in the con-
vective terms would yield the well-known Christoffel symbols of
the second kind (Ahn and Hosoda 2007). Therefore, considering
only bed slope and friction source terms, the nondimensional
NSWEs can be written in curvilinear coordinates in the following
form (Lackey and Sotiropoulos 2005):

∂Q
∂t þ J

∂F
∂ξ þ J

∂G
∂η ¼ SbðQÞ þ SfðQÞ ð1Þ

where Q = vector of hydrodynamic variables; F and G = flux vec-
tors expressed in terms of the new spatial coordinate system ξ and
η, respectively; SbðQÞ and SfðQÞ = source term vectors. These
vectors are given by the following expressions:

Q ¼

0
B@

h

hu

hv

1
CA; F ¼ 1

J

0
B@

hU1

uhU1 þ 1
2Fr2 h

2ξx

vhU1 þ 1
2Fr2 h

2ξy

1
CA;

G ¼ 1

J

0
B@

hU2

uhU2 þ 1
2Fr2 h

2ηx

vhU2 þ 1
2Fr2 h

2ηy

1
CA;

SbðQÞ ¼

2
64

0

− h
Fr2 ðzξξx þ zηηxÞ

− h
Fr2 ðzξξy þ zηηyÞ

3
75; SfðQÞ ¼

0
B@

0

−τfx
−τfy

1
CA ð2Þ

where h = water depth; u and v = nondimensional depth-averaged
flow velocities in each Cartesian direction; z = bed elevation; zξ
and zη = local bed slope with respect to the transformed coordinate
system (ξ, η); and Sf = friction source term.

The additional terms that appear in the fluxes, ξx, ξy, ηx, and ηy,
are the resulting metrics associated to the coordinate changes, and
J ¼ ξxηy − ξyηx is the Jacobian of the transformation, which will
remain constant for a fixed grid. Also, U1 and U2 are the contra-
variant velocity components, expressed as Uj ¼ uϵx þ vϵy with
ðj; ϵÞ ∈ fð1; ξÞ; ð2; ηÞg The transformed system of equations is dis-
cretized on a rectangular and uniform grid in the transformed space
ðξ; ηÞ using the finite-volume method that is described in the next
section.

Numerical Scheme

The curvilinear NSWE system given in Eq. (1) is integrated by us-
ing a well-balanced finite-volume scheme, coupled with a splitting
strategy for the treatment of source terms (Liang andMarche 2009).
The solution associated to the system of Eq. (1) is decomposed at
each time step by solving two systems, one associated with the
NSWEs with topography source terms and a second associated
with the remaining friction terms. The following subsections de-
scribe the different steps of the algorithm, including the implemen-
tation of the boundary conditions, and the stability criterion of the
numerical solution.

Solution of the NSWEs with Topography Source Terms

This step solves the following system associated with the NSWEs
with topography source terms:

∂Q
∂t þ j

∂F
∂ξ þ J

∂G
∂η ¼ SbðQÞ ð3Þ

A numerical strategy is sought that provides stable shock-
capturing integration of Eq. (3) with precise control of the spurious
oscillations induced by numerical dispersion. In addition, the
scheme should be able to handle the complex interactions between
flow and topography, including the preservation of motionless and
steady states. It was chosen to adapt the robust second-order finite-
volume scheme introduced by Marche et al. (2007) to the non-
orthogonal boundary fitted coordinate framework.

Taking into account the new system of coordinates, the spatial
discretization of Eq. (3) can be recast under the following semidis-
crete finite-volume formalism:

d
dt

Qi;j þ
Ji;j
Δξ

ðF�
iþð1=2Þ;j − F�

i−ð1=2Þ;jÞ þ
Ji;j
Δη

ðG�
i;jþð1=2Þ −G�

i;j−1
2

Þ

¼ Sbði;jÞ ð4Þ

where Qi;j = vector of cell-centered hydrodynamic variables; Ji;j =
cell-centered Jacobian of the coordinate transformation; F�

i�1=2;j
and G�

i;j�1=2 = numerical flux functions through the ði; jÞ cell in-
terfaces; and Sbði;jÞ = centered discretization of the bed-slope source
term. The cell sizes are denoted by Δξ and Δη, and the interface
between the ði; jÞth cell and the ðiþ 1; jÞth is denoted by ðiþ 1

