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Abstract

In this note, we characterize the solution of a system of elliptic integro-differential equations describing a phe-
notypically structured population subject to mutation, selection and migration. Generalizing an approach based
on Hamilton-Jacobi equations, we identify the dominant terms of the solution when the mutation term is small
(but nonzero). This method was initially used, for different problems from evolutionary biology, to identify the
asymptotic solutions, while the mutations vanish, as a sum of Dirac masses. A key point is a uniqueness property
related to the weak KAM theory. This method allows to go further than the Gaussian approximation commonly
used by biologists and is an attempt to fill the gap between the theories of adaptive dynamics and quantitative
genetics.

Résumé

Méthode Hamilton-Jacobi pour décrire des équilibres évolutives dans les environnements hétérogènes
et avec des mutations non-évanescentes. Dans cette note, nous étudions un système d’équations intégro-
différentielles elliptiques, décrivant une population structurée par trait phénotypique soumise à des mutations, à
la sélection et à des migrations. Nous généralisons une approche basée sur des équations de Hamilton-Jacobi pour
détérminer les termes dominants de la solution lorsque les effets des mutations sont petits (mais non-nuls). Cette
méthode était initialement utilisée, pour différents problèmes venant de la biologie évolutive, pour identifier les
solutions asymptotiques, lorsque les effets des mutations tendent vers 0, sous forme des sommes de masses de
Dirac. Un point clé est une propriété d’unicité en rapport avec la théorie de KAM faible. Cette méthode nous
permet d’aller au-delà des approximations Gaussiennes habituellement utilisées par les biologistes et contribue
ainsi à relier les théories de la dynamique adaptative et de la génétique quantitative.
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1. Introduction

During the last decade, an approach based on Hamilton-Jacobi equations with constraints has been
developed to describe the asymptotic evolutionary dynamics of phenotypically structured populations,
in the limit of vanishing mutations. The mathematical modeling of such phenomena leads to parabolic
(or elliptic for the steady case) integro-differential equations, whose solutions tend, as the diffusion term
vanishes, to a sum of Dirac masses, corresponding to dominant traits. These asymptotic solutions can be
described using the Hamilton-Jacobi approach. There is a large literature on this method. We refer to
[4,17,13] for the establishment of the basis of this approach for problems from evolutionary biology. Note
that related tools were already used in the case of local equations (for instance KPP type equations) to
describe the propagation phenomena (see for instance [8,5]).

In almost all the previous works, the Hamilton-Jacobi approach has been used to describe the limit of
the solution, corresponding to the population’s phenotypical distribution, as the mutations’ steps vanish.
However, from the biological point of view, it is sometimes more relevant to consider non-vanishing muta-
tion’s steps. A recent work [16] has pointed out that such tools can also be used, for a simple model with
homogeneous environment, to characterize the solution while mutations’ steps are small but nonzero. In
this note, we show how such results can be obtained in a more complex situation with a heterogeneous
environment.

Our purpose in this note is to study the solutions to the following system, for z ∈ R,
−ε2n′′ε,1(z) = nε,1(z)R1(z,Nε,1) +m2nε,2(z)−m1nε,1(z),

−ε2n′′ε,2(z) = nε,2(z)R2(z,Nε,2) +m1nε,1(z)−m2nε,2(z),

Nε,i =

∫
R
nε,i(z)dz, for i = 1, 2,

(1)

with
Ri(z,Ni) = ri − gi(z − θi)2 − κiNi, with θ1 = −θ and θ2 = θ. (2)

This system represents the equilibrium of a phenotypically structured population under mutation, selec-
tion and migration between two habitats. For more details on the modeling and the biological motivations,
see Section 2.

Note that the asymptotic behavior, as ε → 0 and along subsequences, of the solutions to this system,
under the assumption mi > 0, for i = 1, 2, and for bounded domains, was already studied in [14]. In the
present work, we go further than the asymptotic limit along subsequences and we obtain uniqueness of
the limit and identify the dominant terms of the solution when ε is small but nonzero.

The main elements of the method:
To describe the solutions nε,i(z) we use a WKB ansatz

nε,i(z) =
1√
2πε

exp

(
uε,i(z)

ε

)
.

