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Abstract Stretching red blood cells using optical tweez-
ers is a way to characterize the mechanical properties

of their membrane by measuring the size of the cell

in the direction of the stretching (axial diameter) and

perpendicularly (transverse diameter). Recently, such

data has been used in numerous publications to vali-
date solvers dedicated to the computation of red blood

cell dynamics under flow. In the present study, different

mechanical models are used to simulate the stretching

of red blood cells by optical tweezers. Results first show
that the mechanical moduli of the membranes have to

be adjusted as a function of the model used. In addi-

tion, by assessing the area dilation of the cells, the axial

and transverse diameters measured in optical tweezers

experiments are found to be insufficient to discriminate
between models relevant to red blood cells or not. At

last, it is shown that other quantities like the height or

the profile of the cell should be prefered for validation

purposes since they are more sensitive to the membrane
model.

Keywords Red blood cells · optical tweezers ·

membrane modeling · cytoskeleton · lipid bilayer ·

fluid-structure interactions · immersed boundary
method

1 Introduction

Blood is a complex substance consisting in a suspen-
sion of platelets, white blood cells and red blood cells

(RBCs) in a Newtonian fluid, the plasma. The RBCs,
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which typically represent 40-45% of the whole blood
volume, are composed of a membrane enclosing an in-

ternal fluid, the cytoplasm. The RBC membrane is a

composite structure composed of a lipid bilayer and a

two-dimensional elastic cytoskeleton, both linked through

temporary tethering sites thanks to transmembrane pro-
teins embedded in the lipid bilayer. This complex struc-

ture confers to the RBC membrane very specific me-

chanical properties: the cytoskeleton provides a resis-

tance to shear sollicitations and slightly resists to area-
dilatation, while the lipid bilayer provides to the mem-

brane its bending stiffness and quasi-incompressibility.

The RBCs have a biconcave discocyte shape at rest

with a remarkable deformability, because of the excess

of surface area enclosing the inner volume. RBCs are
thus able to undergo very large deformation preserv-

ing their area, squeezing through capillaries with inner

diameter less than 3 µm, although the average large

diameter of a RBC is about 8 µm. As mentioned by
Mohandas and Gallagher (2008), the normal RBC can

deform with linear extensions of up to 250%, but a 3%

to 4% increase in surface area results in cell lysis.

So far, there is no universal model to describe the

mechanical behavior of the RBC membrane. The lo-
cal elasticity of the RBC membrane is generally de-

scribed using either continuum models (Le et al. 2009;

Klöppel and Wall 2011; Farutin et al. 2014; Sinha and

Graham 2015) or network models (Li et al. 2005; Dao

et al. 2006; Pivkin and Karniadakis 2008; Fedosov et al.
2010a,b, 2014; Chen and Boyle 2014), which can be

complemented with other global models to treat the

quasi-incompressibility of the lipid bilayer (Pivkin and

Karniadakis 2008; Fedosov et al. 2010a,b). Detailed ex-
perimental investigations of the RBC mechanics are

nonetheless needed in order to: 1) characterize and vali-

date a numerical model of the RBC membrane; 2) once
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validated, determine the mechanical parameters of the

model.

To gain insight into the mechanical behavior of RBCs,

experimental techniques were developed for measure-

ments of the RBC membrane properties (Abkarian and
Viallat 2016). Micropipette aspiration (Evans 1973) and

optical tweezers (Hénon 1999; Mills et al. 2004) are the

most popular ones, and were notably used to determine

the shear modulus of the RBC membrane. The optical
tweezers experiment by Mills et al. (2004) provides a

useful means for the analysis of the single cell mechan-

ics under a variety of well-controlled stress states, where

stretching of an isolated RBC is generated by means

of attached silica microbeads and optical trap. Using a
continuummodel of the RBCmembrane to solve the de-

formation of the RBC subjected to optical stretching,

Yeoh (1993) successfully matched the force-extension

data obtained from the experiment, thus enabling the
extraction of the shear modulus of the RBC membrane.

A recent work of Dimitrakopoulos (2012) showed

that large differences of shear modulus reported in var-

ious studies may be explained based on the different

membrane models used to fit the experimental data.
Theoretically investigating continuummodels under uni-

axial extension and local area incompressibility, he showed

that the only constitutive law able to properly match

the wide variety of experimental data available in the
literature is the Skalak law, specifically developed by

Skalak et al. (1973) to represent the in-plane elasticity

of the RBC membrane. Based on this finding, Dimi-

trakopoulos stated that Mills et al. (2004) found the

shear modulus that represents the Yeoh law, but not
the true shear modulus of the RBC membrane. This

purely theoretical work was specifically dedicated to the

response of different membrane laws under small, mod-

erate, and large shear strains. A more realistic configu-
ration where the whole RBC is stretched as in the Mills

et al. (2004) experiment was however not considered by

Dimitrakopoulos (2012); this is done computationaly in

the present paper.

As a consequence, the numerical results of Mills
et al. (2004) were successfully matched to the force-

extension data obtained from optical tweezers using the

Yeoh law, whereas a proper modeling of the RBC mem-

brane should rather rely on the Skalak law. This reveals

the simplistic nature of these experimental data, which
was also pointed out by Dimitrakopoulos (2012). De-

spite this observation, optical tweezers data continue

to be used as a way to validate numerical models of the

RBC membrane (Li et al. 2005; Dao et al. 2006; Pivkin
and Karniadakis 2008; Le et al. 2009; Fedosov et al.

