
Contributions to the numerical approximation

of shallow water asymptotics
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Introduction

Ce mémoire constitue une synthèse des travaux effectués depuis mon arrivée à
l’Institut de Mathématiques et de Modélisation de Montpellier (I3M), en septembre
2007. Son objectif est avant tout de décrire et d’apporter une vision cohérente, à
défaut d’exhaustive, des modèles et méthodes numériques introduits dans les articles
de recherche, actes de conférence, ou preprints que j’ai publiés avec mes collabora-
teurs, ou récemment soumis à évaluation.

Le fil conducteur reliant l’ensemble de ces travaux est la nécessité de pouvoir réaliser
des simulations numériques précises, à échelle réaliste, de phénomènes complexes en
hydrodynamique littorale, en incluant les principaux phénomènes et transformations
s’y déroulant, tels que le redressement des vagues, le déferlement, les interactions
vagues-courant ou encore les phénomènes de submersion pendant des épisodes de
tempêtes (voir Fig. 0.1). Comme nous allons le voir, cela nécessite d’aborder si-
multanément les domaines de la modélisation, de l’analyse numérique et du calcul
scientifique.

Ce mémoire est structuré en 3 parties. La première partie a pour objectif d’introduire
brièvement le lecteur aux cadres généraux (modélisation et méthodes numériques)
dans lesquels se situent les travaux présentés dans les deux parties suivantes. C’est
aussi l’occasion d’introduire les principales notations qui seront utilisées tout au long
de ce mémoire.

La deuxième partie est dédiée à la construction de divers schémas numériques
pour les équations de Saint-Venant, éventuellement avec termes sources (eux même
éventuellement raides). Nous aborderons au passage des thématiques telles que
modèles et schémas de relaxation, solveurs de Riemann approchés, schémas préser-
vant les états d’équilibre ou encore modèles asymptotiques et schémas préservant
ces asymptotiques.

La troisième partie est consacrée à l’étude de toute une hiérarchie de nouveaux
modèles de type Green-Naghdi, et à leur approximation numérique. Ces modèles,
caractérisés par la présence de termes dispersifs non-linéaires, nous permettent a
priori de sortir du cadre de l’étude des systèmes hyperboliques. Toutefois, les pre-
mières amours étant tenaces, nous verrons que ces termes dispersifs peuvent être
interprétés comme termes sources dans les équations de Saint-Venant, nous perme-
ttant de développer des méthodes d’approximations pertinentes.

J’ai tenté, d’une manière générale, de réduire les détails et passages techniques, en
me limitant à une présentation des modèles et schémas et mettant en évidence leurs
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principales propriétés. J’ai ressenti le besoin, dans certaines parties, de modifier
la présentation telle qu’introduite dans les articles concernés, parfois en étendant
légèrement le cadre initial, parfois au contraire en le restreignant. J’ai également
voulu, dans un souci de lisibilité, faire un effort d’uniformisation des notations. Pour
toutes ces raisons, que le lecteur curieux qui prendrait le temps de consulter les ar-
ticles originaux ne s’étonne donc pas de trouver certaines dissemblances.

Certains travaux présentés dans la suite ont été effectués dans le cadre des thèses
de Doctorat de M.Tissier [T1], effectuée à l’Université Bordeaux 1, et d’ A.Duran
[T3] à l’Université Montpellier 2, que j’ai respectivement co-encadrée et encadrée.
Enfin, dans un souci de cohérence, j’ai choisi de ne pas détailler dans ce manuscript
certains articles ([A4, A5, A7, A13, A17, A21]), traitant d’applications ou de sujets
ne s’inscrivant pas directement dans la présentation qui va suivre.

Les modèles et schémas numériques décris dans ce manuscript ont été implémentés et
validés au sein de divers codes de recherche et bibliothèques, rassemblés aujourd’hui
dans la plateforme de calcul WaveBox [S1], qui je l’espère, continuera à être active-
ment développée.

Figure 0.1: Exemple d’application du module Volume-Fini de WaveBox (ancien-
nement SURF WB), couplé à un modèle de houle à phase moyennée, effectuée dans
le cadre du projet ANR MISEEVA (2009-2012): submersion de Palavas-les-Flots
lors de la tempête de novembre 1982 ; Figure issue de [82].
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1

A little background

In this first Chapter, we begin with a brief recall of the derivation of the asymptotic
models in the shallow water regime, starting from the Euler equations with free sur-
face conditions. A detailed derivation, together with the justification of the models,
can be found in [62]. We then introduce the general discretization frameworks in
which the following numerical methods will take place.

1.1 The models

1.1.1 Water waves equations

In an incompressible, homogeneous, irrotational and inviscid fluid under the influ-
ence of gravity, the propagation of surface waves is governed by the Euler equations
with nonlinear boundary conditions at the surface and at the bottom. In the follow-
ing, d refers to the spacial dimension of the surface of the fluid and takes the value 1
or 2.The water waves problem consists in describing the motion of the fluid in terms
of the evolution of the free surface elevation above a reference level, parameterized
by ζ(t,x) ∈ R, and the velocity V(t,x, z) ∈ Rd+1 (with x = (x, y) if d = 2 and
x = x if d = 1). The fluid domain is given by

Ω(ζ, b) = {(x, z) ∈ Rd+1, −h0 + b(x) ≤ z ≤ ζ(t,x)},

where h0 is a reference depth and −h0 + b(x) is a parameterization of the bottom,
see Fig. 1.1.

The free surface Euler equations can be written as follows, in terms of ζ and V:

∂tV + V · ∇V = −g−∇P, (x, z) ∈ Ω, t ≥ 0,
∇ ·V = 0, (x, z) ∈ Ω, t ≥ 0
∇×V = 0, (x, z) ∈ Ω, t ≥ 0

∂tζ −
√

1 + |∇xζ|2n ·V|z=ζ(t,x) = 0, t ≥ 0,
P|z=ζ(t,x) = Patm, t ≥ 0,
n ·V|z=−h0+b(x) = 0, t ≥ 0,

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

where P stands for the pressure, g for the gravitational acceleration and n the
normal vector pointing upwards the fluid domain.
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x = (x, y)

Figure 1.1: Sketch of the domain

1.1.2 Bernouilli’s formulation

Using the incompressibility and irrotationality conditions, one can write the water
wave equations under Bernouilli ’s formulation in terms of a potential velocity φ (the
velocity field is thus given by V = ∇x,zφ), for t ≥ 0:

∆xφ+ ∂2
zφ = 0, (x, z) ∈ Ω,[

∂tφ+ 1
2(|∇xφ|+ ∂zφ

2) + gz
]
|z=ζ(t,x) = 0,[

∂tζ +∇xζ · ∇xφ− ∂zφ
]
|z=ζ(t,x) = 0,

∂nφ|z=−h0+b(x) = 0,

(1.7)

(1.8)

(1.9)

(1.10)

where ∂n stands for the outward normal derivative at the bottom boundary.

Considering the four main length scales involved in this problem, namely the char-
acteristic water depth h0, the characteristic horizontal scale `0, the order of free
surface amplitude a0, and the order of bottom variations b0, three independent di-
mensionless parameters are formed:

the nonlinearity parameter: ε := a0
h0
, (1.11)

the shallowness parameter: µ :=
(h0
`0

)2
, (1.12)

the bottom amplitude parameter: β := b0
h0
. (1.13)

All variables are normalized with the general nondimensionalization, which applies
to any wave regime:

x = `0x′, z = h0νz
′, t = `0√

g h0 ν
t′, ζ = a0ζ

′, φ = a0`0
h0

(
gh0
ν

) 1
2
φ′, b = b0b

′,

where
√
g h0 ν and

a0`0
h0

(
gh0
ν

) 1
2

are respectively the characteristic scales for the

wave celerity and the potential velocity, with ν = tanh(µ
1
2 )/µ

1
2 .

There are basically two main categories of asymptotic regimes: shallow water (µ�
1) and deep water (µ ≈ 1). Within each of these categories, various sub-regimes
can be identified depending on the assumptions made on the nonlinearity parameter
ε, the topography parameter β. In the following, we will only focus on the shallow
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water scaling, namely µ � 1, leading to ν ' 1. This regime, which is of particular
interest in coastal oceanography, corresponds to the configuration where the wave
length `0 of the flow is large compared to the typical depth h0.
Anticipating on this assumption, we set ν = 1. Injecting these nondimensionalized
variables into equations (1.7-1.10), and omitting the primes, we obtain the nondi-
mensionalized equations:

µ∆xφ+ ∂2
zφ = 0, −1 + βb < z < εζ,[

∂tφ+ 1
2(ε|∇xφ|2 + ε

µ
∂zφ

2) + z
]
|z=εζ(t,x) = 0,

[
∂tζ + ε∇xζ · ∇xφ−

1
µ
∂zφ

]
|z=εζ(t,x) = 0,[

∂zφ− µβ∇xb · ∇xφ
]
|z=−1+βb(x) = 0.

(1.14)

(1.15)

(1.16)

(1.17)

1.1.3 Zakharov-Craig-Sulem formulation

Following [109], we introduce the trace of the velocity potential at the free surface
ψ = φ|z=εζ , and the Dirichlet-Neumann operator Gµ[εζ, βb] such that

Gµ[εζ, βb]ψ =
[
−µε∇xζ · ∇xφ+ ∂zφ

]
|z=εζ , (1.18)

with φ the solution of the following boundary values problem
µ∆xφ+ ∂2

zφ = 0, −1 + βb ≤ z ≤ εζ,
φ|z=εζ = ψ,

∂nφ|z=−1+βb = 0.

(1.19)

(1.20)

(1.21)

In particular, the Dirichlet-Neumann operator can be expressed as

Gµ[εζ, βb]ψ =
√

1 + ε2|∇xζ|2∂nφ|z=εζ .

The system (1.14)-(1.17) can be recasted as a system of two scalar evolution equa-
tions in terms of ζ and ψ:

∂tζ −
1
µ
Gµ[εζ, βb]ψ = 0,

∂ψ + ζ + ε

2 |∇xψ|2 − εµ

(
1
µGµ[εζ, βb]ψ + ε∇xζ · ∇xψ

)2

2(1 + ε2µ|∇xζ|2) = 0.

(1.22)

(1.23)

It remains now to express the key relation between Gµ[εζ, βb]ψ and the depth aver-
aged horizontal velocity defined as follows:

v(t,x) = 1
1 + εζ − βb

∫ εζ

−1+βb
∇xφdz, (1.24)

leading to

− 1
µ
Gµ[εζ, βb]ψ = ∇x · (hv), (1.25)
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where h = 1+εζ−βb denotes the water height. Follows the usual formulation of the
first equation (the subscript x will be omitted from now on the differential operator
∇ and ∆): 

∂tζ +∇ · (hv) = 0,

∂tψ + ζ + ε

2 |∇ψ|
2 − εµ

(
1
µGµ[εζ, βb]ψ + ε∇ζ · ∇ψ

)2

2(1 + ε2µ|∇ζ|2) = 0.

(1.26)

(1.27)

In the following, these equations will be referred to as water waves equations.
The (linear) dispersive properties of the water waves equations (1.26)-(1.27) de-
pend on the set of all (ω,k) ∈ R × Rd such that there exists a plane wave so-
lution (ζ0, ψ0)ei(k·x−ωt) to the linearization of (1.26)-(1.27) around the rest state
(ζ = ζ0,∇ψ = 0), and for flat bottoms. The frequency dispersion is consequently
ruled by the following dispersion relation:

ω(k)± = ±
√
|k|2

tanh(√µ|k|)
√
µ|k| . (1.28)

1.1.4 Shallow water asymptotics

Let us now focus on the shallow water assumption, corresponding to the scaling
µ� 1. We seek for an asymptotic expansion of φ:

φ(t,x, z) = φ0 + µφ1 +O(µ2). (1.29)

Plugging this expression into (1.19) and canceling the residual up to the order O(µ2),
we obtain

φ0 = ψ (1.30)

φ1 = (z − εζ)
(
−1

2(z + εζ)− 1 + βb

)
∆ψ + β(z − εζ)∇b · ∇ψ. (1.31)

Coming back to (1.24), and injecting the asymptotic approximation (1.29), we obtain
a relation between v and ∇ψ of order O(µ2):

∇ψ =
(
I + µT [h, b]

)
v +O(µ2), (1.32)

where the differential operator T [h, b](·) is defined for all smooth enough Rd-valued
function u by

T [h, b]u = R1[h, b](∇ · u) + βR2[h, b](∇b · u), (1.33)

with, for all smooth enough scalar-valued function w:

R1[h, b]w = − 1
3h∇(h3w)− βh2w∇b, (1.34)

R2[h, b]w = 1
2h∇(h2w) + βw∇b. (1.35)
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1.1.5 O(µ2) accuracy: the Green-Naghdi equations

The Green-Naghdi (GN) equations are now obtained gathering equations (1.25)-
(1.26)-(1.27)-(1.32) and neglecting the O(µ2) terms:{

∂tζ +∇ · (hv) = 0,[
I + µT [h, b]

]
∂tv +∇ζ + ε(v · ∇)v + εµQ[h, b](v) = 0,

(1.36)

(1.37)

where the nonlinear differential operator Q[h, b](·) is defined by

Q[h, b](v) = R1[h, b](∇ · (v∇ · v)− 2(∇ · v)2) + βR2[h, b]((v · ∇)2b). (1.38)

These equations are obtained without any additional assumption on the bottom
variations or the nonlinearity parameter ε and we still are in the large amplitude
regime, also referred to as fully nonlinear regime ε = O(1).
When no confusion is possible, we use in the following the simplified notations T
and Q instead of T [h, b] and Q[h, b].

The corresponding equations (1.36-1.37) have been derived first by Serre [93] and
then by Su and Gardner [97], Miles and Salmon [78], Seabra-Santos et. al. [92]
and Green and Naghdi [49]. These equations are also called fully nonlinear Boussi-
nesq equations. A rigorous mathematical justification of these models is given in [3].

An additional weak nonlinearity assumption ε = O(µ) can be performed to simplify
the previous equations. Without any assumption on the bottom variations (i.e.
β = O(1)), we recover the Boussinesq equations, as derived by Peregrine:{

∂tζ +∇ · (hv) = 0,(
I + µT [hb, βb]

)
∂tv +∇ζ + ε(v · ∇)v = 0,

(1.39)

(1.40)

with hb = 1 − βb. Such assumption implies that ε � 1, hence the so-called small
amplitude regime. Several additional assumptions and transformations can be fur-
ther performed, allowing to recover some other widely used Boussinesq-type (BT)
models, like for instance the equations of Nwogu [80] or Madsen and Sorensen [74].

1.1.6 O(µ) accuracy: the Saint-Venant equations.

When µ � 1 and without assumptions on ε and β, a further simplified model is
obtained by neglecting all the O(µ) terms and corresponds to the classical Nonlinear
Shallow Water (NSW) equations or Saint-Venant equations:{

∂tζ +∇ · (hv) = 0,
∂tv +∇ζ + ε(v · ∇)v = 0.

(1.41)

(1.42)

We point out that the asymptotic regime is the same for the GN and NSW equa-
tions. The only difference is the precision of the approximation.
Anticipating on the numerical discretization with conservative methods, these equa-
tions can be alternatively written in terms of conservative variables h(t,x) and
h(t,x)v(t,x)): 

∂th+ ε∇ · (hv) = 0,

∂t(hv) + h∇ζ + ε∇ · (hv⊗ v)
)

= 0.

(1.43)

(1.44)
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When d = 2, it is convenient to denote

W(t,x) = (h(t,x), h(t,x)v(t,x))T , with v(t,x) = (v1(t,x), v2(t,x))T

or alternatively

W(t,x) = (h(t,x),q(t,x))T with q(t,x) = (q1(t,x), q2(t,x))T ,

the state vector of conservative variables. Coming back to dimensionalized variables,
and recalling that the water height h = h0−b+ζ is a positive quantity, we introduce
the following convex set of admissible states:

Θ =
{

W = (h,v)T ∈ R3; h ≥ 0,v ∈ R2
}
. (1.45)

When there is no bottom variations, or when these are neglected (i.e. b=0), we
obtain the homogeneous system associated with (1.43)-(1.44), which is know to be
strictly hyperbolic for h > 0. This system can be written in a compact general
conservative form as follows:

∂tW +∇ · F(W) = 0, (1.46)

where F : Ω → R3 × R3 is the flux function, which reads

F(W) =

 hv1 hv2
hv2

1 + p(h) hv1v2
hv1v2 hv2

2 + p(h)

 , (1.47)

with p(h) = gh2/2.

1.2 Numerical methods and notations

We introduce now some notations for the upcoming discrete approximations of the
solutions of (1.46) in Chapter 2 and (1.36)-(1.37) in Chapter 3. We assume the reader
to be familiar with the basis of the Finite-Volume methods (FVMs) or discontinuous
Galerkin methods (DGMs) which are applied in the following. Otherwise, we refer
to the reference textbooks [18, 47, 45, 67] for FVMs and to [37] for DGMs.
From now, we consider boundary value problems associated with the previous asymp-
totics, defined on a convex bounded domain Ω in Rd. For the sake of simplicity, in
this report, we completely leave the important issues of boundary conditions out.
As for the time-discretization, all the following fully discrete schemes are introduced
with a 1st-order Euler scheme for time discretization. When higher-order space dis-
cretizations are investigated, we assume that some Runge-Kutta (RK) methods (or
Strong Stability Preserving Runge-Kutta (SSP-RK) methods, as far as stability is
concerned) of consistent order of accuracy are used.

1.2.1 The mesh

When d = 2, we assume for the sake of simplicity that the computational domain Ω
is a polygonal domain (i.e. its boundary ∂Ω is a piecewise linear polygon), so that
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Ω can be exactly partitioned using Nt geometrically-conforming non-overlapping
straight-sided triangles:

Ω =
Nt⋃
l=1

T l.

The triangulation is denoted Ph, {Sl}1≤l≤Nv refers to the associated Nv vertices,
and h to a global mesh length-scale. The primary mesh exactly coincides with this
triangular partition.

In a second time, we build a set of control-volumes defined around the vertices of
the primary mesh, resulting in the dual mesh. For a given vertex Sl, the associated
control volume is obtained by connecting the centroids of the surrounding triangles
having Sl as a common vertex, see Fig. 1.2. Special treatments are needed for the
boundary vertices, not detailed here.

In the following of this manuscript, we study FVMs built on the dual mesh and
DGMs built on the primary mesh. In both cases, {Cl, 1 ≤ l ≤ Ne} refer to the
set of elemental domain, which identifies either to the set of control-volumes for the
FVMs (i.e. Ne = Nv) or to the triangulation Ph for the DGMs (i.e. Ne = Nt). The
element Cl has a boundary denoted ∂Cl, a unit outward normal vector nl, an area
|Cl| and a perimeter pl.

Additionally, we define the following notations, for the neighborhood of Cl:

• Λ(l): number of adjacent elements (Λ(l) = 3 for DGMs),

• K(l) = {σ(k), 1 ≤ k ≤ Λ(l)}, with σ(k) the index of the elements Cσ(k)
adjacent to Cl,

• Γlσ : the boundary interface defined by Cl and Cσ, so that ∂Cl =
Λ(l)
∪
k=1

Γlσ(k),

• `lσ : the length of Γlσ, so that pl =
Λ(l)∑
k=1

`lσ(k),

• nlσ : the unit normal to Γlσ, pointing to Cσ.

• Mijk: the mass center of the triangle Si Sj Sk

• mijk: the middle of the edge SiMijk

Note that the element Cl can be sub-divided into Λ(l) triangles, denoted Tlσ(k), for
1 ≤ k ≤ Λ(l), defined by joining the interfaces Γlσ to the vertex Sl.

When d = 1, we consider a partition Ph of the computational domain into Ne non-
overlapping segments, still referred to as elements, which are defined through a
sequence of grid points:

. . . < xi− 3
2
< xi− 1

2
< xi+ 1

2
< xi+ 3

2
< . . .

