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Abstract

This paper studies the growth rate of rounding errors in LES and shows that instan-

taneous flow fields produced by LES are partially controlled by these rounding errors and

depend on multiple parameters: number of processors used for parallel simulation (even in

an explicit code), changes in initial conditions (even of the order of machine accuracy), ma-

chine precision (simple, double or quadruple), etc. Using a fully developed turbulent channel

flow and a laminar Poiseuille pipe flow as test cases, results show that only turbulent flows

exhibit a high sensitivity to these parameters, leading to instantaneous flow fields which can

be totally different after a few dozen flow-through times. Even though these results essen-

tially confirm that LES reflects the true nature of turbulence, small perturbations of initial

conditions growing rapidly in time, they highlight an often overlooked challenge of LES in

terms of validation and prediction of unsteady phenomena.

Introduction

Large Eddy Simulation (LES) has become the most efficient tool to predict non-reacting1,2

as well as reacting turbulent flows3–8. The main strength of LES compared to classical

Reynolds Averaged (RANS) methods is that, like Direct Numerical Simulation (DNS)9–11,

LES explicitely captures large scale unsteady motions due to turbulence instead of modeling

them. An often ignored aspect of this feature is that like DNS, LES is also submitted to

a well-known feature of turbulent flows: the exponential separation of trajectories12 implies

that the flow solution exhibited by LES is very sensitive to any “small perturbations” of a

given reference state. These small perturbations can have different sources:

• Rounding errors are the first source of random noise in any finite precision computation:

they constitute an unavoidable forcing for the Navier-Stokes equations and may lead
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to LES variability. The study of error growth in finite precision computations is an

important topic in applied numerical mathematics13–15 but has found few applications

in multidimensional fluid mechanics because of the complexity of the codes used in

CFD.

• Initial conditions are a second source of LES results variability: these conditions are of-

ten unknown and any small change in initial conditions may trigger significant changes

in the LES solution. Boundary conditions, in particular the unsteady velocity profiles

imposed at inlets and outlets, can have the same effect as initial conditions but are not

studied here.

• Due to its large computational resource requirements, modern LES heavily relies on

parallel computing. Therefore, in codes using domain partitioning, i.e. most of them,

this is an additional “noise” source in the Navier-Stokes equations especially at par-

tition interfaces. Even in explicit codes where the algorithm is independent of the

number of processors, the different summation orders with which a nodal value is re-

constructed at partition interfaces may induce non-associativity errors. For example,

in explicit codes on unstructured meshes using cell vertex methods16, the residual at

one node is obtained by adding the weighted residuals of the surrounding cells. Of

course, the exact result of this addition is independant of the addition ordering but

this not true for rounding errors. Therefore, additions of more than two summands

may yield distinct results for floating-point accumulation. For example, the rounding

errors in (a + b) + c and in a + (b + c) may be different, in particular if there are large

differences in orders of magnitude between the summands17 and after a few tens of

thousands iterations, the LES result may be affected. Since the propagation of these

rounding errors is induced by non deterministic message arrival at partition interfaces,

it is believed that such behaviour may occur for any unstructured parallel CFD code,

regardless of the numerical schemes used. As a consequence, the simulation output

might change when run on a different number of processors. The case of implicit codes

in time2,3, 18 or in space such as compact schemes19–21 is not considered here: for such

schemes, the methods22,23 used to solve the linear system appearing at each iteration

depend on the number of processors. Therefore, the propagation of rounding errors is

not the only reason why solutions obtained with different numbers of processors vary.

• Even on a single processor computation, internal parameters of the partitioning al-

gorithm may couple with rounding errors to force the LES solution. For example, a

different reordering of nodes using the Cuthill-McKee (CM) or the reverse Cuthill-

McKee (RCM) algorithm24,25 may produce the same effect as a simple perturbation
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and can be the source of solution divergence.

• Finally compilation options, in particular those affecting code optimization and ob-

viously those affecting truncation operations, are a fifth source of LES variability.

Different optimization options of the compiler are not tested in the following. Such

tests would certainly be of interest although care must be taken since too agressive

optimization options can affect scheduling of operations in a physically wrong manner

and lead to erroneous results.