2010a,b, 2014; Klöppel and Wall 2011; Chen and Boyle

2014; Farutin et al. 2014; Sinha and Graham 2015),

notably to probe the accuracy of solvers dedicated to

the study of the RBC dynamics under flow. However, a

proper validation test case needs to be selective to dis-

criminate between appropriate and inappropriate mod-

els. There is a suspiscion that computing optical tweez-
ers experiment does not constitute a true validation test

case.

The present paper constitutes a numerical study
which first aims at emphasizing previous findings of

Dimitrakopoulos (2012), highlighting the limitations of

the optical tweezers experiment for characterizating the

mechanics of the RBC membrane. Theoritical investiga-
tions of Dimitrakopoulos (2012) are here complemented

with detailed simulations of the optical tweezers exper-

iment by Mills et al. (2004), using a numerical method

dedicated to the simulation of the dynamics of RBCs

under flow. After a brief description of this numerical
method, an easy-to-implement computational setup is

presented and validated against the numerical results

of Mills et al. (2004). Then, different continuum mem-

brane models are investigated, based on various com-
binations of strain, area conservation and bending en-

ergies. If the membrane incompressibility can be eas-

ily imposed theoretically (Dimitrakopoulos 2012), it is

rarely done in models of red blood cells. The membrane

is generally modeled using a mechanical resistance to
area-dilatation, which enables some small area varia-

tion of the membrane (Li et al. 2005; Dao et al. 2006;

Pivkin and Karniadakis 2008; Fedosov et al. 2010a,b,

2014; Chen and Boyle 2014; Sinha and Graham 2015).
In the present study, the impact of this area-dilatation

resistance is carefully investigated, restraining the area

variation of the membrane either locally or globally. De-

tailed analysis of the shape of the stretched RBC are

also carried out in order to identify which kind of ad-
ditional experimental data could be helpful to better

characterize the mechanics of the RBC membrane.

2 Numerical method

The present numerical method is very similar to the

one developed by Mendez et al. (2014) and Sigüenza

et al. (2016) for fluid-structure interactions (FSI) of

deformable membranes, and is based on the immersed
boundary method (IBM) introduced by Peskin (2002).

Two independent meshes are considered to discretize

the RBC membrane and the fluid. The RBC mem-

brane is discretized by a moving Lagrangian mesh, and
the fluid is discretized by a fixed Eulerian unstructured

mesh. The different steps of the present method are the

following:
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(1) The membrane force
−→
F is calculated on the La-

grangian mesh, which depends on the membrane

deformation and on the models used to represent

the membrane rheology.

(2) The forces exerted by the membrane on the fluid are

represented by the fluid volumetric force
−→
f , calcu-

lated on the Eulerian mesh by regularizing the mem-

brane force
−→
F such as

−→
f (−→x , t) =

∫

Ωs

−→
F

(

−→
X, t

)

δ
(

−→x −
−→
X
)

dX,

where −→x and
−→
X respectively denote the coordinates

vectors of the Eulerian fluid nodes and Lagrangian

nodes, Ωs denotes the solid domain defining the

RBC membrane, and δ is the well known Dirac func-

tion.

(3) The fluid velocity −→v is calculated on the Eulerian

mesh by solving the Navier-Stokes equations (forced

by the source term
−→
f ).

(4) The membrane velocity
−→
V is calculated on the La-

grangian mesh by interpolating the fluid velocity −→v

such as

−→
V

(

−→
X, t

)

=

∫

Ωf

−→v (−→x , t) δ
(

−→x −
−→
X
)

dx,

where Ωf denotes the fluid domain.

The Dirac function δ used in the procedures of reg-

ularization and interpolation of steps (2) and (4) is nu-
merically represented by a smooth dicrete Dirac func-

tion, which is adapted to unstructured meshes using

the Reproducing Kernel Particle Method (Pinelli et al.

2010; Mendez et al. 2014; Sigüenza et al. 2016). Interpo-

lation of the fluid velocity on the membrane Lagrangian
mesh leads to small mass conservation errors. A specific

algorithm has been developed to perfectly conserve the

volume of the RBC during the calculations (Mendez

et al. 2014; Sigüenza et al. 2016).

2.1 Membrane forces computation

In the present method, the RBC membrane is consid-

ered to be infinitely thin, and is represented by a tri-

angulated surface. The membrane force is derived from
a combination of strain, area conservation and bending

energies. Resistances to shear and area-dilatation are

modeled thanks to a hyperelastic strain energy func-

tion W , which is written as a function of the local in-
plane principal values of strain λ1 and λ2, following

the method of Charrier (Charrier et al. 1989; Eggle-

ton and Popel 1998; Sui et al. 2008; Doddi and Bagchi

2008). Several hyperelastic models are investigated in

the present study:

• The Neo-Hookean law,

WNH =
Es

2

(

λ2

1
+ λ2

2
+ λ−2

1
λ−2

2
− 3

)

, (1)

where Es stands for the membrane in-plane shear

modulus.