The elements will be alternatively denoted by {Ci = [xi− 1
2
, xi+ 1

2
]}1≤i≤Ne for FVMs,

and {Ci = [xi,l, xi,r]}1≤i≤Ne for DGMs. In both cases, we denote xi the center of
Ci. Note that |Ci| = xi+ 1

2
− xi− 1

2
= xi,r − xi,l, ∂Ci is reduced to the 2 boundary

nodes of Ci and that ni is reduced to +1 and −1 respectively at the right and the
left boundary.
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nlσ(k)

Γlσ(k)

Tlσ(k)Sl
Sσ(k)

Cl

b b

Figure 1.2: A dual cell.

1.2.2 Finite-Volume discretization

2d formulation

At the discrete time tn, the FV discrete values Wn
i are approximations of the aver-

ages (piecewise constant interpolation) of the exact solutions over the elements:

Wn
i = 1
|Ci|

∫
Ci

W(tn, x)dx,

and we can classically obtain a fully discrete FV formulation by integrating (1.46)
over [tn, tn+1]× Ci:

Wn+1
i = Wn

i −
∆t
|Ci|

Λ(i)∑
k=1

`ij(k)Fij(k), (1.48)

where ∆t the time step and Fij = F (Wn
i ,Wn

j ,nij) is the normal numerical flux func-
tion through the interface between cells Ci and Cj , i.e. a first order approximation
of the exchanging term

1
`ij

∫
Γij
F(W) · nij ds,

computed considering a pseudo 1d scheme along the normal direction nij .

1d formulation

For 1d approximations, the notations are simplified. The vector state of conservative
variable is denoted w(t, x) = (h(t, x), q(t, x))T = (h(t, x), h(t, x)v(t, x))T and the
convex set of admissible state is

Θ =
{

w = (h, v)T ∈ R2; h ≥ 0, v ∈ R
}
. (1.49)

Equations (1.46) are now written

∂tw + ∂xF(w) = 0, (1.50)

10



with the flux F : Ω → R2 defined as F(w) = (hv, hv2 + p(h))T .

The conservative formulation of the FV scheme (1.48) reduces to

wn+1
i = wn

i −
∆t
∆x

(
Fi+ 1

2
− Fi− 1

2

)
. (1.51)

At 1st-order, we set Fi+ 1
2

= F (wn
i ,wn

i+1), where the function (wL,wR) 7→ F (wL,wR)
is a numerical flux function which determines the scheme. Classically, this numerical
flux has to be conservative, Lipschitz continuous, monotone and consistent with the
exact flux.

1.2.3 Approximate Riemann solvers

There is several ways to build numerical flux formulae for (1.51). In the present
work, we consider the formalism introduced by Harten, Lax and Van Leer (HLL)
in [52]. We consider a constant space discretization step denoted by ∆x, and we
assume that a piecewise constant approximation w∆x(x, tn) ∈ Ω of the solution of
(1.50) is known at time tn:

w∆x(x, tn) = wn
i if x ∈ [xi− 1

2
, xi+ 1

2
].

To evolve this approximation in time for t > tn, we consider an approximate Rie-
mann solver stated at each interface xi+ 1

2
. This approximate Riemann solver, de-

noted by wR(xt ; wL,wR) has the following structure:

wR
(x
t

; wL,wR

)
=



wL, if
x

t
< λ−,

w∗(x
t

; wL,wR), if λ− <
x

t
< λ+,

wR, if
x

t
> λ+,

(1.52)

where λ− and λ+ are respectively the minimum and maximum velocity waves in-
volved in the solver. The intermediate state w∗, describes the approximate solution
inside the dependence cone characterized by x = λ−t and x = λ+t.
Following [52], we recall that at t = ∆t, the approximate Riemann solver (1.52)
must satisfy a consistency condition given by:

1
∆x

∆x
2∫

−∆x
2

wR
( x

∆t ; wL,wR

)
dx = 1

2(wL + wR)− ∆t
∆x

(
F(wR)−F(wL)

)
, (1.53)

where ∆t is restricted by the CFL-like condition:

∆t
∆x max

(
|λ−|, |λ+|

)
≤ 1

2 .

Now, assuming that an approximate solver wR(
x−x

i+ 1
2

t−tn ; wi,wi+1) is stated at each
cell interface xi+ 1

2
, we thus obtain a non-interacting juxtaposition of Riemann solvers

as soon as the following CFL-like condition is enforced:

∆t
∆xλo ≤

1
2 , (1.54)
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with λo = max
i

(
|λ−
i+ 1

2
|, |λ+

i+ 1
2
|
)
. We define an approximate solution at time tn + t for

all t ∈ (0,∆t) as follows:

w∆x(x, tn + t) = wR
(x− xi+ 1

2

t
; wn

i ,wn
i+1

)
if x ∈ [xi, xi+1]. (1.55)

The projection of this solution on the piecewise constant functions gives the expected
updated approximation:

wn+1
i = 1

∆x

x
i+ 1

2∫
x
i− 1

2

w∆x(x, tn + ∆t)dx. (1.56)

Introducing the condition (1.53), the scheme can be rewritten into a standard con-
servation form:

wn+1
i = wn

i −
∆x
∆t
(
Fi+ 1

2
− Fi− 1

2

)
, (1.57)

where we have:

Fi+ 1
2

= F(Uni ) + ∆x
2∆tw

n
i −

1
∆t

x
i+ 1

2∫
xi

wR
(x− xi+ 1

2

∆t ; wn
i ,wn

i+1

)
dx. (1.58)

Many choices for (1.52) can be found in the literature. The exact Godunov scheme
enters the proposed definition with λ− and λ+ the exact minimum and maximum
characteristic speeds and w∗ is the exact Riemann solution into the dependence cone.

Other examples are the one-intermediate state HLL scheme [52], where w∗ is given
by the following constant state:

w∗
(x
t

; wL,wR

)
= λ+wR − λ−wL

λ+ − λ−
− 1
λ+ − λ−

(
F(wR)−F(wL)

)
,

and λ± are estimations of the maximum and minimum wave speeds, the HLLC
scheme proposed by [100] or the relaxation schemes, see for instance [18, 55, 68].
The well-known Lax-Friedrichs flux (LF in the following) also enters this framework,
with the choice λ± = ±λo, leading to the following simple numerical flux, widely
used throughout this manuscript:

F (wL,wR) = 1
2 (F(wL) + F(wR))− λo

2 (wR −wL) . (1.59)

One method to obtain such solvers is to use relaxation models and construct associ-
ated relaxation schemes, see for instance [34, 55, 83, 68] and the next section.

Finally, an interesting feature of the approximate Riemann solver framework is
that it allows to study the existence of discrete entropy inequalities as well as the
preservation of invariant domains. We recall the following result, adapted in the
framework of NSW equations:

Proposition 1. Let wL and wR be two constant states such that hL, hR ≥ 0 and
we consider an approximate Riemann solver (1.52), with the additional assumption
that w∗(xt ; wL,wR) ∈ Θ for all λ− < x

t < λ+. We consider a FV scheme (1.57)
build on this approximate Riemann solver. Then, under the CFL restriction (1.54),
we have hn+1

i ≥ 0 for all i , as soon as hni ≥ 0 for all i.
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1.2.4 Relaxation models

The relaxation method is a recent approach to approximate the weak solutions of
hyperbolic systems of conservation laws, see [55]. There is a large amount of litera-
ture concerning the relaxation approach, and relaxation schemes. We refer to some
of the reference papers [16, 26, 51, 71] and the reference textbook [19].
The underlying idea is to approximate the weak solutions of hyperbolic system of
conservation laws, denoted equilibrium system, by the weak solutions of a relevant
first order system with singular perturbations, namely the relaxation model. The
relaxation schemes, built from the relaxation models, appear as a powerful tool.
Indeed, this approach is of great help to construct approximate Riemann solvers
in the sense of §1.2.3, and therefore to establish discrete entropy inequalities and
maximum principles, even for difficult problems, see for instance [11]. However, one
of the main difficulties generally arises from the choice of the relaxation model.

Starting from an hyperbolic system under the form (1.46), with W(t,x) ∈ Rn, an
associated relaxation system is another hyperbolic system of conservation laws in
higher dimension, let say m > n, written as

∂tUµ + ∂xH(Uµ) = µR(Uµ), (1.60)

with Uµ ∈ Θr ⊂ Rm, Θr being the convex set of admissible states associated with
Uµ, and H(Uµ) ∈ Rm. We assume the existence of a linear operator L : Rm → Rn
and, for any W ∈ Θ, of an equilibrium data M(W) ∈ Θr, usually called the
maxwellian equilibrium, such that

LM(W) = W, and LH(M(W)) = F(W) ∀W ∈ Θ.

Additionally, the second member R is such that

LR(Uµ) = 0, and R(Uµ) = 0⇔ Uµ =M(W) for some W ∈ Θ.

So far, the relaxation approach relies on the idea that W = LU is an approximate
solution of (1.46) when U is a solution of (1.60) close to equilibrium.

As stated above, one of the main interests of relaxation models is the construction
of approximate Riemann solvers for nonlinear systems, by relaxing (some of) the
nonlinearities. Starting from a linear (or nonlinear but with only linearly degener-
ated fields) relaxation model of the form (1.60), we can consider a solution of (1.60)
close to equilibrium and show that such a solution is a viscous approximation of
the solution of the initial system (1.46) (i.e. a solution of (1.46) supplemented by a
small diffusion term of order 1/µ), under a suitable stability condition. We refer to
[19] for a review of the stability conditions for relaxation systems.

To build a numerical scheme for (1.60), we update the solution from discrete values
at time tn to time tn+1 with the standard splitting approach of [55]:

1. the relaxation step: at t = tn, we solve ∂tUµ = µR(Uµ) while taking data at
equilibrium (i.e., µ→∞) to go to tn+1−.

2. the transport step: at t = tn+1−, we solve (1.60) with µ = 0 to go to from
tn+1.
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At last, considering the fully discrete approximation, the Riemann solver for (1.60),
obtain during the transport step, results in the definition of an approximate solver
for (1.46). This is formalized for instance in [18], although in a slightly different
formalism, where right hand sides are not considered in (1.60).

1.2.5 Discontinuous Galerkin approximations of 1st-order systems

The DGMs for systems of hyperbolic conservation laws combine advantageous fea-
tures commonly associated with Finite-Element methods (FEMs) and FVMs. As
in the FVMs, the physics of waves propagation is accounted for by solving the Rie-
mann problems that arise from the discontinuous representation of the solution at
elements’ interfaces. And as in classical FEMs, a high order of accuracy is obtained
by means of polynomial approximations of arbitrary order within an element rather
than by wide stencils.

The motivations of using of DGMs for the simulation of water waves problems are
manifolds. Besides the fact that high-order methods are often desirable when consid-
ering potential savings in computational time – especially for large-scale problems
involving long-time integration, DGMs can be applied on unstructured grids and
handle non-conforming elements, are highly parallelizable (there is little inter-cell
communications) and can easily handle adaptive strategies (the order of accuracy
can vary from element to element). On top of that, they have several interesting
properties with respect to conservation, stability, and convergence.

Discretization

To implement a DG scheme, we aim at computing an approximated solution Wh,
on the partition Ph, in a trial functions space Vh to be defined. In the standard
Galerkin formulation Wh is sought in a finite-dimensional subspace of the space of
compactly supported continuous functions. However, hyperbolic problems generally
have solutions in spaces of bounded variation, and the best one can hope for is that
solutions are piecewise smooth. Consequently, a more adapted formulation is one
where the global trial space contains discontinuous functions. We define the space
of piecewise continuous polynomial functions

Vh := {v ∈ L2(Ω) | ∀ C ∈ Ph , v|C ∈ Pp(C)} , (1.61)

where Pp(C) denotes the space of d-variables polynomials in the element C of degree
at most p. As in the standard Galerkin formulation, the space of test functions is
defined similarly.

We form the following residual by injecting the sought approximated solution into
(1.46)

Rh = ∂tWh +∇ · F(Wh), (1.62)

and we require this residual to be orthogonal to all test functions in Vh, resulting in
the local statement: ∫

Cl
Rhφh dx = 0, ∀φh ∈ Vh, 1 ≤ l ≤ Ne.
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Integrating by part the flux term, we obtain the following discrete weak formulation:
find Wh ∈ (Vh)d+1 such that, ∀φh ∈ Vh, and ∀ Cl ∈ Ph we have:

∫
Cl
∂tWhφhdx−

∫
Cl
F(Wh) · ∇φhdx+

3∑
k=1

∫
Γlσ(k)

F(Wh) · nlσ(k) φh ds = 0. (1.63)

To keep the solution within a space of bounded variations and to allow information
to propagate between elements, some elemental coupling arises as a result of the
way boundary conditions on each element are applied. Boundary conditions are
enforced through the normal component of the fluxes F(Wh) · nlσ(k) appearing in
the boundary terms. As the solution may be discontinuous, we have two possible
values of Wh at at each interface, denoted by W−

h and W+
h , which are respectively

the restrictions of Wh|Cl and Wh|Cσ(k) to Γlσ(k) (i.e. the interior and exterior traces,
with respect to the element Cl).

To generate a stable scheme, upwinding considerations based on the natural propa-
gation of information help to compute this flux and approximate Riemann solvers
can be used. The normal component of the boundary flux F(Wh) ·nlσ(k) is approx-

imated by F (W−
h ,W

+
h ,nlσ(k)) where F is a numerical flux function as described in

§1.2.3. This approximation is denoted F̂lσ(k) in the following.

The local approximated vector solution Wh|Cl ∈ (Vh)d+1 is formulated as a polyno-
mial of order p on each element:

Wh|Cl(x, t) =
Np∑
i=1

W̃l
i(t)θli(x), ∀x ∈ Cl,∀t ∈ [0, tmax], (1.64)

where {θli}
Np
i=1 is a polynomial expansion basis for Pd(Cl), and {W̃l

i(t)}
Np
i=1 are the

local expansion coefficient vectors, with Np = p + 1 when d = 1 and Np = (p +
1)(p+2)/2 when d = 2. Many choices are possible for the expansion basis, including
orthogonal and interpolant polynomials.
Once, the basis functions are chosen, the discrete weak formulation (1.63) becomes

equivalent to the following problem: find {W̃l
i(t)}

Np
i=1 ∈ RNp such that, ∀ Cl ∈ Ph and

∀ 1 ≤ j ≤ Np we have:

Np∑
i=1

(
d

dt
W̃l

i(t)
∫
Cl
θliθ

l
j dx

)
−
∫
Cl
F(Wh) · ∇θlj dx +

3∑
k=1

∫
Γlσ(k)

F̂lσ(k) θ
l
j ds = 0. (1.65)

When d = 1, (1.65) reduces to: find {w̃l
i(t)}

Np
i=1 ∈ RNp such that, ∀ Cj ∈ Ph we have:

Np∑
i=1

d

dt
w̃j
i (t)

∫
Cj
θji θ

j
kdx−

∫
Cj
F(wh)

d

dx
θjkdx+

[
F̂ θjk

]xjr
xj
l

= 0, 1 ≤ k ≤ Np. (1.66)

We recall that the occurrence of discontinuities in the propagating waves can induce
Gibbs-type oscillations in the vicinity of discontinuities, which can lead to numeri-
cal instabilities and unbounded solutions. These oscillations can be suppressed by
adapting the ideas of slope limiters from FVMs, designed to restrict or suppress
oscillations near discontinuities through a non-linear procedure based on compar-
ing elemental solution slopes and curvatures, with those of neighboring elements.
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However, classical techniques of flux limiting coming from FVMs are not directly
applicable to DGMs because of the presence of integral surface terms in the for-
mulation. Therefore, slope limiters are not integrated in the computation of the
residual, but are applied as a post-process. We do not focus on this issue in this
manuscript. A survey of the available limiting methods is performed in [A16], as
well as a documented implementation strategy. Some additional remarks are done
concerning on-going works in the last chapter.

1.2.6 On the DG discretization of higher order derivatives

Although DGMs were initially designed for the approximation of the solutions of
hyperbolic PDE’s, recent works have led to formulations for the approximations of
parabolic, elliptic and even problems with derivatives higher than 2. The pioneering
work was certainly [8], in which the DG formulation had to be extended to handle
the viscous terms in the Navier-Stokes equations. A recent review is performed in
[106] and a unified analysis can be found in [4], and [40, 41].
To further illustrate the ideas, let us consider the following 2nd-order elliptic problem
with Dirichlet boundary conditions:{

−∆u = f in Ω,
u = 0, on ∂Ω,

(1.67)

with f ∈ L2(Ω). An auxiliary variable is introduced, allowing to write (1.67) as a
first order system: 

q = ∇u in Ω,
−∇ · q = f in Ω,
u = 0, on ∂Ω.

(1.68)

Looking for a discretization of (1.68), the discrete weak formulation can be stated
as: find (uh,qh) ∈ Vh × (Vh)2 such that ∀(φh, πh) ∈ Vh × (Vh)2, and ∀ Cl ∈ Th we
have: ∫

Cl
qh · πh dx+

∫
Cl
uh∇ · πh dx =

3∑
k=1

∫
Γlσ(k)

ûlσ(k)(πh · nlσ(k)) ds, (1.69)

∫
Cl

qh · ∇φh dx−
∫
Cl
fφh =

3∑
k=1

∫
Γlσ(k)

φh(q̂lσ(k) · nlσ(k)) ds, (1.70)

where ûlσ(k) and q̂lσ(k) are consistent and conservative approximations of the traces
of u and q along the elemental boundary Γlσ(k). The construction of these numerical
fluxes in terms of uh and qh defines the DG discretization. Let us introduce the
following trace operators, namely the interface averaging and jump difference across
the interface Γlσ for the scalar quantity uh:

{{uh}} =
u−h + u+

h

2 , [[uh]] = (u−h − u
+
h )nl,

and for the vector quantity qh:

{{qh}} =
q−h + q+

h

2 , [[qh]] = (q−h − q+
h ) · nl,
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where u−h and u+
h are respectively the traces of uh|Cl and uh|Cσ on Γlσ (and similar

notations for q±h ). Among the available methods, let us state for instance, for a
given element Cl:

] Bassi-Rebay (BR): û = {{uh}}, (1.71)

q̂ = {{qh}},

] Interior Penalty (IP): û = {{uh}}, (1.72)

q̂ = {{∇uh}} − νh−1
l [[uh]],

] Local DG (LDG): û = {{uh}} − β · [[uh]], (1.73)

q̂ = {{qh}}+ β · [[qh]]− νh−1
l [[uh]],

] Non-symmetric IP (NIPG-j): û = {{uh}}+ nl · [[uh]], (1.74)

q̂ = {{∇uh}} − νh−jl [[uh]], j = 1 or j = 3.

where β ∈ (L2(∂C))2 is a vector-valued function which is constant on each edge.
The term νh−1

l [[uh]] is usually called a penalty term, which is applied on interface
jumps to achieve discrete coercivity of the bilinear form associated with the primal
formulation of the method, see for instance [37]. In this penalty term the param-
eter ν ≥ 0 denotes the stabilization parameter, which indicates how ”strongly” the
element are coupled, and hl stands for a local (elemental) mesh length scale.

These various formulae lead to as many DGMs, which differ in a variety of fac-
tors such as the stencil width, stability, eigenspectrum or even h-convergence and
p-convergence properties. In [A19] and §3.2.2, we mainly focus on the BR and LGL
fluxes. While the BR formulae lead to centered fluxes for both u and q, the idea of
the LDG approach is to introduce some upwinding in the discretization, even if this
does not appear as natural for elliptic operators. Additionally, (1.73) judiciously
alternate the upwind direction, allowing to reach stability, see [32]. The BR flux
is known to degenerate to suboptimal convergence rates for odd polynomial orders.
Furthermore, it gives rise to a 10 elements stencil. The LDG flux, with β = nl/2,
generally has optimal convergence and a smaller stencil. On the other hand, the BR
flux allows for the largest time step and is the conceptually easiest. Note that the
LDG flux can be seen as a generalization of the BR flux, which is obtained by setting
β = 0 as well as u = 0. If we only set β = 0, we obtain a stabilized Bassi-Rebay
(sBR) flux.