2
; jÞ,

as depicted in Fig. 1.
The computation of the numerical fluxes F�

i�1=2;j and G
�
i;j�1=2 is

achieved by using a robust VFRoe relaxation scheme proposed by
Gallouet et al. (2003). To achieve a second-order accurate scheme,
the monotonic upstream scheme for conservation laws (MUSCL)
extrapolation proposed by Van Leer (1979) is straightforwardly ap-
plied. This technique considers that numerical fluxes are computed
by linearly reconstructing the hydrodynamic variables, leading to
more accurate reconstructed states at each side of the interface of
every cell, as shown in Fig. 1 [details are provided by Bouchut
(2004)]. To handle topographic variations and the requirement
for the preservation of static flows, the well-balancing discretiza-
tion for the bed-slope term proposed by Audusse et al. (2004) was
also adapted to the boundary fitted curvilinear coordinate system of
equations. In this step of the algorithm, a linear reconstruction of
the topography was built considering the MUSCL reconstructed
hydrodynamic variables, as shown in Marche et al. (2007). Finally,
the source term SbðQÞ is estimated through the new reconstructed
values of the fluxes. A detailed description of the computation of
the fluxes and the hydrodynamic variables is provided in the work
of Marche et al. (2007) and Berthon and Marche (2008).

Fig. 1. Discretization cell and numerical fluxes (“L” and “R” denote
the left and right boundaries of the cell; plus and minus signs represent
the left and right sides of the cell interface)
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Solution of the Friction Source Terms

The friction source term is incorporated by using the splitting
semiimplicit method proposed by Liang and Marche (2009).
The corresponding ordinary differential equation of the splitting
operation is defined as follows:

dQ
dt

¼ Sf ð5Þ

where

Sf ¼ ð0;−τ fx;−τfyÞT ð6Þ

In this equation, the terms τfx and τfy = nondimensionalized
bed shear-stresses for each Cartesian direction. The magnitude
of the bed shear stresses in each direction can be calculated as
follows:

τfx ¼ Cfu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ð7Þ

τfy ¼ Cfv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ð8Þ

where Cf = nondimensionalized bed friction coefficient, which can
be expressed by using one of the standard existing approaches de-
veloped for uniform flows, such as Manning or Chézy. Following
the algorithm developed by Liang and Marche (2009), Eq. (5) is
integrated by using an implicit scheme and a second-order Taylor
series expansion. An additional friction limitation may be locally
added to prevent unphysical flow from reversing, owing to large
drag forces in vanishing depth areas, as mentioned by Burguete
et al. (2008).

As far as time discretization is concerned, a classical second-
order Runge-Kutta scheme is used for each time-step in this split-
ting approach. To solve system shown in Eq. (1) at the boundaries
of the computational domain, three types of boundary conditions
have been implemented and tested in the model: (1) transmissive or
open boundary, allowing the information to freely leave the domain
without propagating spurious information back to the domain;
(2) solid wall or close boundary, which imposes no discharge
through the boundary of the domain; and (3) absorbing/generating
boundary condition, which relies on the work of Sanders (2002)
and Cienfuegos et al. (2007) and allows inflow discharge or free
surface information at the boundary to be prescribed, such as in-
coming waves or stage-discharge relationships, and back-traveling
waves to be freely evacuated. Finally, the stability of the numerical
model is controlled by the Courant-Friedrich-Lewy criterion (CFL)
(Toro 2001).

Validation

As previously explained, the numerical model in nonorthogonal
generalized coordinates is based on the method of Marche et al.
(2007), incorporating bed friction with the splitting semiimplicit
method of Liang and Marche (2009). Initially, the model was
validated by using various benchmark cases that are not shown
herein, for rectangular domains employing discretizations in
Cartesian coordinates. These first tests involved shock-capturing
and moving shoreline problems, quantitatively determining accu-
rate results in comparison with analytical solutions and laboratory
data; these are the same cases previously studied by Marche et al.
(2007). The following series of benchmark tests are intended to
illustrate the improvements obtained when a boundary fitted curvi-
linear discretization is used, and to prove the ability of the model to
deal with complex geometries, bed slope, and friction source terms.

