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Sepideh Mirrahimi∗ Benôıt Perthame†‡ Joe Yuichiro Wakano§

February 6, 2013

Abstract

We study a model of competition for resource through a chemostat-type model where species
consume the common resource that is constantly supplied. We assume that the species and resources
are characterized by a continuous trait. As already proved, this model, although more complicated
than the usual Lotka-Volterra direct competition model, describes competitive interactions leading
to concentrated distributions of species in continuous trait space.

Here we assume a very fast dynamics for the supply of the resource and a fast dynamics for death
and uptake rates. In this regime we show that factors that are independent of the resource com-
petition become as important as the competition efficiency and that the direct competition model
is a good approximation of the chemostat. Assuming these two timescales allows us to establish a
mathematically rigorous proof showing that our resource-competition model with continuous traits
converges to a direct competition model. We also show that the two timescales assumption is
required to mathematically justify the corresponding classic result on a model consisting of only
finite number of species and resources (MacArthur, R. Theor. Popul. Biol. 1970:1, 1-11).

This is performed through asymptotic analysis, introducing different scales for the resource
renewal rate and the uptake rate. The mathematical difficulty relies in a possible initial layer for
the resource dynamics.

The chemostat model comes with a global convex Lyapunov functional. We show that the
particular form of the competition kernel derived from the uptake kernel, satisfies a positivity
property which is known to be necessary for the direct competition model to enjoy the related
Lyapunov functional.

Key-Words: Ecological competition for resource; Direct competition; Multiscale analysis; Lyapunov
functional, Adaptive dynamics.
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1 Introduction

In order to faithfully capture the dynamics of species competition, a detailed mechanism such as
species-resource dynamics should be explicitly modeled. On the other hand, specifying a particular
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mechanism narrows the applicability of a model. This is why conceptual and simple Lotka-Volterra
type models of direct competition are widely and intensively studied. Then a natural question arises:
Can we reduce a species-resource dynamics model into a Lotka-Volterra model? If so, how are pa-
rameters (e.g., intrinsic growth rates, competition coefficients) determined by those of the original
mechanistic model?

These questions are central when studying the evolutionary origin of species diversity which has
been one of the most important problems in evolutionary ecology. Individuals with similar traits (e.g.
body size or shape) face strong competition, which might lead to adaptive radiation. Using models of
competition-driven speciation, several theoretical studies have shown that the species distribution in
continuous trait space often evolve toward single peak or multiple peaks that are distinct from each
other (see [22, 13, 11, 21, 16, 20]). Although many previous results are derived from a simple model
that assumes direct species competition of Lotka-Volterra type, competitive interaction among species
generally occurs in competition for resource such as prey or nutrient. For example, birds with similar
beak shapes are in competition because they utilize similar food resource. Another example is found
in ecological stoichiometry where consumer species with similar C:N:P (carbon: nitrogen: phosphorus
ratio) requirements experience competition for nutrient supply with their optimal C:N:P ratio (see
[23]). Thus, the competitive interaction should be modeled not directly but implicitly through the
resource. Recently, we have proposed such a mechanistic model of species competition where species
(with continuous trait) compete for common resource (which is characterized by another continuous
’trait’ or ’type’) which is constantly supplied (chemostat-type model) (see [20]). We have shown that
evolutionary branching, which is parallel to adaptive radiation, is possible in this chemostat-type
model as well, supporting the results previously obtained by direct competition models.

This paper aims the reduction of a mechanistic model of species-resource dynamics to a more
conceptual model of direct species competition. In Section 2, we describe our chemostat model of
species-resource dynamics and a brief summary of our reduction result. Section 3 is devoted to a
rigorous description of this result and the proof. In section 4, we extend our result to include a
system with mutation. In section 5, we study the Lyapunov functional property which is useful for
evolutionary stability analysis. In section 6, we show some numerical examples to study how the
reduced dynamics approximates the original dynamics. In section 7, we show that the classic result on
a model of discrete number of species [18] was not fully mathematical and discuss how our framework
can be used to solve this problem.

2 Model and a brief summary of the results

In general, living organisms require several different resource to survive and reproduce. They might
undergo strong competition for some resource, while some other resource might be sufficiently supplied
so that it might not lead to competition at all. In case of phytoplankton species, resources are light
and nutrients. Although tremendous amount of light is supplied from the sun, the competition for
light still exists. Nutrient supplied from the bottom is also a limiting resource, and this dynamics
might have much slower timescale compared to the competition for light (but slower dynamics do
not imply less importance). There might exist some features that determine growth or death rates
independently of resource competition. Here we consider a model that allows continuous distribution
of species trait and resource type (by an abuse we sometimes refer to it as a trait too) for two reasons:
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first, a continuous model is more compatible with standard evolutionary models of physiological traits
mentioned earlier; second, the mathematical analysis of a continuous model seems more general than
a model with the finite and given number of species and resources (Note that our mathematical
treatment allows distribution to converge to Dirac masses. Thus, although the rigorous proof is not
given here, it implies that our model includes relatively simple ODE models as special cases.)

