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A Mathematical derivation

In this section, we provide the mathematical derivation of our results. In Section A.1 we treat the

case of one habitat. In Section A.2 we provide our derivations for the case of two habitats. Finally in

Section A.3 we show how our method can be used to study model (2).

A.1 One population

A.1.1 Derivation of our first approximation in absence of migration

Our first approximation is based on the computation of the terms u
0

(z) and v
0

(z). Based on such com-

putations we can provide an approximation of the population’s total density N⇤
",0

and the phenotypic

density n⇤
",0

(z) in the following form

N⇤
",0

⇡ N
0

+ "K
0

, n⇤
",0

(z) ⇡ 1p
2⇡"

exp
�u

0

(z) + "v
0

(z)

"

�
. (A.1)

Indeed we neglect the error term in (9) since when " is small, in view of (7), it has only small

contribution to the phenotypic density n⇤
",0

(z).

We will prove in what follows that N
0

= N⇤
0

, with N⇤
0

the total population size at the demographic

equilibrium of the ESS z
0

. We will also compute the other terms of the expansions K
0

, u
0

(z) and

v
0

(z).

Using (5) and " =
p
V
m

, the equilibrium n⇤
",0

(z) solves:

0 = U"2
@2n⇤

",0

(z)

@z2
+ n⇤

",0

(z)
�
r
0

(z)� 
0

N⇤
",0

�
. (A.2)

Replacing (7) in the above equation we obtain:

0 = U"
@2u

",0

(z)

@z2
+ U | @

@z
u
",0

(z)|2 + r
0

(z)� 
0

N⇤
",0

. (A.3)

This equation is derived using the following equalities:

@

@z
n⇤
",0

(z) =
� @
@z

u
",0

(z)
�n⇤

",0

(z)

"
,

@2

@z2
n⇤
",0

(z) =

✓
"
@2

@z2
u
",0

(z) + | @
@z

u
",0

(z)|2
◆

n⇤
",0

(z)

"2
.
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We then replace the ansatz (9) in (A.3). We first keep the zero order terms with respect to " (the ones

in front of which there is no ", corresponding to the dominant terms) to obtain the following equation

on u
0

(z):

0 = U |@
z

u
0

(z)|2 + r
0

(z)� 
0

N
0

.

Note also that to have a finite but positive size of population, we should have

max
z2R

u
0

(z) = 0.

Otherwise, in view of (7), the total population size whether becomes infinite as "! 0 (if max
z2R u

0

(z) >

0) or it goes to 0 (if max
z2R u

0

(z) < 0).

At the maximum point z
max

of u
0

, we have @
z

u
0

(z
max

) = 0 and hence

r
0

(z
max

)� 
0

N
0

= 0.

For all other traits z

r
0

(z)� 
0

N
0

= �U |@
z

u
0

(z)|20.

We deduce that z
max

is the maximum point of r
0

(z), that is z
max

= z
0

. In other words, u takes its

maximum at the ESS point z
0

and the zero order term N
0

in the approximation of the population size

is given by

N
0

=
r
0

(z
0

)


0

. (A.4)

This corresponds indeed to the total population size N⇤
0

at the demographic equilibrium of the ESS

z
0

. We gather our results on u
0

in the following form Perthame and Barles 2008; Barles et al. 2009:

u
0

is indeed the unique solution to the following Hamilton-Jacobi equation

8
>><

>>:

0 = U |@
z

u
0

(z)|2 + w(z;N⇤
0

),

max
z

u
0

(z) = u
0

(z
0

) = 0,

(A.5)
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where we recall that w(z;N⇤
0

) = r
0

(z) � 
0

N⇤
0

. This equation can be solved explicitly. The solution

u
0

(z) is given by

u
0

(z) = � 1p
U

��
Z

z

z

0

q
�w(y,N⇤

0

)dy
��. (A.6)

The reader can verify that u
0

(z), given by the formula above, is smooth and solves (A.5). Note that

the absolute values are necessary since the upper limit of the integral z can be smaller or larger than

the lower limit z
0

.