Dam Break in a Convergent–Divergent Flume

The numerical model is tested with a dam break induced flow in a
convergent–divergent channel, performing simulations of two-
dimensional flood waves studied experimentally by Bellos et al.
(1992). The channel is 21.2 m long and has a rectangular cross
section of variable width. At a distance of 5 m downstream from
the beginning of the flume, there is a smooth curved contraction
and expansion with minimum width of 0.6 m; the flume has a con-
stant bed slope that can be changed and ranges between �1%. A
detailed description of the domain is provided in the work of Bellos
et al. (1992).

The simulation of the experiment is conducted by using a non-
uniform boundary fitted mesh of 241 × 41 cells; the channel is as-
sumed to have a mild bed slope, S0 ¼ 0.002, and a Manning
friction coefficient n ¼ 0.012, consistent with the recommenda-
tions of Bellos et al. (1992). The dam is located at the end of
the contraction, at a distance of 8.5 m from the upstream boundary
of the flume. Initial conditions consist of a water depth of 0.30 m
upstream of the dam, null flow velocities, and dry terrain down-
stream of the dam. A no-flow boundary condition is imposed at
the sidewalls and at the upstream boundary of the flume. At the
downstream end of the channel, an open boundary condition is ap-
plied to allow all information to exit the domain without propagat-
ing back and perturbing the numerical solution. The simulations are
conducted for 70 s by using a CFL number equal to 0.9 to ensure
numerical stability during the computations. The geometry of the
channel, dimensions, and locations of measurement points studied
by Bellos et al. (1992), along with the computational mesh, are
shown in Fig. 2.

The results show that dam break phenomena are correctly cap-
tured by the numerical model, as shown in Fig. 3. At the breaking,

Fig. 2. Dam break in a convergent–divergent flume: geometry of the channel, boundary fitted grid, bathymetry, and measurement points (black dots)
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the shock wave spreads through the expansion and propagates
downstream, inundating the dry bottom. A rarefaction wave prop-
agates upstream, decreasing the water depth, which is reflected at
the upstream closed boundary of the flume. Then, the water depth
in the flume starts decreasing, reaching a minimum of 0.014 m after
70 s. The images depicted in Fig. 3 show that computed water
depths and arrival times of the front are in excellent agreement with
experimental data for all measurement points in the study, confirm-
ing the abilities of the model to capture shocks and handle wet–dry
cells and source terms over a curvilinear geometry.

Dam Break over a Closed Basin with Steep
Topography and Friction

An important characteristic of the model is its capability of han-
dling frictional source terms in the numerical solution of the
NSWEs, especially for situations in which the flow is shallow
or the process of wave run-up/run-down is important. Here, the
numerical model is tested with a flood produced by a dam break
over a closed channel with three conical obstacles. This test was
first proposed by Kawahara and Umetsu (1986) and subsequently
used by many researchers (Brufau et al. 2002; Brufau and García-
Navarro 2003; Gallardo et al. 2007; Nikolos and Delis 2009) to
assess the ability of numerical models to address steep bed slopes
and friction source terms and wetting/drying proceses, and to test
local and global mass conservation.

The basin is 70 m long in the streamwise x-direction and 30 m
wide in the cross-stream or y-direction. The topography of the bed
is defined by the following equation:

zðx; yÞ ¼ max

2
664

0

1 − 0.1 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 30Þ2 þ ðy − 22.5Þ2

p
1 − 0.1 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 30Þ2 þ ðy − 7.5Þ2

p
2.8 − 0.28 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 47.5Þ2 þ ðy − 15Þ2

p
3
775 ð9Þ

Initial conditions consist of a motionless free surface elevation
upstream of the dam location (at x ¼ 16 m) equal to 1.82 m, and a

