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A recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl. Acad. Sci.
USA 113, 13289 (2016)] has demonstrated that RBCs first tumble, then roll, transit to a rolling
and tumbling stomatocyte, and finally attain polylobed shapes with increasing shear rate, when the
viscosity contrast between cytosol and blood plasma is large enough. Using two different simulation
techniques, we construct a state diagram of RBC shapes and dynamics in shear flow as a function of
shear rate and viscosity contrast, which is also supported by microfluidic experiments. Furthermore,
we illustrate the importance of RBC shear elasticity for its dynamics in flow and show that two
different kinds of membrane buckling trigger the transition between subsequent RBC states.

The behavior of red blood cells (RBCs) in flow have
been a fascinating research topic for several decades, due
to the direct biological relevance and intriguing physical
mechanisms which govern the observed cell shapes and
dynamics. First observations of RBCs in linear shear flow
have shown that RBCs tumble (TB) or flip as a coin at
low shear stresses and tank-tread (TT) at high enough
shear stresses [1–4]. A TT-RBC adopts a nearly station-
ary orientation in shear flow and its membrane performs
rotating motion [1, 3, 4]. The transition between the two
motions is due to the existence of a minimum of elas-
tic energy when the membrane is in static equilibrium,
which is referred to as shape memory [5] and has been in-
corporated into the theoretical models for RBC dynamics
[6, 7]. Recently, another dynamics, RBC rolling, which
appears at moderate shear stresses in-between those re-
sulting in cell TB and TT, has been discussed [8–10].
Rigid-like TB motion at low shear stresses is destabilized
by a possible movement of the elastic cytoskeleton of a
RBC [10] and the cell shows first a TB motion with a
precession in its orientation axis, followed by the rolling
motion for increasing shear stresses [10–12]. A similar
behavior has been also found for oblate capsules [13, 14].

Most of the mentioned studies have been performed
under conditions with a low viscosity ratio λ < 1 be-
tween intracellular and extracellular fluids. This means
that RBCs are suspended into highly viscous fluids in
comparison to blood plasma, as λ ≈ 5 under physiologi-
cal conditions. The use of a high-viscosity fluid medium
has been driven by the limitations of experimental de-
vices and cell-tracking at high shear rates, because the
high viscosity allows the application of high shear stresses
at moderate shear rates. However, the viscosity ratio λ
has been shown to play a crucial role in vesicle [15–17]
dynamics in shear flow, such that an increase in λ induces
the transition from vesicle TT at low λ to TB at high λ
[15, 18]. Recent simulations of RBCs in shear flow have
also reported TB at large enough λ values [19]. Other nu-

merical investigations of RBCs [20] and oblate capsules
[14] in shear flow have reported a stable rolling motion
for large enough viscosity contrasts and shear rates. In
contrast, a recent study [21] on blood rheology has found
that RBCs at λ ≈ 5 first tumble, then roll, deform into
rolling stomatocytes, and finally adopt highly-deformed
polylobed shapes as the shear rate is gradually increased.
Polylobed shapes have also been reported in early exper-
iments on RBCs [22] and in a theoretical study on elastic
capsules [23].

In this Letter, we take a closer look at these dy-
namic shapes and transitions between them. In contrast,
Ref. [21] was focused on the effect of these shapes on
blood rheology. We construct a state diagram, which
presents the observed shapes and dynamics of RBCs for
a wide range of shear rates and viscosity contrasts. Then,
we focus on RBC dynamics at λ > 1 and show that two of
the most salient shape transitions are controlled by mem-
brane buckling due to cell compression. These results
highlight the essential role of the elastic cytoskeleton for
RBC motion under physiological flow conditions.

Shapes and dynamics of RBCs are obtained from
three-dimensional simulations using two different hydro-
dynamic techniques. The first method corresponds to
a mesoscopic particle-based approach, smoothed dissi-
pative particle dynamics (SDPD) [24, 25], for modeling
fluid flow, while a RBC membrane is represented by a
triangulated network of springs [26–28] whose vertices
are coupled to the fluid via frictional forces. The net-
work assumes fixed connectivity and includes the spring’s
elastic energy, bending energy, and area- and volume-
conservation constraints [27, 29]. The second simulation
method relies on a finite-volume parallel solver for the
incompressible Navier-Stokes equations on unstructured
meshes, YALES2BIO [30, 31]. Fluid-structure coupling
is implemented using an immersed boundary method
adapted to unstructured grids [30]. RBCs are discretized
by a moving Lagrangian mesh and modeled as viscous
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FIG. 1. RBC shapes observed in microfluidic experiments
(λ ≈ 8) and SDPD simulations (λ ≈ 5) at various dimen-
sionless shear rates γ̇∗ = γ̇τ (τ ≈ 1.2 × 10−3 s). The shapes
are rolling discocyte, rolling stomatocyte, TB stomatocyte,
trilobe, and multilobe, observed at γ̇∗ = 0.014, 0.2, 0.34, 1,
and 2.5 in experiments and at γ̇∗ = 0.014, 0.18, 0.34, 0.93,
and 3.3 in simulations, respectively. Two views, vorticity and
flow-gradient directions, are shown by the arrows with un-
equal and equal lengths, respectively. See also movies S1-S4.