We then keep the terms of order "

�U
@2

@z2
u
0

(z) = 2U
@

@z
v
0

(z)
@

@z
u
0

(z)� 
0

K
0

. (A.7)

An evaluation of this equation at the point z
0

gives

K
0

=
U


0

@2

@z2
u
0

(z
0

). (A.8)

The function v
0

(z) can also be computed thanks to (A.7), that is by integrating the following quantity

@

@z
v
0

(z) =
�U @

2

@z

2

u
0

(z) + 
0

K
0

2U @

@z

u
0

(z)
. (A.9)

Note that to compute v
0

(z) we also need to choose the value of v
0

(z
0

). This value is fixed in a way

such that Z 1

�1
1p
2⇡"

exp
�u

0

(z) + "v
0

(z)

"

�
dz = N⇤

0

+ "K
0

. (A.10)

Example of quadratic growth rate (10). In this example the ESS, which is indeed the maximum

point of r
0

(z), is given by z
0

= ✓
0

. Considering the specific fitness function (10) in (A.4) we first obtain

that

N⇤
0

=
r
max,0


0

.
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Using (A.6) we then obtain that

u
0

(z) = � 1p
U

��
Z

z

✓

0

p
s
0

(y � ✓
0

)2dy
�� = �

p
s
0

2
p
U
(z � ✓

0

)2.

We also obtain from (A.8) that K
0

= �
p
s

0

U



0

. Moreover, from (A.9) we obtain that @

@z

v
0

(z) = 0 which

means that v
0

(z) is a constant. Combining these informations with (A.10) we obtain

N⇤
",0

⇡ 1


0

(r
max,0

�"
p
s
0

U), n⇤
",0

(z) ⇡ 1p
2⇡"

exp
�u

0

(z) + "v
0

(z)

"

�
=

N⇤
",0

s
1/4

0p
2⇡"

p
U

exp
��

p
s
0

2"
p
U
(z�✓

0

)2
�
.

In other words, our first approximation of the phenotypic density n⇤
",0

(z) is given by (8) and (11). We

note finally that the Gaussian distribution obtained above solves (A.2) and hence it is indeed an exact

solution.

Example of non-symmetric growth rate (12). In this example similarly to the previous example

the ESS z
0

is given by z
0

= ✓
0

and

N⇤
0

=
r
max,0


0

.

The expression of u
0

(z) is however di↵erent, and it is given thanks to (A.6) by

u
0

(z) = � 1p
U

��
Z

z

✓

0

p
s
0

(y � ✓
0

)2(a+ (y � ✓
0

� b)2)dy
��. (A.11)

From this expression we can then compute K
0

and v
0

(z) similarly to above using (A.8) and (A.9).

A.1.2 Derivation of our second approximation in absence of migration

In this section, we provide the main idea to obtain explicit formula for the moments of the population’s

distribution. The computation of explicit formula for the moments of the population’s distribution is

based on the observation that, when " is small, the phenotypic density n⇤
",0

(z) is exponentially small

far from the ESS point, since u
0

(z) takes negative values at those points. Therefore, only the values

of u
0

(z) and v
0

(z) around the ESS point matter. We indeed use the Taylor expansions of u
0

(z) and

v
0

(z) around the ESS point to compute such analytic formula.
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We first provide our analytic formula for the moments of the population’s distribution. We next show

how to compute such approximations.

Analytic formula for the moments of the population’s distribution.