Inspired by such phytoplankton ecology, our mechanistic model for a chemostat with continuous
resource supply and continuous consumer population trait is given by











∂
∂tn(x, t) = n(x, t)

[

b(x)− d(x) +
∫

K(x, y)R(y, t)dy
]

,

∂
∂tR(y, t) = m(y)

[

Rin(y)−R(y, t)
]

−R(y, t)
∫

K(x, y)n(x, t)dx,

(1)

where n(x, t) ≥ 0 is the consumer species density with trait x ∈ R and R(y, t) ≥ 0 is the common
resource density with trait y ∈ R. We assume that a death rate d(x) depends on species trait x.
Reproduction rate consists of two parts: b(x) denotes a basic reproduction rate independent of the
competition for the common resource, and

∫

K(x, y)R(y, t)dy denotes a reproduction rate coming from
consuming the common resource R. The resource R is supplied into the system with a rate m(y) so
that R(y, t) approaches Rin(y) > 0. These drive the system (a chemostat type model). Consumption
for resource is denoted by a trait dependent uptake kernel K(x, y) ≥ 0 that defines how species with
trait x depends on resource with trait y. All coefficients (b(x), d(x),K(x, y),m(y), Rin(y); although
they are functions of traits, we call them ’coefficients’) can play an important role in the full system.

The regime when direct competition is close to (1) arises in some limiting situation. We assume
that the dynamics has the following three different timescales (notice however that time can always
be rescaled to fix one of them, and as we explain in section 7, only two timescales cannot do the work)

• Very fast dynamics for the common resource supply. This imposes that, in the absence of consumer
species, resource distribution R approaches Rin.
• Fast dynamics for resource-consumption and the resulting reproduction and death. In other words,
common resource dependent coefficients are large. This implies that competition for the common
resource is a primary factor for the growth of consumer species population.
• Slow dynamics. Population dynamics of n is also affected by a basic reproduction rate b(x) and a
death rate dslow(x), both of which are independent of the common resource.

In order to include these assumptions in the equations, we scale accordingly the coefficients

• m is of order ε−2,
• K is of order ε−1,
• d(x) =

∫

K(x, y)Rin(y)dy + dslow(x),
and we define a neat growth/death rate (that we take independent of ε for simplicity)
• a(x) = b(x)− dslow(x).

In other words, direct competition is a good approximation of (1) when the death rate is suited
to counterbalance fast growth based on resource-consumption (otherwise, the population will grow in-
finitely). For this purpose, in the third bullet, we divide the death rate into two parts. The first term
represents fast dynamics for death events that compensates fast resource-consumption. The second
term, dslow(x), represents the remaining slow dynamics for death events independent of the competi-
tion for resource. Note that this decomposition of d(x) means that, while the common resource R is
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at its equilibrium Rin, the dynamics of the consumers are determined only by the parameters which
are independent of the common resource, that is why we introduce the neat rate a(x).

These result in a new formulation of (1) that is written as











∂
∂tnε(x, t) = nε(x, t)

[

a(x) + 1
ε

∫

K(x, y)
(

Rε(y, t)−Rin(y)
)

dy
]

,

∂
∂tRε(y, t) =

m(y)
ε2

[

Rin(y)−Rε(y, t)
]

− 1
εRε(y, t)

∫

K(x, y)nε(x, t)dx,

(2)

where new coefficients satisfy m = O(1), K = O(1), and a = O(1).

We complement the system with initial data

nε(x, 0) = n0(x) ≥ 0, Rε(y, 0) = R0(y) ≥ 0,

As the very fast and fast dynamics become infinitely fast, R should approach Rin, but it is not
clear which distribution n should approach. When R is not close to Rin, the reproduction based on
resource-consumption is dominant (fast dynamics with order ε−1) so the dynamics of n is primarily
determined by R − Rin. However, as R − Rin approaches to zero, resource-dependent reproduction
might become no longer dominant.

In this paper, we will show that an approximation of this dynamics is given by the direct competition
model

∂

∂t
n(x, t) = n(x, t)

[

a(x)−
∫

c(x, x′)n(x′, t)dx′
]

, (3)

where the binary competition kernel c(x, x′) is related to the coefficients in (2). We will show that it
is given by

c(x, x′) =

∫

K(x, y)
Rin(y)

m(y)
K(x′, y)dy.