Note that a first approximation that is commonly used in the theory of ’quantitative genetics’ (a theory
in evolutionary biology that investigates the evolution of continuously varying traits [18]-chapter 7), is a
gaussian distribution of the following form

nε,i(z) =
Ni√
2πεσ

exp

(
−(z − z∗)2

εσ2

)
=

1√
2πε

exp

(
− 1

2σ2 (z − z∗)2 + ε log Ni

σ

ε

)
.

Here, we try to go further than this a priori gaussian assumption and to approximate directly uε,i. To
this end, we write an expansion for uε,i in terms of ε:
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uε,i = ui + εvi + ε2wi +O(ε3). (3)

We prove that u1 = u2 = u is the unique viscosity solution to a Hamilton-Jacobi equation with constraint.
The uniqueness of the viscosity solution to such Hamilton-Jacobi equation with constraint is related to
the uniqueness of the Evolutionary Stable Strategy (ESS), see Section 3 for definition and for the result
on the uniqueness of the ESS, and to the weak KAM theory [7]. In section 4, we compute explicitly u
which indeed satisfies

max
R

u(z) = 0,

with the maximum points attained at one or two points corresponding to the ESS points of the problem.
We then notice that, while u(z) < 0, nε,i(z) is exponentially small. Therefore, only the values of vi and
wi close to the zero level sets of u matter, i.e. the ESS points. In section 5, we provide the main elements
to compute formally vi and hence its second order Taylor expansion around the ESS points and the value
of wi at those points. Then, we show, in section 6, that these approximations together with a fourth order
Taylor expansion of u around the ESS points are enough to approximate the moments of the population’s
distribution with an error of order ε2.

The mathematical details of our results will be provided in [12]. The biological applications will be
detailed in [15].

2. Model and motivation

The solution of (1) corresponds to the steady solution to the following system, for (t, z) ∈ R+ × R,
∂tni(t, z)− ε2

∂2

∂z2
ni(t, z) = ni(t, z)Ri(z,Ni(t)) +mjnj(t, z)−mini(t, z), i = 1, 2, j = 2, 1,

Ni(t) =

∫
R
ni(t, z)dz, for i = 1, 2.

(4)

This system represents the dynamics of a population that is structured by a phenotypical trait z, and
which lives in two habitats. We denote by ni(t, z) the density of the phenotypical distribution in habitat
i, and by Ni the total population’s size in habitat i. The growth rate Ri(z,Ni) is given by (2), where ri
represents the maximum intrinsic growth rate, gi is the strength of the selection, θi is the optimal trait
in habitat i and κi represents the intensity of the competition. The constants mi are the migration rates
between the habitats. In this note we assume that there is positive migration rate in both directions, i.e.

mi > 0, i=1,2. (5)

However, the source and sink case, where for instance m2 = 0, can also be analyzed using similar tools.
We refer to [15] for the analysis of this case. We additionally assume that

max(r1 −m1, r2 −m2) > 0. (6)

This guarantees that the population does not get extinct.

Such phenomena have already been studied by several approaches. A first class of results are based
on the adaptive dynamics approach, where one considers that the mutations are very rare such that
the population has time to attain its equilibrium between two mutations and hence the population’s
distribution has discrete support (one or two points in a two habitats model) [11,2,6]. A second class of
results are based on an approach known as ’quantitative genetics’, which allows more frequent mutations
and does not separate the evolutionary and the ecological time scales . A main assumption in this class of
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works is that one considers that the population’s distribution is a gaussian [9,19] or, to take into account
the possibility of dimorphic populations, a sum of one or two gaussian distributions [20,3].

In our work, as in the quantitative genetics framework, we also consider continuous phenotypical dis-
tributions. However, we don’t assume any a priori gaussian assumption. We compute directly the popu-
lation’s distribution and in this way we correct the previous approximations. To this end, we also provide
some results in the framework of adaptive dynamics and in particular, we generalize previous results
on the identification of the ESS to the case of nonsymetric habitats. Furthermore, our work makes a
connection between the two approaches of adaptive dynamics and quantitative genetics.

3. The adaptive dynamics framework

In this section, we introduce some notions from the theory of adaptive dynamics that we will be using
in the next sections [11]. We also provide our main result in this framework.