dry bottom bed downstream. The simulation is performed by em-
ploying a 101 × 101 uniform mesh using the suggested Manning
coefficient of n ¼ 0.018, and no-flow boundary conditions are ap-
plied to all sidewalls of the basin. Computations are conducted for
400 s to achieve steady state, as shown in previous investigations
(Nikolos and Delis 2009), using a CFL number equal to 0.9 to en-
sure the stability of the model during these computations. Evolution
of the free surface is shown in Fig. 4. After the dam break, the flood
wave wets the small obstacles and a reflected wave is propagated
back to the upstream boundary. At the same time, the front passes
through the small obstacles and runs up and down over the larger
obstacle, which is partially dry. Later, the wetting front separates
and symmetrically goes around the larger mound as it crosses back
at the middle of the channel downstream from the larger conical
obstacle. Finally, the wave hits the downstream solid boundary
and is reflected back to the obstacles. The motion decays in time
as a consequence of the friction force; after approximately 400 s,
the steady state is reached, leaving the three obstacles partially dry.
These results agree with those obtained by Gallardo et al. (2007)
and Nikolos and Delis (2009), and illustrate the ability of the model
to accurately represent the interaction between dry and wet cells
over a steep and frictional topography. Results also demonstrate
that global mass conservation is achieved during the entire compu-
tation. Therefore, the robustness and stability of the friction scheme
in conjunction with the well-balancing properties of the solution of
the hyperbolic system are validated.

Experimental Dam Break over Complex Terrain and
Numerical Simulation

With the purpose of testing the numerical model, an experiment is
conducted for the propagation of a dam break wave generated by
the rapid emptying of a reservoir over a scaled physical model of a
river. The experiments are conducted in the Hydraulic Laboratory
of the Pontificia Universidad Católica de Chile. This section
presents the details of the experiment and the comparison between
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Fig. 3. Dam break in a convergent–divergent flume showing water depth time series at measurement points: (a) x ¼ 4.0 m; (b) x ¼ 8.5− m;
(c) x ¼ 8.5þ m; (d) x ¼ 13.5 m
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experimental results and numerical solutions obtained with the
current model and with two recognized NSWE models: ANUGA
(Mungkasi and Roberts 2013) and GeoClaw (Berger et al. 2011),
showing the capacity of the models to handle highly demanding
natural conditions analogous to the propagation of a tsunami wave
over varying topography.

Experimental Setup

Dam break experiments are conducted in a physical model of a
river consisting of a narrow and steep valley with complex topog-
raphy, presented in Fig. 5(a). The model is built by using Froude
similarity and a geometrical scale equal to 1∶60. The entire river
reach is 14.6 m long and has a maximum width of 4.5 m. It starts
with a narrow and curved zone with an average adverse bed slope of
nearly−4.5%, then becomes wider toward its downstream end. The
average bed slope over the river reach considered in the experi-
ments is −1.5%. A longitudinal profile of the river reach, along
with the locations of the measurement points, is shown in Fig. 5(b).
The river bed includes a uniform concrete mix with fine gravel,
which yields roughness characterized by a Manning coefficient
of n ¼ 0.014.

Upstream of the river reach, there is a reservoir and a wooden
gate that holds a fixed volume of water equal to 2.17 m3 . The ex-
periment consists of a sudden lift of the reservoir gate to release the
water into a quiescent free surface downstream. A bore wave is
produced and propagated to the end of the river reach. The free
surface evolution within the scaled model is recorded during
60 s. At the reservoir, free surface elevation is set at 0.85 m,
whereas at the river, it is set at 0.56 m, as shown in Fig. 5(b). Free
surface variations are recorded at 19 points in the river reach and at
the reservoir, as depicted in Fig. 5(b).