In order to provide an explicit approximation of the moments of the population’s distribution, we

compute the third order approximation of u
0

(z) around the ESS z
0

:

u
0

(z) = �A

2
(z � z

0

)2 +B(z � z
0

)3 +O(z � z
0

)4, (A.12)

and the first order approximation of v
0

(z) around z
0

:

v
0

(z) = log(
p
AN⇤

0

) +D(z � z
0

) +O(z � z
0

)2. (A.13)

Such coe�cients can be computed thanks to (A.6) and (A.9). To obtain the zero order term in

the expansion for v
0

(z) we use the fact that, as the mutation’s variance vanishes (" ! 0), the total

population size N⇤
",0

tends to N⇤
0

which corresponds to the demographic equilibrium at the ESS.

The above approximation allows us to estimate the moments of the population’s distribution:

8
>>>>>><

>>>>>>:

µ⇤
",0

= 1

N

⇤
",0

R
zn⇤

",0

(z)dz = z
0

+ "(3B
A

2

+ D

A

) +O("2),

�⇤ 2
",0

= 1

N

⇤
",0

R
(z � µ⇤

",0

)2n⇤
",0

(z)dz = "

A

+O("2),

 ⇤
",0

= 1

N

⇤
",0

R
(z � µ⇤

",0

)3n⇤
",0

(z)dz = 6B

A

3

"2 +O("3).

(A.14)

Derivation of the analytic formula. We next show how to compute such approximations. We

can indeed use the expressions in (A.12) and (A.13) to compute for any integer k � 1,

R
(z � z

0

)kn⇤
",0

(z)dz =
"

k
2

p
AN

⇤
0p

2⇡

R
R(y

ke�
A
2

y

2

�
1 +

p
"(By3 +Dy) +O(")

�
dy

= "
k
2N⇤

0

⇣
!
k

( 1

A

) +
p
"
�
B!

k+3

( 1

A

) +D!
k+1

( 1

A

)
�⌘

+O("
k+2

2 ),

where !
k

(�2) corresponds to the k-th order central moment of a Gaussian distribution with vari-
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ance �2. Note that to compute the integral terms above we have performed a change of variable

z � z
0

=
p
"y, therefore each term z � z

0

can be considered as of order
p
" in the integrations. Note

also that since the term v is multiplied by " in (9), a first order expansion of v is enough, while a third

order expansion of u is required to obtain the above approximation. The above integrations are the

main ingredients to obtain the approximations given in (A.14), i.e. our second approximation.

Example of non-symmetric growth rate (12). Using (A.11) and (A.9) we can compute the

coe�cients in the Taylor expansions of u
0

(z) and v
0

(z), that is (A.12) and (A.13), to obtain

A =

p
s
0

(a+ b2)p
U

, B =

p
s
0

b

3
p
U(a+ b2)

, D =
b

a+ b2
.

Then the expressions of µ⇤
",0

, �⇤2
",0

and  ⇤
",0

given in the main text can be derived thanks to (A.14).

A.2 Two populations

This section is devoted to the mathematical derivation of our results in the case of two habitats. In

Subsection A.2.1 we provide the mathematical derivation of our result in the general case. In Subsec-

tion A.2.2 we treat the extreme case where there is no migration from habitat 2, that is m
2

= 0.

A.2.1 A general case (where m
1

> 0 and m
2

> 0)

In Subsection A.2.1.1, we provide the details of our results in the Adaptive Dynamics framework. In

Subsection A.2.1.2 we present the analysis to obtain our first approximation. In Subsection A.2.1.3

we provide the derivation of our second approximation.

A.2.1.1 Adaptive dynamics in presence of migration In this section, we provide the con-

ditions for a global evolutionary stable strategy. To be able to characterize the ESS one should first

characterize the demographic equilibrium corresponding to a set of traits. Because there are only two

habitats, at most two distinct traits can co-exist. Therefore, we only need to consider two scenarios

where the phenotypic distribution is either monomorphic (with phenotype zM ) or dimorphic (with

7



phenotypes zD
I

and zD
II

, where the subscripts I and II indicate that the phenotype is best adapted to

habitat 1 and 2, respectively).