This equation can be seen as a conversion formula of kernels. The reduced competition-kernel c(x, x′)
is very sensitive to Rin(y)/m(y) as well as to resource-consumption kernel K(x′, y), but not to Rin(y)
or m(y) separately. Note that this kernel is of order one (recall that resource-consumption kernel is
of order ε−1 before rescaling) so the reduced direct competition model describes the slow dynamics of
n(x, t). We will later show that the inclusion of mutation in consumer species’ trait does not essentially
change the result.

One biologically interesting point of the equation (3) is that the growth rate of consumer species in
the absence of competition for resource, which is described by a(x), still has considerable effect on the
long-term dynamics of consumer distribution n. This is because as R becomes very close to Rin, the
dominant factor (fast dynamics) becomes weaker and a basic growth rate a(x) becomes as important
as the competition for resource. In this limit, we recover a Lotka-Volterra type competition dynamics
from a mechanistic model of a chemostat type. It is natural that we do not have the reduced dynamics
of the resource, R, because the reduction is possible when the detailed dynamics of the resource can
be neglected and when the effects of competition for the resource can be put into the new competition
coefficients in a Lotka-Volterra type system (i.e. c(x, x′)).

As already raised in [2], another practical question of our interest is the choice of the competition
kernel; usually a Gaussian choice is favored, based on heuristic arguments which promotes the coex-
istence of infinitely many species (continuous distribution over continuous trait axis). Not only this
has a particular effect as shown by the structural instability of continuous distribution in result [15],
but also our result shows that this choice is arbitrary because the conversion of resource-consumption
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kernel into direct-competition kernel does not guarantee that a Gaussian function is converted into
another Gaussian function. Take

K(x, y) = e−α(x−y)2 , Rin(y) = e−βy2 , m(y) ≡ 1.

Then, choosing γ such that γ(2α + β) = α2 so as to complete a square in the expression

c(x, x′) = e−[αx2+α(x′)2−γ(x+x′)2]
∫

e−[(2α+β)y2−2α(x+x′)y+γ(x+x′)2]dy

= e−[αx2+α(x′)2−γ(x+x′)2]
√

π
2α+β ,

we find that c(x, x′) is not gaussian because it is proportional to

e−[αx2+α(x′)2−γ(x+x′)2] 6= e−(α−γ)(x−x′)2 when β 6= 0.

The present study is not the first attempt to derive direct competition Lotka-Volterra equations
from a model of species competing for resources. MacArthur [18] proposed a simpler approach where
he also chooses a Lotka-Volterra equation for the resources; he chooses a discrete setting rather than
continuous but this is irrelevant for our purpose. With our notations MacArthur’s model is described
as a prey-predator model











∂
∂tn(x, t) = b(x)n(x, t)

[ ∫

K(x, y)R(y, t)dy − d(x)
]

,

∂
∂tR(y, t) = R(y, t)

[

m(y)(1 − R(y,t)
Rcc(y)

)−
∫

K(x, y)n(x, t)dx
]

,

(4)

Assuming b is of order ε and rescaling time accordingly, we end up with a rescaled equation that is
close to (2). This seems to provide a simpler approach to obtain the aymptotic behavior. However,
the shortcoming is that the limiting equation is NOT under the form (3) but more complicated and
with different nonlinearities (e.g., see (27) in section 7.) Thus, more rigorous analysis is necessary.

Mathematical notations and results will follow in the next three sections. Section 3 is devoted to a
rigorous derivation of our convergence result. It goes through asymptotic analysis and compactness
estimates that allow us to show that nε converges to n and thus n is the population density. In
other words our theory is not a perturbation analysis on nε while it is on Rε ≈ Rin. Mutations are
not included in the model equations (1)–(3). In section 4, we show how to include them and which
new rescaling this leads to perform. Another remarkable property of the chemostat is the Lyapunov
functional property already used in [20]. The asymptotic form of this Lyapunov functional is related
to that for the direct competition model in section 5 and in particular we explain why, in this context,
the corresponding operator is always nonnegative.

3 Derivation of the direct competition

In order to state our result we need some assumptions

n0, R0, Rin ∈ L1 ∩ L∞(R),

∫

∣

∣

∂

∂x
n0
∣

∣ dx ≤ C1, (5)

aM := ‖a‖∞ < ∞, m = min
y

m(y) > 0, m = max
y

m(y) < ∞, (6)
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K ∈ BUC(R× R), KM := sup
x,y

K(x, y) < ∞, (7)

∣

∣

∂

∂x
K(x, y)

∣

∣ ≤ C2,
∣

∣

∂

∂x
a(x)

∣

∣ ≤ C3. (8)

where BUC stands for the linear space of Bounded Uniformly Continuous functions.
With these in mind, we establish that the limiting problem for (2) is the direct competition model

Proposition 3.1 As ε tends to 0 in (2), Rε converges strongly to Rin in L1
(

(0, T )×R
)

and nε con-
verges strongly in C

(

(0, T );L1(R)
)

to n, the solution to (3) with the initial data n0 and the competition
kernel

c(x, x′) =

∫

K(x, y)
Rin(y)

m(y)
K(x′, y)dy. (9)

It is more technical to improve the space-time convergence on Rε. Indeed it leaves place for an
initial layer which is needed because, in general, its limit Rin is incompatible with the initial data R0

ε.