The DG discretization of higher order derivatives (greater than 2) and more par-
ticularly of dispersive wave equations has be studied in [108, 107, 69, 105] for the
scalar linear and nonlinear cases.
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2

Saint-Venant equations

In this first part, we focus on the NSW equations, possibly supplemented by source
terms, accounting for the bottom variations and friction. For the sake of simplicity,
we begin with 1d partitions with a constant discretization step ∆x. We mainly
focus on the important issues of stability and well-balancing. The study of stability
is investigated through the preservation of the set of invariant domains, that will
be referred to as robustness property in the following: we aim at keeping the water
height positive, eventually under some additional restrictions on the time step ∆t.
The issue of discrete entropy inequalities is left out.

In §2.1, we introduce a relaxation interpretation of the well-known VFRoe-ncv
scheme for the homogeneous NSW equations in 1d, together with a new class of re-
lated relaxation schemes. This relaxation interpretation allows to place the VFRoe-
ncv scheme in the class of approximate Riemann solver in the sense of §1.2.3. This
enables to use the argument of non-negativity of Riemann solution intermediate
states as a sufficient condition to ensure the robustness of the scheme, which was
not yet established.

In §2.2, we consider the NSW equations supplemented by a quadratic friction source
term of Chezy type, and we investigate the construction of a new approximate Rie-
mann solver that directly accounts for this source term. This allow us, again, to
establish some robustness results under a regular CFL conditions and overcome the
difficulties associated with the occurrence of dry areas when such friction terms are
added. The numerical preservation of the asymptotic parabolic regime associated
with the model is also investigated.

Lastly, in §2.3, we focus on the discretization of the topography source terms and
study some variations around the well-known hydrostatic reconstruction for the
preservation of the motionless steady states, based on an alternative formulation
of the NSW equations. Again, some general robustness results are established, in-
cluding for higher-order schemes on unstructured meshes. A robust DG extension
of the method is also detailed, allowing to reach an arbitrary order of accuracy.

2.1 A relaxation interpretation of the VFRoe-ncv
scheme

The VFRoe and VFRoe-ncv schemes are approximate Godunov type schemes first
introduced in [76, 21] and [46] for the NSW equations, applicable to conservative
systems of the general form (1.50), which implementation is very easy. Indeed, they
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rely on the resolution of the Riemann problems by linearization in the spirit of the
method of Roe. However, the numerical flux is defined directly as the value of the
physical flux at the approximate interface value. The VFRoe-ncv scheme has been
extensively used during my Ph.D, see for instance [A2] and the communications
[C4, C5].
Let us recall the main ideas of the VFRoe-ncv schemes. First, we adopt an admissible
change of variable, u = U(w) (hence the suffix ”ncv”). With some abuse in the
notations, we set W(u) = w the inverse function of U . Considering smooth enough
solutions, the system (1.50) writes as follows:

∂tu +B(u)∂xu = 0, (2.1)

where B(u) = (∇uW(u))−1A(W(u))∇uW(u) and A(w) is the Jacobian matrix
associated with the flux function F . Next, the following linearized Riemann problem
is considered:

∂tu +B(ũ)∂xu = 0, (2.2)

u(x, 0) =
{

uL = U(wL) if x < 0,
uR = U(wR) if x > 0, (2.3)

where ũ := ũ(uL,uR) represents any averaging of the variable uL and uR. Since
the above problem is linear, the exact solution u∗(x/t; uL,uR) is easily obtained. A
numerical flux function is then defined as follows:

F (wL,wR) = F
(
W(u∗(0;U(wL),U(wR))

)
(2.4)

Hence the explicit form of the VFRoe-ncv scheme is given by:

wn+1
i = wn

i −
∆t
∆x

(
F
(
W(u∗(0;U(wn

i ),U(wn
i+1))

)
−F

(
W(u∗(0;U(wn

i−1),U(wn
i ))
))
.

(2.5)
The numerical flux function is obviously consistent with the exact flux function, and
the definition (2.4) ensures conservation for any linearization matrix, in contrast
with the classical Roe solver.

In [46], motivated by the form of the Riemann invariants, the change of variable
U(w) = t(2c, v) is proposed, with c =

√
gh, and the averaged state ũ = (uL+ uR)/2

is used for the linearization involved in B(ũ) and thus for the characterization of ṽ
and c̃. The exact solution of the linearized Riemann problem (2.2) is

W(u∗(0;U(wn
i ),U(wn

i+1))) =


wn
i if (λ−)i+ 1

2
> 0,

W(ui+ 1
2
) if (λ−)i+ 1

2
< 0 < (λ+)i+ 1

2
,

wn
i+1 if (λ+)i+ 1

2
< 0,

(2.6)

where (λ±)i+ 1
2

= ṽi+ 1
2
± c̃i+ 1

2
and ui+ 1

2
= t(2ci+ 1

2
, vi+ 1

2
) with

ci+ 1
2

= 1
2(ci + ci+1)− 1

4(vi+1 − vi), vi+ 1
2

= 1
2(vi + vi+1)− (ci+1 − ci). (2.7)

To conclude this brief recall, we emphasize that as introduced, the VFRoe method
was not recognized to belong to the class of the approximate Riemann solvers §1.2.3.
Besides, the lack of robustness property was mistakenly admitted as a shortcoming,
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even if some efforts were made to secure the playground, see [53]. We show in the
following that this issue should have been imputed rather to an inappropriate choice
of the linearization states. Note that recently, a relaxation interpretation of the
VFRoe method (not VFRoe-ncv) has been proposed in [83].

2.1.1 A new relaxation model

In [A3], a new relaxation method is proposed for the numerical approximation of
the weak solutions of system (1.46). We establish the robustness of the VFRoe-ncv
scheme with non-conservative variables by identifying it with the relaxation solver.
Indeed, the relaxation solver allows some flexibility in the specification of the wave
structure through the choice of the relaxation parameters. This freedom is then
exploited to robustly handle the occurrence of dry areas.

More precisely, the approach proposed in [A3] differs from the classical relaxation
scheme developed by [55] and studied in [79] in the scalar case, since we do not
relax every nonlinearity. Indeed, we suggest a choice of relaxation variables that
is motivated by the form of the Riemann invariants. We formulate a relaxation
system with linear degeneracy in all the characteristic fields (which makes the Rie-
mann problem easily solvable), a property obtained by a decoupling of the linear
equations governing the relaxation variables from the remaining nonlinear equations
of the relaxation model. These new variables are governed by linear equations with
coefficients that determine the eigenstructure of the relaxation model. Then, we
show that the associated relaxation solver is formally equivalent to the VFRoe-ncv
solver with nonconservative variables recalled above. This relaxation interpretation
allows to place the VFRoe-ncv scheme in the class of approximate Riemann solver
in the sense of §1.2.3 and to use the argument of non-negativity of the intermediate
states as a sufficient condition to reach robustness.

We suggest to approximate the celerity c and velocity v by the new variables Σ and
V , intended to be relaxed to c and v at equilibrium. These two new variables are
governed by the following equations ∂tΣ + v̄∂xΣ + c̄

2∂xV = µ(c− Σ),

∂tV + 2c̄∂xΣ + v̄∂xV = µ(v − V ),

where c̄ and v̄ are relaxation parameters to be defined and µ is a parameter intended
to tend to infinity. The following first order system with singular perturbations

∂th+ ∂x(Σ2

g
V ) = 0, t > 0, x ∈ R,

∂t(hv) + ∂x
(Σ2

2g (2V 2 + Σ2)
)

= 0,

∂tΣ + v̄∂xΣ + c̄

2∂xV = µ(c− Σ),

∂tV + 2c̄∂xΣ + v̄∂xV = µ(v − V ),

(2.8)

is considered to approximate the weak solutions of (1.50). Indeed, in the formal limit
of µ to infinity, the relaxation system (2.8) aims to restore the initial equilibrium

21



system (1.50). This limit will be referred to as the equilibrium limit, defined by
Σ = c and V = v. The conservations of the water height and momentum of the
relaxation model (2.8) give those of the equilibrium system (1.50). For the sake of
simplicity, we use the general abstract form (1.60) for the relaxation system (2.8):

∂tU + ∂xH(U) = µR(U), (2.9)

where we have set U = t(h, hv,Σ, V ) defined over the following convex set:

Θr =
{

U ∈ R4; h ≥ 0
}
.

2.1.2 The Riemann problem

Let us consider some relaxation parameters c̄ > 0 and v̄ ∈ R such that v̄± c̄ 6= 0 and
assume µ = 0, so that the first order system (2.8)µ=0 is hyperbolic for all U ∈ Θr.
Indeed, it admits λ0

1 = λ0
2 = 0 and λ± = v̄ ± c̄ as eigenvalues and the associated

fields are linearly degenerated.

Let UL and UR be constant states in Θr and define

U0(x) =
{

UL if x < 0,
UR if x > 0, (2.10)

as the initial data of the Riemann problem for the system (2.8)µ=0. Let us set

Σ∗ = ΣL + ΣR

2 − 1
4(VR − VL), (2.11)

V ∗ = VL + VR
2 − (ΣR − ΣL). (2.12)

and define the function I : R2 → R I(Σ, V ) = Σ2

2g (Σ2 + 2V 2). The first interest of
(2.8) is that, as stated above, considering the linear degeneracy property satisfied
by all the fields, the Riemann problem associated with system (2.8) turns out to be
easy to solve:

Proposition 2. The weak solution of the system (2.8)µ=0with the initial data (2.10)
is given by

• If λ− < 0 < λ+:

U(x, t) =


UL if x/t < λ−

U∗L if λ− < x/t < 0,
U∗R if 0 < x/t < λ+,
UR if λ+ < x/t

where
U∗L = t(h∗L, q∗L,Σ∗, V ∗), U∗R = t(h∗R, q∗R,Σ∗, V ∗),

and the values of (h∗L, q∗L) and (h∗R, q∗R) are given by

h∗L = hL + Σ∗2V ∗ − Σ2
LVL

gλ−
, q∗L = (hv)L −

I(Σ∗, V ∗)− I(ΣL, VL)
λ−

, (2.13)

h∗R = hR + Σ∗2V ∗ − Σ2
RVR

gλ+ , q∗R = (hv)R −
I(Σ∗, V ∗)− I(ΣR, VR)

λ+ . (2.14)
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• If 0 < λ− < λ+:

U(x, t) =


UL if x/t < 0
U∗L if 0 < x/t < λ−,
U∗R if λ− < x/t < λ+,
UR if λ+ < x/t,

where
U∗L = t(h∗L, q∗L, ΣL, UL), U∗R = t(h∗R, q∗R, Σ∗, U∗),

and the values of (h∗L, q∗L) and (h∗R, q∗R) are given by

h∗L = h∗R + Σ2
LVL − Σ∗2V ∗

gλ−
, q∗L = q∗R −

I(ΣL, VL)− I(Σ∗, V ∗)
λ−

, (2.15)

h∗R = hR + Σ∗2V ∗ − Σ2
RVR

gλ+ , q∗R = (hv)R −
I(Σ∗, V ∗)− I(ΣR, VR)

λ+ . (2.16)

• If λ− < λ+ < 0:

U(x, t) =


UL if x/t < λ−

U∗L if λ− < x/t < λ+,
U∗R if λ+ < x/t < 0,
UR if 0 < x/t,

where
U∗L = t(h∗L, q∗L, Σ∗, V ∗), U∗R = t(h∗R, q∗R, ΣR, VR),

and the values of (h∗L, q∗L) and (h∗R, q∗R) are given by

h∗L = hL + Σ∗2V ∗ − Σ2
LVL

gλ−
, q∗L = (hv)L −

I(Σ∗, V ∗)− I(ΣL, VL)
λ−

, (2.17)

h∗R = h∗L + Σ2
RVR − Σ∗2V ∗

gλ+ , q∗R = q∗L −
I(ΣR, VR)− I(Σ∗, V ∗)

λ+ . (2.18)

This analysis of the Riemann problem solutions can be supplemented by a prelim-
inary study of the non-negativity of the water depth. Let us focus our attention
on h∗L. Since Σ∗ and V ∗ do not depend on the eigenvalues λ±, while λ± does not
depend on the unknowns but just on the fixed parameters v̄ and c̄, with hL > 0 and
hR > 0 it is clear that h∗L remains non-negative as soon as |λ±| is larger enough.
Now, assume hL = 0 and hR > 0, to write with VL = 0:

h∗L =
{ 1

λ−g (Σ∗)2V ∗ if λ− < 0,
hR + 1

λ+g

(
(Σ∗)2V ∗ − Σ2

RVR
)
− 1

λ−g (Σ∗)2V ∗ if λ− > 0.

Two cases must be distinguished. If V ∗ < 0, we have just to set λ− < 0. Reversely,
if we have V ∗ > 0, the parameters v̄ and c̄ must be chosen to enforce 0 < λ− < λ+

large enough to satisfy h∗L > 0. Finally, in the case of hL = hR = 0, with the
convention VL = VR = 0, we obtain h∗L = 0. Involving the same analysis with h∗R,
we have easily established the following result:

Lemma 1. Assume hL ≥ 0 and hR ≥ 0 with the convention VL = 0 if hL = 0
and VR = 0 if hR = 0. Then we can find suitable parameters v̄ and c̄ such that the
functions h∗L and h∗R, defined in Proposition 2, are non-negative.
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2.1.3 The relaxation scheme

To approximate the solution at time tn+1 = tn + ∆t, the usual splitting technique
[55] is adopted. In a first step, we solve the relaxation model (2.9) omitting the
relaxation source terms which are considered in a second step. We assume that a
piecewise constant approximate equilibrium solution wh(x, tn) ∈ Ω is known at time
tn, defined by

wh(x, tn) = wn
i = t (hni , (hv)ni ) , x ∈ [xi− 1

2
, xi+ 1

2
].

1. We evolve in time a relevant approximation of the relaxation model (2.9). To
access such an issue, we introduce Uh ∈ Θr such that for all 0 < t < ∆t,
the function Uh(x, tn + t) is the weak solution of the Cauchy problem for the
relaxation system (2.9)µ=0:

∂tU + ∂xH(U) = 0, (2.19)

supplemented by the following initial equilibrium data:

Uh(x, tn) = Un
i

= t (hni , (hv)ni ,Σn
i , V

n
i ) , x ∈ [xi− 1

2
, xi+ 1

2
],

where the equilibrium state is defined by Σn
i =

√
g hni and V n

i = (hv)ni /hni .
Under the CFL like condition

∆t
∆x max

i

(
|λ−
i+ 1

2
|, |λ+

i+ 1
2
|
)
≤ 1

2 , (2.20)

the solution Uh at time tn + ∆t is made of the juxtaposition of the non-
interacting Riemann problem solution set at the element interfaces xi+ 1

2
. Next,

the projection of this solution on the piecewise constant functions reads:

Un+1,−
i = 1

∆x

∫ x
i+ 1

2

x
i− 1

2

Uh(x, tn + ∆t)dx.

Note that according to Lemma 1, we are committed to use a local definition
of the parameter v̄ and c̄ at each interface xi+ 1

2
to ensure the robustness. At

each interface xi+ 1
2
, we set UL = Un

i and UR = Un
i+1 to define the parameters

v̄i+ 1
2

:= v̄(wn
i ,wn

i+1) and c̄i+ 1
2

:= c̄(wn
i ,wn

i+1) according to the non-negativity

condition. Assuming the CFL restriction (2.20), the relaxation parameters
may therefore vary from one interface to another.

2. the second step of the scheme is devoted to the relaxation procedure.We solve
the system

∂tU = µR(U),
with the piecewise constant approximation Un+1,−

i as initial data, while µ
tends to infinity.

Practically, at time t = tn + ∆t, this leads to define the updated approximate
equilibrium solution wn+1(x) as follows:

wn+1(x) =
(
hn+1,−
i , (hv)n+1,−

i

)T
, x ∈ [xi− 1

2
, xi+ 1

2
], (2.21)

and to set Σn+1
i =

√
ghn+1

i and V n+1
i = (hv)n+1

i /hn+1
i .
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To conclude, once all the algebraic computations done, we observe in [A3] that the
numerical relaxation flux function exactly coincides with the VFRoe-ncv flux given
by (2.5)-(2.6). Indeed, the relaxation scheme summarizes as follows:

wn+1
i = wn

i −
∆t
∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
, (2.22)

where the numerical flux function is defined by Fn
i+ 1

2
= F (wn

i ,wn
i+1) and

F (wL,wR) =
(

(c∗)2v∗/g
(c∗)2(2(v∗)2 + (c∗)2)/(2g)

)
, (2.23)

where

c∗ =


cL if λ− > 0,
cL + cR

2 − 1
4(vR − vL) if λ− < 0 < λ+,

cR if λ+ < 0,

v∗ =


vL if λ− > 0,
vL + vR

2 − (cR − cL) if λ− < 0 < λ+,

vR if λ+ < 0.

Actually, the two schemes may differ in the evaluation of the eigenvalues λ±. In this
sense, the VFRoe scheme (2.5)-(2.6) is closed when enforcing the linearization ṽ = v̄
and c̃ = c̄. We can obtain the following expected robustness result:

Theorem 1. Assume that wn
i ∈ Θ for all i and assume that the eigenvalues λ±

i+ 1
2

are

evaluated according to the depth non-negativity Lemma 1. Under the CFL condition
(2.20), the relaxation scheme (2.22)-(2.23), or equivalently the VFRoe scheme (2.5)-
(2.6), preserves the non-negativity of h: hn+1

i ≥ 0 for all i.

2.1.4 A class of relaxation schemes

Following the same strategy, many other relaxation models, involving easy lineariza-
tion, can be considered, with associated schemes which are easy to implement, like
the VFRoe-ncv method. For instance, let us consider the following relaxation family
of models:

∂th+ ∂x(Σ2

g
V ) = 0, t > 0, x ∈ R,

∂t(hv) + ∂x
(Σ2

2g (2V 2 + Σ2)
)

= 0,

∂tΣ + λ+ − λ−

α+ β
∂xV + αλ− + βλ+

α+ β
∂xΣ = µ(c− Σ),

∂tV + αλ+ + βλ−

α+ β
∂xV −

αβ

α+ β
(λ+ − λ−)∂xΣ = µ(v − V ),

(2.24)

where α and β are positive parameters to be fixed. This model is nothing but
an extension of (2.8). Indeed, (2.24) coincides with (2.8) as soon as α = β = 2.
Considering physical applications, a suitable choice of the parameters α and β should
give more accurate simulations. We skip the algebra analysis of this system and
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after some computations, the resulting scheme reads in the form (2.22) where the
numerical flux function is given by (2.23). Only the definition of (v∗, c∗) has changed
and now are given by:

c∗ =


cL if λ− > 0,
αcL + βcR
α+ β

− 1
α+ β

(vR − vL) if λ− < 0 < λ+,

cR if λ+ < 0,

v∗ =


vL if λ− > 0,
αvL + βvR
α+ β

− αβ

α+ β
(cR − cL) if λ− < 0 < λ+,

vR if λ+ < 0.

Once again, we can establish that the obtained updated depth hn+1
i remains non-

negative as soon as the relaxation wave speeds λ− and λ+ are judiciously chosen.

In [A3], a 4th-order extension of the previous relaxation scheme is also performed
and numerically validated. A robustness result adapted from [15] is obtained, relying
on the introduction of a suitable limiter.
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2.2 The quadratic friction source term

In [A8], we introduce a new approximate Riemann solver for the NSW equations
supplemented by a resistive friction source term. Indeed in many practical appli-
cations, for instance in hydraulic or coastal engineering, the bottom roughness and
irregularities entail some energy losses, usually modeled as empirical formulae and
introducing additional source terms to the right hand side of the momentum NSW
equations, see [A1] for a formal derivation of NSW with friction terms coming from
bottom wall-laws.
Plenty of formulations have been proposed in the specialized literature for the fric-
tion source terms, possibly including complex parameterizations. We refer to [36]
for an extensive documentation and comparison of common laws and parameteriza-
tions.
Accounting for such a diversity, we focus on the following general formulation, which
encompasses the famous Chezy and Darcy-Weisbach laws:

∂tW +∇ · F(W) = Sf (W), (2.25)

and
Sf (W) = −g κ

hγ
‖q‖(0, q1, q2)T (2.26)

with ‖q‖ =
√
q2

1 + q2
2, κ is a roughness dimensionalized parameter and γ a rational

number greater than 1.