Effective fitness: The effective fitness W (z;N1, N2) is the largest eigenvalue of the following matrix:

A(z;N1, N2) =

R1(z;N1)−m1 m2

m1 R2(z;N2)−m2

 (7)

This indeed corresponds to the effective growth rate associated with trait z in the whole metapopulation
when the total population’s sizes are given by (N1, N2).

Demographic equilibrium: Consider a set of points Ω = {z1, · · · zm}. The demographic equilibrium
corresponding to this set is given by (n1(z), n2(z)), with the total population’s sizes (N1, N2), such that

ni(z) =

m∑
j=1

αi,jδ(z − zj), Ni =

m∑
j=1

αi,j , W (zj , N1, N2) = 0,

and such that (α1,j , α2,j)
T is the right eigenvector associated with the largest eigenvalue W (zj , N1, N2) =

0 of A(zj ;N1, N2).
Evolutionary stable strategy: A set of points Ω∗ = {z∗1 , · · · , z∗m} is called an evolutionary stable

strategy (ESS) if

W (z,N∗1 , N
∗
2 ) = 0, for z ∈ A and, W (z,N∗1 , N

∗
2 ) ≤ 0, for z 6∈ A,

where (N∗1 , N
∗
2 ) is the total population’s sizes corresponding to the demographic equilibrium associated

with the set Ω∗.
Since, there are only two habitats we expect that at most two distinct traits coexist at the evolutionary

stable equilibrium. We prove indeed the following:
Theorem 3.1 Assume (5)–(6). There exists a unique set of points Ω∗ which is an evolutionary stable
strategy. Such set has at most two elements.

We call an evolutionary stable strategy which has one (respectively two) element, a monomorphic
(respectively dimorphic) ESS. We can indeed give a criterion to have monomorphic or dimorphic ESS,
and we can identify the dimorphic ESS in the general case (see [12] for more details).

4. How to compute the zero order terms ui

The identification of the zero order terms ui is based on the following result. Note that the part (ii) of
the theorem below is a variant of Theorem 1.1 in [14].
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Theorem 4.1 Assume (5)–(6).
(i) As ε → 0, (nε,1, nε,2) converges to (n∗1, n

∗
2), the demographic equilibrium of the unique ESS of the

model. Moreover, as ε → 0, Nε,i converges to N∗i , the total population’s size in patch i corresponding to
this demographic equilibrium.
(ii) As ε→ 0, both sequences (uε,i)ε, for i = 1, 2, converge along subsequences and locally uniformly in R
to a continuous function u ∈ C(R), such that u is a viscosity solution to the following equation−|u

′|2 = W (z,N∗1 , N
∗
2 ), in R,

max
z∈R

u(z) = 0.
(8)

Moreover, we have the following condition on the zero level set of u:

suppn∗1 = suppn∗2 ⊂ {z |u(z) = 0} ⊂ {z |W (z,N∗1 , N
∗
2 ) = 0}.

(iii) There exists constants (λi, νi), for i = 1, 2, which can be determined explicitly from m1, m2, g1, g2,
κ1, κ2 and θ, such that, under the condition

r2 6= λ1r1 + ν1, r1 6= λ2r2 + ν2, (9)

we have
suppn∗1 = suppn∗2 = {z |u(z) = 0} = {z |W (z,N∗1 , N

∗
2 ) = 0}. (10)

The solution of (8)–(10) is unique and hence the whole sequence (uε,i)ε converge locally uniformly in R
to u.

Note that a Hamilton-Jacobi equation of type (8) in general might admit several viscosity solutions.
Here, the uniqueness is obtained thanks to (10) and a property from the weak KAM theory, which is the
fact that the viscosity solutions are completely determined by one value taken on each static class of the
Aubry set ([10], Chapter 5 and [1]). In what follows we assume that (9) and hence (10) always hold. We
then give an explicit formula for u considering two cases:

(i) Monomorphic ESS : We consider the case where there exists a unique monomorphic ESS z∗ and
the corresponding demographic equilibrium is given by (N∗1 δ(z