Proof. To begin with, we re-write the equation on Rε in (2) as

Rε(y, t)−Rin(y) = −ε
Rε(y, t)

m(y)

∫

K(x, y)nε(x, t)dx − ε2

m(y)

∂

∂t
Rε(y, t).

We inject this to compute the growth rate for nε

1

ε

∫

K(x, y)
(

Rε(y, t)−Rin

)

dy = −
∫

K(x, y)
Rin(y, t)

m(y)

∫

K(x′, y)nε(x
′, t)dx′dy + Iε(x, t)

= −
∫

c(x, x′)nε(x
′, t)dx′ + Iε(x, t),

as we use c(x, x′) as defined in (9) and with

Iε(x, t) = −ε
∂

∂t

∫

K(x, y)

m(y)
Rε(y, t)dy +

∫

K(x, y)
Rin(y)−Rε(y, t)

m(y)

∫

K(x′, y)nε(x
′, t)dx′dy.

Therefore the equation on nε can also be written

∂

∂t
nε(x, t) = nε(x, t)

[

a(x)−
∫

c(x, x′)nε(x
′, t)dx′ + Iε(x, t)

]

. (10)

Throwing away the terms in ε, we find formally (3).

To justify rigorously this limit, we need (i) estimates for compactness, (ii) explain how we can pass
to the limit.

(i) Estimates. We define

Mε(t) :=

∫

nε(x, t)dx, Nε(t) :=

∫

∣

∣Rε(y, t)−Rin(y)
∣

∣dy,

We then notice from the equation on Rε in (2) that we have

Rε(y, t) ≤ Rin(y), for all y such that R0(y) ≤ Rin(y),
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and

Rε(y, t) ≤ Rin(y) +
(

R0(y)−Rin(y)
)

exp(−mt

ε2
), for all y such that R0(y) > Rin(y).

It follows in particular that Nε and ‖Rε(·, t)‖L1 are uniformly bounded in ε by a constant denoted by
RM . Next we write from the equation on nε in (2)

d

dt
Mε ≤ Mε

[

aM +
KM

ε
exp

(

−mt

ε2

)
∫

(

R0(y)−Rin(y)
)

+
dy

]

.

We deduce that, for C some constant independent of ε,

Mε(t) ≤ Mε(0) exp
(

aM t+ Cε
)

,

and thus Mε is uniformly bounded in ε ≤ 1 on each time interval [0, T ] by a constant denoted by MT .
Next, we define and write from the equation on Rε in (2)

d

dt
Nε(t) +

m

ε2
Nε(t) ≤

RM

ε
KMMε(t).

It follows from this differential inequalitiy and the fact that Mε(t) and Nε(t) are uniformly bounded
that 1

ε

∫ t
0 Nε(s)ds is also uniformly bounded in ε ≤ 1 on each time interval [0, T ]. One step further,

from the bound on Mε and from the equation on Nε, one also concludes that

Nε(t)

ε
≤ N(0)

ε
e−mt/ε2 +

RMKMMT

m
, ∀t ∈ [0, T ]. (11)

(ii) Compactness in t. From this, and going back to the equation on nε, we conclude that, still for
t ∈ [0, T ]

∫
∣

∣

∣

∣

∂nε(x, t)

∂t

∣

∣

∣

∣

dx ≤ aMC(T ) +KM
N(0)

ε
e−mt/ε2 +KMC(T ). (12)

This Lipschitz estimate in time gives us that nε is uniformly equicontinuous in C
(

(0, T );L1(R)
)

.
(iii) Compactness in x. Dividing equation (2) by nε and differentiating in x, we find

∂2

∂x∂t
lnnε(x, t) =

∂

∂x
a(x) +

1

ε

∫

∂

∂x
K(x, y) (Rε(y, t)−Rin(y)) dy.

From (8) and (11) we obtain that, for some constant D1

∣

∣

∂2

∂x∂t
lnnε(x, t)

∣

∣ ≤ D1 + C2
N(0)

ε
e−mt/ε2 .