The solution of a given LES/DNS at a certain instant unavoidably changes when the

rounding errors or the initial conditions are not exactly identical and LES/DNS solutions

are known to have a meaning only in a statistical manner26. It is however a real difficulty

in the practical use of LES/DNS because it means that running the same simulation on

two different machines or one machine with a different number of processors or slightly

different initial conditions can lead to totally different instantaneous results. For steady

flows in the mean, statistics do not depend on these changes and mean profiles will be

identical. However, when the objective of the LES is the study of unsteady phenomena such

as ignition or quenching in a combustor27, knowing that results depend on these parameters

is certainly a sobering thought for the LES/DNS community and a drawback in terms of

industrial exploitation.

This paper tries to address these issues and answer a simple question which is of interest

for all practitioneers of LES: how does the solution produced by LES depend on the number

of processors used to run the simulation? On the initial condition? On internal details of

the algorithm?

The first section gives an example of the effects of the number of processors in a simple

case: a rectangular turbulent channel computed with a fully explicit LES code28. This

example shows that even in an explicit code, running a simulation twice on a different

number of processors can lead to totally different instantaneous solutions. The second section

then gives a systematic description of the effects of rounding errors in two flows: a turbulent

channel and a laminar Poiseuille flow. For all cases, the difference between two instantaneous

solutions obtained by changing either the number of processors, the initial condition or the

node ordering is quantified in terms of norms between the two solutions. The effects of

time step and machine precision (simple, double and quadruple) are also investigated in this

section. All simulations have been performed on an IBM JS21 supercomputer.
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Effects of the number of processors on a fully developed turbulent

channel LES

This first example is the LES of a rectangular fully developed turbulent channel of di-

mensions: 75x25x50 mm (Fig. 1). A pressure gradient is applied to a periodic channel flow

and random disturbances are added to pass transition to turbulence. There are no boundary

conditions except for the walls. The Reynolds number is Reτ = δuτ/ν = 1500, where δ

is half the channel height and uτ the friction velocity at the wall: uτ = (τwall/ρ)1/2 with

τwall being the wall stress. The mesh contains 303 hexahedral elements, it is not refined at

walls. The first grid point is at a reduced distance y+ = yuτ/ν ≈ 100 of the wall. The

subgrid model is the Smagorinsky model and a law-of-the-wall is used at the walls8. The

CFL number λ controlling the time step ∆t is λ = max((u + c)∆t/∆) where u is the local

convective velocity, c the speed of sound and ∆ the mesh size. For all simulations discussed

below, the initial condition corresponds to a snapshot of the flow at a given instant, long

after turbulence was initialized so that it is fully established. The computation is performed

with an explicit code where domain partitioning is such that the method is perfectly equiv-

alent on any number of processors. The Recursive Inertial Bisection (RIB)29,30 algorithm

has been used to partition the grid and the Cuthill-McKee algorithm is considered as the

default node reordering strategy on subdomains. The scheme used here is the Lax-Wendroff

scheme31. Additional tests were performed using a third-order scheme in space and time32

but led to the same conclusions.

Figs. 2–4 show fields of axial velocity in the central plane of the channel at three in-

stants after the run initialization. Two simulations performed on respectively 4 (TC1) and

8 processors (TC2) with identical initial conditions are compared. The characterictics of all

presented simulations are displayed in Table 1 and 2. The instants correspond to (in wall

units) t+ = 7.68, t+ = 18.43 and t+ = 26.11 respectively where t+ = uτ t/δ. Obviously, the

two flow fields observed at t+ = 7.68 are identical. However, at t+ = 18.43, differences start

to become visible. Finally, at t+ = 26.11, the instantaneous flow fields obtained in TC1 and

TC2 are totally different. Even though the instantaneous flow fields are different, statistics

remain the same: mean and root mean square axial velocity profiles averaged over t+ ≈ 60

are identical for both simulations, as can be seen in Figs. 5 and 6.

This very simple example illustrates the main question of the present work: is the result

of Figs. 2–4 reasonable? If it is not a simple programming error (the next section will show

that it is not), can other parameters produce similar effects?
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Sensitivity of laminar and turbulent flows to small perturbations

To understand how LES can produce diverging instantaneous results such as those shown

in the previous section, simple tests were performed to investigate the effects of various

aspects of the methodology:

• laminar/turbulent baseline flow,

• number of processors,

• initial condition,

• node ordering,

• time step,

• machine precision (i.e. floating point representation according to IEEE standard).