• The Yeoh law,

WY E =
Es

2

(

λ2

1
+ λ2

2
+ λ−2

1
λ−2

2
− 3

)

+C3

(

λ2

1
+ λ2

2
+ λ−2

1
λ−2

2
− 3

)3

,

(2)

which is an extension of the previous Neo-Hookean

law, with the addition of a non-linear term driven

by the non-linear modulus C3.

• The law introduced by Skalak et al. (1973) for red

blood cells,

WSK =
Es

4

[

(

λ2

1
+ λ2

2
− 2

)2

+2
(

λ2

1
+ λ2

2
− λ2

1
λ2

2
− 1

)]

+
Ea

4

(

λ2

1
λ2

2
− 1

)2

,

(3)

where shear resistance and area dilatation resistance

are separately taken into account through the shear

modulus Es and the area-dilatation modulus Ea,
respectively. It can also be written with the ratio of

the area dilatation modulus to the shear modulus,

C = Ea/Es,

WSK =
Es

4

[

(

λ2

1
+ λ2

2
− 2

)2

+2
(

λ2

1
+ λ2

2
− λ2

1
λ2

2
− 1

)

+ C
(

λ2

1
λ2

2
− 1

)2
]

.

(4)

Although the Skalak law can be used to control area

variations of the RBC membrane, another approach

consists in using a global area conservation energy:

ES =
κS

2

(S − S0)
2

S0

, (5)

with κS the area modulus, S the area of the membrane

and S0 its target area. This energy is actually already

used in other formulations based on discrete approaches

(Pivkin and Karniadakis 2008; Fedosov et al. 2010b)
or in shape predictions by energy minimization (Lim

et al. 2002, 2008). Conveniently, the force applied by

the membrane on the fluid, associated to the energy

term ES can be expressed explicitly:

−→
FS = −2κS

(S − S0)

S0

H −→n , (6)
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with H the mean curvature and −→n the outward normal

vector to the surface.

In addition, the bending resistance of the membrane

can be represented using the bending energy Eb, pro-

posed by Helfrich (1973):

Eb =
κb

2

∫

S

(2H − c0)
2 dS, (7)

with κb = 2.0 × 10−19 N.m (Lim et al. 2002, 2008)

the bending modulus, and c0 a possible spontaneous

curvature (which is set to zero in the present study).

The bending force applied by the membrane on the fluid

reads:
−→
Fb = κb

[

(2H − c0)
(

2H2
− 2K + c0H

)

+2∆LBH ]−→n ,
(8)

where∆LB denotes the surface Laplacian operator (Zhong-
can and Helfrich 1989) (also called the Laplace-Beltrami

operator) and K is the local Gaussian curvature of the

surface. The terms of the bending force are calculated

by local fitting of a quadratic approximation of the sur-
face. The method is similar to the one used by Farutin

et al. (2014). Table 1 summarizes the three energies in-

troduced, with the associated parameters. Every com-

bination of these energies (W , ES , Eb) can be used to

model the RBC membrane.

Table 1 Different energies available to model the RBC mem-
brane, and associated notations of mechanical moduli.

W ES Eb

NH: Es (N/m)

κS (N/m) κb (N.m)
YE:

Es (N/m)

C3 (N/m)

SK:
Es (N/m)

C

2.2 Navier-Stokes equations solver

The fluid inside and outside the RBC is supposed to be

incompressible and Newtonian. The YALES2BIO flow

solver is used (Mendez et al. 2014; Chnafa et al. 2014;

Zmijanovic et al. 2016; Sigüenza et al. 2016) to solve the
forced Navier-Stokes equations over the Eulerian un-

structured mesh by using a projection method (Chorin

1968). The momentum conservation equations reads:

∂−→v

∂t
+
−→
∇. (−→v ⊗−→v ) = −

−→
∇p

ρ
+ ν∆−→v +

−→
f

ρ
, (9)

where −→v and p are the velocity vector and the pres-

sure, ρ the density and ν the kinematic viscosity. For

an incompressible fluid, the mass conservation equation

becomes:

−→
∇.−→v = 0 (10)

The fluid velocity is advanced using a 4th-order cen-
tred scheme in space and a 4th-order Runge-Kutta scheme

in time. A divergence-free velocity field is obtained at

the end of the time-step by solving a Poisson equation

for pressure and correcting the predicted velocity. A De-

flated Preconditioned Conjugate Gradient (DPCG) al-
gorithm is used to solve this Poisson equation (Moureau

et al. 2011; Malandain et al. 2013).

The YALES2BIO solver was validated in several test

cases where reference data (either experimental, ana-

lytical or numerical) are available. This is described in

previous publications, where the reader can also find ad-
ditional implementation details (Martins Afonso et al.

2014; Mendez et al. 2014; Sigüenza et al. 2014, 2016;

Zmijanovic et al. 2016).

3 Optical tweezers modeling

The purpose of this section is to establish a compu-

tational setup allowing the computation of the optical

tweezers experiment by Mills et al. (2004). The compu-
tational setup presented in this section is built heavily

on the one developed by Dao et al. (2003), which has

also been used by Mills et al. (2004) to simulate the

optical tweezers experiment.

