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Abstract

We consider a stochastic model for the evolution of a discrete popula-
tion structured by a trait with values on a finite grid of the torus, and with
mutation and selection. Traits are vertically inherited unless a mutation
occurs, and influence the birth and death rates. We focus on a parameter
scaling where population is large, individual mutations are small but not
rare, and the grid mesh for the trait values is much smaller than the size
of mutation steps. When considering the evolution of the population on
a long time scale, the contribution of small sub-populations may strongly
influence the dynamics. Our main result quantifies the asymptotic dy-
namics of sub-population sizes on a logarithmic scale. We establish that
under the parameter scaling the logarithm of the stochastic population
size process, conveniently normalized, converges to the unique viscosity
solution of a Hamilton-Jacobi equation. Such Hamilton-Jacobi equations
have already been derived from parabolic integro-differential equations
and have been widely developed in the study of adaptation of quantita-
tive traits. Our work provides a justification of this framework directly
from a stochastic individual based model, leading to a better understand-
ing of the results obtained within this approach. The proof makes use
of almost sure maximum principles and careful control of the martingale
parts.
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1 Introduction and presentation of the model

Long-term evolutionary dynamics of biological populations may be strongly
influenced by small populations and local extinction in some areas of the phe-
notypical trait space. Survival of small populations in very large populations
is crucial when evolution proceeds by selective sweeps [24] or for the evolu-
tion of antibiotic resistance for bacteria [30, 33]. For example, in bacterial
populations involving horizontal transfer, it was shown in [6, 10] that the
individual-based long-term dynamics is very sensitive to random survival of
very small populations, which may either drive the population to evolutionary
suicide or to cyclic dynamics. In such context, the bacterial population is very
large making the tracking of small populations very challenging.

From a point of view of mathematical modeling, one wishes to consider
large population scalings allowing for survival of much smaller populations.
Two approaches emerged: a purely deterministic one, based on partial dif-
ferential equations (PDE), and a stochastic one, based on birth and death
processes (so-called individual-based models in biology). Both approaches de-
scribe exponentially small populations sizes and characterize the dynamics of
the exponents.

An analytical approach allowing to deal with negligible but non-extinct pop-
ulations was proposed in [17] and then widely developed (see for instance [31,
3, 25]) for the asymptotic study of parabolic integro-differential selection-
mutation models. Let us present it in a setting close to [3]. We consider
a population whose individuals are differentiated by a trait x ∈ T, the torus
of dimension 1, identified below with the interval [0, 1). The trait can vary
from an individual to the other. The evolution of the population is driven
by two effects: mutation of the traits, and selection as the reproductive and
survival abilities of an individual depend on its trait x. For an individual of
trait x ∈ T, let us denote by b(x) (resp. d(x) and p(x)) the clonal birth rate
(resp. the death rate and the birth rate with mutation), and by G(h) the
mutation kernel. Assuming that the population density solves the PDE

ε∂tuε(t, x) = uε(t, x) (b(x)− d(x))

+
∫
T

1
εG
(x−y

ε

)
p(y)uε(t, y)dy, (t, x) ∈ R+ × T

uε(t, 0) = exp
(
β0(x)
ε

)
, x ∈ T

(1.1)

in the limit ε→ 0 of small mutations and large time, and applying the Hopf-
Cole transformation

βε(t, x) = ε log uε(t, x), or uε(t, x) = exp

(
βε(t, x)

ε

)
, (1.2)
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it is proved in [3] (in a slightly different setting, considering x ∈ R and taking
into account a competition term) that βε converges to the unique viscosity
solution β of the Hamilton-Jacobi equation{

∂
∂tβ(t, x) = b(x)− d(x) + p(x)

∫
RG(h)eh∂xβ(t,x)dh, (t, x) ∈ R+ × T

β(0, x) = β0(x), x ∈ T.
(1.3)

Scaling limits of individual-based models on a discrete trait space with rare
mutations and large population via a scaling parameter K that will tend to
infinity, and allowing to deal with negligible populations and local extinction,
were proposed in [18, 8, 14, 15, 7]. These references focus on population sizes
of the order of Kβ, and characterize the asymptotic dynamics of the exponent
β. In particular, local extinction is possible when the exponent β hits 0. The
fact that the trait space is discrete allows to describe separately the dynamics
of each small sub-population. However, this makes the detailed description of
the asymptotic dynamics very complicated (see [14, 15]). Note that mutations
are assumed individually rare in these references, but they are more frequent
than in the scaling limits of adaptive dynamics (see e.g. [28, 16, 11, 13]), where
negligible populations either fixate or go extinct fast, due to the fact that the
populational mutation rate vanishes here. Scaling limits with non-vanishing
populational mutation rates partly solve the criticisms raised by biologists [34]
concerning the too slow evolutionary speed in adaptive dynamics, particularly
in microorganism populations. Biological criticisms were also raised for the
analytical approach [32], because of the so-called tail problem: exponentially
small populations, which may actually be extinct, can have a strong influence
on the future evolutionary dynamics of the population. In particular, evolu-
tionary branching is too fast. Modifications of the Hamilton-Jacobi equation
were proposed in [32, 29, 20] to solve this problem, but we believe that an
individual-based approach is crucial to provide a more realistic and biologi-
cally relevant solution to the tail problem.

The purpose of our work is to provide a stochastic individual-based jus-
tification of Hamilton-Jacobi equations. To our knowledge, this is the first
proof of this kind in the literature. Note however that there are many ex-
amples of spatial branching processes with space-, time- or type-dependent
branching rate, for which the exponential growth can be expressed using vari-
ational formulae over paths (see e.g. [5, 4, 9, 26, 27]). These can be seen
as Hopf-Lax variational formulae of certain Hamilton-Jacobi equations. Note
also that the Hopf-Cole transformation (1.2) is reminiscent of large deviations
scalings. Our scaling is more of a law of large numbers type. As far as we
know, the large deviations interpretation of the Hamilton-Jacobi equation can
be done through a Feynman-Kac interpretation of the PDE (1.1) [12]. How-
ever, the stochastic process involved in the Feynman-Kac formula does not
seem to be directly related to the biological population process, even though
some works suggest that it may be related to the ancestral trait process of
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living individuals [19]. None of the references above use a direct approach
from individual-based models to Hamilton-Jacobi equations.

We follow an individual-based approach, assuming a continuous trait space
with a vanishing discretization step δK , where K is a scaling parameter such

that the population is of the order of K β̃K(t,x), assuming frequent and small
mutations. In the individual-based model, individuals with trait x ∈ T give
birth to a clone at rate b(x), die at rate d(x) or give birth to a mutant at rate
p(x). Mutant traits are drawn according to a discretization of the distribu-
tion log(K)G(log(K)·). Mutation steps are of the order of 1/ log(K) and the
discretization step δK is assumed much smaller than 1/ log(K). In this first
work, we focus on the understanding of the relevant scales allowing to cap-
ture the limiting Hamilton-Jacobi dynamics. Thus, we consider a simplified
model where the birth rate b is assumed larger than the death rate d, mak-
ing the stochastic process super-critical, and the trait space has no boundary.
Generalization is a work in progress.

The proof of our main result makes use of uniform Lipschitz bounds on the
finite variation part of β̃K , obtained using an almost sure maximum principle
and careful bounds for the martingale part. The identification of the limit is
done by checking that it is almost surely a viscosity solution of (2.12). We
describe the model and state our main result in Section 2. The proof is divided
into two main steps—proof of tightness and identification of the limit—which
are detailed in Sections 3 and 4, respectively.

2 Model and main result

2.1 The model

We consider a super-critical stochastic birth-death-mutation model describing
an asexual population of individuals characterized by a quantitative pheno-
typic or genetic trait x ∈ T. Starting from a finite population whose initial
size is parameterized by K ∈ N, our goal is to recover, in the limit K → +∞,
an evolutionary dynamics described by the Hamilton-Jacobi partial differen-
tial equation (1.3). For this, we consider a discretization of the trait space T
with step δK → 0. For the sake of simplicity, we will consider in what follows
that 1/δK ∈ N. Then, the population is composed of individuals with traits
belonging to the discrete space

XK :=

{
iδK : i ∈ {0, 1, · · · , 1

δK
− 1}

}
,

embedded with the torus distance: ∀x, y ∈ [0, 1),

ρ(x, y) = min
{
|x′ − y′|, x′ = x mod 1, y′ = y mod 1

}
= min

(
|x− y|, 1− |x− y|

)
.
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It is enough to define ρ(x, y) for x, y ∈ T by considering their representative
in [0, 1).