For these tests, the objective is to quantify the differences between two LES solutions

produced by a couple of simulations in Table 1 and 2. Let u1 and u2 be the scalar fields of

two given instantaneous solutions at the same instant after initialization. A proper method

to compare the latter is to use the following norms:

Nmax = max(|u1(x) − u2(x)|) for x ∈ Ω (1)

Nmean =
(

1

VΩ

∫

Ω
(u1(x) − u2(x))2dΩ

)

1

2

for x ∈ Ω (2)

where Ω and VΩ respectively denote the computational domain and its volume. Both norms

(in m/s) will be applied to the streamwise velocity field so that Nmax provides the maximum

local velocity difference in the field between two solutions while Nmean yields a volumetrically

averaged difference between the two solutions. The growth of Nmax and Nmean versus the

number of iterations will be used as a direct indicator for the divergence of the solutions.

A fully deterministic LES?

First, it is useful to indicate that performing any of the LES of Table 1 twice on the

same machine with the same number of processors, the same initial conditions and the same

partition algorithm leads to exactly the same solution, Nmax and Nmean being zero to machine

accuracy. In that sense, the LES remains fully deterministic. However, this is true only if

the order of operations at interfaces is not determined by the order of message arrival so that

summations are always carried out in the same order. Otherwise, the randomness induced by

the non deterministic order of message arrival is enough to induce diverging solutions. Note
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that non determinisitic message arrival is usually implemented in parallel codes to improve

performance.

Influence of turbulence

The first test is to compare a turbulent channel flow studied in the previous section and

a laminar flow. A three dimensional Poiseuille flow was used as test case. The Poiseuille

computation is performed on a pipe geometry with 361 by 26 points. The flow is laminar

and the Reynolds number based on the bulk velocity and diameter is approximately 500.

The boundary conditions are set periodic at the inlet/outlet and no slip at the duct walls,

a constant axial pressure gradient is imposed in the entire domain. Run parameters of the

laminar Poiseuille flow are displayed in table 2

Figure 7 shows the evolutions of Nmax and Nmean versus iteration for runs TC1/TC2 and

LP1/LP2. Note that the first point of the graph is the evaluation of the difference after

one iteration. The only parameter tested here is a change of the number of processors. As

expected from the snapshots of Figs. 2–4, the turbulent channel simulations are very sensitive

to a change in the number of processors and the solutions of TC1 and TC2 diverge rapidly

leading to a maximum difference of 20 m/s and a mean difference of 3-4 m/s after 90,000

iterations. On the other hand, the difference between LP1 and LP2 hardly increases and

levels off when reaching values of the order or 10−12 m/s. This is expected since there is only

one stable solution for the Poiseuille flow for infinite times and accordingly do laminar flows

not induce exponential divergence of trajectories. However, this simple test case confirms

that the turbulent character of the flow is the source of the divergence of solutions. This

phenomenon must not be confused with the growth of a hydrodynamic mode, which is

induced by the bifurcation in phase space of an equilibrium state of a given physical system.

Obviously, such an equilibrium state does not exist for a fully developed turbulent channel

flow. In this case, the separation of trajectories is caused by vorticity, which leads to an

increase in the number of degrees of freedom in phase space33 and thus high sensitivity

to initial conditions. Moreover, the stagnation of absolute and mean differences between

TC1/TC2 simply implies that after 90,000 iterations solutions have become fully uncorrelated

and should not be misinterpreted as the saturation of an exponentially growing mode.

The basic mechanism leading to Figs. 2–4 is that the turbulent flow acts as an amplifier

for rounding errors generated by the fact that the mesh is decomposed differently in TC1 and

TC2. The source of this difference is the new node reordering obtained for both decomposi-

tions. This implies a different ordering when adding the contributions to a cell residual for

nodes inside the subdomains but mainly at partition interfaces. This random noise roughly

starts at machine accuracy (Fig. 7) at a few points in the flow and grows continuously if the
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flow is turbulent.

The growth rate of the differences between solutions in simulations TC1 and TC2 cannot

be estimated in a simple manner. A simplified description for the determination of growth

rates of trajectory separation is found in Jimenez34, it is briefly summarized in the following.

Two-dimensional vortical flows, a description of vortices as points with associated circula-

tions and negligible viscosity are assumed. Under these hypotheses, set of linearized ordinary

differential equations can be derived to evaluate the time evolution of the distance between

two neighbouring flow field trajectories differing by an arbitrary infinitesimal perturbation

δ(t). This system admits exponential solutions, the growth rates of which are determined

by the real part of the eigenvalues. The evolution of inviscid/conservative systems conserves

volume in phase space. As the real part of the eigenvalues describes the separation of tra-

jectories in time, it represents a measure of the evolution of the volume in phase space.