Figure 1(a) illustrates the experimental setup used

in Mills et al. (2004) to perform the stretching of the

RBC. Two silica microbeads, of diameter 4.12 µm, are
attached to the cell at diametrically opposite points.

The left bead is anchored to the surface of a glass slide

while the right bead is trapped by a laser beam. The

trapped bead remaining at rest, moving the slide and
attached left bead stretches the cell. Then, the axial di-

ameter DA (in the direction of the stretching), and the

transverse diameter DT (orthogonal to the stretching

direction) are measured on the stretched RBC.

3.1 Computational setup

The analytical model of the RBC biconcave shape pro-

posed by Evans and Fung (1972) is used to define the
RBC geometry:

z = ±0.5R0

[

1−
x2 + y2

R2

0

]

×

[

A1 +A2

x2 + y2

R2

0

+A3

(

x2 + y2

R2

0

)2
] (11)
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(a) Experimental setup

x

y

DA

DT

bead fixed on
the glass slide

glass slide moves
with attached bead

bead held in
optical trap

(b) Computational setup

dc F−F

DA

DT

mean positions of
the loaded edges

Fig. 1 (a) Illustration of the experimental setup of Mills et al. (2004). The axial (DA) and transverse (DT ) diameters of the
stretched RBC are measured. (b) Computational setup used to simulate the optical tweezers experiment. A stretching force
F is applied over the two circular edges delimitating the contact areas between the RBC and the beads, with a contact size
dc = 2 µm.

where R0 = 3.91 µm is the average RBC radius, A1 =
0.207161, A2 = 2.002558, and A3 = −1.122762.

Rather than explicitly solving the contact between

the beads and the RBC (as Dao et al. (2003) and Mills

et al. (2004)), most of the works simulating the opti-
cal tweezers experiment consider pure Neumann load-

ing conditions to simulate the RBC stretching, applying

a constant stretching force F over a certain percentage

of nodes at the extremities of the RBC (Le et al. 2009;

Farutin et al. 2014; Chen and Boyle 2014; Fedosov et al.
2014; Sinha and Graham 2015). The drawback of this

approach was nonetheless pointed out by Klöppel and

Wall (2011): the rigidity of the beads is not properly

taken into account, leading to a larger axial diameter
(DA), and thus a higher estimation of the in-plane shear

modulus. An alternative methodology which mimics the

beads rigidity is introduced in what follows, within a

three-step strategy:

• The contact areas between the beads and the RBC

are properly defined following the procedure of Dao

et al. (2003). As shown in Fig. 1(b), these contact

areas are defined by intersecting the surface of the
RBC with two opposite planes perpendicular to the

stretching direction. The position of these planes is

chosen such that the contact size between the beads

and the RBC is dc = 2 µm (Dao et al. 2003).

• Rather than applying the stretching force F over all

the nodes of the contact areas, the force is applied

only to the nodes located on the edges delimiting
the contact areas (see Fig. 1(b)).

• Instead of evaluating the axial diameter (DA) as the

distance between the extremities of the stretched
RBC, the axial diameter is determined by calculat-

ing the mean position of each loaded edge, which are

deformed during the RBC stretching (as sketched in

Fig. 1(b)).

Consistently with the numerical framework described

in section 2, the computation of the RBC stretching

consists in solving a transient fluid-structure interac-

tion problem until stabilization of the shape. The RBC
is immersed in a fluid box extended from −4R0 to 4R0

in the x direction (direction of the stretching), from

−2R0 to 2R0 in the y direction (direction orthogonal

to the stretching), and from −R0 to R0 in the z direc-
tion (direction perpendicular to the plane of the RBC).

The fluid mesh is composed of 881 992 tetrahedral el-

ements, with a constant mesh resolution of R0/12.5.

The RBC membrane is composed of 6 434 nodes, with

a constant mesh resolution of R0/25.
The stretching force is applied on the RBC mem-

brane as an external force, with a time-dependent ramp

ranging from 0 to the desired value of F . This exter-

nal force is seen by the fluid which starts moving, and
deforms the RBC. After a transient phase, the me-

chanical forces inside the membrane and the applied

external force balance, and a steady deformation is ob-
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tained. The choice of the fluid properties and the size

of the computational domain may affect the transient

phase, but have no influence on the steady deformation

of the RBC and calculated axial and transverse diame-

ters. Only the final stabilized shapes are postprocessed.

3.2 Validation

With the aim to validate the present computational

setup, the optical tweezers experiment by Mills et al.

(2004) is simulated, and the present simulations are
compared with the numerical simulations performed

by Mills et al. (2004). Two cases are simulated, corre-

sponding to different modeling of the RBC membrane.

These two cases are summarized in Tab. 2. For both

cases, only the local in-plane elasticity is considered.
The membrane is assumed to follow the Neo-Hookean

law (Eq. (1)) in case 1, and the Yeoh law (Eq. (2)) in

case 2.

Table 2 Cases simulated with the present computational
setup and compared with the results of Mills et al. (2004).