The number of individuals with trait iδK is described by the stochastic
process (NK

i (t), t ≥ 0). The total population size at time t is then given by

NK(t) =

1/δK−1∑
i=0

NK
i (t).

An individual with trait x ∈ XK

• gives birth to a new individual with the same trait x at rate b(x);

• dies at rate d(x);

• gives birth to a mutant individual with trait y ∈ XK at rate

p(x)δK log(K)G ((y − x) log(K)) , (2.1)

where z is the unique real number of [−1/2, 1/2) that is equal to z
modulo 1, i.e. z = z − bz + 1/2c, where b·c is the integer part function.

Jumps of NK are thus of +1 or −1. In the rest of the paper, the following
assumptions are made:

Assumption 2.1. 1. We assume that b, d and p are nonnegative Lipschitz
continuous functions defined on T, such that for all x ∈ T,

b(x) > d(x) and p(x) > 0. (2.2)

This means that the birth-death process for each trait is super-critical. In the
sequel, we denote by b̄, p̄ and d̄ the upper bounds of these functions on T, by
p > 0 the lower bound of p, and by ‖b‖Lip, ‖d‖Lip and ‖p‖Lip their Lipschitz
norm.

2. The function G defined on R is a nonnegative continuous density function
(satisfying

∫
RG(y) dy = 1) and has finite exponential moments of any order.

Moreover, we assume that there exists R > 0 such that G is nonincreasing on
[R,+∞) and nondecreasing on (−∞,−R].
An example of function G satisfying Assumption 2 is given by the Gaussian
kernel G(h) = 1√

2πσ
e−h

2/2σ2
.

3. There exists a constant a1 > 0 such that, for all K ∈ N and all i ∈
{0, 1, · · · , 1

δK
− 1},

NK
i (0) ≥ Ka1 . (2.3)

4. There exists a2 < a1 such that

K−a2/4 � δK �
1

log(K)
as K → +∞. (2.4)

5



Point 4 above implies that

hK := δK log(K)� 1. (2.5)

Thus, the interpretation of (2.1) is that the rate at which x gives birth to
a mutant individual is close to p(x). Indeed, for an individual with trait
xK = iKδK with iK = bx/δKc and x ∈ T fixed,

lim
K→+∞

p(xK)

1
δK
−1∑

j=0

hKG
(

(iK − j)δK log(K)
)

= lim
K→+∞

p(xK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG (hK`)

= p(x)

∫
R
G(y) dy = p(x),

(2.6)

where we used Assumption 2.1.2 to control the tails of the Riemann sum.

Therefore, the individual mutation rate is order 1 and mutation steps are
small: conditionally on being a mutant, the trait y of the offspring has the
distribution G scaled by a factor 1/ log(K) representing the order of magnitude
of the mutation steps. Note also that (2.5) means that the mesh size is much
smaller than the mutation step.

Our goal is to study the asymptotic behavior (when K tends to infin-
ity) of the population sizes NK

i when NK
i (0) is of the order of Kαi for

some αi > 0. Note that in the case where p(x) = 0 for all x ∈ T, the
process NK

i (t) is a super-critical one-dimensional branching process, hence
E(NK

i (t)) = E(NK
i (0))e(b(iδK)−d(iδK))t. Therefore, if the initial condition is

of order Kαi , then E[NK
i (t log(K))] ∼ Kαi+(b(iδK)−d(iδK))t. This suggests to

study

βKi (t) =
log(NK

i (t log(K)))

log(K)
, (2.7)

with the convention that βKi (t) = 0 if NK
i (t log(K)) = 0. So the sub-

population of trait iδK at time t log(K) has size NK
i (t log(K)) = KβKi (t).

We make the following Lipschitz assumption on the initial condition βKi (0).

Assumption 2.2. Assume that there exists a constant A > 0 such that

lim
K→+∞

P
(

sup
i 6=j

|βKi (0)− βKj (0)|
ρ(i δK , j δK)

> A
)

= 0. (2.8)
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Notations: (i) We shall use the following Riemann approximation repeat-
edly in the proofs: for all L > 0,

lim
K→+∞

1
δK
−1∑

j=0

hKG
(

(iK − j)δK log(K)
)
eL log(K) ρ(jδK ,iKδK)

= lim
K→+∞

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG (hK`) e
LhK |`| =

∫
R
eL|y|G(y) dy, (2.9)

and thus, there exists a constant G(L) depending only on α > 0 such that

sup
K≥1

1
δK
−1∑

j=0

hKG
(

(iK − j)δK log(K)
)
eL log(K) ρ(jδK ,iKδK) = : G(L) < +∞.

(2.10)

(ii) In what follows and for any function f on {0, 1, · · · , 1
δK
− 1}, we will use

the notation

∆Kfi =
fi+1 − fi

δK
,

with the convention that f1/δK = f0.

2.2 The main result - Sketch of the proof

Since we are interested in the convergence of the quantities βKi to a continuous
function defined on the trait space T, when K → +∞ and δK → 0, we
introduce the following affine interpolation of the βKi ’s: for all x ∈ T and
K ≥ 1, let i ∈ {0, 1, · · · , 1

δK
− 1} be such that x ∈ [iδK , (i+ 1)δK), and define

β̃Kt (x) = βKi (t)
(

1− x

δK
+ i
)

+ βKi+1(t)
( x

δK
− i
)
, (2.11)

with the convention that βK1/δK (t) = βK0 (t). For T > 0, the sequence of pro-

cesses (β̃Kt , t ∈ [0, T ])K belongs to D([0, T ], C(T,R)), where C(T,R) is endowed
with the topology of uniform convergence and D([0, T ], C(T,R)) is the Skoro-
hod space of càdlàg paths with the associated Skorokhod topology.

Let us state our main theorem.

Theorem 2.3. Let T > 0. Under the Assumptions 2.1 and 2.2, and assuming
that β̃K0 (·) converges in probability for the topology of uniform convergence

on C(T,R) to a deterministic function β0(·) ∈ C(T,R), the sequence (β̃K)K
converges in probability in D([0, T ], C(T,R)) to the unique Lipschitz viscosity
solution of the Hamilton-Jacobi equation{

∂
∂tβ(t, x) = b(x)− d(x) + p(x)

∫
RG(h)eh∂xβ(t,x)dh, (t, x) ∈ (0, T ]× T

β(0, x) = β0(x), x ∈ T.
(2.12)
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The proof of Theorem 2.3 will be classically obtained in two steps: tightness
and identification of the limiting values. Therefore we will prove the two next
results, respectively in Sections 3 and 4.

Theorem 2.4. The distributions of the processes (β̃Kt , t ∈ [0, T ])K form a
C-tight sequence in P(D([0, T ], C(T,R))), the set of probability measures on
D([0, T ], C(T,R)). In addition, for all T > 0, there exists a constant L such
that, for any β distributed as a limiting value of the laws of (β̃Kt , t ∈ [0, T ])K ,
we have almost surely

sup
t∈[0,T ]

sup
x,y∈T s.t. x6=y

|β(t, x)− β(t, y)|
ρ(x, y)

≤ L. (2.13)

Theorem 2.5. The limiting values β of (β̃Kt , t ∈ [0, T ])K are characterized as
the unique Lipschitz viscosity solution of the Hamilton-Jacobi equation (2.12).

The proofs of these two results require to control the increments of the
functions β̃Kt (.). These functions can also be written as

β̃Kt (x) = (x− iδK)∆Kβ
K
i (t) + βKi (t).

From this expression, we observe that two technical steps are required: to

estimate uniformly βKi (t) and to control uniformly ∆Kβ
K
i (t) =

βKi+1(t)−βKi (t)

δK
(the second estimate being the harder part, it is a major difficulty and consti-
tutes the technical interest of the paper). Such estimates are also obtained in
the deterministic derivation of Hamilton-Jacobi equations of type (2.12) from
parabolic integro-differential equations using the maximum principle and the
Bernstein method which consists in applying again the maximum principle to
the equation satisfied by the increments (see [3]). Here, since we have stochas-
tic processes we cannot apply the Bernstein method directly. Using the Doob-
Meyer decomposition, the stochastic processes can be separated into a finite
variation part and a martingale part. We show indeed that the martingale
part remains small with our rescaling and we apply the maximum principle
almost surely on the finite variation part.