Thus, the sum of the real parts vanishes and at least one of them has to be positive. At

this stage, the number of degrees of freedom of the system imposes topological constraints

on the trajectories and can prevent their separation, but a few degrees of freedom suffice

for such systems to exhibit chaotic behavior, as demonstrated by the famous Lorenz attrac-

tor35. This argument illustrates that the separation of trajectories is a property related to

the nature of vorticity and mainly driven by the number of degrees of freedom in phase

space. Therefore, a simple estimate of the growth rate from flow parameters does a priori

not seem possible. Although the simplifications in the described analysis are severe, one can

suppose that independently of the spatial distribution and amplitude (within the limit of the

linearity assumption) of perturbations applied to a given turbulent flow field, the separation

of trajectories for various simulations yields similar exponential growth rates, which is con-

firmed in the following. Moreover, it is a purely physical phenomenon and though induced

by rounding errors, the growth rate should not depend on numerical parameters such as

machine precision or time step. These aspects are adressed in forthcoming sections.

Influence of initial conditions

The previous section has shown that turbulence combined with a different domain par-

titioning (i.e. a different number of processors) is sufficient to lead to totally different

instantaneous flow realizations. It is expected that a perturbation in initial conditions will

have the same effect as domain partitioning. This is verified in runs TC3 and TC4 which

are run on a single processor, thereby eliminating issues linked to parallel implementation.

The only difference between TC3 and TC4 is that in TC4, the initial solution is identical

to TC3 except at one random point where a single 10−16 m/s perturbation is applied to

the streamwise velocity component. Simulations with different locations of the perturbation
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were run to ensure that the position did not affect results.

Figure 8 shows that the growth rate of the difference between TC3 and TC4 is exactly

the same as the one observed between TC1 and TC2 (also displayed in Fig. 8): two solutions

starting from a very slightly perturbed initial condition diverge as fast as two solutions

starting from the same solution but running on different numbers of processors. Note that

the difference between runs TC1 and TC2 comes from the accumulation of rounding errors

along the interface between subdomains at each time step while TC3 and TC4 differ only

through the initial condition: the sequence of floating point operations is exactly the same in

both cases. Still, the differences between TC3 and TC4 increase as fast as those between TC1

and TC2: this confirms that a turbulent flow amplifies any difference in the same manner,

whether it is due to different sequences of rounding errors or to a perturbation of the initial

conditions.

Effects of node ordering in the mesh

It has already been indicated that performing the same simulation twice (with the same

number of processors and same initial conditions) leads to exactly the same result. However,

this is only true as long as exactly the same code is used. It is not verified any more as soon as

a modification affecting rounding errors is done in the code. At this point, so many factors

affecting rounding errors can be cited that a general discussion is pointless. This paper

focuses on fully explicit codes and on one example only: the order used to add residuals at

nodes in a cell vertex scheme. This order is controlled by the developer. For simulation TC5,

the ordering of this addition was changed (reverse Cuthill-McKee algorithm): the residual at

a given mesh node was assembled by adding the contributions to a cell residual in a different

order. This change does not affect the flow data: in TC5 the node residual in a regular

tetrahedral mesh is obtained by 1/4(R1 + (R2 + (R3 + R4)) where the Ri’s are the residuals

of the cells surrounding the node and by 1/4(R4 + (R3 + (R2 + R1)) in TC3. It has an

effect, however, on rounding errors and the cumulated effects of this non-associativity error

are what this test tries to demonstrate. TC5 and TC3 are performed with the same initial

condition and run on one processor only. The only difference is the node reordering strategy.

As shown by Fig. 9, the differences between TC5 and TC3 are again similar to those

observed between TC1 and TC2 (obtained by changing the number of processors). This

confirms that rounding errors (and not the parallel character of the code) are the source

of the solution divergence. It also shows that any modification of the code could lead to

such a divergence, suggesting that repeating an LES simulation with a modified code will

probably never yield the same instantaneous flow fields, potentially leading to discussions

on the validity of the modifications.
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Effects of time step

It is interesting to verify that numerical aspects do not influence the growth rate of

the solutions difference and that the growth rate is only determined by the physical and

geometrical parameters of the configuration. On that account, simulations TC6 and TC7

are performed with a time step reduced by a factor 2 compared to simulations TC1 and TC2.