W ES Eb

Case 1 NH: Es = 7.3 µN/m X X

Case 2 YE:
Es = 7.3 µN/m

X X
C3 = Es/30

Figure 2 shows both axial (DA) and transverse (DT )

diameters of the RBC stretched by optical tweezers, as
a function of the applied force, for cases 1 and 2. As

the cell is more and more elongated when increasing

the stretching force, it is seen that the axial diameter

(DA) increases. The elongation of the cell leads to its

contraction in the orthogonal direction, resulting in a
decrease of the transverse diameter (DT ).

When using pure Neumann loading conditions to

simulate the RBC stretching (Le et al. 2009; Farutin
et al. 2014; Chen and Boyle 2014; Fedosov et al. 2014;

Sinha and Graham 2015), the rigidity of the beads used

in the optical tweezers experiment is not taken into ac-

count, which is known to strongly influence the defor-

mation of the stretched RBC, especially the estimation
of the axial diameter (DA) (Klöppel and Wall 2011).

The present results however show that it is possible to

mimic the beads rigidity using a customized compu-

tational setup based on pure Neumann loading condi-
tions, which is seen to faithfully reproduce the numeri-

cal results obtained by Mills et al. (2004), who explicitly

solved the contact between the beads and the RBC.
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0 50 100 150 200
0

5

10

15

20

25

DA

DT(b)

F (pN)

D
ia
m
et
er

(µ
m
)

Fig. 2 Axial (DA) and transverse (DT ) diameters of the
RBC stretched by optical tweezers. Comparison with the ex-
perimental and numerical data from Mills et al. (2004). (a)
The RBC membrane is assumed to follow the Neo-Hookean
law, corresponding to case 1. (b) The RBC membrane is as-
sumed to follow the Yeoh law, corresponding to case 2.

As pointed out by Mills et al. (2004), comparison of
the numerical results of case 1 with the experimental

data shows that the Neo-Hookean law is not adapted

to describe the behavior of the RBC membrane. In-

deed, experimental trends are well captured over the
range of 0-88 pN. However, the model deviates gradu-

ally for loadings higher than 88 pN, showing a strain-

softening behavior under large deformation (Barthès-

Biesel et al. 2002). Conversely, the Yeoh law provides

accurate predictions of diameters over the entire range
of experimental data. The strain-hardening behavior of

RBCs under large deformation is thus well transcribed

by the model. Regarding the mechanical response of the

stretched RBC in terms of axial (DA) and transverse
(DT ) diameters, the membrane modeling corresponding

to case 2, using the Yeoh law, provides a good descrip-

tion of the membrane mechanical behavior.
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In order to investigate the influence of the mesh res-

olution, two meshes were constructed from the mesh

used in Fig. 2: a coarse mesh whose resolution is twice

coarser than the reference mesh resolution, and a fine

mesh whose resolution is twice finer than the reference
mesh resolution. Axial (DA) and transverse (DT ) diam-

eters obtained from these three meshes are compared

in Tab. 3 with the diameters obtained from numerical

simulations of Mills et al. (2004) for the largest load-
ing F = 193 pN. The mesh resolution has almost no

influence on the prediction of the axial diameter (DA),

and only small influence on the prediction of the trans-

verse diameter (DT ). This indicates that the reference

mesh is sufficiently refined, and can thus be used in the
remainder of this study.

Table 3 Influence of the mesh resolution for case 2, at the
maximum imposed force of 193 pN.

DA (µm) DT (µm)

Mills simulation 16.14 4.90

Coarse mesh 15.92 4.94

Reference mesh 15.93 4.81

Fine mesh 15.93 4.72

0 pN

67 pN

130 pN

193 pN

Case 1 Case 2

Fig. 3 Visualization of the red blood cell deformation over
the entire range of stretching force, for both cases 1 and 2.
Only half of the cell is displayed.

Figure 3 shows the deformation of the RBC for dif-

ferent values of the stretching force F , which ranges

from 0 to 193 pN. A detailed analysis of the shape of the

RBC shows that as the cell is elongated when increas-

ing the force, a large fold is appearing, as also observed

in the numerical simulations of Mills et al. (2004). Oc-

curence of such a folding is however not investigated in

the experiment.

4 Influence of the membrane modeling

The present computational setup is now used to investi-

gate different continuummodels of the RBC membrane.

With the present numerical method, the different me-

chanical properties of the RBC membrane can be mod-
eled by a combination of strain, area conservation and

bending energies. Four new cases are summarized in

Tab. 4.

Note that the bending stiffness of the lipid bilayer

was neglected in cases 1 and 2, but is accounted for in

the others. Using the Yeoh law (Eq. (2)) to describe the
local in-plane elasticity of the RBC membrane was seen

to provide a good agreement with the optical tweezers

experiment (see Fig. 2(b)). Case 3 thus appears to be

a first obvious candidate to model the mechanics of the
RBC membrane. As stated by Dimitrakopoulos (2012),

the RBC membrane should rather be modeled by the

Skalak law instead of the Yeoh law. Cases 4 and 5 are

thus introduced, with two different values of the ra-

tio C (low value in case 4, and high value in case 5).
Note however that when using the Skalak law to model

the local in-plane elasticity of the RBC membrane, a

high value of C should be considered to restrain the

area variations of the RBC membrane, thus modeling
the quasi-incompressibility of the lipid bilayer. Conse-