Let us detail now the semimartingale Doob-Meyer decomposition of the
processes βKi , i ∈ {0, · · · , 1/δK − 1}. Using standard arguments [1],

NK
i (t)−NK

i (0)−
∫ t

0
(b(iδK)− d(iδK))NK

i (s)ds

−
1/δK−1−b1/2δKc∑
`=−b1/2δKc

∫ t

0
hKp((i+ `)δK)G(hK`)N

K
i+`(s)ds (2.14)

8



is a square integrable martingale with quadratic variation∫ t

0
(b(iδK) + d(iδK))NK

i (s)ds

+

1/δK−1−b1/2δKc∑
`=−b1/2δKc

∫ t

0
hKp((i+ `)δK)G(hK`)N

K
i+`(s)ds.

It then follows from Itô’s formula for jump processes that

βKi (t) = MK
i (t) +AKi (t) (2.15)

with

AKi (t) = βKi (0)+
1

log(K)

∫ t log(K)

0

(
b(iδK)NK

i (s) log

(
1 +

1

NK
i (s)

)
(2.16)

+ d(iδK)NK
i (s) log

(
1− 1

NK
i (s)

))
ds

+
1

log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hK p((i+ `)δK)G(hK`)

×
∫ t log(K)

0
NK
i+`(s) log

(
1 +

1

NK
i (s)

)
ds,

with the conventions that, when the index j /∈ {0, . . . , 1/δK − 1},

NK
j = NK

j−bjδKc/δK and p(jδK) = p((j − bjδKc/δK)δK),

when j ≥ 1/δK ,

NK
j = NK

j+d|j|δKe/δK and p(jδK) = p((j + d|j|δKe/δK)δK),

when j < 0. (2.17)

The process MK
i is a local martingale with predictable quadratic variation

〈MK
i 〉t =

1

log2(K)

∫ t log(K)

0

(
b(iδK)NK

i (s) log2
(

1 +
1

NK
i (s)

)
(2.18)

+ d(iδK)NK
i (s) log2

(
1− 1

NK
i (s)

))
ds

+
1

log2(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((i+ `)δK)G(hK`)

×
∫ t log(K)

0
NK
i+`(s) log2

(
1 +

1

NK
i (s)

)
ds.
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In Section 3, we will prove technical uniform estimates on the martin-
gale part ∆KM

K
i (t) and the finite variation part ∆KA

K
i (t) of the processes

∆Kβ
K
i (t). In that aim, let us introduce sequences of stopping times playing

an important role in the proofs.
Let a ∈ (a2, a1) be fixed during the rest of the proof, a1 being defined in

(2.3) and a2 in(2.4). For any K, we define

τ ′K = inf
{
t ≥ 0,∃i ∈ {0, 1, · · · , 1

δK
− 1};NK

i (t log(K)) < Ka
}
. (2.19)

Note that βKi (t) > 0 for all t ≤ τ ′K .
For all L > 0, we also define

τK(L) = inf

{
t ≥ 0 : ∃i ∈ {0, 1, · · · , 1

δK
− 1}, |βKi+1(t)− βKi (t)| > LδK

}
,

(2.20)
with the usual convention that βK1/δK = βK0 . It is easy to check that

τK(L) = inf
{
t ≥ 0 : ∃i, j ∈ {0, 1, · · · , 1

δK
− 1},

|βKi (t)− βKj (t)| > Lρ(iδK , jδK)
}

and also

τK(L) = inf
{
t ≥ 0 : ∃x, y ∈ T, |β̃Kt (x)− β̃Kt (y)| > L ρ(x, y)

}
. (2.21)

We will study the processes until the stopping time

θK(L) = τK(L) ∧ τ ′K . (2.22)

Before the stopping time θK(L), the functions β̃Kt are Lipschitz and the popu-
lation size of each trait is bounded from below by Ka, by definition. For each
L fixed, we will provide uniform estimates on the martingale parts MK

i (t) and
∆KM

K
i (t) and the finite variation parts AKi (t) and ∆KA

K
i (t) of the processes

βKi (t) and ∆Kβ
K
i (t), before the stopping time θK(L). This will allow us to

prove that for all T , θK(L) is larger than T for L large enough (see Proposition
3.6).

3 Proof of the Theorem 2.4

We will use the criterion of Theorem 3.1 in Jakubowski [22]. To prove the
tightness of the sequence (β̃K)K≥1 in D([0, T ], C(T,R)), it is sufficient to prove:
(i) For each ε > 0, there exists a compact set Cε ⊂ C(T,R) such that

∀K, P
(
β̃K ∈ D([0, T ], Cε)

)
> 1− ε.
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(ii) For each f ∈ C(T,R), the sequence of laws of real-valued processes

XK
f (·) =

∫
T
β̃K(., x)f(x)dx (3.1)

is tight.

Point (i) is the hard part of the proof. Using Ascoli’s characterization
of compact subsets of C(T,R), we need to obtain estimates related to equi-
boundedness and to equi-continuity for the processes β̃Kt (.). The proof relies
on Lipschitz estimates (in x) of the functions β̃Kt . In Section 3.1, we show
that the martingale part of βKi (t ∧ θK(L)) remains small with our rescaling
and in Section 3.2, we apply the maximum principle almost surely on the finite
variation part of βKi (t ∧ θK(L)). This allows us to prove that θK(L) is large
enough in Section 3.3. The proof of the tightness is ended in Section 3.4.

3.1 Control of the martingale part

Our first estimate will be useful to prove the tightness of the laws of β̃K . In
the sequel, C denotes a constant not depending on any parameter and that
may change from line to line.

The following estimate will be used repeatedly: by (2.21), for all t ≤ τK(L)
and all i, j ≤ 1/δK − 1,

NK
j (t log(K))

NK
i (t log(K))

= exp(log(K)(βj(t)− βi(t)) ≤ eLρ(jδK ,iδK) log(K). (3.2)

Lemma 3.1. For all T > 0, L > 0, K > 0 and a ∈ (a2, a1), there exists
a constant C independent of K, T , L and i such that, almost surely, for all
t ≤ T and all i ∈ {0, . . . , 1/δK − 1},

〈MK
i 〉t∧θK(L) ≤

(
CG(L)

Ka log(K)

)
t. (3.3)

Further, for all A > 0,

P
(

sup
t≤T∧θK(L)

sup
i
|MK

i (t)| ≥ A
)
≤ CG(L)T

A2δKKa log(K)
. (3.4)

Proof. It follows from (2.18) that

〈MK
i 〉t∧θK(L) ≤

C(b̄+ d̄)

log2(K)

∫ (t∧θK(L)) log(K)

0

ds

NK
i (s)

+
p̄

log2(K)

∫ (t∧θK(L)) log(K)

0

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)
NK
i+`(s)

(NK
i (s))2

ds.
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Therefore, using (2.19) and (3.2), (3.3) follows. Then

P
(

sup
t≤T∧θK(L)

sup
i
|MK

i (t)| ≥ A
)
≤

1/δK−1∑
i=0

P
(

sup
t≤T∧θK(L)

|MK
i (t)| ≥ A

)

≤ 1

A2

1/δK−1∑
i=0

E
(

sup
t≤T∧θK(L)

|MK
i (t)|2

)
,

so we obtain (3.4) using Doob’s inequality and (3.3).

The second lemma gives controls on the martingale increments.

Lemma 3.2. For all T > 0, K > 0 and a ∈ (a2, a1), let us set εK =
δ−1
K (Ka log(K))−1/4. For L > 0, we define the event

ΩK(L) =

{
sup

0≤i≤1/δK−1, t≤T∧θK(L)
|∆KM

K
i (t)| ≤ εK

}
. (3.5)

Then there exists a constant C > 0 such that

P(Ωc
K(L)) ≤

C
√
G(L)T

δK(Ka log(K))1/4
. (3.6)

In addition,

P

(
sup

0≤i,j≤1/δK−1, t≤T∧θK(L)

∣∣MK
i (t)−MK

j (t)
∣∣ > εK

)
≤ C

√
G(L)TεK . (3.7)

Proof. We first prove that, for all ε > 0 and any i ∈ {0, . . . , 1/δK − 1}, for
some constant C independent of t, K, ε and L,

P
(

sup
s≤t∧θK(L)

|∆KM
K
i (s)| > ε

)
≤ C

ε

√
G(L)t

δ2
KK

a log(K)
, (3.8)

where the constant G(L) is defined in (2.10).
By the submartingale maximal lemma, we have that

P
(

sup
s≤t
|∆KM

K
i (s)| > ε

)
≤ 1

ε
E(|∆KM

K
i (t)|) ≤ 1

ε
E
(
|∆KM

K
i (t)|2

)1/2
.

Now, Lemma 3.1 yields

〈∆KM
K
i 〉t∧θK ≤

2

δ2
K

(〈MK
i+1〉t∧θK + 〈MK

i 〉t∧θK ) ≤ 4CG(L)t

δ2
KK

a log(K)
.