TC6 and TC7 are carried out on respectively 4 and 8 processors. The norms between TC6

and TC7 are displayed in Fig. 10 and compared to the norms between TC1 and TC2. From

the explanations given above, similar growth rates are expected when comparing the growth

rates over physical time. The growth rates observed in Fig. 10 are indeed very similar. The

slight difference is probably due to the variation of the numerical dispersion and dissipation

properties of the scheme with the CFL number.31

Effects of machine precision

A last test to verify that the divergence between solutions is not due to a programming

error but depends primarily on rounding errors is to perform the same computation with

simple/quadruple precision instead of double precision. Simulations TC1 and TC2 were

repeated using simple precision in runs TC8 and TC9 (Table 1) and quadruple precision

in TC10 and TC11. To compensate for the increase in computational time for quadruple

precision simulations, roughly a factor ten compared to double precision, TC10 and TC11

were carried out on respectively 28 and 32 processors in order to yield a reasonable restitution

time. Results are displayed in Fig. 11 and compared to the difference between TC1 and TC2.

Figure 11 shows that the solutions differences for TC8/TC9 and TC10/TC11 roughly

start from the respective machine accuracies (differences of 10−6 for simple precision after

one iteration, differences of 10−30 for quadruple precision after one iteration) and increase

exponentially with the same growth rate before reaching identical difference levels for all

three cases. This shows that higher precision computations cannot prevent the exponentional

divergence of trajectories but only delay it.

Conclusions

This work focused on the sensitivity of instantaneous LES fields to different rounding

error propagation due to situations where various parameters of the run such as number

of processors, initial condition, time step, changes in addition ordering of cell residuals for

cell vertex methods are modified. The baseline simulation used for the tests was a fully

developed turbulent channel. The conclusions are the following:

• Any turbulent flow computed in LES exhibits significant sensitivity to these parame-

ters, leading to instantaneous solutions which can be totally different. Laminar flows
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are almost insensitive to these parameters.

• The divergence of solutions is due to two combined facts: (1) the exponential separation

of trajectories in turbulent flows and (2) the different propagation of rounding errorss

rounding errors induced by domain partitioning and scheduling of operations. More

generally, any change in the code lines affecting the propagation of rounding errors will

have the same effects.

• Small changes in initial condition (of the order of machine accuracy at one point of the

flow only) produce similar divergence of solutions.

• Working with higher precision machines does not suppress the divergence of solutions

but delays it.

These results confirm the expected nature of LES26 in which solutions are only meaningful

in a statistical sense and instantaneous values cannot be used for analysis. However, on a

more practical level, they point out various difficulties to develop LES codes:

• Repeating a given LES after modifying the code and verifying that instantaneous solu-

tions have not changed is not always possible. Since any programming error will affect

instantaneous solutions in the same way, identifying errors introduced by new lines

will require a detailed analysis based on statistically averaged fields and a significant

amount of time.

• Validating an LES code on a parallel machine is a difficult task: running the code on

different numbers of processors will lead to different solutions and make comparisons

impossible.

• Porting a LES code from one machine to another will also produce different instan-

taneous solutions for turbulent runs, making comparisons and validations of new

architectures difficult.

More generally, these results demonstrate that the concept of “quality” in LES will

require much more detailed studies and tools than what has been used up to now in Reynolds

Averaged simulations.

Acknowledgments

We thank Prof. F. Chaitin-Chatelin for helpful discussions.

The first author gratefully acknowledges the funding by the European Community in the

framework of the Marie Curie Early Stage Research Training Fellowship (contract number

MEST-CT-2005-020426).

Senoner et al. 10 of 28



References

1Sagaut, P., Large eddy simulation for incompressible flows, Springer, 2002.

2Mahesh, K., Constantinescu, G., and Moin, P., “A numerical method for large-eddy

simulation in complex geometries,” Journal of Computational Physics , Vol. 197, No. 1,

2004, pp. 215–240.

3Di Mare, F., Jones, W. P., and Menzies, K., “Large Eddy Simulation of a model gas

turbine combustor,” Combustion and Flame , Vol. 137, 2001, pp. 278–295.

4Poinsot, T. and Veynante, D., Theoretical and numerical combustion, R.T. Edwards,

2nd edition., 2005.

5Pitsch, H., “Large Eddy Simulation of Turbulent Combustion,” Annual Review of

Fluid Mechanics , Vol. 38, 2006, pp. 453–482.

6El-Asrag, H. and Menon, S., “Large Eddy Simulation of bluff-body stabilized swirling

non-premixed flames,” Proceedings of the Combustion Institute, Vol. 31, 2007, pp. 1747–1754.