quently, case 4 does not constitute a potential candidate

to model the mechanics of the RBC membrane, but is

only introduced to investigate the influence of the ratio

C on the mechanical response of the RBC subjected
to optical stretching. Finally, case 6 proposes a hybrid

modeling of the RBC membrane, dissociating the cy-

toskeleton and the lipid bilayer: the Skalak law with

low ratio C is used to model the local in-plane elastic-
ity of the cytoskeleton, allowing local area changes of

the cytoskeleton; on top of this, the global area con-

servation energy is used to model the reorganisation of

the quasi-incompressible lipid bilayer, sliding along the

cytoskeleton. It is noticed that a twice smaller shear
modulus Es is considered when using the Skalak law in

cases 4, 5, and 6, as compared to case 3. This factor of

2 is explained in the work of Dimitrakopoulos (2012)

by the fact that the Yeoh and Skalak laws behave dif-
ferently at moderate and high deformation. It is thus

required to multiply the shear modulus Es by 2 when

considering the Yeoh law as compared to the Skalak



8 Julien Sigüenza et al.

Table 4 Summary of different continuum models of the RBC membrane investigated by means of optical tweezers simulations
(see Tab. 2 for cases 1 and 2).

W ES Eb

Case 3 YE:
Es = 7.3 µN/m

X κb = 2.0× 10−19 N.m
C3 = Es/30

Case 4 SK:
Es = 3.65 µN/m

X κb = 2.0× 10−19 N.m
C = 0.5

Case 5 SK:
Es = 3.65 µN/m

X κb = 2.0× 10−19 N.m
C = 100

Case 6 SK:
Es = 3.65 µN/m

κS = 1.0 × 103 µN/m κb = 2.0× 10−19 N.m
C = 0.5

law, in order to have a good comparison with the opti-

cal tweezers experiment in the large deformation range.
Note that this results in an underestimation of the cell

deformation for low stretching forces with the Yeoh law,

as illustrated in the next section.

4.1 Comparison of axial and transverse diameters

Figure 4 shows the numerical predictions of the axial
(DA) and transverse (DT ) diameters for the different

modeling cases introduced in Tab. 4. All cases pro-

vide a good comparison with the experimental results

of Mills et al. (2004). Cases 5 and 6 are in a slightly bet-

ter agreement with the experiment, especially regarding
the transverse diameter (DT ) in the higher range of im-

posed stretching force. However, differences between all

the modeling cases are contained within the experimen-

tal error bars.

It is interesting to note that increasing the resistance

to area-dilatation of the RBC membrane between case

4 and case 5 (by increasing the ratio C) has only a

marginal influence on the predictions of the axial (DA)
and transverse (DT ) diameters, which was also observed

in previous works (Sigüenza et al. 2014; Sinha and Gra-

ham 2015). In addition, restraining the area variation

of the RBC membrane either locally (in case 5) or glob-

ally (in case 6) leads to almost identical predictions of
the axial (DA) and transverse (DT ) diameters.

4.2 Characterization of the RBC shape

The deformation of the stretched RBC at different stretch-

ing forces is displayed in Fig. 5. First, it is seen that the

shapes obtained in case 3 differ from the ones obtained
in case 2 (see Fig. 3), which also uses the Yeoh law to

model the local in-plane elasticity of the RBC mem-

brane. The large fold which appears during the RBC
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Fig. 4 Comparison of the axial (DA) and transverse (DT )
diameters of the RBC stretched by optical tweezers for the
different modeling cases introduced in Tab. 4.

stretching in case 2 is restrained in case 3 by the bend-
ing stiffness of the lipid bilayer, modeled by the bend-

ing energy (neglected in case 2). The fold is however

still visible during the stretching, but much smoother.

In case 4, when switching the hyperelastic model to
the Skalak law, the RBC tends to lose its biconcave

shape with increasing stretching. This phenomenon is

even more pronounced and faster in case 5, when the

area-dilatation resistance is increased, leading to a more

rounded shape at maximum stretching. Finally, case 6
exhibits a very similar behavior of case 5, with a faster

transition from the biconcave to the rounded shape (see

shapes at F = 67 pN in Fig. 5), and a more circular

shape at maximum stretching. Note that simulations
have also been performed combining the Yeoh law with

the global area conservation energy, showing the same

transition from the biconcave to the rounded shape (not
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Fig. 5 Visualization of the red blood cell deformation over the entire range of stretching force, for the different modeling cases
introduced in Tab. 4. Only half of the cell is displayed.

shown). This indicates that this mechanical behavior

does not come from the use of the Skalak law itself, but

from the area variation restriction of the RBC mem-

brane, achieved either using the Skalak law or the global

area conservation energy.
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Fig. 6 Evolution of the in-plane (LP ) and folding (LF )
lengths for the different modeling cases introduced in Tab.
4.

In the light of these observations, it appears rele-

vant to introduce two additional lengths measured on

the deformed RBC: the in-plane length LP , defined as
being the height in the direction perpendicular to the

plane of the RBC (see Fig. 5); the folding length LF ,

also aligned with the direction perpendicular to the

plane of the RBC, but evaluated at the fold location

(see Fig. 5). As shown in Fig. 6, the discrimination be-

tween the different modeling cases is more obvious when

analysing the evolution of the in-plane (LP ) and fold-

ing (LF ) lengths than the classical analysis made on the
axial (DA) and transverse (DT ) diameters (in Fig. 4).