At the reservoir, free surface variations are measured by using a
KPSI (Measurement Specialties, Hampton, Virginia) brand pressure
transducer recording voltage at 100 Hz. The accuracy of this instru-
ment is �1% and it is calibrated such that 1 V equals 1 m of water
column. At downstream cross sections, free surface variations over
the mean water level are measured by using wave Danish Hydraulic
Institute (DHI) resistivegauges,whichwere located at the thalweg of

the cross sections under investigation. Each gauge records voltage
data at 100Hz; the accuracy of these gauges is�1.5 mmand the zero
drift is �5%, depending on the water temperature. For the experi-
ments, four resistive gauges are used, i.e., only four points can be
measured at each run. Thus, five set of experiments with different

Fig. 4. Dam break over a closed basin showing free surface elevation: (a) t ¼ 2 s; (b) t ¼ 12 s; (c) t ¼ 20 s; (d) t ¼ 300 s
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Fig. 5. Dam break experience: (a) physical model and measurement
instruments, upstream view; (b) longitudinal profile of the bottom ele-
vation of the river reach, initial conditions, and measurement points
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gauge positions are performed to cover the 19 sections under con-
sideration. As a verification of the repeatability of the data, three
repetitions are performed at each gauge location, maintaining the
position of the pressure sensor in the reservoir to use it as a reference
to synchronize the time series.

Numerical Simulation

The digitized bathymetry of the physical model is constructed from
39 cross sections measured within the river reach. Next, the bathy-
metric data, together with the reservoir geometry, is interpolated by
using a cubic spline method to create a boundary fitted computa-
tional domain, which correctly represents the bathymetric features
of the river reach and its geometry. The physical model is discre-
tized into 130 × 30 cells of variable size, covering an area of
16 × 4.5 m2. The mesh used in the simulations and the digitized
bathymetry are shown in Fig. 6. As initial conditions, free surface
elevations at the reservoir and the river are set to 0.85 m and 0.56 m,
respectively. Zero velocities over the entire domain are considered

at t ¼ 0. The open boundary condition is used at the downstream
end of the river reach and closed boundary conditions are applied to
the sides of the computational domain. CFL condition is set to 0.9
to ensure the numerical stability of the simulations. The gate is
instantly removed at t ¼ 0 and the wave propagates downstream,
as shown in the experiments.

Results

The numerical model is able to simulate the dam break event and
the propagation of the bore wave over the river reach. Fig. 7 illus-
trates the propagation process, showing four snapshots of the
numerical computation, in which blue represents the wet surface.
As depicted in these figures, the bore propagates downstream of the
river reach through the narrow and steep valley. It takes approxi-
mately 10 s for the bore wave to reach the end of the river reach
(≈ 14 m). The entire flood wave propagates downstream along the
complex geometry of the physical model, flooding and drying cells,
and reaches steady state after nearly 60 s. Fig. 8 shows the velocity

Fig. 6. Numerical model of dam break experience: digital bathymetry of the physical domain and curvilinear mesh of the physical model of
130 × 30 cells

Fig. 7. Numerical model of dam break experience showing flood extension at different times: (a) initial condition; (b) t ¼ 4.4 s; (c) t ¼ 20 s;
(d) t ¼ 60 s
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vectors field 10 s after the gate opening; flow features determined in
the laboratory experiments, such as recirculation and reflection
owing to topographical obstacles, are observed in these numerical
results. Thus, the primary aspects of the rapidly varying flow mea-
sured in the experiments are reproduced by the numerical model.

Evolution of the bore wave is studied and compared to exper-
imental data through time series of the computed free surface
dynamics at the same locations measured in the experiments. Addi-
tionally, numerical simulations are conducted by using similar
NSWE numerical models to assess and compare the accuracy of
the current model for similar discretization settings. The chosen
numerical models are ANUGA (Mungkasi and Roberts 2013)
and GeoClaw (Berger et al. 2011). Both models solve the NSWE
by using a well-balanced shock capturing finite-volume method,
primarily differing in the discretization of the domain; ANUGA uses
nonstructured meshes, whereas GeoClaw uses an adaptive meshing
approach. To define comparable grids for both simulations, meshes
are prepared with similar discretization sizes. For ANUGA, a mesh
is defined of 4,026 triangular elements. GeoClaw uses an adaptive
mesh configuration that varies the distribution of element size with
time, defining areas of refinement when needed. For this particular
case, the refinement zone is controlled to mantain a number of grid
nodes similar to the current model and to ANUGA. Figures showing
the defined grids for ANUGA andGeoClaw, along with the configu-
ration for both simulations, are presented in the appendix.