drops enclosed by membranes resisting shear, bending,
and area dilation [31]. More details on the methods
can be found in supplemental material. Simulations are
complemented by experiments of a pressure-driven flow
within a 50 µm-diameter capillary. RBCs are suspended
in a PBS/BSA solution with a viscosity of η = 9 × 10−4

Pa·s at a volume fraction of 1% at 25o C. Local shear
rates are estimated by measuring both the local cell ve-
locity and distance from the capillary walls. Only RBCs
flowing at a distance in the range between 10 and 20 µm
from the channel wall are considered.

To non-dimensionalize the shear rate γ̇, a characteristic
RBC time τ = ηD/µ is defined, where D =

√
A/π is

an effective RBC diameter and A is the surface area, µ
is the membrane shear modulus, and η is the dynamic
viscosity of a suspending medium. Average properties
of healthy RBCs are taken to be A = 134 × 10−12 m2

[32] (i.e., D = 6.5 × 10−6 m) and µ = 4.8 × 10−6 N/m.
Thus, with η = 9 × 10−4 Pa·s the characteristic time is
τ ≈ 1.2 × 10−3 s. Membrane bending rigidity is set to
κ = 70kBT = 3×10−19 J (kB is the Boltzmann constant
and T is temperature) such that the Föppl-von Kármán
number α = µD2/κ = 680 is fixed in all cases. The
stress-free shape of a RBC elastic network is assumed to
be an oblate spheroid with a reduced volume of 0.96. The
stress-free shape of a RBC membrane affects the TB-to-

TT transition [12, 20, 33], such that a nearly spherical
stress-free shape leads to shear rates of the transition
consistent with experiments [6, 10], while a biconcave
stress-free shape shifts the TB-to-TT transition to larger
shear rates [12, 20, 33].

Figure 1 illustrates observed shapes in microfluidic ex-
periments (λ ≈ 8) and SDPD simulations (λ ≈ 5). Differ-
ent shapes, including rolling discocyte and stomatocyte,
TB stomatocyte, trilobe, and multilobe, are shown from
two views, vorticity and flow-gradient directions (see also
movies S1-S4). By collecting a number of simulations for
different dimensionless shear rates γ̇∗ = γ̇τ (or Capil-
lary numbers) and viscosity contrasts λ, we construct
the RBC shape diagram shown in Fig. 2. At very low
shear rates (γ̇∗ <∼ 7 × 10−3), RBCs tumble (not shown).
With increasing shear rate, the cells first transit to a
rolling discocyte and then to a rolling stomatocyte. At
high shear rates, λ plays an important role, and TT oc-
curs for λ <∼ 3.2, while RBCs exhibit multilobe shapes for
λ >∼ 3.2. Interestingly, the transitions between different
states for λ >∼ 3.2 are governed predominantly by γ̇∗ and
are nearly independent of λ. Note that the transitions
between different shapes and dynamics are very similar
from the two numerical methods.

Figure 2 also contains a few experimental points to
support the simulation-based diagram. For example, the
transition to TT for λ <∼ 1 occurs at γ̇∗ ≈ 0.11, corre-
sponding to a critical shear stress of ηγ̇ ≈ 0.08 Pa, which
is consistent with values in Refs. [6, 10]. In contrast to the
simulations, where a single RBC state is found for fixed
flow conditions, our microfluidic experiments do not show
a single RBC shape or dynamics for a fixed shear stress,
but yield a distribution of different states, see Figs. S1
and S2. Therefore, the diamond symbols in Fig. 2 repre-
sent most probable states for a fixed shear stress and are
intended for a qualitative comparison with simulations.
The main reason for a non-unique shape or dynamics ob-
served in experiments is likely a strong enough variability
in RBC membrane properties (e.g. shear elasticity, bend-
ing rigidity, cytosol viscosity), which does not permit an
exact determination of γ̇∗ and λ. All experimental shear
rates are normalized with τ ≈ 1.2 × 10−3 s.