Previous observations of Fig. 5 can be highlighted: in

case 3, the in-plane (LP ) and folding (LF ) lengths show

parallel evolutions, meaning that the RBC keeps its bi-
concave shape for the whole range of stretching force;

in case 4, lengths get closer with increasing stretching

force, showing that the RBC progressively loses its bi-

concave shape when subjected to stretching; in cases

5 and 6, a transition from a biconcave folded shape to
a rounded shape occurs when the two lengths become

identical (for F = 109 pN in case 5, and F = 88 pN in

case 6), and the shape of the RBC becomes more and

more circular as the lengths increase with the stretching
force.

4.3 Area variation

The ability of the quasi-incompressible lipid bilayer to

restrain area variations during the RBC deformation

is an important mechanical feature of the RBC mem-
brane (Mohandas and Gallagher 2008). Figure 7 shows

the evolution of the global area variation of the RBC

membrane during stretching for the different modeling

cases introduced in Tab. 4. In case 3, the area increase
reaches 28%, since the Yeoh law is not designed to re-

strain area variations of the RBC membrane. Using the

Skalak law in case 4 enables to restrain the area vari-
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ation to a maximum value of 12%. Area variations are

even more restrained when increasing the resistance to

area-dilatation in cases 5 (0.3%) and 6 (0.4%).
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Fig. 7 Global area variation of the RBC membrane for the
different modeling cases introduced in Tab. 4.

Case 5
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Local area variation (%)

Local area variation (%)

−4 3

−39 64

Fig. 8 Comparison of the local area variations of the red
blood cell membrane at the maximum stretching force F =
193 pN, for the modeling approaches of cases 5 and 6.

Figure 8 shows the local area variation of the RBC

membrane for modeling cases 5 and 6. In case 5, the

use of the Skalak law with high ratio C allows very

small local area variations of the RBC membrane. In
case 6, the quasi-incompressibility of the lipid bilayer

is independently modeled using the global area conser-

vation energy, whereas the Skalak law with lower ratio

C is used to model the own area-dilatation resistance

of the cytoskeleton. This results in higher local area

variations, which correspond to the deformation of the

cytoskeleton. In both cases, the maximum local area

variations are obtained at the extremities of the cell,
near to the bead/RBC contact areas. These regions of

high stretching may thus be the locations where the

RBC is the most prone to lysis. Note that variation of

cytoskeleton area was measured by Discher et al. (1994)
in a micropipette aspiration experiment, but the au-

thors are not aware of similar measurements in optical

tweezers experiment.

4.4 RBC stress-free shape

Recent studies suggest that RBCs have a quasi-spherical

stress-free shape (Lim et al. 2002; Khairy and Howard

2011; Cordasco et al. 2014; Peng et al. 2014, 2015;
Dupire et al. 2015), meaning that the well-known bi-

concave shape of the RBCs (Eq. (11)) is pre-stressed.

This initial pre-stress has not been taken into account

so far in the present study, but could eventually play
a significant role. Klöppel and Wall (2011) recently in-

vestigated the influence of an initial pre-stressed bicon-

cave shape of a RBC subjected to stretching deforma-

tion, and almost no influence of this initial pre-stress

was observed. They concluded that when investigating
static deformation of RBCs, the biconcave initial shape

of the RBCs can be assumed as being stress-free.
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Fig. 9 Influence of the stress-free shape of the RBCs on the
evolution of the axial (DA) and transverse (DT ) diameters,
for the modeling case 6.
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Fig. 10 Influence of the stress-free shape of the RBCs on the
evolution of the in-plane (LP ) and folding (LF ) lengths, for
the modeling case 6.

In this section, the influence of the quasi-spherical
stress-free shape of the RBCs is investigated. Figure 9

compares previous simulations of the modeling case 6,

assuming a biconcave stress-free shape of the RBC, with

simulations where the stress-free shape of the RBC is a

quasi-spherical shape having a reduced volume V/V0 =
0.98 (with V0 the volume of a sphere having the same

surface area). As usually done when modifying the stress-

free shape (Cordasco et al. 2014; Peng et al. 2014), the

spontaneous curvature c0 (Eq. (7)) is adjusted so that
the equilibrium shape is similar to the parametric bi-

concave shape described by Eq. (11). In the present

case, the spontaneous curvature is set to c0 = 4.6 ×

106 m−1. Consistently with the conclusions made by

Klöppel and Wall (2011), it is seen that there is no
significant effect of the stress-free shape regarding the

evolution of the axial (DA) and transverse (DT ) diam-

eters. Regarding the latter quantity, a slightly better

agreement with the experiment is nonetheless observed
when considering a quasi-spherical stress-free shape.

The evolution of the in-plane (LP ) and folding (LF )

lengths is displayed in Fig. 10, showing a more signifi-

cant effect of stress-free shape. Indeed, it is seen that the
in-plane length (LP ) is higher for the quasi-spherical

stress-free shape before the transition from the bicon-

cave to the rounded shape occurs.