It follows that, for ε ≤ 1 and for some constant D2

∣

∣

∂

∂x
lnnε(x, t)

∣

∣ ≤
∣

∣

∂

∂x
lnn0(x)

∣

∣ +D2t,

∫

∣

∣

∂

∂x
nε(x, t)

∣

∣dx ≤
∫

∣

∣

∂
∂xn

0(x)
∣

∣

n0(x)
nε(x, t) dx+D2t

∫

nε(x, t)dx.
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Moreover, from the first equation of (2) and (11) we obtain that, for some constant D3,

∣

∣

∂

∂t
lnnε(x, t)

∣

∣ ≤ D3 + KM
N(0)

ε
e−mt/ε2 ,

and thus: lnnε(x, t) ≤ lnn0(x) +D4 t, for ε ≤ 1 and some constant D4, which gives

nε(x, t)

n0(x)
≤ exp(D4t).

Using the above arguments and (5), we conclude that, for some constant D(T ) and 0 ≤ t ≤ T ,
∫

∣

∣

∂

∂x
nε(x, t)

∣

∣ dx ≤ exp(D4t)

∫

∣

∣

∂

∂x
n0(x)

∣

∣ dx+D2t

∫

nε(x, t)dx ≤ C1 exp(D4t) +D2tMε(t) ≤ D(T ).

Using this and step (ii) we conclude from the Arzela-Ascoli Theorem that, after extracting a subse-
quence, nε converges in C

(

(0, T );L1(R)
)

.

(iv) Passing to the limit. It remains to pass to the weak (distribution) limit in the equation on
nε written as (10). Because of the strong convergence of nε and (11), the only difficulty is to pass to
the limit in the term

εnε(x, t)
∂

∂t

∫

K(x, y)

m(y)
Rε(y, t)dy = ε

∂

∂t

[

nε(x, t)

∫

K(x, y)

m(y)
Rε(y, t)dy

]

− ε

∫

K(x, y)

m(y)
Rε(y, t)dy

∂

∂t
nε(x, t).

The first term converges weakly to 0 (multiplying by a test function, after integration by parts all the
terms are bounded and multiplied by ε). For the second term, we use the estimate (12) to reach the
conclusion that it converges in L1 to 0, thanks again to the multiplying factor ε.
Since uniqueness of weak solutions for the direct competition model is proved in [11], we conclude

that the full family nε converges and not only subsequences.

4 Mutations

In the present context of population equations structured by a physiological trait, there are several
possibilities to represent mutations that have been widely used [5, 13, 11]. Integral operators or
diffusion operators can be derived from stochastic individual based models; see for instance [7, 8].
Mathematically they have many similar properties, in particular asymptotic analysis can be carried
out using similar methods in the regime of small mutations for a long time of observation leading to
speciation phenomena [4, 3, 17] although stochastic individual methods are also used for the same
purpose [6, 10, 19].
Here, we restrict ourselves to representing the mutations by a diffusion operator with intensity µ2, a

very small rate. According to the mathematical theory in [13, 21], it is natural to rescale time so that
the new timescale unit is 1/µ, very long timescale compared to the original ’generation’ timescale.
This leads to the competition model with mutations











µ ∂
∂tnε(x, t) = nε(x, t)

[

a(x) + 1
ε

∫

K(x, y)
(

Rε(y, t)−Rin

)

dy
]

+ µ2∆nε,

µ ∂
∂tRε(y, t) =

m(y)
ε2

[

Rin(y)−Rε(y, t)
]

− 1
εRε(y, t)

∫

K(x, y)nε(x, t)dx,

(13)
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Because both the uptake rate ε and the mutation rate µ can be considered as small, it is interesting
to see how the solutions behave in the different regimes of smallness.
We can formally follow the lines of the analysis in section 3 and find direct competition with

mutations as the limit of infinitely fast uptake rate

µ
∂

∂t
n(x, t) = n(x, t)

[

a(x)−
∫

c(x, x′)n(x′, t)dx′
]

+ µ2∆n. (14)

One can also consider the small mutation rate and, assuming the initial data is well prepared, use
the Hopf-Cole unknowns

uµ = µ ln(nε), u0µ = µ ln(n0).

This leads now to study the equation on the limit uε(x, t) of uµ(x, t) and on the limit measure nε as
µ → 0. Following formally [13, 21], one finds the constrained Hamilton-Jacobi equation











∂
∂tuε = a(x) + 1

ε

∫

K(x, y)
(

Rε(y, t)−Rin

)

dy + |∂uε

∂x |2, max
x∈R

uε(x, t) = 0 ∀t ≥ 0,

m(y)
ε2

[

Rin(y)−Rε(y, t)
]

− 1
εRε(y, t)

∫

K(x, y)nε(x, t)dx = 0,

and nε is supported in the zeroes of uε (usually points).
This can be further analyzed in the regime ε small and leads to

∂

∂t
u = a(x) +

∫

c(x, x′)n(x′, t)dx′ +
∣

∣

∂u

∂x

∣

∣

2
, max

x∈R
u(x, t) = 0 ∀t ≥ 0,

still with the information that the measure n(t) is supported by the points where u(t) vanishes. This
is also the limit of (14) in the regime of small µ.