The monomorphic equilibrium is given by nM

i

(z) = NM

i

�(z�zM ) where �(.) is the dirac delta function,
�
NM

1

, NM

2

�
T

is the right eigenvector associated with the dominant eigenvalue W (zM ;NM

1

, NM

2

) = 0

of A(zM ;NM

1

, NM

2

). In a similar way the dimorphic equilibrium is characterized by: nD

i

(z) =

⌫
I,i

�(z � zD
I

) + ⌫
II,i

�(z � zD
II

), where ⌫
I,i

+ ⌫
II,i

= ND

i

and (⌫
k,1

, ⌫
k,2

)T are the right eigenvectors

associated with the largest eigenvalues W (zD
k

;ND

1

, ND

2

) = 0 (for k = I, II) of A(zD
k

;ND

1

, ND

2

).

The evolutionary stability of a resident strategy zM⇤ can be studied with the analysis of the invasion

of a new mutant strategy z
m

at the demographic equilibrium
�
NM⇤

1

, NM⇤
2

�
set by the resident strat-

egy. The monomorphic strategy zM⇤ is an evolutionary stable strategy if for any mutant z
m

6= zM⇤,

the e↵ective fitness is negative: W (z
m

;NM⇤
1

, NM⇤
2

) < 0. In a similar way, the dimorphic strategy

{zD⇤
I

, zD⇤
II

} is an evolutionary stable strategy if for any mutant z
m

62 {zD⇤
I

, zD⇤
II

}, the e↵ective fitness

is negative: W (z
m

;ND⇤
1

, ND⇤
2

) < 0.

To determine the global ESS, we first define

zD⇤ =
r
✓2 � m

1

m
2

4✓2s
1

s
2

, ND⇤
1

=
m

1

m

2

4✓

2

s

2

+ r
max,1

�m
1


1

, ND⇤
2

=
m

1

m

2

4✓

2

s

1

+ r
max,2

�m
2


2

.

Theorem A.1 (Mirrahimi 2017) There exists a unique global ESS.

(i) The ESS is dimorphic if

m
1

m
2

4s
1

s
2

✓4
< 1, (A.15)

0 < m
2

ND⇤
2

+ (w
1

(�zD⇤;ND⇤
1

)�m
1

)ND⇤
1

, (A.16)

and

0 < m
1

ND⇤
1

+ (w
2

(zD⇤;ND⇤
2

)�m
2

)ND⇤
2

. (A.17)
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Then the dimorphic equilibrium is given by

nD⇤
i

= ⌫
I,i

�(z + zD⇤) + ⌫
II,i

�(z � zD⇤), ⌫
I,i

+ ⌫
II,i

= ND⇤
i

, i = 1, 2,

with ⌫
k,i

given in Section B.1.

(ii) If the above conditions are not satisfied then the ESS is monomorphic. In the case where condition

(A.15) is verified but the r.h.s. of (A.16) (respectively (A.17)) is negative, the fittest trait belongs to

the interval (�✓,�zD⇤) (respectively (zD⇤, ✓)). If (A.15) is satisfied but (A.16) (respectively (A.17))

is an equality then the monomorphic ESS is given by {�zD⇤} (respectively {zD⇤}).

If the habitats are symmetric, then the second and the third conditions (A.16)–(A.17) above are always

satisfied and the dimorphism occurs under the only condition (A.15). In other words, if migration is

weak with respect to the selection or the di↵erence of the optimal traits in the two habitats, then the

ESS will be dimorphic. When the habitats are non-symmetric the extra conditions (A.16) and (A.17)

appear which are conditions of mutual invasibility. Condition (A.16) (respectively condition (A.17))

means indeed that a mutant trait of type zD⇤ (respectively �zD⇤) can invade a monomorphic resident

population of type �zD⇤ (respectively zD⇤) which is at it’s demographic equilibrium (see Mirrahimi

2017-Proposition 3.4).