Hence (3.8) is proved.

12



Now, we choose ε = εK and obtain

P(Ωc
K(L)) ≤

∑
0≤i≤1/δK−1

P

(
sup

t≤T∧θK(L)
|∆KM

K
i (t)| > εK

)

≤
C
√
G(L)T

δKεKδK
√
Ka log(K)

.

This ends the proof of (3.6).

To complete the proof of Lemma 3.2, it is sufficient to notice that, since
|j − i|δK ≤ 1 for all 0 ≤ i, j ≤ 1/δK − 1, we have that

ΩK(L) ⊂

{
sup

0≤i,j≤1/δK−1, t≤T∧θK(L)

∣∣MK
i (t)−MK

j (t)
∣∣ ≤ εK} .

Note that, by (2.4), δ4
KK

a log(K) tends to infinity as K goes to infinity, so
P(ΩK(L)) tends to 1 and the probability of ΩK(L) converges to 1. From now
on, we will work on the probability subspace ΩK(L).

3.2 Control of the finite variation part

Let us now focus on the finite variation part AKi . We will prove that

Proposition 3.3. Let T > 0. Then, there exists a constant C1 such that
for K large enough, for all t ≤ T and all i ∈ {0, . . . , 1/δK − 1} the following
inequality holds almost surely on ΩK(L):

|AKi (t ∧ θK(L))| ≤ max
0≤j≤1/δK−1

βKj (0) + C1t. (3.9)

Proof. We first provide the proof of the upper bound on AKi (t ∧ θK(L)). For
simplicity we will omit the dependency in L of θK(L) when there is no ambi-
guity.

Let t and s be less than T such that s < t. Using that log(1 + x) ≤ x and

13



(3.2), and neglecting the non positive death term, we have

AKi (t ∧ θK)−AKi (s ∧ θK)

=
1

log(K)

∫ (t∧θK) log(K)

(s∧θK) log(K)

(
b(iδK)NK

i (u) log

(
1 +

1

NK
i (u)

)
+ d(iδK)NK

i (u) log

(
1− 1

NK
i (u)

))
du

+
1

log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((i+ `)δK)G(hK`)

×
∫ (t∧θK) log(K)

(s∧θK) log(K)
NK
i+`(u) log

(
1 +

1

NK
i (u)

)
du

≤ Cb̄(t− s)

+
1

log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((i+ `)δK)G(hK`)

∫ (t∧θK) log(K)

(s∧θK) log(K)

NK
i+`(u)

NK
i (u)

du

≤ Cb̄(t− s)

+

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((i+ `)δK)G(hK`)

∫ t∧θK

s∧θK
exp(log(K)(βKi+`(u)− βKi (u))du.

Recall that on ΩK(L),

βKj (u)−βKi (u) = AKj (u)−AKi (u) +MK
j (u)−MK

i (u) ≤ AKj (u)−AKi (u) + εK .

Thus we obtain that, on the event ΩK(L),

AKi (t∧θK)−AKi (s∧θK) ≤ Cb̄(t−s)+

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((i+`)δK)G(hK`)

∫ t∧θK

s∧θK
eεK log(K) exp(log(K)(AKi+`(u)−AKi (u)))du.

We deduce that, almost surely on ΩK(L) and for all t ≤ θK(L),

dAKi (t)

dt
≤ Cb̄+

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((i+ `)δK)G(hK`)

× eεK log(K) exp(log(K)(AKi+`(t)−AKi (t))) (3.10)
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Defining AK
i (t) = AKi (t)− Cb̄t− 2p̄t, we deduce that for any t ≤ θK(L),

dAK
i (t)

dt
≤ p̄eεK log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)

× exp(log(K)(AK
i+`(t)−AK

i (t)))− 2p̄. (3.11)

Let us introduce

(iK , tK) = (iK(ω), tK(ω)) = argmaxi∈{0,··· , 1
δK
−1},t∈[0,θK(ω)∧T ]A

K
i (t).

We can prove that tK = 0. Indeed, if conversely we assume that tK > 0,
then the right term of (3.11), for K large enough, is negative for i = iK and
t = tK and then the left term is negative, contradicting the fact that AK

iK
(t) is

maximal for t = tK . Hence, we have proved that for K large enough, almost
surely on the event ΩK , for all t ≤ θK(L)∧ T and for all i ∈ {0, ..., 1/δK − 1},

AKi (t) = AK
i (t) + Cb̄t+ 2p̄t ≤ max

0≤j≤1/δK
AK
j (0) + Cb̄t+ 2p̄t

= max
0≤j≤1/δK

βKj (0) + Cb̄t+ 2p̄t.

For the lower bound, we observe that, for t ≤ θK(L) ∧ T , NK
i (t) ≥ Ka and

hence, for K large enough,

log

(
1 +

1

NK
i (t)

)
≥ 0 and log

(
1− 1

NK
i (t)

)
≥ − 2

NK
i (t)

.

The proof then follows from the same argument as above.

The last result has a consequence that will be useful to prove the tightness
of β̃K in Section 3.4.

Corollary 3.4. For all T > 0, there exists C(T ) such that,

lim
K→+∞

P

(
sup

0≤i≤1/δK−1
sup

t∈[0,T∧θK(L)]
βKi (t) ≥ C(T )

)
= 0.

Proof. We use the semimartingale decomposition (2.15) of βKi , the result of
Proposition 3.3, (3.4) with A = 1 and Lemma 3.2, to deduce that, for all t ≤ T
and K large enough and i ∈ {0, 1, · · · , 1

δK
− 1},

|βKi (t ∧ θK)| ≤ sup
0≤j≤1/δK−1

|βKj (0)|+ C1T + 1

with probability at least 1 − CG(L)T
δKKa log(K) −

C
√
G(L)T

δK(Ka log(K))1/4
. Since β̃Ki (0) con-

verges in probability to β0, P(supi β
K
i (0) ≥ ‖β0‖∞ + 1) converges to 0 when

K goes to +∞. Hence the result follows with C(T ) = ‖β0‖∞ + C1T + 2.
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3.3 Estimates on θK(L)

Lemma 3.5. Under Assumption 2.1.1 and 2.1.3, for all T > 0,

lim
K→+∞

P(τ ′K ≥ T ) = 1.

Proof of Lemma 3.5. By (2.14), neglecting incoming mutations, it is easy to
prove using standard coupling arguments that for each i, the process (NK

i (t))t
is pathwisely bounded below by a branching process (ZKi (t))t with birth rate
b(iδK), death rate d(iδK) and initial condition Ka+ε for ε = a1 − a > 0. In
addition, the processes (ZKi (t))t for 0 ≤ i ≤ 1

δK
− 1 are independent. Let us

define

θ′′K = inf
{
t ≥ 0, ∃i ∈ {0, 1, · · · , 1

δK
− 1};ZKi (t log(K)) < Ka

}
.

In order to prove that limK→∞ P(τ ′K > T ) = 1, it is enough to prove that

lim
K→∞

P(θ′′K = +∞) = 1.

We have

P(θ′′K = +∞) = P
(
∀i ∈ {0, 1, · · · , 1

δK
− 1}, ∀t ≥ 0 ZKi (t log(K)) > Ka

)

=

1
δK
−1∏

i=0

P
(

inf
t≥0

ZKi (t log(K)) > Ka
)
.

Fix i ∈ {0, . . . , 1
δK
− 1}. It is usual to prove (by time change) that the prob-

ability P
(

inft≥0 Z
K
i (t log(K)) > Ka

)
is equal to the probability that a ran-

dom walk M( b(iδK)
b(iδK)+d(iδK) ,

d(iδK)
b(iδK)+d(iδK)) on Z+ (adding +1 with probability

b(iδK)
b(iδK)+d(iδK) and −1 with probability d(iδK)

b(iδK)+d(iδK)) with initial value Ka+ε

never attains Ka. This quantity is well known and equal to

1−
(d(iδK)

b(iδK)

)Ka+ε−Ka

.

Since α = maxx∈T d(x)/b(x) < 1, it follows from (2.4) that

P(θ′′K = +∞) ≥ exp

(
1

δK
log
(
1− αKa+ε−Ka))

∼ exp

(
− 1

δK
αK

a+ε−Ka

)
� 1−Ka2/4αK

a+ε−Ka
,

which tends to 1 when K tends to infinity.
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Proposition 3.6. Under the Assumptions 2.1 and 2.2, for all T > 0, there
exists LT in the definition (2.22) of θK(L) such that

lim
K→+∞

P(θK(LT ) > T ) = 1.