We can conclude that the formal analysis of small mutations, both for the chemostat model and
the direct competition model, is compatible with the multiscale analysis in section 3 that relates
both models. Of course a rigorous analysis again requires mathematical developments, in particular
appropriate estimates,which are beyond the scope of the present paper. This is the regime of interest
that we choose later in section 6 for numerical illustration. In this regime, we recover also, at a
population level, the results of standard adaptive dynamics [14, 12] and the references therein.

5 Lyapunov functionals for the two competition models

The large time behaviour of solutions to (2) has been studied in [20]. It is proved that steady states
cannot be globally positive (nε, Rε) and they have to be either Dirac masses (speciation) or continuous
with a support of nε that is small enough (except when the solution goes extinct that might happen if
renewal/death rates are too high). When continuous, the steady state globally attracts all trajectories
if they satisfy a particular sign property characterized the so-called Evolutionary Stable Distribution
(ESD in short), a notion that we recall below. The proof relies on a Lyapunov functional which has
also been proved to exist for the direct competition model in [16] under the condition of positivity
of a certain operator (see also [9] for a similar study of a model with finite number of resources and
consumer traits).
Our interest here is to understand the relation between the two Lyapunov functionals, for (2) and

(3), and to understand why the operator positivity condition is important for direct competition
models but does not appear in models of competition for resources.
We first recall that an ESD is defined as
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Definition 5.1 (Evolutionary Stable Distribution for (3), [16]) A nonnegative bounded measure
n is called an ESD for the direct competition equation (3)

a(x)−
∫

c(x, x′)n(x′)dx′ = 0 ∀x ∈ Supp n, (15)

a(x)−
∫

c(x, x′)n(x′)dx′ ≤ 0 ∀x ∈ R \ Supp n. (16)

Definition 5.2 (Evolutionary Stable Distribution for (2), [16, 20]) A state is (nε, Rε) is called
an ESD for the competition for resources equation (2) if nε is a nonnegative bounded measure and

a(x) +
1

ε

∫

K(x, y)[Rε(y)−Rin]dy = 0 ∀x ∈ Supp nε, (17)

a(x) +
1

ε

∫

K(x, y)[Rε(y)−Rin]dy ≤ 0 ∀x ∈ R \ Supp nε, (18)

m(y)

ε
[Rin(y)−Rε(y)] = Rε(y)

∫

K(x, y)nε(x)dx ∀y ∈ R. (19)

We also recall the positivity condition which is important for the direct competition model (3) to have
a unique ESD and to admit a Lyapunov functional [16].

Definition 5.3 (Operator positivity condition) The function c(x, y) satisfies a positivity condi-
tion, if

∀g ∈ M1(R) \ {0},
∫

c(x, y)g(x)g(y)dxdy > 0. (20)

For the model with the competition for resources a weaker assumption is enough to prove the unique-
ness of ESD.

Proposition 5.4 (Uniqueness of ESD for (2)) Assume (5)–(8). Let (n1, R1) and (n2, R2) be two
evolutionary stable distributions for (2). Then for all y ∈ R, R1(y) = R2(y). If moreover K(x, y) is
such that

∀g ∈ M1(R) \ {0},
∫

K(x, y)g(x)dx 6≡ 0, (21)

then there exists at most one unique evolutionary stable distribution for (2).

Proof. To prove the uniqueness of ESD for (2), we follow the method used in [16, 9] for the direct
competition model. Let (n1, R1) and (n2, R2) two evolutionary steady distributions. Using (17)–(18)
we write

∫

n1

(

a(x) +
1

ε

∫

K(x, y)[R2(y)−Rin]dy

)

dx ≤ 0,

∫

n2

(

a(x) +
1

ε

∫

K(x, y)[R1(y)−Rin]dy)

)

dx ≤ 0,

−
∫

ni

(

a(x) +
1

ε

∫

K(x, y)[Ri(y)−Rin]dy

)

dx = 0, for i = 1, 2.
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By adding the above inequalities we obtain
∫ ∫

K(x, y) (n1(x)− n2(x))
(

R2(y)−R1(y)
)

dydx ≤ 0.

Replacing the values of R1 and R2 we obtain

∫ ∫

K(x, y)
m(y)

ε
(n1(x)− n2(x))

(

Rin(y)
m(y)
ε +

∫

K(x′, y)n2(x′)dx′
− Rin(y)

m(y)
ε +

∫

K(x′, y)n1(x′)dx′

)

dydx ≤ 0,

and thus

∫ m(y)
ε Rin(y)

(

m(y)
ε +

∫

K(x′, y)n2(x′)dx′
)(

m(y)
ε +

∫

K(x′, y)n1(x′)dx′
)

(
∫

K(x, y) (n1(x)− n2(x)) dx

)2

dy ≤ 0.