We can indeed rewrite conditions (A.16) and (A.17) respectively as below

⌘
1

< �
2

r
max,2

� ↵
1

r
max,1

, ⌘
2

< �
1

r
max,1

� ↵
2

r
max,2

,

with ⌘
i

, ↵
i

and �
i

constants depending on m
1

, m
2

, g
1

, g
2

, 
1

, 
2

and ✓ (see Section B.2 for the

expressions of these coe�cients). These conditions, which are given in the main text in the general

non-symmetric scenario, are indeed a measure of asymmetry between the habitats. They appear

from the fact that even if condition (A.15), which is the only condition for dimorphism in symmetric

habitats, is satisfied, while the quality of the habitats are very di↵erent, the ESS cannot be dimorphic.

In this case, the population will be able to adapt only to one of the habitats and it will be maladapted

to the other one (see Figure 5). To avoid lengthy and technical computations, the proof of Theorem

(A.1) is given in Mirrahimi 2017–Section 4.
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A.2.1.2 Derivation of our first approximation in presence of migration Similarly to Sub-

section A.1.1 our first approximation is based on the computation of the terms u
i

(z) and v
i

(z). Based

on such computations we can provide an approximation of the population’s total density N⇤
",i

and the

phenotypic density n⇤
",i

(z) in the following form

N⇤
",i

⇡ N
i

+ "K
i

, n⇤
",i

(z) / 1p
2⇡"

exp
�u

i

(z) + "v
i

(z)

"

�
. (A.18)

Note that the equilibrium (n⇤
",1

, n⇤
",2

) solves

8
>>>>>><

>>>>>>:

0 = U"2
@

2

n

⇤
",1(z)

@z

2

+ n⇤
",1

(z)
�
r
1

(z)� 
1

N⇤
",1

�
+m

2

n⇤
",2

(z)�m
1

n⇤
",1

(z),

0 = U"2
@

2

n

⇤
",2(z)

@z

2

+ n⇤
",2

(z)
�
r
2

(z)� 
2

N⇤
",2

�
+m

1

n⇤
",1

(z)�m
2

n⇤
",2

(z).

(A.19)

We first let "! 0 in the above equation to obtain that n⇤
",i

(z) ! n
i

(z) and N⇤
",i

! N
i

with

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0 = n
1

(z) (r
1

(z)� 
1

N
1

) +m
2

n
2

(z)�m
1

n
1

(z),

0 = n
2

(z) (r
2

(z)� 
2

N
2

) +m
1

n
1

(z)�m
2

n
2

(z),

N
i

=
R1
�1 n

i

(z)dz,

which is equivalent with

A(z,N
1

, N
2

)

0

B@
n
1

(z)

n
2

(z)

1

CA = 0, N
i

=

Z 1

�1
n
i

(z)dz,

with A(z,N
1

, N
2

) given by (15). This means that (N
1

, N
2

) corresponds to the sizes of the populations

1 and 2 at the demographic equilibrium (n
1

(z), n
2

(z)), in absence of mutations. We will show that

this equilibrium corresponds indeed to a global evolutionary stable strategy and hence N
i

= N⇤
i

. To

10



this end, we replace (16) in (A.19) and obtain

8
>>>>>><

>>>>>>:

0 = "U
@

2

u",1(z)

@z

2

+ U | @

@z

u
",1

(z)|2 + r
1

(z)� 
1

N⇤
",1

+m
2

exp(u",2(z)�u",1(z)

"

)�m
1

,

0 = "U
@

2

u",2(z)

@z

2

+ U | @

@z

u
",2

(z)|2 + r
2

(z)� 
2

N⇤
",2

+m
1

exp(u",1(z)�u",2(z)

"

)�m
2

.

(A.20)

Similarly to above, this system is derived using the following equalities

@

@z
n⇤
",i

(z) =
� @
@z

u
",i

(z)
�n⇤

",i

(z)

"
,

@2

@z2
n⇤
",i

(z) =

✓
"
@2

@z2
u
",i

(z) + | @
@z

u
",i

(z)|2
◆

n⇤
",i

(z)

"2
.