Proof of Proposition 3.6. In view of Lemma 3.5 it is enough to prove that there
exists LT such that limK→+∞ P (τK(LT ) > T ) = 1. For i ∈ {0, . . . , 1/δK − 1},
let us consider the increments

∆Kβ
K
i (t ∧ θK) =

βKi+1(t ∧ θK)− βKi (t ∧ θK)

δK

=∆KM
K
i (t ∧ θK) + ∆KA

K
i (t ∧ θK).

We also introduce

gKi (t) = ∆KA
K
i (t ∧ θK) +

‖p‖Lip

p
AKi+1(t ∧ θK). (3.12)

To prove the result we will show that we can control ∆Kβ
K
i (t ∧ θK). To this

end, we will first control gKi (t) using an almost sure maximum principle. We
will then use the fact that ∆KM

K
i (t) is small in ΩK(L) to obtain a control on

∆Kβ
K
i (t ∧ θK). We provide the proof in several steps.

Step 1. As a first step we prove that for all t ≤ θK(L) ∧ T ,

dgKi (t)

dt
≤ C(K,L)

+ p̄ log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)
[
gK`+i(t)− gKi (t)

]+
ehKL|`|.
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Using (2.16), we obtain for K large enough and 0 ≤ s < t ≤ T ,

gKi (t)− gKi (s)

=
1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

[
b((i+ 1)δK)NK

i+1(u) log

(
1 +

1

NK
i+1(u)

)
− b(iδK)NK

i (u) log

(
1 +

1

NK
i (u)

)]
du

+
1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

[
d((i+ 1)δK)NK

i+1(u) log

(
1− 1

NK
i+1(u)

)
− d(iδK)NK

i (u) log

(
1− 1

NK
i (u)

)]
du

+
1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)

[
p((i+ 1 + `)δK)NK

i+1+`(u) log

(
1 +

1

NK
i+1(u)

)
− p((i+ `)δK)NK

i+`(u) log

(
1 +

1

NK
i (u)

)]
du

+
‖p‖Lip
p log(K)

∫ (t∧θK) log(K)

(s∧θK) log(K)

[
b((i+ 1)δK)NK

i+1(u) log

(
1 +

1

NK
i+1(u)

)
+ d((i+ 1)δK)NK

i+1(u) log

(
1− 1

NK
i+1(u)

)]
du

+
‖p‖Lip
p log(K)

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`) p((i+ 1 + `)δK)

×NK
i+1+`(u) log

(
1 +

1

NK
i+1(u)

)
du

≤ C(b̄+ d̄)

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

[
1

NK
i+1(u)

+
1

NK
i (u)

]
du

+ (C1(b̄+ d̄) + ‖b‖Lip + ‖d‖Lip)(t ∧ θK − s ∧ θK)

+
1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×
[
NK
`+i+1(u) log

(
1 +

1

NK
i+1(u)

)
−NK

`+i(u) log

(
1 +

1

NK
i (u)

)]
du

+
3‖p‖Lip
p log(K)

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

NK
`+i+1(u) log

(
1 +

1

NK
i+1(u)

)
du, (3.13)

where we used to prove the last inequality that, for all x such that |x| ≤ 1/2,
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we have ∣∣∣∣1x log(1 + x)

∣∣∣∣ ≤ C, (3.14)

∣∣∣∣1x log(1 + x)− 1

y
log(1 + y)

∣∣∣∣ ≤ C(|x|+ |y|), (3.15)

and the fact that (recalling the convention (2.17) and that p is periodic)

|p((`+ i+ 1)δK)− p((`+ i)δK)|

=p((`+ i)δK)
|p((`+ i+ 1)δK)− p((`+ i)δK)|

p((`+ i)δK)

≤
‖p‖LipδK

p
p((`+ i)δK).

(3.16)

Note also that, to obtain the last inequality (3.13), we have taken K large

enough such that
‖p‖LipδK

p ≤ 1, so that

p((`+ i+ 1)δK) ≤ 2p((`+ i)δK).

Next, notice that for all x′, y′, x, y such that |x|, |y| ≤ 1/2,

1

y′
log(1 + y)− 1

x′
log(1 + x) ≤ y

y′
− x

x′
+ C

(y2

y′
+
x2

x′

)
. (3.17)

Using this inequality and (3.2), we have

1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×

[
NK
`+i+1(u) log

(
1 +

1

NK
i+1(u)

)
−NK

`+i(u) log

(
1 +

1

NK
i (u)

)]
du

≤ 1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×

[
NK
`+i+1(u)

NK
i+1(u)

−
NK
`+i(u)

NK
i (u)

]
du

+
Cp̄

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)e
LhK |`|

×

[
1

NK
i+1(u)

+
1

NK
i (u)

]
du.
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Therefore, using (2.10) and the definition of τ ′K , we have proved that

gKi (t)− gKi (s)

≤
(
CḠ(L) log(K)

Ka hK
+ C

)
(t− s)

+
1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×

[
NK
`+i+1(u)

NK
i+1(u)

−
NK
`+i(u)

NK
i (u)

]
du

+
3‖p‖Lip

p log(K)

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×
NK
`+i+1(u)

NK
i+1(u)

du.
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Using that for any real numbers λ, α, eλ ≤ eα + eλ(λ− α), we have

1

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×

[
NK
`+i+1(u)

NK
i+1(u)

−
NK
`+i(u)

NK
i (u)

]
du

≤ log(K)

hK

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×
(
βK`+i+1

( u

log(K)

)
− βK`+i

( u

log(K)

)
− (βKi+1

( u

log(K)

)
− βKi

( u

log(K)

)
)
)NK

`+i+1(u)

NK
i+1(u)

du

≤
∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

(
∆Kβ

K
`+i

( u

log(K)

)
−∆Kβ

K
i

( u

log(K)

)) NK
`+i+1(u)

NK
i+1(u)

du

≤
∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×
(

∆KM
K
`+i

( u

log(K)

)
−∆KM

K
i

( u

log(K)

)
+ ∆KA

K
`+i

( u

log(K)

)
−∆KA

K
i

( u

log(K)

))NK
`+i+1(u)

NK
i+1(u)

du,
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using (2.15). Thus, using (2.4) and (3.12), we deduce that

gKi (t)− gKi (s)

−
∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×
(
gK`+i

( u

log(K)

)
− gKi

( u

log(K)

)) NK
`+i+1(u)

NK
i+1(u)

du

≤C0(K,L)(t− s)

+
3‖p‖Lip
p log(K)

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)
NK
`+i+1(u)

NK
i+1(u)

du

− ‖p‖Lip
p

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

(
β`+i+1

( u

log(K)

)
− βi+1

( u

log(K)

)) NK
`+i+1(u)

NK
i+1(u)

du

+
‖p‖Lip
p

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

(
M`+i+1

( u

log(K)

)
−Mi+1

( u

log(K)

)) NK
`+i+1(u)

NK
i+1(u)

du

+

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

(
∆KM

K
`+i

( u

log(K)

)
−∆KM

K
i

( u

log(K)

)) NK
`+i+1(u)

NK
i+1(u)

du,

where

C0(K,L) = C +
CḠ(L)

δKKa
.

Now, using (3.2), we have on the event ΩK(L) (recall (3.5)) whose probability
tends to 1 (by Lemma 3.2) that

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

∣∣∣∣∆KM
K
`+i

( u

log(K)

)
−∆KM

K
i

( u

log(K)

)∣∣∣∣ NK
`+i+1(u)

NK
i+1(u)

du

≤ 2p̄ log(K)(t− s)εK
∑
`∈Z

hKG(hk`)e
LhK |`| ≤ 2p̄ log(K)εKḠ(L)(t− s),

using (2.10) again. Similarly, using (3.7), we have that on the event ΩK(L),
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with a probability tending to 1,

∫ (t∧θK) log(K)

(s∧θK) log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×
∣∣∣∣M`+i+1

( u

log(K)

)
−Mi+1

( u

log(K)

)∣∣∣∣ NK
`+i+1(u)

NK
i+1(u)

du

≤ p̄ log(K)εKḠ(L)(t− s).

To conclude, we use the inequality ex(3− x) ≤ e2 for all x ∈ R to deduce that

NK
`+i+1(u)

NK
i+1(u)

[
3− log(K)

(
β`+i+1

( u

log(K)

)
− βi+1

( u

log(K)

))]
≤ e2.

Combining the four previous inequalities, we deduce that on the event ΩK(L),

gKi (t)− gKi (s) ≤ C(K,L)(t− s)

+ p̄ log(K)

∫ (t∧θK)

(s∧θK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)
[
gK`+i(v)− gKi (v)

]+
ehKL|`|dv,

where [x]+ = x ∨ 0 is the positive part of x and

C(K,L) = C +
CḠ(L)

δKKa
+ 2p̄ log(K)εKḠ(L) +

‖p‖Lip

p
p̄e2.