It follows that
∫

K(x, y)n1(x)dx =

∫

K(x, y)n2(x)dx, a.e. (22)

and thus
R1(y) = R2(y), a.e..

Moreover if K(x, y) satisfies (21), we obtain

n1 − n2 = 0, in the sense of measures.

For an ESD and following [20], we define the Lyapunov functional for the model of competition for
resources as

Scr(t) = −
∫

nε(x) lnnε(x, t)dx−
∫

Rε(y) lnRε(y, t)dy +

∫

nε(x, t)dx +

∫

Rε(y, t)dy.

The dissipation associated with this functional is given by the inequality

dScr

dt (t) := Dcr(t) = −
∫ m(y)Rin(y)

ε2Rε(y) Rε(y,t)

(

Rε(y)−Rε(y, t)
)2

dy

+
∫

nε(x, t)
(

a(x) + 1
ε

∫

K(x, y)[Rε(y)−Rin(y)]dy
)

dx ≤ 0.
(23)

Because we expect that, according to the proof of Proposition 3.1, the expansion holds Rε(y, t) =
Rin(y) +O(ε), the limiting Lyapunov functional is reduced (up to an additive constant) to

Sdc(t) = −
∫

n(x) lnn(x, t)dx+

∫

n(x, t)dx.

This is indeed the Lyapunov functional used in for direct competition but d
dtSdc(t) is negative only

when the positivity condition (20) holds true. This condition appears naturally in our framework
because we can compute the dissipation associated with Sdc(t)

dSdc

dt
(t) := Ddc(t)

11



A direct computation of Ddc using (3) is of course also possible but is less instructive than an expansion
in ε of Dcr that uses simply

Rε(y) = Rin(y)−
εRε(y)

m(y)

∫

K(x, y)nε(x)dx.

In the limit ε → 0, we obtain

Ddc(t) = −
∫ Rin(y)

m(y)

[ ∫

K(x, y)
(

n(x, t)− n(x)
)]2

dy

+
∫

n(x, t)
(

a(x)−
∫

K(x, y)Rin(y)
m(y)

∫

K(x′, y)n(x′)dx′dy
)

dx.
(24)

Using the expression of c(x, x′) in (9) yields the usual dissipation for the direct competition model

Ddc(t) = −
∫ ∫

c(x, x′)
(

n(x, t)− n(x)
)(

n(x′, t)− n(x′)
)

dx dx′

+
∫

n(x, t)
(

a(x)−
∫

c(x, x′)n(x′)dx′
)

dx.

The particular form of c(·, ·) in (9) together with (21) ensures that the integral with the quadratic
term in n − n is always positive (we referred to that as operator positivity) and the definition of an
ESS makes that the linear term also gives a nonpositive contribution.

6 Numerical illustration

How good is the approximation of competition through resources by direct competition? Beyond the
pure theoretical statement in section 3, this can be illustrated thanks to some numerical simulations.
We have performed such comparisons in the case with mutations given by (13). We assume that a
resource uptake kernel and a distribution of resource supply are Gaussian. A trait-dependent (and
competition-independent) growth rate takes the maximum at x = 0. We have used the coefficients
given as follows

K(x, y) =
1

σK
√
2π

exp

(

−(x− y)2

2σ2
K

)

, Rin(y) =
Min

σin
√
2π

exp(− y2

2σ2
in

), a(x) = 1− x2, (25)

and m(y) is taken as a constant. See section 2 for the converted kernel of direct competition. Through-
out this section we have taken σK = σin = .5, µ = 0.005 and we vary ε, m and Min.

The initial data n0 is a Gaussian centered at x = −0.8 with its variance equal to the mutation rate
µ (in accordance with the analysis in section 4) and R is initially chosen equal to Rin. With all our
choices of the remaining parameters ε, m, Min below, the solution is always initially monomorphic
and undergoes a dimorphic branching, then it stabilizes as depicted in Figure 1.

We first compare the dynamics of the full model (13) and that of the approximated model (14). To
do so, we set m = Min = 1 and studied two different values for the parameter ε, namely ε = 0.1 and
ε = 0.001. For ε = 0.1, the relative error max |R−Rin|

Rin

= 0.18 was significantly large so the equilibrium
distribution of resource R ≈ Rin was not achieved in this case. As we decrease ε to ε = 0.001, we
obtained max |R−Rin|

Rin
= 0.0018 and the resource distribution was well approximated by R ≈ Rin; thus,
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Figure 1: With our choice of parameters later (here ε = 0.001, m = 10, Min = 10), the dynamics
always undergo a branching from a monomorphic to a dimorphic population. This figure depicts the
typical contour lines of the solution to (13) (horizontal axis is x, vertical axis is time).