∗), N∗2 δ(z
∗)). Then u is given by

u(z) = −
∣∣ ∫ z

z∗

√
−W (x;N∗1 , N

∗
2 )dx

∣∣. (11)

(ii) Dimorphic ESS : We next consider the case where there exists a unique dimorphic ESS (z∗a, z
∗
b )

with the demographic equilibrium: ni = νa,iδ(z− z∗a) +νb,iδ(z− z∗b ), and νa,i+νb,i = N∗i . Then u is given
by

u(z) = max
(
− |
∫ z

z∗a

√
−W (x;N∗1 , N

∗
2 )dx|,−|

∫ z

z∗
b

√
−W (x;N∗1 , N

∗
2 )dx|

)
.

5. How to compute the next order terms

In this section, we give the main elements to compute formally vi and the value of wi at the ESS point,
with vi and wi the correctors introduced by (3), in the case of monomorphic population. For the details
of the computations for both monomorphic and dimorphic populations, we refer the interested reader to
[12].

We consider the case of monomorphic population where the demographic equilibrium corresponding
to the monomorphic ESS is given by (N∗1 δ(z − z∗), N∗2 δ(z − z∗)). One can compute, using (11), a Taylor
expansion of order 4 around the ESS point z∗:

u(z) = −A
2

(z − z∗)2 +B(z − z∗)3 + C(z − z∗)4 +O(z − z∗)5.
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To provide an approximation of the moments of the population’s distribution, we have to compute con-
stants Di, Ei and Fi such that

vi(z) = vi(z
∗) +Di(z − z∗) + Ei(z − z∗)2 +O(z − z∗)3, wi(z

∗) = Fi.

A first element of the computations is obtained by replacing the functions u, vi and wi by the above
approximations to compute Nε,i =

∫
R nε,i(z)dz. This leads to

vi(z
∗) = log

(
N∗i
√
A
)
, Nε,i = N∗i + εK∗i +O(ε2), with K∗i = N∗i

(3C

A2
+
Ei
A

+ Fi
)
.

Note also that writing (1) in terms of uε,i we obtain−εu
′′
ε,1(z) = |u′ε,1|2 +R1(z,Nε,1) +m2 exp

(uε,2 − uε,1
ε

)
−m1,

−εu′′ε,2(z) = |u′ε,2|2 +R2(z,Nε,2) +m1 exp
(uε,1 − uε,2

ε

)
−m2.

(12)

A second element, is obtained by keeping the zero order terms in the first line of (12) and using (8) to
obtain

v2(z)− v1(z) = log
( 1

m2

(
W (z,N∗1 , N

∗
2 )−R1(z,N∗1 ) +m1

))
. (13)

The last element, is derived from keeping the terms of order ε in (12) which leads to

−u′′ = 2u′v′i − κiK∗i +mj exp(vj − vi)(wj − wi), for {i, j} = {1, 2}. (14)

The functions vi and the coefficients Di, Ei and Fi can be computed by combining the above elements.

6. Approximation of the moments

The above approximations of u, vi and wi around the ESS points allow us to estimate the moments of
the population’s distribution. In the monomorphic case these approximations are given below:

Nε,i =

∫
nε,i(z)dz = N∗i (1 + ε(Fi +

Ei
A

+
3C

A2
)) +O(ε2),

µε,i =
1

Nε,i

∫
znε,i(z)dz = z∗ + ε(

3B

A2
+
Di

A
) +O(ε2),

σ2
ε,i =

1

Nε,i

∫
(z − µε,i)2nε,i(z)dz =

ε

A
+O(ε2),

sε,i =
1

σ3
ε,iNε,i

∫
(z − µε,i)3nε,i(z)dz =

6B

A
3
2

√
ε+O(ε

3
2 ).

One can obtain similar approximations in the case of dimorphic ESS. To compute the above integrals,
replacing the approximation (3) in the integrals, a natural change of variable is to take z − z∗ =

√
εy.

Therefore each term z − z∗ can be considered as of order
√
ε in the integration. This is why, to obtain a

first order approximation of the integrals in terms of ε, it is enough to have a fourth order approximation
of u(z), a second order approximation of vi(z) and a zero order approximation of wi(z), in terms of z
around z∗.
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