The bottom friction term is usually discretized with a centred explicit or semi-
implicit schemes, and as the friction term is not a priori bounded for small water
heights, it is only applied in regions where the water depth is below a calibrated
threshold, as in GeoClaw [65] for instance. The reason why the centred approach is
usually adequate is that in most of the practical applications, when the water height
is not vanishing, the leading terms in the momentum conservation equations are the
inertial and hydrostatic pressure forces. Moreover, the friction source term may be
more affected by intrinsic modeling errors than by discretization methods. However,
in situations in which the water depth is very small, the bed roughness is high and
the flow is quasi-uniform, the bottom friction may become the leading terms.

2.2.1 The 1d case

In [A8], we focus on the 1d case:

∂tw + ∂xF(w) = Sf (w), (2.27)

with
Sf (w, f) = −g κ

hγ
(0, |q|q)T .

The proposed numerical procedure comes from a relevant and simple correction of
a given robust approximate Riemann solver for the solutions of the homogeneous
hyperbolic system of conservation laws. The adopted correction gives a discretiza-
tion of the source term which preserves the robustness and does not change the CFL
condition.
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To do so, the idea is to modify the intermediate state w∗ = (h?, (hu)?)T of the
considered solver by introducing a new intermediate state vector w̃? defined as the
following convex combination:

w̃? = αw∗ + (I − α)ŵ∗,

with ŵ∗ a correction accounting for the source term, defined as follows:

ŵ∗(x
t

; wL,wR) =


wL + hγL

gκ
Sf (wL), if

x

t
< 0,

wR + hγR
gκ
Sf (wR), if

x

t
> 0,

(2.28)

with α a 2 × 2 real diagonal matrix, defined as α =
(

1 0
0 α

)
, and α ∈ [0, 1] is an

interface dependent parameter that will be defined later.

With this correction of the intermediate state aboard, the modified approximate
solver is now given by:

w̃R(x
t

; wL,wR) = αwR(x
t

; wL,wR) + (I − α)ŵR(x
t

; wL,wR)

with

ŵR(x
t

; wL,wR) =



wL if
x

t
< λ−,

wL + hγL
gκ
Sf (wL) if min(0, λ−) < x

t
< min(0, λ+),

wR + hγR
gκ
Sf (wR) if max(0, λ−) < x

t
< max(0, λ+),

wR if
x

t
> λ+.

(2.29)
The particular form of this modified solver can be compared with [14], where long-
time asymptotic preserving schemes are proposed for a general class of hyper-
bolic system of conservation laws with source terms that can be written under a
”relaxation-like” form:

∂tw + ∂xF(w) = σ(w)(R(w)−w), (2.30)

with σ(w) ≥ 0. The NSW equations with a friction source term (2.27) directly fit
this framework, with

σ(w) = g
κ

hγ
, (2.31)

and

R(w) = w + hγ

gκ
Sf (w). (2.32)

However, our main goal in [A8] is to provide a simple and robust scheme for the
discretization of the friction source term, without focusing on the restoration of the
associated parabolic asymptotic regime. Therefore, the simple choice of α proposed
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above has the benefit of keeping the original (homogeneous) discretization of the
mass equation untouched, while providing a robust and consistent way to deal with
the source term occurring in the momentum equation. A possible asymptotic pre-
serving correction is investigated in §2.2.3.

x

t

wL
wR

w
∗
L w

∗
R

λ− λ+

Figure 2.1: Modified approximate Riemann solver for the friction scheme with w∗L =
αw∗ + (I − α)R(wL) and w∗R = αw∗ + (I − α)R(wR)

Now, using the new solver (2.29), we consider, as usual, the juxtaposition of the
Riemann problems stated at each interface. Such a juxtaposition is non-interacting
as long as ∆t satisfies the initial CFL condition (2.20). Then, at time tn + t for
all t ∈ (0,∆t), the juxtaposition of non-interacting approximate solutions reads as
follows:

w̃∆x(x, tn + t) = w̃R
(x− xi+ 1

2

t
; wn

i ,wn
i+1

)
, if x ∈ (xi, xi+1),

and we obtain the updated states are mean values of the solution at time t + ∆t
inside each element by projection:

wn+1
i = 1

∆x

x
i+ 1

2∫
x
i− 1

2

w̃∆x(x, tn + ∆t)dx. (2.33)

Plugging (2.29) into (2.33) we obtain the following scheme:

hn+1
i = hni −

∆t
∆x

(
F h
i+ 1

2
− F h

i− 1
2

)
, (2.34)

qn+1
i = qni −

∆t
∆x

(
αi+ 1

2
F q

i+ 1
2
− αi− 1

2
F q

i− 1
2

)
+ ∆t

(1− αi− 1
2

∆x s+
i− 1

2
+

1− αi+ 1
2

∆x s−
i+ 1

2

)
,

where Fi± 1
2

= (F h
i± 1

2
, F q

i± 1
2
)T are defined by (1.58) and

s+
i− 1

2
= max(0, λ−

i− 1
2
)
(
qni−1 − qni + |qni |qni

)
−max(0, λ+

i− 1
2
)|qni |qni + Fq(wn

i ), (2.35)

s−
i+ 1

2
= min(0, λ−

i+ 1
2
)|qni |qni + min(0, λ+

i+ 1
2
)
(
qni − qni+1 − |qni |qni

)
−Fq(wn

i ).
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For the particular case λ−
i− 1

2
< 0 < λ+

i− 1
2

and λ−
i+ 1

2
< 0 < λ+

i+ 1
2
, which is the case

documented in [A8], the resulting scheme reads:

hn+1
i = hni −

∆t
∆x

(
F h
i+ 1

2
− F h

i− 1
2

)
,

qn+1
i = qni −

∆t
∆x

(
αi+ 1

2
F q
i+ 1

2
− αi− 1

2
F q
i− 1

2

)
(2.36)

+ ∆t
(1− αi+ 1

2

∆x λ−
i+ 1

2
−

1− αi− 1
2

∆x λ+
i− 1

2

)
|qni |qni + ∆t

∆x(αi+ 1
2
− αi− 1

2
)Fq(wn

i ).

To conclude the definition of this numerical scheme, we need to define the parameters
αi± 1

2
and we consider consistency conditions in order to do so. In particular, αi+ 1

2
shall fulfill the following requirements:

] No friction limit: αi+ 1
2

= 1 whenever κ = 0,

] High friction limit: αi+ 1
2
→ 0 in the limit of κ→∞,

] Source term consistency:
1−α

i+ 1
2

∆x = g
κ

hγ
+ o(1),

] Dry state conditions: αi+ 1
2

must be defined even if h = 0,

] αi+ 1
2
∈ [0, 1].

Among the admissible choices of αi+ 1
2
, we choose to consider the following one:

αi+ 1
2

=
(hn
i+ 1

2
)γ(λ+

i+ 1
2
− λ−

i+ 1
2
)

(hn
i+ 1

2
)γ(λ+

i+ 1
2
− λ−

i+ 1
2
) + gκ∆x

, with hn
i+ 1

2
=
hni + hni+1

2 . (2.37)

The interesting properties of this scheme are summarized as follows:

Theorem 2. The scheme (2.34)-(2.35)-(2.37) is consistent with (2.27) and assum-
ing that

1. wn
i ∈ Θ for all i

2. wR(
x− xi+ 1

2

∆t ; wn
i ,wn

i+1) ∈ Θ for all i,

then wn+1
i ∈ Θ for all i under the following CFL condition

∆t
∆x max

i

(
|λ−
i+ 1

2
|, |λ+

i+ 1
2
|
)
≤ 1

2 . (2.38)

Additionally, a formally 2nd-order accuracy MUSCL extension is proposed [A8],
and we show that the robustness property is extended to the resulting scheme for
conservative reconstructions under a classical half CFL-like condition, providing that
the MUSCL reconstruction preserves the positivity of the water height.
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2.2.2 A 2d extension

In the communication [C12] and then in [A18], a 2d extension on unstructured
meshes is proposed. We consider now a vertex-centered 1st-order FV approximation
of the solutions of (2.25) on the dual mesh described in §1.2. In order to simplify the
analysis, we consider in the following a simplified approximate solver: for a given
interface between two elements Ci and Cj , we define the minimum and maximum
wave speeds as follows

λ±ij = ±λij , with λij = max(|ui|+ ci, |uj |+ cj).

We consider the following scheme:

hn+1
i = hni −

∆t
|Ci|

∑
j∈K(i)

`ijF
h(Wn

i ,Wn
j ,nij),

(q1)n+1
i = (q1)ni −

∆t
|Ci|

∑
j∈K(i)

`ijαij
(
F q1(Wn

i ,Wn
j ,nij)−Fq1(Wn

i ) · nij
)

− ∆t
|Ci|

∑
j∈K(i)

`ij(1− αij)λij |(q1)ni |(q1)ni , (2.39)

(q2)n+1
i = (q2)ni −

∆t
|Ci|

∑
j∈K(i)

`ijαij
(
F q2(Wn

i ,Wn
j ,nij)−Fq2(Wn

i ) · nij
)

− ∆t
|Ci|

∑
j∈K(i)

`ij(1− αij)λij |(q2)ni |(q2)ni ,

where, for a given interface, αij is defined as

αij =
2hγijΛ(i)λij

2hγijΛ(i)λij + gκ |Ci|`ij

, and hij = hi + hj
2 . (2.40)

The quantities αij and hij are of course evaluated at time t = tn. We show in [A18]
that the following consistency and robustness properties are satisfied:

Theorem 3. 1. The scheme (2.39)-(2.40) is consistent with (2.27).

2. The scheme (2.39)-(2.40) preserves the set of admissible states Θ as soon as
the underlying approximate Riemann solver does, under the following CFL
condition:

∆t max
i,j∈K(i)

λij
`ij
|Tij |

≤ 1
2 . (2.41)

The main idea that leads to this robustness results is to show that (2.39) can be
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regarded as a convex combination of 1d schemes of the form (2.36):

h̃n+1
ij = hni −

∆t
δij

(
F h(Wn

i ,Wn
j , ~nij)− F h(Wn

i ,Wn
i ,nij)

)
,

(q̃1)n+1
ij = (q1)ni −

∆t
δij

(
αijF

q1(Wn
i ,Wn

j ,nij)− αiiF q1(Wn
i ,Wn

i ,nij)
)

− ∆t
δij
λij
(
(1− αij) + (1− αii)

)
|(q1)ni |(q1)ni + ∆t

δij
(αij − αii)Fq1(Wi) · nij ,

(q̃2)n+1
ij = (q2)ni −

∆t
δij

(
αijF

q2(Wn
i ,Wn

j ,nij)− αiiF q2(Wn
i ,Wn

i ,nij)
)

− ∆t
δij
λij
(
(1− αij) + (1− αii)

)
|(q2)ni |(q2)ni + ∆t

δij
(αij − αii)Fq2(Wi) · nij ,

with δij = |Tij |/`ij , αii = 1 and αij defined according to (2.40). These intermediate
states are evolved with the 1d scheme (2.36), with a discretization step δij . We can
then recast (2.39) as follows:

Wn+1
i =

∑
j∈K(i)

ωijW̃n+1
ij , (2.42)

with

ωij = |Tij |
|Ci|

and
∑

j∈K(i)
ωij = 1.

Of course one can easily derive a more general scheme, relying on any robust ap-
proximate Riemann solver, starting with 1d contributions built from (2.34). Note
that in [A18], the 2d extension is introduced in a more general framework as it also
accounts for the topography source term in a well-balanced way and it induces a
modification of the FV scheme for the mass conservation equation to restore the
parabolic asymptotic regime associated with (2.25)-(2.26).

2.2.3 An asymptotic preserving extension

In [A18], we also investigate the late-time asymptotic behavior of solutions of the
2d equations (2.25) and suggest a FV discretization that aims at restoring this limit
regime on unstructured meshes. Note that this study enters the generalized analysis
proposed in [13], that encompasses systems with strongly nonlinear stiff source terms
and involves several relaxation time-scales. Such a system, with the correct rescaling,
may be written as

ε∂tWε +∇ · F(Wε) = σ(Wε)
εm

(R(Wε)−Wε), (2.43)

where m ≥ 1, introducing an additional time scale in the problem. Indeed, it
is shown in [13] that the study of the 1d NSW equations (2.27) with a quadratic
friction source term, in late-time regime or when the friction is assumed to dominate
over the transport (i.e. when t σ(w)→∞), relies on the following re-scaling

t← t

ε
, σ(w)← σ(wε)

ε2
, (2.44)

and, unlike the Euler equations with friction term or the M1 model for radiative
transfer, leads to a nonlinear diffusive asymptotic regime.
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We first derive the singular limit regime of (2.25) in the 2d case, based on the
rescaling (2.44). While the topography variations are accounted for in [A18], we
choose to consider the flat bottom case in the following, to keep this presentation
coherent and simple. The re-scaled equations read

ε∂tWε +∇ · F(Wε) = 1
ε2
Sf (Wε), (2.45)

and in the spirit of Chapman-Enskog expansions, see for instance [16], we perform
a 1st-order formal expansion of each component of the variable vector:

Wε = W0 + εW1 +O(ε2) . (2.46)

Considering that equations (2.45) have to be relevant whenever ε tends to zero,
matching together the terms of same order in magnitude in ε and some algebraic
manipulations lead to the following nonlinear diffusive regime:

∂th−∇ ·
( h

γ+1
2√

gκ‖∇h‖
∇h
)

= 0 , (2.47)

which is the 2d generalization of the equation obtained in [13]. To the author knowl-
edge, the convergence of the solution of (2.45) toward the solution of (2.47) has not
been studied yet.

Next, a FV discretization is suggested in [A18], that aims at degenerating accord-
ingly to this diffusive limit regime, providing that a ”good” scheme is available for
the discretization of the limit equation (2.47). In other words, the limit of the
scheme when tσ(W)→∞ shall be a consistent approximation of the limit diffusion
equation. This property is generally not fulfilled by usual numerical schemes and
the design of asymptotic-preserving schemes has been an important issue during the
last decade, see for instance [20, 25, 48].
Achieving such a property on unstructured meshes for a targeted linear parabolic
regime is already difficult, since the classical FV schemes for 2nd-order operators
are generally not-consistent [45], and do not naturally provide a discrete maximum
principle (see the Ph.D. of M.Cathala on this topic [24]). As far as nonlinear regimes
are concerned, the conception of a consistent FV discretization for (2.47) promises
to be an interesting and difficult work by itself, not even mentioning the issue of ro-
bustness. In [A18], we therefore assume that such a method is available, eventually
with complementary assumptions on the mesh.

Reformulating (2.25) as:

∂tW +∇ · F(W) = (σ(W) + σ)(R(W)−W), (2.48)

where

R(W) = σ(W)R(W) + σW
σ(W) + σ

,

and σ is a free parameter, we consider the 2d scheme (2.39) for the computation of
the weak solutions of the formulation (2.48) with the adapted definitions

αij = 2Λ(i)λij
2Λ(i)λij + (σij + σij) |Ci|`ij

, σij = g
2κ

hγi + hγj
, (2.49)
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and σij to be defined later. As for (2.40), it is possible to show that (2.39)-
(2.49) is consistent with (2.48) and is robust under the CFL (2.41), providing that
σij + σij ≥ 0.

Focusing now on the asymptotic behavior of (2.39) − (2.49) under the rescaling
(2.44), we have

αεij = 2εΛ(i)λij
2εΛ(i)λij + (σij + σij) |Ci|`ij

, (2.50)

and

1− αεij =
(σij + σij) |Ci|`ij

2εΛ(i)λij + (σij + σij) |Ci|`ij
. (2.51)

Injecting into (2.39) and matching the terms of same magnitude in ε, we get that
in the limit regime, we necessarily recover the equilibrium R(Wn

i ) = Wn
i , together

with the following limit scheme for the water height:

hn+1
i = hni −

∆t
|Ci|

∑
j∈K(i)

`ij
2λijΛ(i)

(σij + σij) |Ci|`ij

(
F h(Wn

i ,Wn
j ,nij)−Fh(Wn

i )·nij
)
R(Wn

i )=Wn
i

,

which, using for instance a local LF flux (1.59), reduces to

hn+1
i = hni + ∆t

|Ci|
∑

j∈K(i)
`ij

λ2
ijΛ(i)

(σij + σij) |Ci|`ij

(
hj − hi

)
. (2.52)

Now, let us assume that a consistent FV discretization of the targeted nonlinear
diffusive regime (2.47) is available:

hn+1
i = hni + ∆t

|Ci|
∑

j∈K(i)

∫
Γij
F (h,∇h)∇h · nij , (2.53)

where F : (h,∇h) 7−→ h
γ+1

2√
gκ‖∇h‖

, to obtain :

hn+1
i = hni + ∆t

|Ci|
∑

j∈K(i)
`ijFij (Gij · nij)(hj − hi) , (2.54)

where Fij is a discretization of F (h,∇η)|Γij and Gij · nij(hj − hi) an upwind dis-
cretization of ∇h|Γij . We also assume that Gij · nij is positive. Then, defining σij
such that the following equality holds:

σij + σij =
λ2
ijΛ(i)`ij

|Ci|Fij (Gij · nij)
, (2.55)

the limit scheme (2.52) for the water height coincide with the targeted FV discretiza-
tion (2.54) for the limit diffusive regime (2.47).

We recall that in [A18] and [C12], the scheme is introduced in a more general frame-
work, and is both asymptotic preserving and well-balanced. We show on Fig. 2.2-2.3
an example of the modifications induced by the correction, which can have a notice-
able impact on the wet/dry interface celerity. Further validations and comparisons
can be found in the references above and in the Ph.D. thesis of A.Duran [T3].
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Figure 2.2: Dam-break flow over two frictional humps: basin and initial condition.
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Figure 2.3: Time series of the free surface at gauges g1, g2 and g3. NAP stands
for the non asymptotic preserving scheme (2.36) and AP for the modified scheme
(2.49)-(2.55)
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2.3 The topography source term

In this section, we focus on the discretization of the NSW equations supplemented
by the topography source term. The issue of finding suitable discretizations that
allow to preserve some important classes of steady states has received a lot of atten-
tion in the last 20 years. We say in the following that a numerical FV scheme for
(1.43)-(1.44) exactly preserves the motionless steady-states for wet bed if, starting
from discrete values hni + bi = ηe and vni = 0 the scheme produces updated values
at time tn+1, verifying hn+1

i + bi = ηe and vn+1
i = 0.

There is a huge of available literature, let us just mention the few works [50, 66, 10,
23] and refer the interested reader to [A15, A16] for a wide list of additional refer-
ences. One interesting step is certainly the introduction of the so-called hydrostatic
reconstruction [6], which allows to obtain a robust and well-balanced scheme that
preserves motionless steady states, providing that the underlying 1st-order scheme
for the homogeneous equations is robust.

In [A6] , we propose an interesting variation on the hydrostatic reconstruction, that
relies on an alternative form of the NSW equations, namely the pre-balanced NSW
equations. This approach leads to a very compact formulation, which has became
quite popular among the coastal engineering community, see for instance [87, 94].
A 2d extension is proposed in [A15], and the method is recently adapted to the
framework of arbitrary order DGMs in [A16].

Concerning the discretization of the topography source term, we also point out the
communication [C7], in which we propose a relevant approximate Riemann solver
interpretation of the VFRoe-ncv scheme for non-homogeneous equations. This in-
terpretation allows method to consider the VFRoe-ncv scheme within the usual
Finite Volume formalism. and to derive suitable corrections to enforce the required
robustness properties. This work is not detailed in the following.