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

9

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Figure 2: Comparisons between the model of competition for resources, with m = Min = 1 and
ε = 0.1, (dotted curve) and the direct competition model (continuous line, in fact ε = 0.001). Left:
the dimorphic population density as a function of the trait x for large times. Right: total population
∫

n(x, t)dx as a function of time.
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Figure 3: These figures illustrate that the direct competition kernel only depends on the ratio Rin/m
and thus we can expect that the solutions to the model of competition for resource also does so. (Left)
we compare for ε = 0.05, the population density solutions with m = Min = 1 (dotted line) and with
m = Min = 10 (continuous line). (Right) we compare for ε = 0.05 the solutions with m = Min = 1
(dotted line) and with m = 1.5, Min = 1 (continuous line). When the ratio is preserved (even though
coefficients differ by a factor 10) the solutions are very close. But a small variation of the coefficients,
that also changes the ratio, induces a visible difference on the solutions.

we expect that our reduction to direct competition model should give a good approximation. Numer-
ical comparisons for these cases are depicted in Figure 2, showing that the dimorphic distributions
are well conserved in both solutions even though the total population is under-estimated in the direct
competition model compared to ε = 0.1 by a factor of approximately 25%.

The competition kernel (9) in the direct competition approximation has a remarkable property that
it only depends upon the ratio Rin/m. It implies that solution to (13) depends only mildly on this
ratio. This prediction from our analysis is confirmed by numerical calculations (Figure 3).

7 The scales in McArthur’s asymptotics

After rescaling of (4), we consider the limit of











∂
∂tnε(x, t) = b(x)nε(x, t)

[ ∫

K(x, y)Rε(y, t)dy − d(x)
]

,

ε ∂
∂tRε(y, t) = Rε(y, t)

[

m(y)(1− Rε(y,t)
Rcc(y)

)−
∫

K(x, y)nε(x, t)dx
]

,

(26)

Putting ε = 0, McArthur in [18] builds on the formal limit 0 = m(y)(1−Rε(y,t)
Rcc(y)

)−
∫

K(x, y)nε(x, t)dx.

However, as noticed already in [1, 2], this is not correct because when this rate is negative, Rε(y, t)
vanishes and thus the asymptotic expression is

R(y, t) = Rcc(y)

∣

∣

∣

∣

1−
∫

K(x, y)

m(y)
n(x, t)dx

∣

∣

∣

∣

+

where |a|+ denotes the positive part of a. Inserting this formula in the equation for nε gives us the
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asymptotic model

∂

∂t
n(x, t) = b(x)n(x, t)

[

∫

K(x, y)Rcc(y)

∣

∣

∣

∣

1−
∫

K(x′, y)

m(y)
n(x′, t)dx′

∣

∣

∣

∣

+

dy − d(x)
]

. (27)

Only in the regime where resources are never exhausted (but there is no easy a priori characterization;
this depends on the initial data and may change along the dynamics) one recovers direct competition
(3) with

c(x, x′) =

∫

K(x, y)
Rcc(y)

m(y)
K(x′, y)dy, a(x) =

1

ε

∫

K(x, y)Rcc(y)dy − d(x). (28)

As a consequence, [1, 2] concluded that the behaviour of the resource-competition model and of the
Lotka-Volterra one can differ significantly but did not attempt to clarify the conditions for the time-
scaling argument to work. Here we propose another route which is to introduce another timescale for
main resource consumption and guarantee it will not get extinct.

To fix this shortcoming, we may agin introduce two different timescales, as we proposed earlier. The
rescaled version reads











∂
∂tnε(x, t) = b(x)nε(x, t)

[

1
ε

∫

K(x, y)Rε(y, t)dy + a(x)− 1
ε

∫

K(x, y)Rcc(y, t)dy
]

,

ε2 ∂
∂tRε(y, t) = Rε(y, t)

[

m(y)(1− Rε(y,t)
Rcc(y)

)− ε
∫

K(x, y)nε(x, t)dx
]

,

(29)

Then the first order expansion in the equation on Rε is positive for ε small enough

Rε(y, t) = Rcc(y)

[

1− ε

∫

K(x, y)

m(y)
nε(x, t)dx

]

+O(ε2).

Once inserted in equation (29), we find the correct asymtotics

∂

∂t
nε(x, t) = b(x)nε(x, t)

[

a(x)−
∫

c(x, x′)nε(t, x
′)dx′

]

with c(x, x′) as defined in (28).
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