5 Discussion

In the present paper, the optical tweezers experiment

by Mills et al. (2004) is simulated using a numerical

method dedicated to the simulation of the dynamics

of RBCs under flow. A computational setup for simu-

lating the RBC stretching is presented, which is seen

to perfectly reproduce the numerical results obtained

by Mills et al. (2004). Influence of the RBC membrane

modeling is then investigated, introducing different con-
tinuum models to describe the membrane mechanics.

Comparison of the numerical results with the force-

extension data provided by the experiment (i.e. the ax-

ial (DA) and transverse (DT ) diameters of the stretched
RBC) shows that all the considered modeling approaches

are able to reproduce the mechanical response of the

RBC subjected to optical stretching (see Fig. 4). An ad-

justment of the shear modulus Es is however required

depending if the RBC membrane is described using the
Yeoh law or the Skalak law (Es is twice smaller when

using the Skalak law). It is also seen that some of these

models allow non-physiological area variations of the

RBC membrane during stretching (see Fig. 7), espe-
cially the Yeoh law which was considered in previous

works as a suitable model of the RBC membrane (Mills

et al. 2004; Suresh et al. 2005). Consistently with the

findings of Dimitrakopoulos (2012), this indicates that

the Yeoh law should not be used to describe the me-
chanical behavior of the RBC membrane. This also in-

dicates that the single analysis of the axial (DA) and

transverse (DT ) diameters of the stretched RBC is not

sufficient for characterizing the mechanics of the RBC
membrane, and cannot be used alone to validate nu-

merical models of the RBC membrane.

Detailed analysis of the shape of the stretched RBC

reveal different behaviors among the investigated mod-

els (see Fig. 5). A transition of the RBC shape from a
biconcave folded shape to a rounded shape is observed

when restraining the area variations of the RBC mem-

brane, either locally or globally. This observation may

be due to the fact that the RBC tends to lose its bi-
concave shape when subjected to optical stretching, to

prevent area variations of the RBC membrane. Note

that such ellipsoidal shapes were also reported in pre-

vious numerical studies (Li et al. 2005; Klöppel and

Wall 2011; Farutin et al. 2014; Sigüenza et al. 2014).

This transition from a biconcave folded shape to

a rounded shape can be characterized by introducing

two additional measurements in the direction perpen-

dicular to the plane of the RBC: the in-plane length

LP , and the folding length LF (see Fig. 6). Experi-
mental measurements of such lengths could thus be of

prime interest to make the optical tweezers experimen-

tal setup more helpful to characterize the mechanics

of the RBC membrane. Indeed, these quantities reveal
to be more sensitive to the area variation restriction

of the RBC membrane than the usual force-extension

data, and could thus enable to better investigate the
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mechanical behavior of the membrane. Such data are

also expected to be sensitive to the bending stiffness

of the RBC membrane. However, the latter is seen to

mainly influence the shape of the fold of the stretched

RBC, but is not at the origin of the transition from
the biconcave to the rounded shape. Indeed, this tran-

sition may occur even when the bending stiffness of

the RBC membrane is not considered (Sigüenza et al.

2014). The lengths LP and LF are thus expected to
be of interest to qualitatively challenge RBC modeling,

while quantitative comparisons should account for the

possible influence of the bending stiffness of the RBC

membrane.

More sophisticated measurements of the shape of

the stretched RBC must however be performed with

reasonable experimental uncertainties. One of the main

source of uncertainty is expected to come from the con-
tact areas between the beads and the RBC, which may

vary from one experiment to the other. In the present

computational setup, these contact areas are defined

by the contact size dc which is initially chosen to be

dc = 2 µm, as in the computations of Mills et al. (2004).
Figure 11 shows the influence of this contact size on the

numerical predictions of the axial (DA) and transverse

(DT ) diameters of the stretched RBC (using the mod-

eling case 6), when the contact size is successively set
to dc = 1 µm, dc = 2 µm and dc = 3 µm. It is seen

that the contact size strongly influence the prediction

of the axial diameter (DA), showing a more rigid be-

havior with increasing dc, but has no influence on the

prediction of the transverse diameter (DT ). This may
explain the large and increasing error bars obtained by

Mills et al. (2004) in the experimental measurements

of the axial diameter (DA), as compared to the smaller

and monotonous error bars obtained for the transverse
diameter (DT ). This finding sheds doubt on the mean-

ingfullness of the use of the axial diameter (DA) for

the determination of the shear modulus Es. Indeed, the

choice of the contact size dc may strongly influence the

determined value of the shear modulus Es. Conversely,
simulations should rather be fitted to the transverse di-

ameter (DT ) which is less sensitive to the choice of this

contact size.

Figure 12 shows that the contact size dc has only a

little influence on the predictions of the in-plane (LP )

and folding (LF ) lengths, which means that compar-

ison between computed and measured values of these
quantities would be robust to the uncertainties related

to the bead/RBC contact areas. The authors hope that

these findings will arouse an interest for updated optical

tweezers experiments.
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Fig. 11 Influence of the bead/RBC contact areas on the
axial (DA) and transverse (DT ) diameters, for the modeling
case 6.
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plane (LP ) and folding (LF ) lengths, for the modeling case
6.
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