2.3.1 Pre-balanced hydrostatic reconstruction

Let us again begin with the 1d case, and come back to equations (1.43)-(1.44),
written in their dimensionalized 1d form:{

∂tζ + ∂x(hv) = 0,
∂t(hv) + ∂x

(
hv2

)
+ gh∂xζ = 0, (2.56)

and recall that the water height can be written as h = hs + ζ, where hs = h0 − b
is the still water depth. In [90], an alternative formulation of the shallow water
equations is introduced, with the purpose of naturally balancing flux gradient and
topography source term, using the approximate solver of Roe. Instead of using the
common decomposition

gh∂xζ = g∂x(h
2

2 ) + ghb′, (2.57)

they suggest to use the alternative splitting and distribution:

gh∂xζ = 1
2g∂x

(
ζ2 + 2ζhs

)
− gζh′s, (2.58)
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giving a deviatoric form of the NSW equations which is properly balanced when
solving within a FV Godunov -type framework. Additionally, this formulation still
retains the hyperbolic nature of the NSW equations, see [89].

However, there is some additional difficulties with the occurrence of dry areas, as
the quantities hs and ζ are not defined. To overcome this, we suggest in [A6] the
following redistribution of the gh∂xζ term:

gh∂xζ = 1
2g∂x

(
η2 − 2η b

)
+ gη b′, (2.59)

defined in terms of the total free surface elevation above the datum η = h+b, leading
to the following formulation of the NSW equations:

ut + ∂xH(u, b) = Sb(u, b) , (2.60)

with :

u =
(
η
q

)
, Sb(u, b) =

(
0

−gηb′

)
, H(u, b) =

(
q

q2

η−b + p(η, b)

)
, (2.61)

and p(η, b) = 1
2gη(η−2b). These equations will be referred to as PB-NSW equations

in the following.

This formulation leads to a motionless steady-states preserving scheme, with a cen-
tered discretization of the source term:

un+1
i = uni −

∆t
∆x

(
Hn
i+ 1

2
−Hn

i− 1
2

)
+ Snb,i, (2.62)

with

Snb,i = 1
∆x

(
0

−gηi(bi+ 1
2
− bi− 1

2
)

)
, (2.63)

using any consistent numerical flux Hn
i+ 1

2
. Indeed, it is easy to check that, when a

motionless steady state (ηe, 0) is reached, the associated discrete fluxes reduces to

Hi+ 1
2

= p(ηe, bi+ 1
2
), Hi− 1

2
= p(ηe, bi− 1

2
),

hence the discrete balance, comparing with (2.63).

This scheme is all the more simple, but with the assumption that the free surface
η was constant over the whole domain, we obviously exclude the possibility of the
occurrence of dry areas and the previous scheme is unable to preserve motionless
steady states involving dry areas. To overcome this drawback, and inspired by the
hydrostatic reconstruction, we suggest in [A6] the following scheme:

un+1
i = uni −

∆t
∆x

(
Hi+ 1

2
−Hi− 1

2

)
+ ∆t

∆x(Sb,i + Ŝb,i), (2.64)

with

Hi+ 1
2

= H(u−
i+ 1

2
,u+

i+ 1
2
, b∗
i+ 1

2
, b∗
i+ 1

2
), Hi− 1

2
= H(u−

i− 1
2
,u+

i− 1
2
, b∗
i− 1

2
, b∗
i− 1

2
), (2.65)
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S̃nb,i =
(

0
−gηi(b∗i+ 1

2
− b∗

i− 1
2
)

)
, (2.66)

Ŝnb,i = g

2

 0
∆i,l

(
b∗
i+ 1

2
− (b∗

i− 1
2
−∆i,l)

)
+ ∆i,r

(
(b∗
i+ 1

2
−∆i,r)− b∗i− 1

2

) , (2.67)

b∗
i+ 1

2
= max(bi, bi+1), (2.68)

∆i,l = max(0, b∗
i− 1

2
− ηi), ∆i,r = max(0, b∗

i+ 1
2
− ηi), (2.69)

and

h−
i+ 1

2
= max(ηi − b∗i+ 1

2
, 0), h+

i+ 1
2

= max(ηi+1 − b∗i+ 1
2
, 0),

η−
i+ 1

2
= h−

i+ 1
2

+ b∗
i+ 1

2
, η+

i+ 1
2

= h+
i+ 1

2
+ b∗

i+ 1
2
, (2.70)

u−
i+ 1

2
= (η−

i+ 1
2
, h−

i+ 1
2
vi)T , u+

i+ 1
2

= (η+
i+ 1

2
, h+

i+ 1
2
vi+1)T .

and (u−,u+, b−, b+) 7→ H(u−,u+, b−, b+) corresponds for instance to the LF flux
(1.59) computed from the variable state u and the physical flux H. For the sake
of simplicity, the scheme (2.64)→(2.70) will be simply referred to as (2.64) in the
following.

The new terms ∆i,l and ∆i,r are dry element sensors that activate the correction

Ŝnb,i only when a dry neighbor is detected. Let us have a closer look, for instance,
on the equilibrium depicted on Fig. 2.4:

bi

bi−1

•
ηi−1 ηi

•
ηi+1 = bi+1

i i + 1i − 1

∆i,r

Figure 2.4: Wet/dry interface.

• interface i+ 1
2 : hi+1 = 0, b∗

i+ 1
2

= bi+1 = ηi+1 and ∆i,r = bi+1−ηi. Consequently

h−
i+ 1

2
= h+

i+ 1
2

= 0 and η−
i+ 1

2
= η+

i+ 1
2

= bi+1.

• interface i− 1
2 : ∆i,l = 0, b∗

i− 1
2

= bi and η−
i− 1

2
= η+

i− 1
2

= ηi = ηi−1 = ηe.

Injecting these values into (2.64), we see that the correction Ŝb,i helps to restore
the perfect balance. A study of the other possible configurations leads to the same
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conclusion.

Interestingly, an alternative and equivalent formulation to (2.64) reads as follows:

un+1
i = uni −

∆t
∆x

(
H−
i+ 1

2
−H+

i− 1
2

)
+ Sb,i, (2.71)

with

H−
i+ 1

2
= H(u−i,r,u

+
i,r, b

∗
i,r, b

∗
i,r), H+

i− 1
2

= H(u−i,l,u
+
i,l, b

∗
i,l, b

∗
i,l), (2.72)

Snb,i =
(

0
−gηi(b∗i,r − b∗i,l)

)
, (2.73)

and

b∗i,l = b∗
i− 1

2
+ ∆i,l, b∗i,r = b∗

i+ 1
2

+ ∆i,r,

η±i,r = h±
i+ 1

2
+ b∗i,r, η±i,l = h±

i− 1
2

+ b∗i,l, (2.74)

u−i,r = (η−i,r, h
−
i+ 1

2
vi)T , u+

i,r = (η+
i,r, h

+
i+ 1

2
vi+1)T ,

u−i,l = (η−i,l, h
−
i− 1

2
vi−1)T , u+

i,l = (η+
i,l, h

+
i− 1

2
vi)T ,

while b∗
i± 1

2
, h±

i± 1
2
, ∆i,r and ∆i,l remain unchanged. In the following, the formulation

(2.71)→(2.74) will be simply referred to as (2.71). We have the following result:

Proposition 3. The scheme (2.71) (or alternatively (2.64)) is consistent with (2.56)
and preserves the motionless steady states, even with the possible occurrence of dry
areas.

We clearly see that the introduction of the modified quantities b∗i,r and b∗i,l and the
subsequent variables modifications (2.74) do not modify the scheme (2.64) when
there is no dry area. When dry elements have to be taken into account in the com-
putation of the numerical fluxes (2.72), then the induced modifications perfectly
restore the motionless steady state at the wet/dry interface.
Additionally, we can check that the modifications entailed by the use of the recon-
structed values (2.74) are of order O(∆x), as

u±i,r = u(xi+ 1
2
) +O(∆x), and u±i,l = u(xi− 1

2
) +O(∆x).

2.3.2 Robustness

So far, we have focused on the preservation of the motionless equilibrium. Let now
investigate the robustness property. Indeed, within the PB-NSW formulation, we
work with the free surface as a variable in the mass conservation equation instead
of the water height, obviously modifying the numerical viscosity of the associated
numerical schemes when the bottom is not flat.
However, the analysis can be easily performed is some cases, with the use of the
formulation (2.71) rather than (2.64). More precisely, the robustness result can be
easily obtained in the case when the numerical flux formula involves only a difference
of free surface element values. Let us be more specific with the example of the global
LF flux (1.59):
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Lemma 2. We consider the following first-order scheme for the update of the free
surface value:

ηn+1
i = ηni −

∆t
∆x

(
H−,η
i+ 1

2
−H+,η

i− 1
2

)
, (2.75)

where H−,η
i+ 1

2
and H+,η

i− 1
2

are the first component of the well-balanced fluxes (2.72),

defined according to the reconstructions (2.74) and LF flux (1.59). If we have hni ≥
0 ∀i, then hn+1

i ≥ 0 ∀i under the condition ∆t
∆xλo ≤ 1.

Proof. The idea is to write (2.75) as a linear combination of positive values. We
have:

ηn+1
i = ηni −

∆t
2∆x

((
h−
i+ 1

2
vni + h+

i+ 1
2
vni+1

)
− λo(η+

i,r − η
−
i,r)

−
(
h−
i− 1

2
vni−1 + h+

i− 1
2
vni
)

+ λo(η+
i,l − η

−
i,l)
)
,

Denoting that η+
i,r−η

−
i,r = h+

i+ 1
2
−h−

i+ 1
2

and η+
i,l−η

−
i,l = h+

i− 1
2
−h−

i− 1
2
, and subtracting bi

at both side of the equality, we can conclude, writing (2.75) as a linear combination
of positive values:

ηn+1
i − bi =

(
1− ∆t

2∆x(λo + vni )
h−
i+ 1

2

hni
− ∆t

2∆x(λo − vni )
h
i− 1

2
+

hni

)
hni

+
( ∆t

2∆x(λo + vni−1)
h−
i− 1

2

hni−1

)
hni−1 +

( ∆t
2∆x(λo − vni+1)

h+
i+ 1

2

hni+1

)
hni+1,

(2.76)

since h−
i+ 1

2
< hni and h+

i− 1
2
< hni by construction.

A similar result can be obtained with the Rusanov or the HLL fluxes, although with
more restricted time steps.

2.3.3 Higher order of accuracy

The formulation (2.71) has the advantage of being very compact and is virtually
unmodified when 2nd-order interface values are used. For a given element Ci, let us
replace the piecewise constant values ηi, hi and vi respectively by ηi,r, hi,r, vi,r and
ηi,l, hi,l, vi,l, which are some 2nd-order reconstructed values respectively at the right
and left interfaces, obtained for instance by a MUSCL reconstruction [64]. To sim-
plify the analysis, we restrict the study to the case of conservative reconstructions:

ηi = (ηi,r + ηi,l)/2, hi = (hi,r + hi,l)/2, and vi = (vi,r + vi,l)/2. (2.77)

As in [6], we also deduce some 2nd-order reconstructed interface values for the to-
pography, let say bi,r = ηi,r−hi,r and bi,l = ηi,l−hi,l, to ensure that the free surface
at rest won’t be disturbed by the high-order reconstruction process.
Adapting now the reconstructions (2.74) and (2.73), see [A6] for details, and inject-
ing these new values into (2.72), we obtain a 2nd-order scheme which preserves the
motionless steady states. Additionally, if the underlying 1st-order scheme is robust
(in the sense of Lemma 2) under a given CFL condition, we can classically prove
that the 2nd-order scheme is robust under a half CFL condition.
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The robustness result can be extended to non-conservative or even higher-order re-
constructions, with a more restricted CFL condition and eventually an additional
limitation, with the use of an intermediate ghost state, in the spirit of [15]. An-
other road to enforce the robustness with high-order reconstruction is to use the
quadrature-based limiter of [111], providing that the reconstructed polynomial is
available. This approach is detailed in §3.2

2.3.4 The 2D case

In [A15], we extend the scheme to the 2d case on unstructured meshes. The PB-
NSW equations read as follows

Ut +∇ · H(U, b) = Sb(U, b) , (2.78)

with :

U =

 η
hv1
hv2

 , Sb(U, b) = −gη

 0
∂xb
∂yb

 , H(U, b) =


q1 q2

q2
1

η−b + p(η, b) q1q2
η−b

q1q2
η−b

q2
2

η−b + p(η, b)

 .
For a given element Ci, we suggest the following scheme:

Un+1
i = Un

i −
∆t
|Ci|

Λ(i)∑
k=1

`ij(k)Hs(U−ij(k),U
+
ij(k), bi, bj ,nij(k)), (2.79)

with
Hs(U−ij ,U

+
ij , bi, bj ,nij) = H(U−ij ,U

+
ij , b̌ij , b̌ij ,nij)− Sc,ij , (2.80)

Sc,i =
Λ(i)∑
k=1

`ij(k)Sc,ij(k) =
Λ(i)∑
k=1

`ij(k)

(
0

gη̂ij(k)(bi − b̌ij(k))nij(k)

)
, (2.81)

where η̂ij(k) is a consistent approximation of η at the interface Γij(k) and for a given
interface Γij , the left and right Riemann states are obtained through the following
reconstructions:

b∗ij = max(bi, bj), ∆ij = max(0, b∗ij − ηi), b̌ij = b∗ij −∆ij , (2.82)

h∗ij = max(0, ηi − b∗ij), h∗ji = max(0, ηj − b∗ij), (2.83)

η−ij = h∗ij + b̌ij , η+
ij = h∗ji + b̌ij , (2.84)

leading to the new edge values:

U−ij = (η−ij , h
∗
ijvi), U+

ij = (η+
ij , h

∗
jivj). (2.85)

The simpler choice for η̂ij(k) is certainly ηi, leading to the simplified source term:

Sc,i = −gηi
Λ(i)∑
k=1

`ij(k)

(
0

b̌ij(k)nij(k)

)
. (2.86)

We have the following properties:
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Theorem 4. The scheme (2.79)→(2.86) preserves the motionless steady states,
even with the occurrence of dry states. Additionally, assuming that :

1. hni ≥ 0 and hnj(k) ≥ 0, 1 ≤ k ≤ Λ(i),

2. the numerical fluxes (2.80) are computed with the LF flux (1.59).

Then we have hn+1
i ≥ 0 under the CFL

∆tλo
`ij
|Tij |

≤ 1, ∀i,∀j. (2.87)

The key argument to achieve the robustness is that again, we can write (2.79) as
a convex combination of 1st-order schemes, of the form studied in Lemma2, that
reads:

Un+1
i = Un

i −
`ij∆t
|Tij |

(
H(U−ij(k),U

+
ij(k), b̌ij , b̌ij ,nij(k))−H(Ui, bi)·nij(k))

)
+`ij∆t
|Tij |

Sc,ij(k).

A more stringent CFL was obtained in [A15], with the choice η̂ij(k) = η−ij+η
+
ij

2 and
following another path to ensure the robustness.

2.3.5 Accuracy improvement

A 2nd-order scheme is also proposed and studied in [A15]. As in the 1d case, the
order of space-accuracy is improved by substituting to the original values Ui and Uj

in the computation of (2.82)→(2.85) some ”better” interpolated/extrapolated vector
states Uij and Uji at the interfaces Γij .
There is several way to gain a better convergence and accuracy on unstructured
meshes, from the simple Green-Gauss reconstructions to more complex and wider
stencils ENO/WENO approaches [1]. During the Ph.D of A.Duran [T3], several
MUSCL reconstructions have been implemented, compared and validated, including
the ones proposed in [7] and the V6 schemes introduced in [22], which seems to
provide less diffusive results and better convergence rates on many test cases. This
reconstructtion mainly relies on the judicious construction of a weighted combination
of several reconstructed gradients, issued from P 1 interpolations, centered difference
formulae, and a particular higher-order gradient which gives a numerical dissipation
built as a sixth-order spatial derivative for the linear advection equation.
We show in [A15] that the resulting scheme preserve the motionless steady states,
even with the occurrence of dry elements, and is robust under a suitable time step
restriction. The study of the robustness is more involved than in the 1st-order case.
Indeed, we can find some robustness results in the literature for 2d schemes on un-
structured meshes, like in [84, 85]. However, the stability analysis mainly relies on
some conservative assumptions for the reconstructed values, which don’t hold in our
case. An interesting way of extending this analysis to general reconstructions is
introduced in [12] and adapted to our study.
A sub-mesh is introduced, as shown on Fig.2.5, together with new intermediate
states that allow to interpret the reconstructed states coming from (2.85) as piece-
wise constant states on sub-elements. Considering a element Ci, we split the edges
SiMij(k)j(k+1) into two segments, separated by the vertex mij(k)j(k+1). Joining the
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vertices mi j(k) j(k+1), we split the dual element Ci into a sub-element C∗i and Λ(i) sub-
elements Cij(k) obtained with joining the vertexesMij(k−1)j(k),Mij(k)j(k+1),mij(k)j(k+1)
and mij(k−1)j(k) , leading to:

Ci = C∗i ∪
(

Λ(i)
∪
k=1
Cij(k)

)
.

Mij(4)j(5)

Mij(5)j(1)

Mij(1)j(2)

Mij(2)j(3)

Mij(3)j(4)

mij(4)j(5)

mij(5)j(1)

mij(1)j(2)

Cij(5)

Cij(1)

Cij(2)
Cij(3)

Cij(4)

Si

C∗
i

(1)

Figure 2.5: Sub-element decomposition of Ci

Let us also denote, for 1 ≤ k ≤ Λ(i):

• Γ∗ij(k) the segment separating C∗i and Cij(k),

• `∗ij(k) the length of Γ∗ij(k)

• n∗ij(k) the outer unit normal to Γ∗ij(k),

• Γpij(k), for p ∈ {1, . . . , 4}, the boundaries of Cij(k)

(so that
4
∪
p=1

Γpij(k) = ∂Cij(k)),

• `pij(k) the length of Γpij(k),

• npij(k) the outer unit normal to Γpij(k),

• Up
ij(k), for p ∈ {1, . . . , 4}, the value of U in the neighboring elements of Cij(k).

Let us finally assume that all the sub-elements described above are the disjoint union
of triangles:

Cij(k) =
4
∪
p=1

T pij(k) and C∗i =
Λ(i)
∪
k=1

T ∗ij(k). (2.88)

We associate the inner reconstructed vector state U−ij(k) to the element Cij(k) and
we define a new intermediate state U∗i , associated with the sub-element C∗i , defined
as follows:

|C∗i |
|Ci|

U∗i +
Λ(i)∑
k=1

|Cij(k)|
|Ci|

U−ij(k) = Un
i . (2.89)
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We also define a new intermediate state h∗i in the same way :

|C∗i |
|Ci|

h∗i +
Λ(i)∑
k=1

|Cij(k)|
|Ci|

h∗ij(k) = hni , (2.90)

and deduce intermediate topography values b∗i attached to C∗i . Then, assuming that
hni , h∗i and all the interface values hij(k) coming from the high-order reconstruc-
tion are positive, and that the LF flux is used (or any consistent and conservative
numerical flux satisfying a robustness property similar to Lemma 2, the resulting
high-order scheme is shown to be robust under the following CFL conditions:

∆t
`pij(k)
|T pij(k)|

max
∣∣∣λ±(U−ij(k),U

p
ij(k),n

p
ij(k))

∣∣∣ ≤ 1, ∀ Cij(k), T
p
ij(k), 1 ≤ p ≤ 4, (2.91)

∆t
`∗ij(k)
|T ∗ij(k)|

max
∣∣∣λ±(U∗i ,U−ij(k),n

∗
ij(k))

∣∣∣ ≤ 1, ∀C∗i , T ∗ij(k), 1 ≤ k ≤ Λ(i). (2.92)

This result is again obtained by interpreting the high-order scheme as a convex com-
bination of 1st-order schemes. We evolve independently in time both intermediate
states η∗i and reconstructed states η−ij(k), considered as constant states in their re-

spective sub-elements, with the robust 1st-order scheme (2.79)→(2.85), and recover
the updated averaged value ηn+1

i from (2.89).

Obviously, for an arbitrary high-order reconstruction procedure, we have to ensure
that the high-order reconstructions hij , hji and the intermediate state h∗i are positive,
and an additional limitation procedure may be necessary to enforce this. An example
of computation is shown on Fig. 2.6.