Comparisons between measured and computed time series of
the free surface evolution for the three models are presented in
Fig. 9. The analysis shows that the primary features of the process,
i.e., the arrival times, peak amplitudes and recession curves, are
well reproduced by the current numerical model and by GeoClaw.
ANUGA results seem to be accurate in representing maximum am-
plitude, but for this particular case, the model overestimates the
final free surface elevation.

Based on the results obtained in the simulations, three quantities
are established related to the inundation and propagation processes
in the study: the overall agreement of the free surface elevation with
time, the maximum amplitude of the bore at each measurement lo-
cation, and the arrival time of the wave front. For each of these
variables, mean relative errors to the measurements are calculated
at gauge locations; these relative errors are defined as described in
the following subsections.

Relative Root Mean Square Error
A root mean square error is used to compare the experimental and
numerical free surface elevations at each location and to highlight
the locations where larger differences are found. The relative root
mean square error (RRMSE) for a location k, and the average
RRMSE considering all locations are defined, respectively, as

RRMSE2
k ¼

1

T

Z
T

0

�
ηkmðtÞ − ηknðtÞ

ηkmðtÞ
�
2

dt ð10Þ

RRMSE ¼
�
1

M

Xn
k¼1

RRMSE2
k

�
1=2

ð11Þ

where T = period of time considered in measurements and simu-
lations (60 s);M = number of measurement points; and ηkm and ηkn =
measured and numerical free surface elevation at each k location,
respectively.

Maximum Amplitude of the Wave
The maximum amplitude of the bore is an important flood variable
because it is related to the destructive potential of the wave. This
variable is defined as the difference between the maximum and the
initial free surface elevations at the river reach. The mean relative
error between experimental data and numerical results is estimated
as follows:

Fig. 8. Numerical model of dam break experience: velocity vectors for the propagation of the flooding wave over the river at t ¼ 10 s
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ΔHr ¼
1

M

XM
k¼1

����HðηkmÞ −HðηknÞ
HðηkmÞ

���� ð12Þ

Arrival Time
The arrival time of the wave is an interesting parameter for defining
evacuation plans because it indicates the available time to leave
flood-prone areas and is a proxy for the celerity of the bore.
The arrival time of at location k is defined as the first instant at
which the signal surpasses the initial value by a certain threshold,
which is defined here as 1 mm. The mean relative error of this
variable over all measuring sections is defined as

ΔTa ¼ 1

M

XM
k¼1

���� TaðηkmÞ − TaðηknÞ
TaðηkmÞ

���� ð13Þ

The calculated mean relative errors for each model are summa-
rized in Fig. 10. The RRMSE for the three models agrees very well
overall between measurements and numerical predictions, with a
1.7% relative error for the current model and a 2.1 % relative error
for ANUGA and GeoClaw, which is an acceptable error, consider-
ing the demanding nature of the experiment. For the current model,
the highest relative errors are found in the gauges located upstream,
near the gate.

It is found that, on average, the maximum amplitude is under-
estimated by all models because it is the variable with the highest
relative error. However, in terms of arrival times of the wave front,
predicted results are in excellent agreement with observations (less
than 5% mean relative error for the current model). The primary
differences are found in the first gauges closest to the reservoir,
with maximum local errors reaching 10%. These differences
may be explained by the opening mechanism of the gate, which

is frictionless and instantaneous in the simulation, but performed
in a finite time in the experiments; here, vertical velocities may also
be generated and interfere with the dynamics of the wave down-
stream, thus increasing the maximum amplitude of the wave.

Summarizing, the results from the current model show that it can
correctly capture the time evolution of the free surface elevation,

Fig. 9. Numerical model of dam break experience showing comparison between measured and predicted free surface elevation at different locations:
(a) reservoir; (b) Gauge Location 24; (c) Gauge Location 20; (d) Gauge Location 12 (in all figures, the dotted black line represents the experiments
and the solid lines represent the numerical results of the current model, GeoClaw, and ANUGA)

Fig. 10. Summary of mean relative errors between experiments and
numerical results for each NSWE model (RRMSE: relative root mean
square error between experimental and numerical free surface eleva-
tion; ΔHr: mean relative error in the maximum amplitude of the bore;
ΔTa

r : mean relative error in the arrival time of the bore)
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the arrival time of the bore, and its maximum amplitude. For this
singular case, simulations show a decrease in the relative errors
when compared to the results of previously validated numerical
models when a similar discretization setting of the domain is used.