To look in more detail into the transitions between
different states, we have computed RBC total energy,
as shown in Fig. 3(a) for a RBC with λ = 5 from
YALES2BIO simulations. As expected, the RBC total
energy is a monotonically increasing function of shear
rate, because the cell gets more and more deformed by
the shear forces. However, we observe effective power
laws with decreasing exponents as we go from one dy-
namic state to the other, as shown by the lines in
Fig. 3(a). This implies that RBCs adopt an energetically
more favorable dynamics, even though no energy min-
imum principles can be invoked here. Therefore, there
are no simple energy arguments which could explain the
existence of the shapes and transitions at specific γ̇∗.
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FIG. 2. Shapes and dynamics of RBCs in shear flow as a
function of γ̇∗ and λ. Different areas, representing rolling dis-
cocyte, rolling stomatocyte, TB stomatocyte, TT, and mul-
tilobes, are based on simulation results, where dashed lines
serve as a guide to the eyes. Two sets of simulations are de-
noted by triangles (SDPD) and circles (YALES2BIO). The
colors indicate RBC shape or dynamics. All simulation data
are for Föppl-von Kármán number α = µD2/κ = 680. The set
of circles at λ ≈ 5.3 corresponds to simulations at λ = 5 and
is just shifted up in the diagram for visual clarity. The plus
symbols correspond to experiments from Ref. [10]. Diamond
symbols represent most probable states from our microflu-
idic experiments, since no unique state, but a distribution of
different states is obtained for fixed flow conditions, see dis-
tributions in Figs. S1 and S2. The experimental shear rates
are normalized by τ ≈ 1.2 × 10−3 s.

To identify transition mechanisms between different
shapes and dynamics, we monitor RBC behavior for in-
creasing γ̇∗. First, a TB-RBC in shear flow transits to
a rolling discocyte at low shear rates. Here, a precession
in the TB axis (i.e. the TB axis does not remain within
the shear plane) is first observed, followed by a complete
alignment of the RBC axis with the vorticity direction
as the shear rate is increased [10–12]. This transition
has been described for λ < 1 [10], and therefore, it is
expected to have the same origin for λ larger than unity.

As the shear rate is further increased at λ = 5, a rolling
discocyte transits to a rolling stomatocyte. This transi-
tion might occur due to membrane buckling, but it is dif-
ficult to observe and confirm this effect directly in shear
flow. Therefore, we consider two types of cell deformation
(stretching and compression), which occur in shear flow.
To mimic the elongational component of the flow, a RBC
is stretched (without flow) [27, 31] similar to the RBC
deformation by optical tweezers [34, 35]. Even for very
strong stretching deformations, a RBC maintains both of

(a)

(b)

FIG. 3. Transition between different shapes and dynamics at
λ = 5. (a) Change in RBC total energy, including shear and
bending elasticity, from YALES2BIO simulations as a func-
tion of shear rate. (b) Change in shear-elasticity and bending
energies of a RBC compressed between two plates in SDPD
simulations. The cell buckles from a discocyte to a stoma-
tocyte shape, when the distance between plates becomes ap-
proximately 6.3 µm (see movie S5).

its dimples and no transition to a stomatocyte-like shape
occurs. Second, we place a RBC with its largest diameter
of about 8 µm between two parallel walls, as shown in
the insets of Fig. 3(b), and compress the cell by moving
the upper wall down. When the distance between the
walls becomes approximately 6.3 µm, the RBC exhibits
buckling and a biconcave shape with dimples on both
sides transits to a stomatocyte (see movie S5). Figure
3(b) presents the evolution of shear-elastic and bending
energies, and near the buckling transition a small step
in the elastic energy can be recognized. Note that the
RBC buckling under compressive deformation occurs for
the model with a nearly spherical stress-free shape (re-
duced volume of 0.96), while for a biconcave stress-free
shape (reduced volume of 0.64), a RBC does not transit
to a stomatocyte under direct compression. Simulations
of a RBC with the biconcave stress-free shape at λ = 5
in shear flow show no transition from the rolling disco-
cyte to the rolling stomatocyte, in agreement with the
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compression simulation. Furthermore, a RBC with the
biconcave stress-free shape transits from the rolling disco-
cyte to a tumbling stomatocyte at γ̇∗ ≈ 0.4 and then to a
trilobe at γ̇∗ ≈ 0.72; these values are slightly larger than
the corresponding transitions for a RBC with the near
spherical stress-free shape, occurring at γ̇∗ ≈ 0.32 and
γ̇∗ ≈ 0.65, respectively. This implies that the stress-free
shape of spectrin network of a RBC is likely to be close to
a sphere, consistent with previous studies [12, 20]. The
transition from rolling discocyte to rolling stomatocyte
for a RBC with the nearly spherical stress-free shape oc-
curs for all considered viscosity contrasts in Fig. 2, and
therefore, it should be also present at low λ. However,
we observe a slight shift of this transition to higher shear
rates with increasing λ, since cell compression by shear
flow at a fixed shear rate is reduced.