2.3.6 An arbitrary order accuracy well-balanced DGM

The development of well-balanced DG schemes for the NSW equations is recent,
and there is very few existing works, especially when considering the 2d case on
unstructured grids. In the 1d case, we can refer to [103] for a general (but complex)
discretization of a class of conservation laws with separable source terms, leading to
high-order DGMs with the well-balanced property for motionless equilibrium. The
key ingredient is a suitable decomposition of the integral of the source terms into
a sum of several terms, each of which is discretized independently in a consistent
way with the discretization of the corresponding flux derivative terms. An easier
approach is subsequently introduced by the same authors in [102], based on an
adaptation of the methods introduced in [6]. This second approach is then extended
in 2d in [104]. Note that similar ideas are used in [42], in which the well-balancing
is ensured for polynomial expansions of arbitrary orders and on unstructured meshes.

In [A16], we extend the previous ideas to an arbitrary order accuracy DG discretiza-
tion of the PB-NSW equations on unstructured meshes. Additionally, we obtain
an accuracy preserving robustness property for the mean value of the water height,
adapting the ideas of [112]. Indeed, recent efforts were made in [59, 60] to adapt the
FV scheme [A6] to the DG framework but only in 1d for P1 approximations (and
on 2d cartesian grids in [58]).
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Figure 2.6: Dam break over 3 mounds: free surface at times t=2.5s, 5.5s, 16s, 23s,
and 300s.
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Discrete formulation and polynomial basis

The discrete weak formulation associated with (2.78) is obtained by seeking an
approximation Uh ∈ (Vh)3 and reads for all test function φh ∈ Vh:∫
Cl
∂tUhφh dx−

∫
Cl
H(Uh, bh) · ∇φh dx +

∫
∂Cl

Ĥl φh ds =
∫
Cl
S(Uh, bh)φh dx. (2.93)

In [A16], the polynomial basis {θli}
Np
i=1 is chosen to be an interpolant Lagrangian

basis. To define the interpolant basis, we need a distribution of nodes and we choose
to work with the electrostatic points of [54]. The nodes locations are obtained
from a 2d electrostatic energy minimization problem in the reference triangle, and
allow to minimize the Lebesgue constant of the associated interpolation problem
(i.e. control the oscillatory nature of the interpolant polynomials for higher orders
of approximation).
Looking for an approximate solution expressed as a polynomial of order p on each

Cl, the local expansion coefficients {Ũl
i(t)}

Np
i=1 =

{(
η̃li, (q̃1)li, (q̃2)li

)T}Np
i=1

simply are

the (approximated) nodal values of the solution at the interpolation nodes.
To compute the last term in (2.93), we also need an expansion of the topography:

bh|Cl(x) =
Np∑
i=1

b̃liθ
l
i(x), ∀x ∈ Cl, (2.94)

where the expansion coefficients are obtained by ”reading” the value of the topog-
raphy at the interpolation nodes. The resulting semi-discrete formulation reads for
1 ≤ j ≤ Np:

Np∑
i=1

(
d

dt
Ũl
i(t)

∫
Cl
θliθ

l
j dx

)
−
∫
Cl
H(Uh, bh) · ∇θlj dx +

3∑
k=1

∫
Γlσ(k)

Ĥlσ(k) θ
l
j ds

=
∫
Cl
Sb(Uh, bh)θlj dx.

(2.95)

Numerical fluxes and well-balancing

We introduce in [A16] a new method to compute arbitrary order interface fluxes
Ĥlσ(k), inspired from the FV scheme of [A15]. We show that this approach leads to
a well-balanced scheme that exactly preserves motionless steady states.

We define, for a given interface Γlσ(k), U−k and U+
k as the respective traces of Uh|Cl

and Uh|Cσ(k) on Γlσ(k). Similarly, b−k and b+k stand for the interior and exterior values
of bh on Γlσ(k). For each interface, we define new interfaces values:

b∗k = max(b−k , b
+
k ), b̌k = b∗k −max(0, b∗k − η−k ) (2.96)

and

ȟ−k = max(0, η−k − b
∗
k), ȟ+

k = max(0, η+
k − b

∗
k), (2.97)

η̌−k = ȟ−k + b̌k, η̌+
k = ȟ+

k + b̌k, (2.98)

leading to the new traces:

Ǔ−k = (η̌−k ,
ȟ−k

η−k − b
−
k

q−k )T , Ǔ+
k = (η̌+

k ,
ȟ+
k

η+
k − b

+
k

q+
k )T . (2.99)
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Now we set
Hlσ(k) = H(Ǔ−k , Ǔ

+
k , b̌k, b̌k,nlσ(k)) + Ȟlσ(k), (2.100)

as the numerical normal flux through the interface between Cl and Cσ(k), where:

1. the numerical flux H is computed from the LF flux (1.59), anticipating on the
requirements for robustness. Of course any numerical flux satisfying a robust-
ness property analogous to Lemma 2 would be suitable as well.

2. Ȟlσ(k) is a correction term needed to ensure flux balancing at motionless steady
states, defined as follows:

Ȟlσ(k) =

 0 0
gη−k (b̌k − b−k ) 0

0 gη−k (b̌k − b−k )

 · nlσ(k). (2.101)

Note that the modified interface fluxes (2.100) induce perturbations of order p + 1
when compared to the traditional interface fluxes. Equipped with this modified flux,
we prove in [A16] the following result:

Proposition 4. We consider the scheme (2.95), together with the interface fluxes
discretization (2.100), and we assume that all the integrals involved in (2.95) are
computed exactly for motionless equilibrium. Then (2.95)→(2.100) exactly preserves
the motionless steady states.

Note that taking polynomials of order 0 (i.e. piecewise constant functions), this
well-balanced DGM coincides with the 1st-order well-balanced FVM of §2.3.4.

On numerical integration

There is plenty of way to compute the surface and boundary integrals involved in
(2.95). Even if some quadrature-free approaches are available (see [5] for instance),
we choose in [A16] to use cubature rules for the surface integrals [33], and Gauss
quadrature rules for the line integrals. Focusing for instance on the boundary in-
tegrals, we know that for linear problems, the use of a (p + 1)-point Gauss rule is
enough to compute the boundary integrals up to the chosen machine accuracy.
However for nonlinear problems like (2.95), even if more quadrature nodes are the-
oretically needed to ensure that the inner products of polynomials are ”accurately”
computed, it is a common practice to still use only p + 1 nodes, mainly motivated
by computational savings. Such under-integration is known to induce some alias-
ing of the high-modes energy of the nonlinear terms into the lower modes, but this
can generally be cured with simple filtering techniques. Additionally, we are any-
way committed to introduce some aliasing errors in the approximation of the NSW
equations, as the momentum fluxes are computed from primitive variables, which
are themselves rational functions of the conservative variables. Similar considera-
tions also hold for the surface integrals computation.
The noticeable point is that fluxes in the momentum equations become polynomi-
als when a motionless equilibrium is reached and the surface integrals

∫
Cl H(Uh, bh) ·

∇θlj dx and boundary integrals
∫
Γlσ(k)

Ĥlσ(k) θ
l
j ds can therefore be exactly computed.

Such an exact computation is actually mandatory to ensure the exact preservation
of the steady state, following Proposition 4. We highlight here that, within our
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pre-balanced approach, the fluxes at equilibrium only involve polynomials of order
p, as the free surface is constant. As a consequence, the use of p + 1 quadrature
nodes leads to an exact computation of the face integrals at equilibrium, which is
an improvement when compared with the usual formulation.

Robustness

The issue of robustness for high-order schemes is a difficult one. In [111], a general
procedure is documented for both WENO and DG schemes, that allows to enforce an
averaged values maximum principle for general conservation laws of the form (1.46).
This approach is extended to 2d on unstructured meshes in [112], and adapted to the
NSW equations in [104]. In [A16], we show that the overall procedure of [112] can
be successfully adapted to the PB-NSW equations. Note that when we submitted
[A16], the 2d study on unstructured meshes [104] was not available yet.

The main idea of [111] to achieve the robustness is, somehow, a generalization of
the ideas used for the FV schemes. But instead of using sub-grids, the idea is to
decompose the element averages as a convex combination of point values of the
DG polynomials on a judiciously chosen distribution of quadrature nodes. Without
entering too much into details, here are the main steps to ensure robustness for the
mean water height:

] 1 the first step is to ensure that the 1st-order FV scheme associated with the
mean values of η preserves the positivity of the water height with the modified
fluxes (2.100). We already know that is true for the LF flux (1.59). Indeed,
starting from (2.95) and using an overline for element averaging, such a
scheme reads

ηn+1
h|Cl = ηnh|Cl −

∆t
|Cl|

3∑
k=1

∫
Γlσ(k)

Hη
lσ(k) ds, (2.102)

with
Hη
lσ(k) = Hη(Ǔ−k , Ǔ

+
k , b̌k, b̌k,nlσ(k)), (2.103)

and Ǔ−k , Ǔ
+
k , b̌k defined according to (2.96)-(2.99) and taking the piecewise

constant values

U−k = Un
h|Cl , U+

k = Un
h|Cσ(k)

, (2.104)

b−k = bh|Cl , b+k = bh|Cσ(k) , (2.105)

as interior and exterior values, with respect to the element Cl. This scheme
has already been shown to be robust in Proposition 4 under the CFL condition
(2.87) on the dual mesh. A similar result can be obtained for the primal mesh,
see [A16].

] 2 the second step is to build the quadrature rule used for the convex decompo-
sition. As shown in [112], this distribution of nodes must

a) lead to an exact computation of the mean values for a DG polynomial of
order p,

b) have positive weights,

c) include, for a given element Cl the ”boundary nodes”, i.e. the nodes used
to compute the boundary exchanging terms.

48



Figure 2.7: Nodes distributions for the Zhang-Shu quadrature - P 2 and P 3 cases.

In 1d, the quadrature rule must include the 2 extremities xjl and xjr and the
LGL quadrature rule suits this task. In 2d, things are a bit more sophisti-
cated. As we use Gauss rules for the boundary terms, a new quadrature rule
build from a tensor product of a β-points Gauss-Lobatto quadrature rule and
the α-points Gauss quadrature rule used to compute the boundary integrals,
with α, β chosen accordingly to the polynomial degrees, is projected onto the
simplex and is shown to fulfill all the previous desired properties. The corre-
sponding nodes are shown on Fig. 2.7 on a given element, for 2nd and 3rd-order
polynomials. In the following, let us denote SpCl the set of points of this new

quadrature rule on Cl and ω̂β1 the weight associated with the first node of the
β-point Gauss-Lobatto quadrature.

] 3 equipped with this new quadrature rule, the last step is to enforce that ∀l, ηnh|Cl(x)−
bnh|Cl(x) ≥ 0, ∀x ∈ SpCl . This can be achieved using for instance the accuracy-

preserving linear scaling suggested in [111]. Details on the implementation are
given in [A16]. Note that step ]3 has to be done at each time step or substep
if a RK method is used.

Then, the following robustness result holds:

Theorem 5. We consider the (p+1)-th order scheme (2.95), together with the in-
terface fluxes (2.100) and a first order Euler time discretization. We assume that

h
n
h|Cl ≥ 0 and that ηnh|Cl(x) − bnh|Cl(x) ≥ 0, ∀x ∈ SdCl ,∀l. Then we have h

n+1
h|Cl ≥ 0

under the condition

λo
pl
|Cl|

∆t ≤ 2
3 ω̂

β
1 , ∀l. (2.106)

It is interesting to see that this robustness result does not prevent hh to locally
take negative values, on a given element Cl. However, step ]3 ensures a robust
computation in the following sense:

1. the averaged values h
n
h|Cl ≥ 0 remain positive,

2. the point-wise values of the traces hh|∂Cl at all the Gauss quadrature nodes, on
all element edges, are positive. We recall that a Riemann problem has to be
solved at each edge’s quadrature node to compute the boundary integrals and
that the corresponding values of h are used to compute the primitive variables.
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3

Green-Naghdi equations

In this 3rd chapter, we turn on considering the GN equations (1.36)-(1.37). As an
introduction, I briefly draw the main lines of the physical motivations behind our
efforts.

We know that wave propagation in shallow water, and associated processes such
as shoaling, wave-breaking and run-up, play an important role in the nearshore
hydro-dynamics. The classical method of describing slowly evolving wave-induced
circulation in the nearshore is based on the phase-averaged approach, in which the
depth-integrated mass and momentum equations are time-averaged over a wave
period [72]. However, a detailed knowledge of instantaneous nonlinear wave char-
acteristics is required in place of wave-averaged quantities for important unsteady
processes, such as wave run-up in the swash zone, coastal flooding during storms,
tsunami and tidal bore propagation or suspended sediment transport. For coastal
applications, these phase-resolving models are based on NSW, BT and GN equations.
NSW equations give a good description of the nonlinear non-dispersive transforma-
tions of breaking waves, represented as shocks, in the inner surf and swash zones
[17]. However, due to the absence of frequency dispersion, the NSW equations can
not be applied to wave propagation before breaking. On the other hand, BT and
GN equations incorporate frequency dispersion and can be applied to wave shoaling.

Over the last 40 years, BT equations, and related weakly nonlinear models based
on a small amplitude assumption ε = O(µ), have focused increasing attention. A
large number of numerical methods have been developed in the past few years for
BT equations. Let us mention for instance some FDMs [80, 101], FEMs [70, 86],
FVMs [38, 57], spectral methods [43, 27], hybrid FVM-FDM [39, 99] or DGMs [44].
However, the small amplitude assumption generally severely restrict applicability to
real nearshore applications. Indeed, in the final stages of shoaling or in the surf
zone, the wave dynamics is strongly nonlinear: ε = O(1). For instance, ε is close to
0.4 just before breaking and can be larger than 1 in the swash zone.

For these reasons, it is now commonly acknowledged that the GN equations are the
relevant system to model highly nonlinear weakly dispersive waves propagating in
shallow water. However, from a numerical point of view, the GN equations have
received far less attention. When we started working on the numerical approxima-
tions of the GN equations, the operational models were mostly based on FDMs, see
for instance [56]. However, an increasing interest for the development of modern
methods was emerging, with for instance the compact FVM discretization proposed
for the 1d Serre equations in [30], the pseudo-spectral approach of [81] or the FVM
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for a particular 2d flat bottom system derived from a hamiltonian formulation in [63].

To complete the picture, we also have to bring the important issues of wave breaking,
moving shoreline and dispersive properties into the discussion. Indeed:

• the (linear) dispersive properties of the BT and GN equations depend on their
dispersion relations, and associated phase and group velocities. For a given
value of µ, a model will be valid much further seaward if its dispersive proper-
ties are kept close to the properties of the water waves equations for the largest
values of k. It also gives better results when high frequency are released, for
instance when a wave propagates above an obstacle. There is consequently a
need for improving the dispersive properties of the GN equations to extend
their range of validity seaward. This issue is investigated in §3.1.3 and §3.1.6.

• unlike the NSW equations, BT and GN equations incorporate frequency dis-
persion and can be used to model the wave shoaling But they do not naturally
account for wave breaking. Consequently, to extend the range of validity of
the GN equations to the surf zone, significant efforts have to be devoted to
numerically handle wave breaking mechanism. This issue is investigated in
§3.3.

• accounting for the possibility of a vanishing depth in GN and BT equations
while keeping the dispersive effects is mandatory to finally extend the range of
validity to the swash zone and obtain a complete operational nearshore model
accounting for waves run-up, overtopping and submersion. Some approaches
were proposed using for instance Lagrangian techniques [110], porous-seabed
technique [98] or linear extrapolations [73] but they suffer from either loss of
mass conservation or from instabilities and lack of robustness. We refer to §3.2
for appropriate answers.

Facing these issues, we derive and discretize in a series of papers [A10, A11, A19,
A20], see also the review paper [A9], a complete new hierarchy of models, all be-
longing to the GN family in the sense of a O(µ2) consistency with the water waves
equations (1.26)-(1.27) . These new models are mostly motivated by numerical
requirements, keeping in mind the underlying targeted objectives:

]1 reaching a high order of accuracy for a proper description of dispersive waves
propagation and transformations,

]2 ensuring the robustness and stability of the numerical method,

]3 ensuring the preservation of motionless steady states,

]4 including a flexible and robust wave breaking mechanism,

]5 improving the dispersive properties to extend the range of validity of the model
seaward,

]6 handling complex geometries and mesh refinement (adaptivity),

]7 keeping the computational cost as decent as possible, targeting long time in-
tegrations of large scale problems.
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Of course, meeting all these features concurrently is all about trade-offs. The re-
mainder of this Chapter is organized as follows. We introduce and motivate, in a
comprehensive way, our hierarchy of GN models in §3.1. In §3.2, we briefly detail the
proposed numerical strategies to achieve the listed objectives, while §3.3 is devoted
to the description of some efficient wave breaking mechanism.

3.1 A hierarchy of models

3.1.1 Factorized equations

Let us start with the nondimensionalized GN equations as recalled in §1.1.5:{
∂tζ +∇ · (hv) = 0,
(I + µT [h, b])∂tv +∇ζ + ε(v · ∇)v + εµQ[h, b](v) = 0, (3.1)

with the nonlinear operator Q defined in (1.38). We begin by performing a suitable
factorization of the left hand side of (3.1). Introducing the notation v⊥ = (−v2, v1)T ,
we show in [A11] that (3.1) can be reformulated as follows{

∂tζ +∇ · (hv) = 0,
[I + µT ]∂tv + ε[I + µT ](v · ∇)v +∇ζ + εµQ1[h, b](v) = 0, (3.2)

with

Q1[h, b](v) = −2R1(∂1v · ∂2v⊥ + (∇ · v)2) + βR2(v · (v · ∇)∇b).

Note that (3.2) is exactly equivalent to (3.1). The advantages of (3.2) are twofolds:

1. it allows to recover a transport part corresponding to the NSW equations:
the dispersive terms can now be regarded as source terms for the hyperbolic
equations, as I + µT is invertible thanks to a coercivity property and the
Lax-Milgram theorem, see [62].

2. there is no 3rd-order derivatives in Q1[h, b], which is an interesting feature for
both theoretical analysis and numerical stability.

The GN equations (3.2) are stated as two evolution equations for ζ and v. It is
of course possible to give an equivalent formulation as a system of two evolution
equations on h and hv. With the notation T = hT 1

h , we obtain

(
G
){ ∂th+ ε∇ · (hv) = 0,

[I + µT]
(
∂t(hv) + ε∇ · (hv⊗ v)

)
+ h∇ζ + εµhQ1(v) = 0. (3.3)

Considering dimensionalized variables, the (linear) dispersive properties of
(
G
)

(or
equivalently of (1.36)-(1.37)) depend on the set of all (ω,k) ∈ R×Rd such that there
exists a plane wave solution (ζ0, ψ0)ei(k·x−ωt) to the linearization of (3.3) around the
rest state (h = h0,v = 0), for flat bottoms. The frequency dispersion is consequently
ruled by the following dispersion relation:

ωG(k)2 = |k|2gh0

1 + (|k|h0)2

3

. (3.4)
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3.1.2 GN equations with improved dispersion relation

The frequency dispersion of (3.2) can be improved by adding some terms of order
O(µ2) to the momentum equation. Since this equation is already precise up to terms
of order O(µ2), this manipulation does not affect the accuracy of the model. The
underlying idea, adapted from the BBM trick [9], is to realize that

∂tv = −∇ζ − ε(v · ∇)v +O(µ),

and that consequently, for any parameter α ∈ [0, 1], we have:

∂tv = α∂tv− (1− α)
(
∇ζ + ε(v · ∇)v

)
+O(µ).

Replacing ∂tv by this expression in (3.2), dropping the O(µ2) terms, and using
(h, hv) variables we obtain the equivalent GN equations with a free parameter{

∂th+ ε∇ · (hv) = 0,
[I + µαT]

(
∂t(hv) + ε∇ · (hv⊗ v)

)
+ (I − µ(1− α)T)h∇ζ + εµhQ1(v) = 0.