7Duwig, C., Fuchs, L., Griebel, P., Siewert, P., and Boschek, E., “Study of a Confined

Turbulent Jet: Influence of Combustion and Pressure,” AIAA Journal , Vol. 45, No. 3,

March 2007, pp. 624–661.

8Schmitt, P., Poinsot, T., Schuermans, B., and Geigle, K., “Large-eddy simulation and

experimental study of heat transfer, nitric oxide emissions and combustion instability in

a swirled turbulent high pressure burner,” Journal of Fluid Mechanics , Vol. 570, 2007,

pp. 17–46.
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14Chaitin-Chatelin, F. and Frayssé, V., Lectures on Finite Precision Computations ,

SIAM, Philadelphia, 1996.

Senoner et al. 11 of 28



15Overton, M. L., Numerical Computing with IEEE Floating Point Arithmetic, SIAM,

Philadelphia, 2001.

16Schönfeld, T. and Rudgyard, M., “Steady and Unsteady Flows Simulations Using the

Hybrid Flow Solver AVBP,” AIAA Journal , Vol. 37, No. 11, 1999, pp. 1378–1385.
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Table 1: Summary of turbulent LES runs (fully developed turbulent channel).

Run Nbr Init. Precision Graph CFL
Id proc cond. ordering λ

TC1 4 Fixed Double CM 0.7
TC2 8 Fixed Double CM 0.7
TC3 1 Fixed Double CM 0.7
TC4 1 Modif. Double CM 0.7
TC5 1 Fixed Double RCM 0.7
TC6 4 Fixed Double CM 0.35
TC7 8 Fixed Double CM 0.35
TC8 4 Fixed Simple CM 0.7
TC9 8 Fixed Simple CM 0.7
TC10 28 Fixed Quadr. CM 0.7
TC11 32 Fixed Quadr. CM 0.7
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Table 2: Summary of laminar runs (Poiseuille flow).

Run Nbr Init. Precision Graph CFL
Id proc cond. ordering λ

LP1 4 Fixed Double CM 0.7
LP2 8 Fixed Double CM 0.7
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Figure 1: Schematic of a periodic channel. The upper and lower boundaries consist
of walls, all other boundaries are pairwise periodic.
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a) Run with 4 processors

b) Run with 8 processors

Figure 2: Instantaneous field of axial velocity in the central plane of the channel at
t+ = 7.68. a) run TC1 (4 processors), b) run TC2 (8 processors).
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a) Run with 4 processors

b) Run with 8 processors

Figure 3: Instantaneous field of axial velocity in the central plane of the channel at
t+ = 18.43. a) run TC1 (4 processors), b) run TC2 (8 processors).
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a) Run with 4 processors

b) Run with 8 processors

Figure 4: Instantaneous field of axial velocity in the central plane of the channel at
t+ = 26.11. a) run TC1 (4 processors), b) run TC2 (8 processors).
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Figure 5: Comparison of the mean velocity profiles for TC1 (4 processors) and TC2
(8 processors) over half channel height.
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Figure 6: Comparison of the root mean square velocity profiles for TC1 (4 proces-
sors) and TC2 (8 processors) over half channel height.
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Figure 7: Effects of turbulence. Differences between solutions measured by Nmax

(open symbols) and Nmean (closed symbols) versus iteration. Squares: differences
between TC1 and TC2 (turbulent channel). Circles: differences between LP1 and
LP2 (laminar Poiseuille flow).
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Figure 8: Effects of initial conditions. Differences between solutions measured by
Nmax (open symbols) and Nmean (closed symbols) versus iteration. Squares: differences
between TC1 and TC2 (different numbers of processors). Circles: differences between
TC3 and TC4 (different initial conditions).
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Figure 9: Effects of addition order. Differences between solutions measured by
Nmax (open symbols) and Nmean (closed symbols) versus iteration. Squares: differences
between TC1 and TC2. Circles: differences between TC3 and TC5.
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Figure 10: Effects of time step. Differences between solutions measured by Nmax

(open symbols) and Nmean (closed symbols) versus physical time. Squares: differences
between TC1 and TC2 (time step ∆t). Circles: differences between TC6 and TC7
(time step ∆t/2).
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Figure 11: Effects of machine accuracy. Differences between solutions measured by
Nmax (open symbols) and Nmean (closed symbols) versus iteration. Squares: differences
between TC1 and TC2 (double precision). Circles: differences between TC8 and
TC9 (simple precision). Triangles: differences between TC10 and TC11 (quadruple
precision)
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