Following the rolling-stomatocyte state at λ = 5, a
transition to a TB stomatocyte and then to multilobe
shapes is observed for increasing γ̇∗. Hence, cell rolling
becomes unstable when its deformation in shear flow be-
comes strong enough. Similarly, in the compression test
described above (Fig. 3(b)), a stomatocytic shape be-
comes unstable at a certain compression when confine-
ment between the planes is further increased (not shown).

The transition to multilobe shapes can be also achieved
from TT by increasing λ at high shear rates (γ̇∗ >∼ 0.6).
Figure 4(a) shows the inclination angle and the aspect
ratio of a TT-RBC as a function of viscosity contrast at
γ̇∗ = 1.36. As λ increases, both the cell’s extension and
the inclination angle reduce. Approximately at λ ≈ 3.2,
a transition to multilobe shapes occurs, even though the
inclination angle is still non-zero and equal to about 5o.
Figure 4(b) illustrates the time evolution of RBC shapes
at this transition; the membrane first forms small bumps
at the top and the bottom, then very rapidly forms more
lobes, and finally attains a trilobe shape (see movie S6).
This is another example of a buckling transition mediated
by the elasticity of the membrane, as shown in Fig. 4(c),
which displays membrane’s elastic tension at four time
instances with the corresponding shapes in Fig. 4(b). In
particular, Fig. 4(c) demonstrates that large parts of the
membrane experience negative tension in both principal
directions, which is most pronounced in regions of mem-
brane buckling. A similar appearance of local negative
tension has been also reported for elastic capsules in shear
flow [37]. A comparison of the inclination angle for RBCs
to the Keller-Skalak (KS) theory for fluid vesicles [36] in
Fig. 4(a) shows a good agreement for λ <∼ 0.5, but strong
discrepancies for λ >∼ 0.5. Hence, the KS theory fails to
predict the TT-to-trilobe transition with increasing λ for
RBCs, due to both the non-ellipsoidal shape of RBCs and
the strong compressions of the membrane, which lead to
membrane buckling and negative inclination.

Recent simulations [19, 20] of RBCs at λ >∼ 5 in
shear flow have reported TB at high shear rates, which
is clearly different from the multilobe dynamics we ob-

(a)

(b)

(c)

FIG. 4. Trilobe formation. (a) Inclination angle (square and
plus symbols, left axis) and aspect ratio (maximum to mini-
mum size, red bullets, right axis) of a RBC as a function of λ
at γ̇∗ = 1.36 from YALES2BIO simulations. The square and
bullet symbols correspond to simulation measurements, while
the plus symbols are obtained from the Keller-Skalak theory
for fluid vesicles [36] using cell dimensions measured in sim-
ulations. (b) Time evolution (t∗ = γ̇t) of shapes at λ = 3.5
(starting from a simulation with λ = 3.1), when TT becomes
unstable and a trilobe is formed (see movie S6). (c) Mem-
brane’s elastic tension in the direction of the smallest (top)
and largest (bottom) local strains.

serve in our experiments and simulations. A potential
explanation for this discrepancy is that the simulations
in Refs. [19, 20] are rather short (γ̇t ≈ 100), while our
simulations indicate that γ̇t >∼ 200 is often required to
observe stable multilobe shapes.

A good qualitative agreement between simulations and
experiments suggests that the viscosity of a RBC mem-
brane likely has a secondary effect on the RBC shape
diagram in Fig. 2, since it was not considered in the sim-
ulations. For instance, membrane viscosity is known to
affect the TT frequency of RBC membrane [27, 38], where
a shearing motion of the membrane occurs. A plausible
explanation for a secondary role of membrane viscosity
here is that most observed shapes (except TT) do no
exhibit a significant in-plane shearing of the membrane,
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such that a RBC mainly performs rotational motion (i.e.
TB, rolling, rotating trilobe) in shear flow.

In summary, a diagram of RBC shapes and dynam-
ics is presented for a wide range of shear rates and vis-
cosity ratios. In particular, physiological conditions of
λ ≈ 5 are thoroughly investigated. Furthermore, we
show that membrane buckling due to RBC compression
in flow drives the transition between rolling discocytes
and stomatocytes and determines the appearance of mul-
tilobar shapes at large λ and γ̇∗. Interestingly, membrane
buckling occurs al lower shear stresses for a RBC with the
nearly spherical stress-free shape than for a RBC with the
biconcave stress-free shape. The buckling mechanism for
the shape transitions highlights the importance of RBC
shear elasticity and stress-free shape for its dynamics in
flow.
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