Thus, for all t ≤ θK(L) ∧ T , and on the event ΩK(L),

dgKi (t)

dt
≤ C(K,L)

+ p̄ log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)
[
gK`+i(t)− gKi (t)

]+
ehKL|`|.

Step 2. We next provide an upper bound on gKi (t). To this end, we will use the
maximum principle for ω ∈ ΩK(L) fixed. Defining g̃Ki (t) = gKi (t)−2C(K,L)t,
we deduce that for any t ≤ θK(L) ∧ T ,

dg̃Ki (t)

dt
< p̄ log(K)

×
1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG(hK`)
[
g̃K`+i(t)− g̃Ki (t)

]+
ehKL|`|. (3.18)
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Let us introduce

(iK , tK) = (iK(ω), tK(ω)) = argmaxi∈{0,··· , 1
δK
−1},t∈[0,θK(ω)∧T ] g̃

K
i (t)

and let us prove that
tK = 0.

By contradiction, if we assume that tK > 0, then the right term of (3.18) is
non-positive for i = iK and then the left term is negative, contradicting the
fact that g̃KiK (t) is maximal for t = tK . Hence, we have proved that, almost
surely on the event ΩK(L), for all t ≤ θK(L) ∧ T and 0 ≤ i ≤ 1/δK − 1,

gKi (t) =g̃Ki (t) + 2C(K,L)t

≤ max
0≤j≤1/δK−1

g̃Kj (0) + 2C(K,L)t

= max
0≤j≤1/δK−1

gKj (0) + 2C(K,L)t.

Step 3. We next provide an upper bound on |∆Kβ
K
i | which will allow us to

conclude the proof. By Proposition 3.3, for t ≤ T ,

∆Kβ
K
i (t ∧ θK) = gKi (t)−

‖p‖Lip

p
AKi+1(t ∧ θK) + ∆KM

K
i (t ∧ θK)

≤ max
0≤j≤1/δK

gKj (0) + 2C(K,L)t

+
‖p‖Lip

p

(
max

0≤j≤1/δK−1
βKi (0) + C1t

)
+ εK .

A similar argument applied to (βKi (t∧θK)−βKi−1(t∧θK))/δK gives the converse
inequality, so, recalling that AKi (0) = βKi (0), we finally obtain that there exists
a constant C independent of K, i, t and L such that, almost surely on the
event ΩK(L), for all i ∈ {0, . . . , 1/δK − 1} and t ≤ T ,

|∆Kβ
K
i (t ∧ θK)| ≤ C

[
max

0≤j≤1/δK−1

(
|∆Kβ

K
i (0)|+ βKi (0)

)
+ 1 + T

+ Ḡ(L)T

(
1

δKKa
+ εK log(K)

)]
.

Finally, defining Ω̃K as the event of probability converging to 1 where

max
0≤j≤1/δK−1

|∆Kβ
K
i (0)|+ βKi (0) ≤ A+ ‖β0‖∞ + 1,

where the constant A comes from Assumption 2.2, on the event ΩK(L)∩ Ω̃K ,
we have for t ≤ T ,

|∆Kβ
K
i (t ∧ θK)| ≤ C

[
A+ ‖β0‖∞ + 2 + T + Ḡ(L)T

(
1

δKKa
+ εK log(K)

)]
.
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To conclude the proof of Proposition 3.6, we first fix T > 0, set

LT = C(A+ ‖β0‖∞ + 3 + T ) (3.19)

and choose K large enough such that C T Ḡ(L)
(

1
δKKa + εK log(K)

)
< 1.

Then
P(τK(LT ) > T ) ≥ P(ΩK(LT ) ∩ Ω̃K) −−−−→

K→∞
1.

Combining the last estimate with Lemma 3.5 ends the proof of Proposition 3.6.

3.4 Proof of Theorem 2.4

In a first step, we prove that the sequence of laws of (β̃Kt , t ∈ [0, T ])K is tight
in P(D([0, T ], C(T,R))). We will then check that it is actually C-tight.

Let us recall that the random functions β̃K ∈ D([0, T ], C(T,R)) are defined
in (2.11) as follows. For all x ∈ T, let i ∈ {0, . . . , 1/δK − 1} be such that
x ∈ [iδK , (i+ 1)δK), and set

β̃Kt (x) := β̃K(t, x) = βKi (t)
(

1− x

δK
+ i
)

+ βKi+1(t)
( x

δK
− i
)
,

where, by convention, βK1/δK (t) = βK0 (t).
Let us recall that the proof of Theorem 2.4 is based on the criterion of

Jakubovski [22] recalled in Section 3. Our goal is to prove Conditions (i)
and (ii) therein.

Let us first prove (i). By Ascoli’s Theorem, we know that a compact set Kε

is a set of equi-continuous and equi-bounded functions. By Corollary 3.4 and
Proposition 3.6, we have, on the event {θK(LT ) > T} of probability converging
to 1 when K tends to infinity, that, for all x ∈ T and all t ∈ [0, T ],

β̃Kt (x) = (x− iδK)∆Kβ
K
i (t) + βKi (t) ≤ LT δK + C(T ),

so the sequence (β̃Kt , t ∈ [0, T ])K is equi-bounded. Furthermore, recall that,
by (2.21), for x, y ∈ T,∣∣∣β̃Kt (x)− β̃Kt (y)

∣∣∣ = ρ(x, y) sup
0≤j≤1/δK−1

∣∣∆Kβ
K
j (t)

∣∣ ≤ LTρ(x, y).

We deduce that the sequence is equi-continuous and (i) is proved.
Let us now prove (ii), i.e. that for all f ∈ C(T,R), the sequence of laws of

the real-valued processes

XK
f (t) =

∫
T
β̃K(t, x)f(x)dx

=

1/δK−1∑
i=0

[
βKi (t)

∫ (i+1)δK

iδK

(
1 + i− x

δK

)
f(x)dx

+ βKi+1(t)

∫ (i+1)δK

iδK

( x

δK
− i
)
f(x)dx

]
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is tight. Recalling that βKi (t) = AKi (t) + MK
i (t), the process XK

f is a local

semi-martingale with Doob-Meyer decomposition XK
f = AKf +MK

f , where

AKf (t) =
∑
i

[
AKi (t)

∫ (i+1)δK

iδK

(1 + i− x

δK
)f(x)dx

+AKi+1(t)

∫ (i+1)δK

iδK

(
x

δK
− i)f(x)dx

]
and MK

f is defined similarly using MK
i (t) instead of AKi (t).

We use Aldous and Rebolledo criteria (see for example Joffe-Métivier [23])
to prove the tightnes of the sequence (XK

f ). Let S be a stopping time for the
filtration of the underlying Poisson point measures, a.s. in [0, T ]. We need to
estimate for α > 0, the quantity P(|AKf ((S+α)∧T )−AKf (S)| > η) for η > 0.
From (2.16), we deduce

AKf ((S + α) ∧ T )−AKf (S) =∑
i

{(∫ (i+1)δK

iδK

(1 + i− x

δK
)f(x)dx

)
[

1

log(K)

∫ ((S+α)∧T ) log(K)

S log(K)

(
b(iδK)NK

i (s) log

(
1 +

1

NK
i (s)

)

+ d(iδK)NK
i (s) log

(
1− 1

NK
i (s)

))
ds

+
1

log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

×
∫ ((S+α)∧T ) log(K)

S log(K)
NK
`+i(s) log

(
1 +

1

NK
i (s)

)
ds

]

+

(∫ (i+1)δK

iδK

(
x

δK
− i)f(x)dx

)

×

[
1

log(K)

∫ ((S+α)∧T ) log(K)

S log(K)

(
b((i+ 1)δK)NK

i+1(s) log

(
1 +

1

NK
i+1(s)

)

+ d((i+ 1)δK)NK
i+1(s) log

(
1− 1

NK
i+1(s)

))
ds

+
1

log(K)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i+ 1)δK)G(hK`)

×
∫ ((S+α)∧T ) log(K)

S log(K)
NK
`+i+1(s) log

(
1 +

1

NK
i+1(s)

)
ds

]}
.
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Using (3.14) and the definition of θK(LT ), proceeding as in the proof of Propo-
sition 3.6 we have

E(|AKf ((S + α) ∧ θK(LT ) ∧ T )−AKf (S ∧ θK(LT ))|)

≤ C

log(K)

1/δK−1∑
i=0

∫ (i+1)δK

iδK

|f(x)|dx

{
2(b̄+ d̄)α log(K)

+

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i)δK)G(hK`)

× E
(∫ ((S+α)∧θK(LT )∧T ) log(K)

(S∧θK(LT )) log(K)

NK
`+i(s)

NK
i (s)

ds
)

+

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ i+ 1)δK)G(hK`)

× E
(∫ ((S+α)∧θK(LT )∧T ) log(K)

(S∧θK(LT )) log(K)

NK
`+i+1(s)

NK
i+1(s)

ds
)}

≤ αC
[
2(b̄+ d̄) + 2p̄G(L)

]
‖f‖∞.