We can determine u
i

(z), v
i

(z) from the above equation and (17).

Note that the exponential terms in (A.20) suggest that, when m
i

> 0 for i = 1, 2, as "! 0 u
",1

(z) and

u
",2

(z) converge to the same limit u(z). Otherwise, one of these exponential terms tends to infinity

while the other terms are bounded. Keeping the zero order terms (the ones in front of which there is

no ", corresponding to the dominant terms) we obtain

8
>><

>>:

0 = U | @

@z

u(z)|2 + r
1

(z)� 
1

N
1

+m
2

exp(v
2

(z)� v
1

(z))�m
1

,

0 = U | @

@z

u(z)|2 + r
2

(z)� 
2

N
2

+m
1

exp(v
1

(z)� v
2

(z))�m
2

.

(A.21)

We then multiply the first line by exp(v
1

(z)) and the second line by exp(v
2

(z)) and write the system

in the matrix form to obtain, using (14),

0

B@
w
1

(z;N
1

)�m
1

m
2

m
1

w
2

(z;N
2

)�m
2

1

CA

0

B@
exp(v

1

(z))

exp(v
2

(z))

1

CA = �U | @
@z

u(z)|2
0

B@
exp(v

1

(z))

exp(v
2

(z))

1

CA .

Note that the matrix in the l.h.s. is nothing but A(z,N
1

, N
2

) given by (15). The equality above means

that �U | @

@z

u(z)|2 is indeed the principal eigenvalue of A(z;N
1

, N
2

), that is

�U | @
@z

u(z)|2 = W (z;N
1

, N
2

).
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Similarly to Subsection A.1.1, to have a finite but positive size of population, we should have

max
z2R

u(z) = 0.

Otherwise, in view of (16), the total population size whether becomes infinite as "! 0 (if max
z2R u(z) >

0) or it goes to 0 (if max
z2R u(z) < 0). Similarly we obtain

suppn
i

⇢ {z |u(z) = 0},

where suppn
i

is the set of traits z such that the density n
i

(z) is positive. The above property holds

since u(z
0

) < 0 implies that lim
"!0

n⇤
",i

(z
0

) = 0.

Let z̄ be such that u(z̄) = 0 which means that it is a maximum point of u(z). Then, @

@z

u(z̄) = 0 and

hence

W (z̄;N
1

, N
2

) = 0.

Moreover in all the points z 2 R, we have

W (z;N
1

, N
2

) = �U | @
@z

u(z)|2  0.

This implies that

if z 2 suppn
1

= suppn
2

then W (z;N
1

, N
2

) = 0,

if z 62 suppn
1

= suppn
2

then W (z;N
1

, N
2

)  0.

In other words (n
1

(z), n
2

(z)) corresponds to the demographic equilibrium corresponding to the global

ESS and hence n
i

(z) = n⇤
i

(z) and N
i

= N⇤
i

, with n⇤
i

(z) and N⇤
i

given in Subsection A.2.1.1.

We gather the informations that we obtained on u(z):

8
>><

>>:

�U | @

@z

u(z)|2 = W (z;N⇤
1

, N⇤
2

),

max
z2R u(z) = 0,

(A.22)

with the maximum points of u(z) attained at the ESS points.

12



This property allows us to provide explicit formula for u(z).

In the case of monomorphic ESS, u(z) is given by

u(z) = � 1p
U

��
Z

z

z

M⇤

q
�W (x;NM⇤

1

, NM⇤
2

)dx
��. (A.23)

The reader can verify that u(z), given by the formula above, is smooth and solves (A.22) with its

maximum point at zM⇤.