Conclusions

This investigation developed and validated a finite-volume numeri-
cal model to simulate extreme flows and rapid flooding over natural
terrains and complex geometries. The numerical scheme success-
fully reproduces the flow hydrodynamics over rough and highly
variable topographies, incorporating an accurate and robust treat-
ment of bore dissipation and the wet and dry process. The method is
based on algorithms proposed by Marche et al. (2007), adapted to
solve the bed slope source term and to incorporate friction by using
the splitting semiimplicit scheme developed by Liang and Marche
(2009). An important advantage of this model is the simplicity and
low cost of its implementation, yielding accurate results by using
coarse computational grids.

Two benchmark test cases are considered to illustrate the capa-
bilities of the new model. Test cases involve the use of dam break
floods and boundary fitted grids, with frictional and varying
bathymetry. The use of boundary fitted grids is shown for the case
of the dam break in a converging–diverging flume (Bellos et al.
1992). Numerical results are in excellent agreement with experi-
mental data obtained by Bellos et al. (1992), showing the ability
of the model to address complex geometry and a rapidly varying
flow. The process of run-up and run-down, and wetting and drying
of the terrain as the wave propagates, are reproduced in the numeri-
cal simulations of the benchmark cases analyzed in this investiga-
tion. This case also illustrates the stability and the well-balanced
property of the current model, because steady state is correctly
reached owing to frictional effects.

New experimental data are reported for a dam break wave
propagating over the scaled physical model of a river reach with
narrow and steep valleys. This experiment is specially designed
to test the numerical model and to evaluate its ability to represent
extreme and rapid flooding over natural conditions. For this case,
the current results have been compared with those from two other
NSWE numerical models, showing a better relative performance by
the current model in terms of the hydrodynamic variables when
similar computational discretizations are employed.

The results reported in this research confirm that the new
numerical model is a robust and powerful tool that can be used

to simulate high-volume flash floods and significant inundation
over dry terrain under realistic conditions, providing accurate re-
sults in terms of water depth evolution, discharge, and inundated
area. The performance of the model shows that it can become a
useful tool for evaluating extreme and rapid flood events over com-
plex bathymetries, and to assess their hazards in terms of inunda-
tion extent and depth, depth-averaged velocities, and arrival time of
peak discharge. It is expected that the model will be used as an
instrument to develop new inundation hazard maps in coastal
and riverine areas.

Future research using the model developed in this investigation
will focus on the study of complex engineering and geophysical
flows. Large-scale coastal flows, such as tsunami propagations
(Yamazaki and Cheung 2011), will also be studied by incorporating
the Coriolis effect into the model. Also, advanced sediment trans-
port and morphodynamic models (Cao et al. 2004; Vasquez et al.
2008) will be added to the basic equations of the flow to study
erosion and sedimentation processes in fluvial and coastal environ-
ments. Finally, this model will be employed to investigate density
coupled flows, incorporating the transport of active and passive
contaminants in rivers and estuaries (Loose et al. 2005).

Appendix. Numerical Simulations of the Dam Break

This section presents additional information about the configura-
tion used for the numerical simulations of the bam break over a
physical model using ANUGA and GeoClaw numerical models.
Fig. 11 presents the mesh configuration for each model; Fig. 11(a)
presents the triangular mesh of 4,026 required by the ANUGA
model and Fig. 11(b) presents the initial adaptive mesh used for
the simulation with GeoClaw. The element size distributions of
ANUGA and the new model considered approximately 60% of the
elements under 100 cm2 in size, because both distributions are
comparable. For the simulation using GeoClaw, the time evolution
of the distribution of elements is controlled to maintain the number
of the finer elements at approximately 4,000, which are 69.4 cm2 in
size. For both models, CFL is equal to 0.95 to achieve numerical
stability.
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