By Proposition 3.6, θK(LT ) > T with probability converging to 1, so we
deduce from Markov’s inequality that, for all ε > 0 and η > 0, there exists α
such that,

lim sup
K→+∞

sup
S

P(|AKf ((S + α) ∧ T )−AKf (S)| > η) ≤ ε,

where the supremum is taken over all stopping times S ≤ T . This is Aldous
criterion for AKf (t).

It remains to prove a similar property replacing AKf by 〈MK
f 〉. This can be

done similarly using (2.18). Computations are actually simpler by Lemma 3.1.

Hence we have proved that the sequence of laws of (β̃Kt , t ∈ [0, T ])K is
relatively compact in P(D([0, T ], C(T,R))). We prove below that this sequence
is actually C-tight and that the Lipschitz estimate (2.13) is satisfied with the
value of LT of Proposition 3.6.

Since |βKi (t)− βKi (t−)| ≤ C/ log(K) for any K, i and t, we have

lim
K

P(sup
t≤T
‖β̃Kt − β̃Kt−‖∞ > ε) = 0.

Then, we deduce from Proposition 3.26 in Jacod-Shiryaev [21, p.315] that, for
all f ∈ C(T,R), the sequence of laws of XK

f defined in (3.1) is C-tight. We

proceed by contradiction to deduce that (β̃K) is also C-tight: if this is not
true, there exists an event Ω1 of positive probability such that, for all ω ∈ Ω1,
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there exists t0(ω), α(ω) and a ball B(ω) ⊂ T of positive radius such that, for
all x ∈ B,

|β̃Kt0 (x)− β̃Kt0−(x)| > α. (3.20)

Therefore, there exists non-random α > 0 and ε > 0 and i ∈ {0, 1, . . . , b1/εc−
1} and an event Ω2 ⊂ Ω1 of positive probability such that (3.20) holds true for
all x ∈ [iε, (i + 1)ε] and for this non-random α. Now, we define fi ∈ C(T,R)
with support in [iε, (i+1)ε] and positive on (iε, (i+1)ε). Then, for all ω ∈ Ω2,

lim inf
K→+∞

|XK
fi

(t0)−XK
fi

(t0−)| ≥ α inf
x∈[(i+1/3)ε,(i+2/3)ε]

|fi(x)| > 0.

This is a contradiction with the C-tightness of (XK
fi

).
We now prove the Lipschitz estimate for β. Using the Skorohod represen-

tation theorem, we can construct copies β̂K of β̃K and β̂ of β in the Polish
space D([0, T ], C(T,R)), such that (β̂K) converges (up to a subsequence) al-
most surely for the L∞ norm on [0, T ] to β̂. We then define

τ̂K = inf
i 6=j∈{0,...,1/δK−1}

inf

{
t ≥ 0 :

|β̂K(t, iδK)− β̂K(t, jδK)|
ρ(iδK , jδK)

> LT

}
.

Then τ̂K is distributed as τK in (2.20). It then follows from Propostion 3.6
that τ̂K > T with probability converging to 1. Hence, for all x 6= y ∈ T,
almost surely

|β̂(t, x)− β̂(t, y)| = lim
K→+∞

|β̂K(t, x)− β̂K(t, y)| ≤ LT ρ(x, y).

By continuity of β̂ we deduce that this property holds, almost surely, for all
x, y ∈ T.

4 Identification of the limit as a viscosity solution
of a Hamilton-Jacobi equation

Theorem 2.3 will be deduced from Theorems 2.4 and 2.5. In the previous
section, we proved Theorem 2.4, i.e. the C-tightness of the laws of (β̃Kt , t ∈
[0, T ])K for all T > 0. Hence, the sequence of laws of (β̃Kt , t ∈ [0, T ])K admits
at least one limiting value. Our aim is now to prove Theorem 2.5, i.e. to
identify the limiting path as the unique viscosity solution of the Hamilton-
Jacobi equation (2.12).

Let β be distributed as a limiting value of the laws of (β̃Kt , t ∈ [0, T ])K . By
Theorem 2.4, β belongs to C([0, T ] × T, [0,+∞)). In the sequel and with an
abuse of notation, we denote again by (β̃Kt , t ∈ [0, T ])K the subsequence that
converges in distribution to β.

We define ÃK as the piecewise affine interpolation of the AKi as we did

for β̃K in (2.11). It follows from Lemma 3.1 that ÃK − β̃K converges in
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law, and thus in probability, to 0. Therefore (ÃK − β̃K , β̃K) converges in
law to (0, β) and thus (ÃK , β̃K) converges in law to (β, β). We apply the
Skorokhod’s representation theorem to the random variables (β̃K , ÃK , β) on
the Polish space D([0, T ], C(T))×C([0, T ]×T)2: there exist a new probability

space (Ω̂, Â, P̂), and random processes β̂K , ÂK , β̂ and M̂K = β̂K − ÂK on this
space such that (ÂK , β̂K) has the same distribution as (ÃK , β̃K) and converges
almost surely to (β̂, β̂), where β̂ has the same distribution as β. Let us denote
by Ω̂0 the event where the convergence holds.

We also define for the value LT introduced in Proposition 3.6

Ω̂K =

{
ω ∈ Ω̂ : sup

x∈T
sup
t∈[0,T ]

|M̂K(t, x)| ≤ ε′K ,

‖β̂K‖Lip ≤ LT , inf
(t,x)∈[0,T ]×T

β̂K(t, x) ≥ a

}
,

where ε′K = δ
−1/2
K K−a/2 converges to 0 by (2.4). It follows from Lemma 3.1,

Proposition 3.6 and Lemma 3.5 that P(Ω̂K)→ 1 when K → +∞.
Notice that, for K fixed, both ÂK and β̂K are càdlàg functions almost surely

with values in the set of piecewise affine functions of x between the grid points
iδK (this set of càdlàg functions is a measurable subset of D([0, T ], C(T))). We

set ÂKi (t) = ÂK(t, iδK), β̂Ki (t) = β̂K(t, iδK) and N̂K
i (t) = K β̂Ki (t/ log(K)) for

all i ∈ {0, . . . , 1/δK−1}. In addition, the processes ÂKi and N̂K
i satisfy almost

surely the relation (2.16) for all t ∈ [0, T ], because (2.16) involves measurable
functions of the processes ÂKi and N̂K

i . We define Ω̂1 as the event where these
almost-sure properties hold true and we notice that the set

Ω0 = Ω̂0 ∩ Ω̂1 ∩ lim sup
K→+∞

Ω̂K

has probability 1.
To prove that β is a viscosity sub-solution of Equation (2.12), we work ω by

ω in Ω0. Let ω ∈ Ω0 and T > 0 and consider a smooth function ϕ : [0, T ]× T
(depending on ω) such that β̂(ω) − ϕ attains a strict global maximum on
[0, T ]× T at the point (t̄(ω), x̄(ω)) such that t̄(ω) > 0. We will prove that

∂

∂t
ϕ(t̄, x̄) ≤ b(x̄)− d(x̄) + p(x)

∫
R
G(h)eh∂xϕ(t̄,x̄)dh.

Since ÂK(ω) is continuous and converges in L∞([0, T ]× T) to β, there exists
for K large enough a local maximum of ÂK(ω) − ϕ on [0, T ] × T at a point
(tK(ω), xK(ω)) such that (tK(ω), xK(ω)) → (t̄(ω), x̄(ω)) as K → ∞. Assume
K is large enough so that tK(ω) > 0.