(3.5)
If we gain some freedom for improving the dispersion properties of our model, we
now have the second equation of (3.5) that requires the computation of third order
derivatives of ζ. Fortunately, it is possible to show that these terms can be factorized
by I + µαT. We obtain the following new family of 1-parameter

(
Gα
)

models:

(
Gα
)

∂th+ ε∇ · (hv) = 0,

[I + αµT]
(
∂t(hv) + α− 1

α
h∇ζ + ε∇ · (hv⊗ v)

)
+ 1
α
h∇ζ + εµhQ1(v) = 0,

(3.6)
which is the family of models used for numerical simulations in [A11]. The dispersion
relation of

(
Gα
)

is given by

ωGα(k)2 = |k|2gh0
1 + (α− 1)(|k|h0)2

3

1 + α(|k|h0)2

3

. (3.7)

For the applications we have in mind, we are rather interested in using a model
which has the widest possible range of validity and provide a correct description of
the waves in intermediate or even deep water. Using (3.7), we deduce the expressions
of the associated linear phase and group velocities and an optimal value of α is found
by minimizing a weighted averaged error obtained by comparing these linear phase
and group

(
Gα
)

velocities with the linear phase and group velocities coming from
the water waves equations (1.26)-(1.27), over the range |k|h0 ∈ [0, 4], see Fig. 3.1.3.

3.1.3 A family of 3-parameters models

In this subsection, we follow the approach of [A10] and only focus on 1d propagating
waves. We’ll come back to 2d models in §3.1.4. It was remarked quite early that
it was possible to obtain enhanced Boussinesq systems by replacing the vertically
averaged horizontal velocity v by another unknown: for instance in [77] v is replaced
by the horizontal velocity at the bottom. In [80], it is showed that it was possible
to improve the dispersive properties of BT models by working with the velocity at a
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certain depth as dependent variable. This approach was generalized in [101] to the
fully nonlinear case.

However, when the bottom is not flat, the GN equations written with the average
velocity v do not belong to this class of fully nonlinear models. This is the reason
why we use a slightly different approach, with the introduction of a new dependent
variable vθ that is not the velocity at a certain depth. The interest is that the
computations are somehow simpler and, more importantly, that the average velocity
v appears as a particular case (θ = 0). Starting from the 1d version of (3.2), we
define for all θ ≥ 0:

vθ = (1 + µθT )−1v, (3.8)

and inject it into (3.2). After some computations, introducing also the parameter
α as previously described, we obtain the following family of 2 parameters

(
Gα,θ

)
models, which is equivalent, up to O(µ2) terms to (3.6):

(
Gα,θ

)


∂th+ ε∂x(hvθ) + εµθ∂x(hT vθ) = 0,

[1 + µ(α+ θ)T]
(
∂t(hvθ) + ε∂x(hv2

θ) + α−1
α+θh∂xζ

)
+ 1+θ

α+θh∂xζ + εµhQ̃(vθ) = 0.

(3.9)

We refer to [A10] for the definition of the new nonlinear operator Q̃, which still has
the kindness of not involving any 3rd-order derivatives.
At this step, the introduction of the parameter θ reveals to be useless as far as the
minimization of the dispersion errors is concerned. Indeed, keeping in mind that
α ≥ 1 and θ ≥ 0, computing the dispersion relation associated to these new equa-
tions and minimizing the dispersion errors over the range kh ∈ [0, 4] yields the values
α = 1.159 and θ = 0.

A workaround for this issue is to introduce a third parameter γ ≥ 0, defining for all
θ, γ ≥ 0

vθ,γ = (1 + µθT )−1(1 + µγT )v, (3.10)

and inject it into (3.2) instead of (3.8). This is the approach suggested in [62].
In [A10], we use an equivalent approach, applying directly the operator [1 + µγT]
to the first equation of (3.9). On the whole, this final manipulation yields a new
3-parameters family of GN models, denoted

(
Gα,θ,γ

)
, that can be written in dimen-

sional form as

(
Gα,θ,γ

)


[1 + γT]
(
∂th+ ∂x(hvθ)

)
+ θ∂x(hT vθ) = 0,

[1 + (α+ θ)T]
(
∂t(hvθ) + ∂x(hv2

θ) + α− 1
α+ θ

gh∂xζ
)

+ 1 + θ

α+ θ
gh∂xζ + hQ̃(vθ) = 0,

(3.11)

We insist on the fact that all these models are equivalent at order O(µ2) to the GN
equations (3.3), which correspond to the particular case α = 1, θ = γ = 0. The
dispersion relation associated to (3.11) is given by,

ω2
Gα,θ,γ (k) = gh0k

2
(
1 + θ+γ

3 (kh0)2)(1 + α−1
3 (kh0)2)(

1 + γ
3 (kh0)2)(1 + α+θ

3 (kh0)2) .
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and again, minimization processes based on the linear phase and group velocities
of (3.11), denoted respectively Cpα,θ,γ and Cgα,θ,γ , allow to find optimized sets of
parameters (α, θ, γ) that extend the range of validity of our models. We show on
Fig. 3.1.3. a comparison between the values of Cpα,θ,γ and Cgα,θ,γ and the targeted
velocities Cpw, C

g
w coming from the water waves equations, for different values of the

parameters. The numerical results obtained in [A10], for a simple case of periodic
waves propagating over a submerged bar, confirm the improvements.
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Figure 3.1: Errors on linear phase (top) and group velocities (bottom). The
(
G
)

model is in dots, the optimized
(
Gα
)

model in dash-dots, the optimized
(
Gα,θ,γ

)
model in grey plain line, and the

(
Gα,θ,γ

)
model with optimized coefficients for

shoaling in dashes.

3 3 3 Interlude 3 3 3

Following the ”historical” development of our works, we started to develop 1d nu-
merical approximations of the

(
Gα
)

and
(
Gα,θ,γ

)
models respectively in [A11] and

[A10]. When coming alongside with the first 2d simulations, it rapidly became clear
that while the extensions of our numerical methods to 2d surface waves do not raise
theoretical difficulties, most of the computational time was absorbed in the inversion
of the discrete approximation of the operator I + µαT, and that it required a lot of
computational resources, even for reasonably sized problems. Indeed, the discrete
inversion of I+µαT is computationally demanding in the 2d case for several reasons:

] 1 it is a matricial operator of size 2× 2 which is moreover not in diagonal form;
the operator T can be written in matricial form as

T =
(
T11 T12
T21 T22

)
,
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where Tij (1 ≤ i, j ≤ 2) are second order scalar differential operators. The fact
that the antidiagonal terms are nonzero complicates considerably the numer-
ical computation of (I + µαT)−1. Indeed, once discretized, this leads to the
resolution of an 2Ndof × 2Ndof linear system, eventually with many nonzero
diagonals, where Ndof is the number freedom degrees introduced in the do-
main.

] 2 it is a time depending operator through the water height h (remember that T is
a simplified notation for T [h, b]) and the corresponding matrix has therefore to
be assembled at each time step, not to mention the subsequent factorization
(resp. preconditioning/renumbering) step if a direct (resp. iterative) linear
solver is used.

These computational difficulties are actually one of the reasons why most of the
2d numerical codes are based on weakly nonlinear Boussinesq models rather than
the fully nonlinear GN equations. Of course, one could entirely treat the disper-
sive components as source terms and therefore avoid the inversion of the operator
I + µαT, but one would loose the high robustness of the code, and indeed, our
numerical investigations have highlighted strong instabilities, even for weakly non-
linear problems.

The aim of [A20] is to overcome these difficulties. In order to keep the stabilizing
effects of the inversion step without loosing too much in terms of computational time,
we derive some new families of physical models that are equivalent to the standard
GN equations. It is possible to implement our numerical strategies on these new
systems with the benefit of removing the two numerical obstructions mentioned
above. This is done in two steps:

] 1 for the systems of §3.1.4, the matricial operator T is replaced by a new dif-
ferential operator Tdiag, which is still matricial but has a diagonal structure:

Tdiag =
(
T̃11 0
0 T̃22

)
. (3.12)

Its inversion is therefore equivalent to the inversion of two scalar operators;
numerically, this leads to the resolution of 2 sparse Ndof×Ndof linear systems.

] 2 for the systems of §3.1.5, the matricial operator T is replaced by an operator
Tb
diag which, as Tdiag, has a diagonal structure, but for which the dependence

on h has been removed; it is therefore time independent. A motivating idea
came from the observation of the weakly nonlinear Boussinesq-Peregrine model
(1.39)-(1.40) which is interesting from a computational point of view, since the
2nd-order operator I + µT [hb, b] only depend on the bottom variations.

The simple structure of these systems leads to considerable improvements in terms
of computational time, without any loss of accuracy when compared to the standard
model (3.1). In particular, they allow us to consider:

] 1 ”reasonably” large scale 2d configurations (the parallelisation may allow us to
remove the ”reasonably” adverb), see the on-going works Chapter,

] 2 the construction of dispersion enhanced 2d models for configurations that in-
volve deep water waves for instance, see §3.1.6,
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] 3 the use of very high order methods (with the inherent increasing of freedom
degrees), unavoidable for the study of long time integrations of small scale
perturbations, see §3.2.2.

3 3 3

3.1.4 The diagonal model

To obtain a diagonal model, we use the fact that

∂tv + ε(v · ∇)v = −∇ζ +O(µ), (3.13)

and rewrite the second equation of (3.2) under the form

[I + µTdiag]
(
∂tv + ε(v · ∇)v

)
+∇ζ + εµQ1(v) + µQ2(ζ) = O(µ2),

where Tdiag has a “diagonal” structure (as discussed in the previous section):

Tdiag = − 1
3h∂1(h3∂1·)−

1
3h∂2(h3∂2·),

while Q2(ζ) only involves derivatives of ζ up to 2nd-order

Q2(ζ) =− h(∇⊥h · ∇)∇⊥ζ − β

2h∇(h2∇b · ∇ζ) + β
(h

2 ∆ζ − β(∇b · ∇ζ)
)
∇b. (3.14)

Replacing this new formulation in (3.2), neglecting O(µ2) terms, switching to (h, hv)
variables and using again the BBM trick to introduce an additional enhancing
parameter α, we obtain the following family of non-dimensionalized 1-parameter
asymptotically equivalent systems

(
Gdiagα

)
∂th+ ε∇ · (hv) = 0,[
I + µαTdiag

](
∂t(hv) + ε∇ · (hv⊗ v) + α− 1

α
h∇ζ

)
+ 1
αh∇ζ + εµhQ1(v) + µhQ2(ζ) = 0.

(3.15)
with

Tdiag = hTdiag
1
h
.

The interest of working with (3.15) rather than (3.6) is that instead of inverting the
operator I+µT, we have to invert I+µTdiag that has the diagonal structure (3.12),
with

T̃11 = T̃22 = −1
3∂1(h3∂1

1
h
·)− 1

3∂2(h3∂2
1
h
·).

3.1.5 The diagonal-constant model

It is now possible to replace the inversion of I+µTdiag by the inversion of I+µTb
diag,

where Tb
diag corresponds to Tdiag when the fluid is at rest (i.e. ζ = 0),

Tb
diag = hbT bdiag

1
hb
, with T bdiag = − 1

3hb
∂1(h3

b∂1·)−
1

3hb
∂2(h3

b∂2·),
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and where hb is the water depth at rest,

hb = 1− βb = h− εζ.

The ingredients to achieve such a formulation are first to remark that for all scalar
function f , one has

hTdiag
1
h
f = hbT bdiag

1
hb
f +R(f)

with R a 2nd-order operator, and then to use the identity

∂t(hv) + ε∇ · (hv⊗ v) = −
[
I + µTb

diag

]−1(h∇ζ) +O(µ), (3.16)

instead of (3.13). Indeed, we show in [A20], with the help of a dispersion properties
analysis, that a straightforward use of (3.13) would lead to a family of models that
are inherently linearly unstable. We obtain the new 1-parameter diagonal constant(
CGdiagα

)
family of models:

(
CGdiagα

)
∂th+ ε∇ · (hv) = 0,[
I + µαTb

diag

](
∂t(hv) + ε∇ · (hv⊗ v) + α− 1

α
h∇ζ

)
+ 1
α
h∇ζ

+εµhQ1(v) + µhQ2(ζ) + µQ3(ζ) = 0.
(3.17)

We refer to [A20] for the definition of the nonlinear differential operator Q3, and a
discussion about the linear dispersive properties and the inherited linear stability of
the model.

3.1.6 The three-parameters diagonal-constant models

The family of 3-parameters models
(
Gα,θ,γ

)
derived in [A10] would easily be gener-

alized to the 2d case, but the computational cost would be prohibitive. To obtain
a family of 3-parameters family of diagonal-constant models we introduce, as in the
1d case, a new velocity vθ as follows

∀θ ≥ 0, v = (1 + µθTdiag)−1vθ.

After some tedious computations, and neglecting all the O(µ2) terms, the family of

3-parameters constant-diagonal
(
CGdiagα,θ,γ

)
models is given by

(
CGdiagα,θ,γ

)


(1 + µγT bdiag)
[
∂tζ +∇ · (hvθ)

]
+ µθ∇ · (hTdiagvθ) = 0

(I + µα(1 + θ)Tb
diag)

[
∂t(hvθ) + ε∇·(hvθ ⊗ vθ) + α− 1

α
∇ζ
]

+ 1
α
∇ζ

+εµhQ1(vθ) + µhQ2(ζ) + µ(1 + θ)Q3(ζ) + µθQ4(vθ) = 0,
(3.18)

with Qj (j = 1, . . . , 4) defined in [A20]. Taking θ = γ = 0, (3.18) coincides with the(
CGdiagα

)
family. Again, an optimization of the phase and group velocities leads to

optimized sets of coefficients. The linearized system and associate dispersion relation
are detailed in the communication [C13]. In some stiff configurations where higher
harmonics are released, working with the three parameters optimized model (3.18)
leads to considerable improvements.
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3.2 Discretization

So far, even if mainly inspired by numerical considerations, we only focused on the
models derivations. Let us now give some details regarding the numerical strategies
investigated and applied in [A9, A10, A11, A12, A14, A19, A20]. The first approach
relies on a splitting scheme and will be referred to as the transport + dispersion cor-
rection method in the following. Next, in §3.2.2, we describe a recent unsplitted DG
discretization, which has the benefit of providing an arbitrary order of convergence
and more geometric flexibility.

3.2.1 The transport + dispersion correction approach

We develop in [A11] a new strategy for the numerical approximation of the
(
Gα
)

family. This strategy is subsequently extended to the
(
Gα,θ,γ

)
family in [A10] and

to the
(
CGdiagα

)
and

(
CGdiagα,θ,γ

)
families in [A20]. The underlying idea is to consider

the dispersive terms as source terms in the NSW equations, introduce a suitable
splitting and discretize the hyperbolic part with the battery of efficient and highly
validated schemes described in Chapter 2.

We approximate the solution operator S(·) associated to the dimensionalized version
of (3.6) at each time step by the 2nd order splitting scheme

S(∆t) ' S1(∆t/2)S2(∆t)S1(∆t/2), (3.19)

with

]1 a transport step S1(t):∂tζ +∇ · (hv) = 0,

∂t(hv) + h∇ζ +∇ · (hv⊗ v) = 0,
(3.20)

]2 a momentum dispersion correction step S2(t):∂tζ = 0,

[I + αT]
(
∂t(hv)− 1

α
gh∇ζ

)
+ 1
α
gh∇ζ + hQ1(v) = 0.

(3.21)

This splitting approach raises several remarks:

1. we choose to split the equations, in such a way that the optimization parameter
α does not appear in the transport step, allowing this step to exactly coincide
with the resolution of the NSW equations,

2. only the momentum is concerned with the dispersion correction step. When
compared for instance with the widely used weakly nonlinear equations of
Nwogu [80], or the fully non-linear equations of Chen [28], this is a real ad-
vantage of this formulation. Indeed, it allows to inherit the robustness and
well-balancing properties from the discretization of the NSW equations.

Using a 4th-order Runge-Kutta time marching algorithm for both steps of the split-
ting, we show in [A11] that the semi-discretized dispersion relation approaches the
exact dispersion relation of the GN equations (3.6) at order 2 in ∆t:
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Proposition 5. The dispersion relation associated to the semi-discretized
scheme (3.19), (3.20), (3.21) is given by

ωsd,±(k) = ωα,±(k) + ∆t2

24 ωα,±(k)3
( (kh0)2

3 + (α− 1)(kh0)2

)2
+O(∆t3).

An additional information is that the O(∆t2) error made by the splitting scheme
is always real. Therefore, the numerical errors are of dispersive type and there is
no linear instability induced by the splitting. Note also that since the main error
in the dispersive relation is of dispersive type, it is natural to try to remove it with
techniques inspired by the classical Lax-Wendroff scheme. This is possible, but this
does not yield better results. These investigations reassured us in the choice of a
simple 2nd-order splitting instead of a more elaborate strategy. Instead, we devel-
oped a ∆t-optimized strategy for the choice of the parameter α.

A similar splitting approach is applied in [A10] for the 3-parameters family
(
Gα,θ,γ

)
.

The 1d case

In [A10, A11], we choose to use an hybrid FVM-FDM discretization of the 1d equa-
tions. As the simulation of highly nonlinear short-waves transformations requires
high-order methods to avoid as much as possible damping and dispersive errors, we
have implemented high-order schemes for the transport step, like the V6 scheme
[22] and the WENO5 reconstruction with negative weight splitting [95, 96], while a
4th-order FDM is used for the dispersive correction.

The global approach automatically preserves motionless equilibria, providing that a
well-balanced scheme is implemented for the fully discrete transport steps S1(∆t

2 ).
Concerning the robustness property, while a local degeneracy to 2nd-order conser-
vative MUSCL schemes was initially implemented to achieve robustness within the
WENO5 implementation in [A10], we have more recently adapted the recent ac-
curacy preserving strategy of [111] for the WENO5 approach. This relies on the
reconstruction of an Hermite polynomial per cell from the mean values and the
WENO5 interface values, and the application of a suitable accuracy preserving lim-
iter on pointwise values computed on the Gauss-Lobatto distribution of quadrature
nodes.

The inversion of the unsymmetric matrix coming from the FD discretization of
I+αT is performed in the CSR format with a sparse direct solver (UMFPACK, see
[35]).

The 2d case

In 2d, the transport+dispersive correction splitting approach results, for the
(
CGdiagα

)
and

(
CGdiagα,θ,γ

)
models, in a high-order hybrid vertex-centered WENO-FVM-FDM

fully discrete scheme on cartesian meshes. The robustness and preservation of mo-
tionless equilibrium are again inherited from the FVM discretization of the transport
part.
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1. Some technical difficulties are arising in the WENO-FVM 2d framework, as
it is not straightforward to ensure an accuracy-preserving robustness property
with WENO schemes. Indeed, the recent strategy of [111] can be successfully
adapted but some additional technical difficulties come from the fact that
the classical WENO strategy is inherently 1d, and only provides edges values
(i.e. the local in-cell high-order 2d polynomials are not available as with DG
method). In [A20], the method to ensure the robustness while preserving the
high-order accuracy relies on the following ingredients:
• some suitable distributions of quadrature nodes on the element [xi− 1

2
, xi+ 1

2
]×

[yj− 1
2
, yj+ 1

2
], obtained by tensor products of Gauss and Gauss-Lobatto rules in

each direction,
• the construction of a bunch of WENO edge values per cell (at each Gauss
nodes),
• the reconstruction of a bunch of 1d Hermite polynomials per cell, to get the
nodal values at the relevant quadrature nodes,
• the limitation of these polynomials to deduce the revised edge values, in-
jected into the numerical fluxes.

The resulting scheme is shown to be robust under the following CFL condition:

∆t
∆x‖|v1|+

√
gh‖∞ + ∆t

∆y‖|v2|+
√
gh‖∞ ≤ ω̂1, (3.22)

where ‖|v1| +
√
gh‖∞ and ‖|v2| +

√
gh‖∞ are some approximated maximum

faces wave speeds, computed within the Riemann solver respectively in the
first and second direction. We have ω̂1 = 1/6 for the WENO3 method and
ω̂1 = 1/12 for the WENO5. Obviously, trying to ensure both high-accuracy
and robustness lead to a stringent time-step restriction. An efficient implemen-
tation relies on a more relaxed CFL condition and, if a preliminary calculation
to the next time step produces negative water height, we re-run the computa-
tion with the limitations and the more stringent restriction.