From now on, we will omit the dependencies with respect to ω ∈ Ω0 to avoid
heavy notation.
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Defining iK ∈ {0, . . . , 1/δK − 1} such that iKδK ≤ xK < (iK + 1)δK , we
have
∂

∂t
ÂK(tK , xK) = (1− xK

δK
+ iK)

d

dt
ÂKiK (tK) + (

xK
δK
− iK)

d

dt
ÂKiK+1(tK)

= (1− xK
δK

+ iK)N̂K
iK

(tK log(K))
(
b(iKδK) log

(
1 +

1

N̂K
iK

(tK log(K))

)
+ d(iKδK) log

(
1− 1

N̂K
iK

(tK log(K))

))
+ (

xK
δK
− iK)N̂K

iK+1(tK log(K))
(
b
(
(iK + 1)δK

)
log
(
1 +

1

N̂K
iK+1(tK log(K))

)
+ d
(
(iK + 1)δK

)
log
(
1− 1

N̂K
iK+1(tK log(K))

))

+ (1− xK
δK

+ iK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ iK)δK)G(hK`)

× N̂K
`+iK

(tK log(K)) log
(
1 +

1

N̂K
iK

(tK log(K))

)
+ (

xK
δK
− iK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ iK + 1)δK)G(hK`)

× N̂K
`+iK+1(tK log(K)) log

(
1 +

1

N̂K
iK+1(tK log(K))

)
.

Using that for all x ≥ −1/2,

b log(1 + x) + d log(1− x) ≤ (b− d)x. (4.1)

and using β̂K(t, x) ≥ a for K large enough (by definition of Ω0), we deduce
that

∂

∂t
ÂK(tK , xK) ≤ (1− xK

δK
+ iK)

(
b(iKδK)− d(iKδK)

)
(1 +

C

Ka
)

+ (
xK
δK
− iK)

(
b((iK + 1)δK)− d((iK + 1)δK)

)
(1 +

C

Ka
)

+ (1− xK
δK

+ iK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ iK)δK)G(hK`)

× elog(K)(β̂K`+iK
(tK)−β̂KiK (tK))

(1 +
C

Ka
)

+ (
xK
δK
− iK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKp((`+ iK + 1)δK)G(hK`)

× elog(K)(β̂K`+iK+1(tK)−β̂KiK+1(tK))
(1 +

C

Ka
)
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We next use the fact that µ, b and d are C1 functions in T to obtain, modifying
the constant C if necessary,

∂

∂t
ÂK(tK , xK) ≤

(
b(xK)− d(xK) + CδK)(1 +

C

Ka
)

+ (1− xK
δK

+ iK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hK(p(xK) + CδK(|`|+ 1))G(hK`)

× elog(K)(β̂K`+iK
(tK)−β̂KiK (tK))

(1 +
C

Ka
)

+ (
xK
δK
− iK)

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hK(p(xK) + CδK(|`|+ 1))G(hK`)

× elog(K)(β̂K`+iK+1(tK)−β̂KiK+1(tK))
(1 +

C

Ka
) (4.2)

Since (tK , xK) is a maximum point of ÂK − ϕ, we deduce that

β̂Kj (tK)− β̂KiK (tK)

= β̂K(tK , jδK)− β̂K(tK , xK)−
(
β̂KiK (tK)− β̂K(tK , xK)

)
≤ ϕ(tK , jδK)− ϕ(tK , xK) + M̂K(tK , jδK)− M̂K(tK , xK)

−
(
β̂KiK (tK)− β̂K(tK , xK)

)
and similarly for β̂Kj+1(tK)− β̂KiK+1(tK). In addition,

ϕ(tK , jδK)− ϕ(tK , xK)

≤ (j − iK)δK∂xϕ(tK , xK) +O(|xK − iKδK |) +O(|j − iK |2δ2
K).

Therefore, since ω ∈ lim sup Ω̂K , there exists a subsequence in K (still denoted
K) along which

β̂Kj (tK)− β̂KiK (tK)

≤ (j − iK)δK∂xϕ(tK , xK) + C
(
|xK − iKδK |+ |j − iK |2δ2

K + εK
)

≤ (j − iK)δK∂xϕ(tK , xK) + C(|j − iK |2δ2
K + δK + εK)

and

β̂Kj+1(tK)− β̂KiK+1(tK) ≤ (j − iK)δK∂xϕ(tK , xK) + C(|j − iK |2δ2
K + δK + εK).
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Combining these inequalities with (4.2), we obtain

∂

∂t
ϕ(tK , xK) ≤ ∂

∂t
ÂK(tK , xK) ≤

(
b(xK)− d(xK) + CδK)(1 +

C

Ka
)

+

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hK(p(xK) + CδK(|`|+ 1))G(hK`)

× ehK`∂xϕ(tK ,xK)+C
(hK`)

2

log(K)
+o(1)

(1 +
C

Ka
) (4.3)

Note that the first inequality above comes from the fact that (tK , xK) ∈
(0, T ] × T is a maximum point of ÂK − ϕ in [0, T ] × T, with the maximum
being attained possibly on {T} × T. Since p(xK)→ p(x̄) when K → +∞, to
prove the convergence of the sum in the right-hand side of (4.3), it is sufficient
to study the convergence of

S =

1/δK−1−b1/2δKc∑
`=−b1/2δKc

hKG
(
hK`

)
e
hK`∂xϕ(tK ,xK)+C

(hK`)
2

log(K) .

Recall from Assumption 2.1 that G is continuous and that there exists R > 0
such that G is nonincreasing on [R,+∞) and nondecreasing on (−∞,−R].
We first notice that

S0 =

bR/hKc∑
`=b−R/hKc

hKG
(
hK`

)
e
hK`∂xϕ(tK ,xK)+C

(hK`)
2

log(K)

is a Riemann sum which converges to
∫ R
−RG(y)ey∂xϕ(t̄,x̄)dy. Hence we only

have to deal with the remainder S − S0. We detail the analysis for

S+ =

1/δK−1−b1/2δKc∑
`=bR/hKc+1

hKG
(
hK`

)
e
hK`∂xϕ(tK ,xK)+C

(hK`)
2

log(K) .

A similar computation applies to the lower tail.

For all ε > 0, there exists K0 such that for K ≥ K0, |∂xϕ(tK , xK) −
∂xϕ(t̄, x̄)| ≤ ε. Hence, setting q = ∂xϕ(t̄, x̄) and recalling that G is nonin-
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creasing on [R,+∞), for K large enough,

S+ ≤
1/δK−1−b1/2δKc∑
`=bR/hKc+1

hKG
(
hK`

)
e
qhK`+C

(hK`)
2

log(K)
+εhK |`|

≤
1/δK−1−b1/2δKc∑
`=bR/hKc+1

∫ hK`

hK(`−1)
G
(
hK`

)
e
qhK`+C

(hK`)
2

log(K)
+εhK |`| dy

≤
∫ hK/2δK

R
G(y)e

qy+|q|hK+C
y2+hK (2|y|+hK ))

log(K)
+ε(|y|+hK)

dy

≤
∫ log(K)

R
G(y)e

qy+C
y2+2hK |y|

log(K)
+ε|y|

(1 + ε) dy.

Observing that, for |y| ≤ (log(K))1/3,

y2 + 2hK |y|
log(K)

≤ (log(K))−1/3 + 2δK(log(K))1/3 → 0

when K → +∞ and that, for |y| ≤ log(K), y2+2hK |y|
log(K) ≤ y + 2hK , we can

decompose the domain integration as

[R, log(K)] = [R, (log(K))1/3) ∪ [(log(K))1/3, log(K)]

to deduce that, for K large enough,

S+ ≤ (1 + 2ε)

∫ (log(K))1/3

R
G(y)eqy+ε|y|dy

+ (1 + 2ε)

∫ log(K)

(log(K))1/3
G(y)e(q+C)y+ε|y|dy

≤ (1 + 2ε)

∫ +∞

R
G(y)eqy+ε|y|dy +

1 + 2ε

e(log(K))1/3

∫
R
G(y)e(q+C+2)|y|dy.

For the second inequality, we used that, for ε < 1, eε|y| ≤ e2|y|−(log(K))1/3 for
all y ≥ (log(K))1/3. Now, by dominated convergence,∫ +∞

R
G(y)eqy+ε|y|dy −−−→

ε→0

∫ +∞

R
G(y)eqydy.

To conclude, recalling that q = ∂xϕ(t̄, x̄), we have proved that

lim sup
K→+∞

S ≤
∫
R
G(y)ey∂xϕ(t̄,x̄)dy.

Therefore,

∂

∂t
ϕ(t̄, x̄) ≤ b(x̄)− d(x̄) + p(x̄)

∫
R
G(h)eh∂xϕ(t̄,x̄)dh.
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We conclude that β is a viscosity sub-solution of (2.12) in (0, T ]× T.
Following similar arguments, we can prove that β is a viscosity super-

solution, and hence a viscosity solution of (2.12) in (0, T ] × T. The result
then follows from uniqueness of a Lipschitz viscosity solution of (2.12) [2].
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