2. The computation of the terms
[
I +αTb

diag

]−1( 1
αgh∇ζ + h(Q1(V ) + gQ2(ζ)) +

gQ3(ζ)
)

and
[
I + αTb

diag

]−1(gh∇ζ) results in the resolution of sparse unsym-
metric linear systems. For each term, the diagonal structure of the operator[
I + αTb

diag

]
allows to consider 2 sparse linear systems of size Ndof instead of

one system of size 2Ndof .

Additionally, as I+αTb
diag is a constant operator in time, the associated matrix

is build and LU -factorized in the compressed sparse row format in a prepro-
cessing step, and used through the whole computation at each time step or
substep without being modified.
To quantify the resulting improvements, we implemented the same whole nu-
merical approach for the diagonal

(
Gdiagα

)
models. The resulting comparison

is shown on Fig. 3.2. To be fair-play with the
(
Gdiagα

)
models, we use a

Bi-Conjugate Gradient Stabilized (BiCGStab) iterative method, together with
the ILUT preconditionner and a reverse Cuthill-McKey re-ordering algorithm.
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Figure 3.2: Propagation of a solitary wave over a flat bottom: comparison between
the cpu-time per time step between the

(
Gdiagα

)
model and the

(
CGdiagα

)
model for

an increasing number of cells.

Applications

An extensive set of applications and validations has been performed for the 1d and
2d numerical codes, based on the transport+dispersion correction approach.
After the inclusion of wave breaking strategies, which will be detailed in §3.3, the
resulting numerical models are able to account for a large variety of phenomena
occurring in the nearshore area, as for instance the propagation of tsunami-like
wave fronts, see [A12]. Such waves can evolve into a large range of bore types, from
undular non-breaking bore to purely breaking bore. It is the complex competition
between nonlinear effects, dispersive effects and energy dissipation which governs
their transformations, making the prediction of their evolution a challenging task
for numerical models. In [A12], we show that our numerical code is able to predict
bore shapes, transformation and dynamics for a large range of Froude numbers. Note
that to our knowledge, such encouraging results were not available in the specialized
literature before.
Let us also mention the studies of the generation, propagation and breaking of infra
gravity waves in the communication [C10] or of the effects of the bore transformations
on wave run-up over sloping beaches in [C8] and the Ph.D. thesis of M.Tissier [T1].
For the 2d model, we also refer to the communication [C13] for applications of the(
CGdiagα,θ,γ

)
models to overtopping problems. An example of wave shoaling over a

varying semi-circular topography is shown on Fig. 3.3:
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Figure 3.3: Propagation of periodic waves over a semi-circular shoal - (T = 2 s and
a = 0.0075m): free surface elevation at t = 100 s.

3.2.2 An unsplitted discontinuous-Galerkin discretization

In an effort to provide high order accuracy on unstructured meshes, we recently
introduced in [A19] some arbitrary order DGMs for the

(
Gα
)

and
(
CGdiagα

)
fami-

lies, relying on the non-conforming approach described in §1.2.6 for the elliptic and
dispersive parts of the equations.
Surprisingly, DG discretizations of asymptotic shallow water dispersive models have
been largely under-investigated and to our knowledge, [A19] is the first DG dis-
cretization available for the GN equations (we have to mention however the recent
work [75], where 2nd and 3rd-order central DG methods are used for the hyperbolic
part, while the dispersive part discretization is performed with a classical continuous
FEM). For the time being, only 1d propagating waves have been investigated and
the 2d extension is currently under study.

Semi-discrete weak formulation

Let us focus on the
(
CGdiagα

)
models. Due to the number of nonlinear terms and

high-order derivatives involved in the dispersive terms, we do not explicitly write
equation (3.17) as a first-order system. Instead, we choose in [A19] to reformulate the
dimensionalized 1d version of

(
CGdiagα

)
as follows, using the PB-NSW formulation:

∂tη + ∂xq = 0 , (3.23a)

∂tq + ∂xHq(u, b) +D = Sqb (u, b) , (3.23b)

where D is an auxiliary scalar valued variable, obtained as the solution of the fol-
lowing auxiliary problem:

[
1 + αTb

]
(D + 1

αgh∂xη) = K,

K = 1
αgh∂xη + h

(
Q1(v) + gQ2(η)

)
+ gQ3(L),[

1 + αTb
]
L = gh∂xη.

(3.24)
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The weak formulation reads as follows: find uh = (ηh, qh) ∈ (Vh)2 such that,
∀(φh, πh) ∈ (Vh)2, and ∀ Cj ∈ Ph we have:∫

Cj
∂tηhφhdx−

∫
Cj
qhφ
′
hdx+

[
qhφh

]xjr
xj
l

= 0, (3.25)∫
Cj
∂tqhπhdx−

∫
Cj
Hq(uh, bh)π′hdx+

[
Hq(uh, bh)πh

]xjr
xj
l

(3.26)

=
∫
Cj
Sqb (uh, bh)πhdx−

∫
Cj
Dhπhdx.

Seeking on each cell Cj for polynomial expansions, we write ∀x ∈ Cj ,∀t ∈ [0, tmax]:

ηh|Cj (x, t) =
Np∑
i=1

η̃ji (t)θ
j
i (x) and qh|Cj (x, t) =

Np∑
i=1

q̃ji (t)θ
j
i (x), (3.27)

where {θji }i=1...Np is the local Lagrange interpolant basis on the element Cj , defined
on the LGL set of Np nodes and

η̃j = t(η̃j1(t), . . . , η̃jNp(t)), q̃j = t(q̃j1(t), . . . , q̃jNp(t)),

are the expansion coefficients vectors. We consider the local polynomial expansion
bh|Cj (x) for the topography parameterization and we assume that a local expansion
is available for Dh, given by:

D̃j = t(D̃j1(t), . . . , D̃jNp(t)).

We obtain the semi-discrete formulation of our DGM:

Np∑
i=1

d

dt
η̃ji (t)M

j
ik −

Np∑
i=1

q̃ji (t)S
j
ik +

[
q̂θjk
]xjr
xj
l

= 0, (3.28)

Np∑
i=1

d

dt
q̃ji (t)M

j
ik−

∫
Cj
Hq(uh, bh)θj

′

k dx+
[
Ĥθjk

]xjr
xj
l

=
∫
Cj
Sqb (uh, bh)θjkdx−

Np∑
i=1
D̃ji (t)M

j
ik,

(3.29)
for 1 ≤ k ≤ Np, and 1 ≤ j ≤ Ne, where

Mj
ik =

∫
Cj
θji (x)θjk(x)dx and Sjik =

∫
Cj
θji (x) d

dx
θjk(x)dx

are respectively the local mass and stiffness matrix coefficients on Cj .

High-order derivatives and dispersive terms computation

While we use the strategy described in §2.3.6 to discretize the hyperbolic part of
(3.29) and compute the interface fluxes (q̂, Ĥ), we are left with the resolution of
systems (3.24) to compute the expansion coefficients D̃. Although the semi-discrete
formulation (3.28)-(3.29) could appear as purely local, the computation of the dis-
persive term expansions D̃ requires a global assembly process, for gathering the local
discrete operators into a global one, in the computation of the inverse of the opera-
tor 1 + αTb. Additionally, this computation involves the discrete approximation of
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space derivatives up to 3rd order.

Applying the discretization strategy briefly recalled in §1.2.6, all the derivatives are
computed in a DG sense (1.69)-(1.70). This leads us to introduce the following steps:

] Weak DG discretization of 1 + αTb

The differential operator 1 + αTb involves 1st and 2nd order on hb and, to
compute these derivatives in a weak DG sense, we build some global weak
derivative matrices. For the computation of 1st and 2nd order derivatives of
an arbitrary quantity w, let us denote

−ϑ = ∂xw, χ = ∂2
xw, (3.30)

and consider the weak formulation associated with the resulting coupled 1st
order equations: ∫

Cj
ϑhφh −

∫
Cj
wh

d

dx
φh + [ŵφh]x

j
r

xj
l

= 0,∫
Cj
χhπh −

∫
Cj
ϑh

d

dx
πh + [ϑ̂πh]x

j
r

xj
l

= 0.
(3.31)

We aim at computing the expansion coefficients of the derivatives:

ϑ̃j = t(ϑ̃j1(t), . . . , ϑ̃jNp(t)), χ̃j = t(χ̃j1(t), . . . , χ̃jNp(t)).

We define the exchanging fluxes ŵ and ϑ̂ with one of the fluxes (1.71)-(1.72)-
(1.73)-(1.74). In [A19], we focus on the BR and LDG fluxes:

ŵ = {{wh}} − β · [[wh]], ϑ̂ = {{ϑh}}+ β · [[ϑh]]−
ν

hj
[[wh]]. (3.32)

Gathering the Ne expansion coefficients vectors {w̃j}i=1..Ne in a Nd × Ne

vector w̃ = t(w̃1, . . . , w̃Ne), the computations of the Nd × Ne vectors ϑ̃ =
t(ϑ̃1, . . . , ϑ̃Ne) and χ̃ = t(χ̃1, . . . , χ̃Ne) respectively for the 1st and 2nd order
derivatives is done globally. Injecting w̃j into (3.31) and replacing φh by the
local basis functions for all elements, we obtain the global discrete formulation:

Mϑ̃ = Sw̃ − (E− βF) w̃ ,

Mχ̃ = Sϑ̃− (E + βF) ϑ̃− ν

h
Fw̃ ,

(3.33)

where the square Nd × Ne global mass and stiffness matrices M and S have
a block-diagonal structure and the matrices E and F accounts for the inter-
element exchanging fluxes. These matrices are detailed in [A19]. It leads to
a global discrete weak DG formulation of the 1st and 2nd order derivative
operators, with the numerical fluxes incorporated in the matrices:

Dx = M−1 (E− S− βF) , (3.34)

D2
x = M−1

(
(S− E− βF)Dx −

ν

h
F
)
. (3.35)
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Even if we obtain a global matrix through this global assembly process, all
the derivatives are still computed in an element-wise sense and (3.34) and
(3.35) are then used to assemble the square Nd ×Ne matrix of the weak DG
discretization of 1 + Tb. For instance, considering the simplified flat bottom
case (hb = h0), we approximate the corresponding operator as follows:

1 + αTb = 1− αh
2
0

3 ∂
2
x ⇒ I − αh

2
0

3 D2
x ,

where I is the Np × Ne identity matrix. The locality of the LDG approach
results in a sparse block-structure matrix, which is stored in a sparse format
and LU-factorized at the beginning of the computation, in a pre-processing
step. Then, the factorization and the resolution of the resulting triangular
linear systems can be performed with any good direct solver for sparse matrix.

] Discretization of K

Still in the process of computing D̃, we need to compute expansion coefficients
for the auxiliary variable K. The differential operators (Qi)1≤i≤3 involve high-
order derivatives, up to 3rd-order (with respect to ζ). A formulation similar
to (3.31) is obtained for the 3rd order derivative, using again the BR or LGL
fluxes
We choose to compute all the elemental derivatives at the Np Gauss-Lobatto
nodes, and then to assemble the weak DG discretization of (Qi)1≤i≤3 in a
collocation-interpolation manner. Even if such a choice is known to possibly
introduce some aliasing, it is mainly motivated by computational efficiency,
as this has to be done at each time step. Indeed, the alternative would be to
compute all the derivatives values on a suitable set of quadrature points (chosen
accordingly to the polynomial order of the considered nonlinear term) and
then compute the inner products consistently, possibly with over-integration
strategies. But we recall that the (Qi)1≤i≤3 involve nonlinear terms which
themselves are rational functions of the conservatives variables and that we
are committed to introduce some aliasing error anyway.

We show in [A19] the following results:

Theorem 6. We consider the DGM (3.28)-(3.29) for the approximation of
(
CGdiagα

)
and we assume that

1. the interface fluxes q̂ and Ĥ defined accordingly to §2.3.6, with the LF flux
(1.59),

2. the integrals
∫
Cj H

q(uh, bh) d
dxθ

j
kdx and

∫
Cj S

q
b (uh, bh)θjkdx are computed exactly

when a motionless steady state is reached,

3. h
n
h|Cj ≥ 0 and that ηnh|Cj (x)− bh|Cj (x) ≥ 0, ∀x ∈ SpCj , the set of LGL points on

the element Cj, for a polynomial interpolation of order p, ∀j,

then the scheme exactly preserves the motionless steady states and we have h
n+1
h|Cj ≥ 0

for all j under the CFL condition

λo
∆t
|Cj |
≤ ŵ1,
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with ŵ1 = 1
6 for p = 2, 3 and 1

12 for p = 4, 5.

We show in [A19] that the expected convergence rates are obtained up to a 6th-order
scheme.
Here is an example of the simulations obtained with this approach:
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Figure 3.4: Overtopping over fringing reefs [88]: comparison between computed
and experimental data for the free surface elevation, at several times during the
propagation. Circles denote experimental data.

The same numerical approach has also been implemented, for comparison purpose,
for the

(
Gα
)

family. For this model, the matrix associated with 1 + αT has to
be computed and assembled at each time step or sub-step. A quantification of the
computational savings obtained with the use of the

(
CGdiagα

)
family is performed in

[A19].

3.3 Breaking waves: local dynamic switching

The notion of wave breaking in the shallow water asymptotics studied here is a dif-
ficult mathematical problem. A rough characterization of a solution that involves
wave breaking (while remaining a single valued function) would be that at a given
time, this solution remains bounded while its slope becomes unbounded. Physically,
broken waves can be (not so roughly) regarded as waves of quasi-permanent form
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whose shore-facing front is characterized by a recirculating mass of water, usually
refers to as the surface roller.
We saw that BT and GN equations take into account, at different degrees of ac-
curacy, both nonlinear and dispersive aspects of wave propagation in the nearshore
area. The GN equations can accurately predict most phenomena exhibited by non-
breaking waves in finite depth. However, these equations are derived upon the
assumption of irrotational flow, and the effects of vorticity injection at the bottom
and free-surface are neglected. As they do not include intrinsically energy dissipa-
tion, wave breaking cannot occur within these models and they become invalid to
model the surf zone.

As a consequence, with BT and GN equations, the waves are allowed to steepen until
the front face is almost vertical. Then, fundamental dissipative mechanisms have
to be numerically introduced a posteriori through wave breaking dissipation (and
also possibly parametrized bottom friction as numerically studied in §2.2). Several
attempts have been made to introduce wave breaking in BT and GN models by the
mean of eddy viscosity techniques [31, 29]. This approach generally requires:

1. the inclusion of an energy dissipation mechanism through the activation of
additional dissipative terms in the governing equations when wave breaking is
likely to occur,

2. explicit criteria to activate/deactivate these extra terms,

3. a method to follow the waves during their propagation since the breaking
parameterizations depend on the age of the breaker. Moreover, the breaking
model parameters need to be calibrated to ensure that the artificially induced
energy dissipation is in agreement with the rate of energy dissipated in surf
zone waves. It is an important point since the amount of energy dissipated will
determine crucial phenomena such as the water level set-up and will impact
wave-driven circulation.

As a consequence, each use of the model implies the tuning of several parameters.
Additionally, it is difficult to predict simultaneously accurate wave height and asym-
metry along the surf zone within this approach.

In §3.1 and §3.2 we saw that our GN models naturally degenerate to NSW equations
when dispersive effects are negligible. Therefore, in order to handle wave breaking,
an alternative approach is to locally switch in space and time from GN to NSW
equations in the vicinity of the wave fronts, when the wave is ready to break, by
suppressing the dispersive term. By switching to NSW equations, we decide to
represent breaking wave fronts as shocks. Of course, the detailed process of breaking
(spilling / overturning) is not modelled, but we conserve mass and momentum across
the wave front, and allow energy to dissipate according to the shock theory (i.e.
without any parameterization). We show in [A19, A14, A12] that this method
allows for a natural treatment of wave breaking, which gives the correct amount of
energy dissipation and a good description of broken-wave distortion and celerity.

3.3.1 Energy dissipation based sensor

In [A14], see also the communication [C8], we introduce a new physical based ap-
proach to switch between the 2 sets of equations, that takes benefits from the trans-
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port + velocity dispersion correction splitting approach described in §3.2.1. With
this local treatment, we obtain an approach able to account simultaneously and
accurately for the effects of dispersion, non-linearities and wave breaking. This is
of importance when considering for instance tsunami wave front transformations in
the nearshore, which can evolve into a large range of bore types, including partially
breaking undular bores. Moreover, the proposed ”wave-by-wave” treatment allows
for a precise description of the breaking events, from the initiation to the termination.

We recall that the GN equations (3.3) conserve the following energy

E(t) = 1
2

∫
Rd

[
gζ(t)2 + h(t)|v(t)|2 + h(t)T [h, b]v(t) · v(t)

]
,

which reduces when d = 1 and at 1st-order in µ, to E(t) = 1
2
∫
R(hv2 + gζ2), which is

the conserved energy for the NSW equations, when smooth solutions are considered.

Therefore, we use the first transport step as a predictor, and detect the forming
shocks (and distinguish broken fronts and fronts likely to break from others) through
the study of the energy dissipation. Indeed, the energy dissipation forms peaks at the
steepest parts of the wave fronts when shocks are forming, see Fig. 3.5. In practice,
we compute, at each time step, an estimation of the local energy dissipation D(x, t)
during the first transport step, as follows:

D(x, t) = −(∂tE (x, t) + ∂xF (x, t)),

where E and F are the local energy and energy flux densities, and localize the local
extrema of D .

Figure 3.5: Generation of a shock and associated dissipation

Then, an efficient criterion for initiation and termination of breaking, based both on
the critical front slope [91] and the Froude number across the fronts, is applied to
dynamically determine the area where to locally switch in space and time between
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2r

Ij > 1

Figure 3.6: Example of breaking area

GN and NSW equations. After breaking, the wave fronts are handled as shocks
by the NSW equations: we suppress the velocity dispersive correction step in the
splitting approach.
The whole dynamic switching algorithm flowchart is documented in [A14], and fur-
ther validated in [A12] for the study of undular tsunami-like waves.

3.3.2 A DGM local super-convergence based sensor

In [A19], we choose to take benefit from the strong super-convergence property of
the DGM at the outflow boundary of each element in smooth regions of the flow [2],
as used in the discontinuity detector of [61], as an alternative way of detecting the
forming shocks. More precisely, for a given element Cj , we compute the following
indicator:

Ij =
∆−|h̃j1 − h̃

j−1
Np
|+ ∆+|h̃jNp − h̃

j+1
1 |

|Cj |
p+1

2 ‖h̃j‖∞
, (3.36)

where

∆− =
{

1 if q̃j1 ≥ 0,
0 otherwise.

, ∆+ =
{

1 if q̃jNp ≤ 0,
0 otherwise.

(3.37)

Waves about to break are identified in elements such that Ij > 1 and again, we
locally switch to the NSW equations in such elements and the broken waves are
handled as shocks by the NSW equations.
Practically, our numerical investigations have shown that the DGMs are more sensi-
ble to the local switching than the hybrid FVM-FDM, especially for higher order of
approximations: for a given breaking wave, the switching areas need to be slightly
enlarged to prevent the possible occurrence of spurious oscillations. Some neighbor-
ing cells are added to the switching area to include the steepening shore facing side
of the wave, and a part of the offshore facing side. This can be simply done with the
help of a mask, defining the switching area as a band of length 2r centered to the
elements verifying Ij > 1, see Fig. 3.6. Additionally, the use of a local limitation
procedure, applied as a post-process, is required in identified elements to suppress
Gibbs-type oscillations.
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An example of dissipation-based local dynamic switching area is shown on Fig. 3.7
for the experiment of Cox (obtained with the dissipation-based sensor).
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Figure 3.7: Spatial snapshot of cnoidal waves propagating over a 1:35 sloping beach.
L1 to L6: locations of the wave gauges. Between 2 consecutive vertical lines, the
flow is governed by NSW equations.
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