In the case of dimorphic ESS, u(z) is given by

u(z) = max
⇣
� 1p

U

��
Z

z

z

D⇤
I

q
�W (x;NM⇤

1

, NM⇤
2

)dx
��, � 1p

U

��
Z

z

z

D⇤
II

q
�W (x;NM⇤

1

, NM⇤
2

)dx
��
⌘
. (A.24)

The reader can also verify that the above function is smooth at all points except at the point where

the two functions in the maximum operator intersect. Moreover, u(z) solves (A.22) at the smooth

points and it attains its maximum at the ESS points zD⇤
I

and zD⇤
II

. See Mirrahimi 2017 for the details

on why this is indeed the solution obtained at the limit "! 0.

Computation of the next order terms v
i

(z):

The derivation of the next order terms v
i

(z) follows also similar arguments as in Section A.1.1. How-

ever, since here we have a system the computations are less straight forward. We present the main

ingredients to compute these terms.

From (A.21) and (A.22) we can compute v
2

(z)� v
1

(z) thanks to the following formula

v
2

(z)� v
1

(z) = log
⇣ 1

m
2

�
W (z,NM⇤

1

, NM⇤
2

)� w(z,NM⇤
1

) +m
1

�⌘
.

We next keep the first order terms in (A.20), i.e. the terms with an " in front of them. To do so, we

need to go further than (17) in the approximation of u
",i

(z) and also keep the term of order "2, l
i

(z):

u
",i

(z) = u(z) + "v
i

(z) + "2l
i

(z) +O("3).

13



Then, keeping the first order terms in (A.20) we obtain

8
>><

>>:

0 = U @

2

@z

2

u(z) + 2U @

@z

u(z) @

@z

v
1

(z)� 
1

K
1

+m
2

exp(v
2

(z)� v
1

(z))(l
2

(z)� l
1

(z)),

0 = U @

2

@z

2

u(z) + 2U @

@z

u(z) @

@z

v
2

(z)� 
2

K
2

+m
2

exp(v
1

(z)� v
2

(z))(l
1

(z)� l
2

(z)).

(A.25)

Using the above equalities and by evaluating them at the ESS points we can compute v
i

(z) and K
i

for i = 1, 2. See Mirrahimi 2017–Section 3.3 for the details of such computations.

A.2.1.3 Derivation of our second approximation in presence of migration Explicit

formula for the moments of order k, with k � 1, of the phenotypic distribution, called our second

approximation, can be derived following similar arguments as in Section A.1.2. However, in presence

of migration we should consider two cases of monomorphic and dimorphic population. The case of

monomorphic ESS can be treated exactly as in Section A.1.2. The dimorphic case is slightly di↵erent

and we provide the additional elements to compute the moments of the phenotypic distribution in this

case.

Let’s suppose that the model has a dimorphic ESS {zD⇤
I

, zD⇤
II

} with ND⇤
i

= ⌫
I,i

+⌫
II,i

. We first compute

the local moments of the phenotypic density, that is, for k = I, II,

8
>>>>>>>>>><

>>>>>>>>>>:

⌫D⇤
",k,i

=
R
Ok

nD⇤
",i

(z)dz,

µD⇤
",k,i

= 1

⌫",k,i

R
Ok

znD⇤
",i

(z)dz,

�D⇤ 2
",k,i

= 1

⌫",k,i

R
Ok

(z � µD⇤
",k,i

)2nD⇤
",i

(z)dz,

 D⇤
",k,i

= 1

⌫

D⇤
",k,i

R
Ok

(z � µD⇤
",k,i

)3nD⇤
",i

(z)dz

with O
I

= (�1, 0) and O
II

= (0,1). We can next compute the global moments of the population’s

distribution from the above local moments.

Since in this case we also need to compute the local population sizes ⌫D⇤
",k,i

, we need to go an order

further in the Taylor expansions and also use the value of the second order term l
i

at the ESS points

14



zD⇤
k

:

u(z) = �A
k

2
(z � zD⇤

k

)2 +B
k

(z � zD⇤
k

)3 + C
k

(z � zD⇤
k

)4 +O(z � zD⇤
k

)5,

v
i

(z) = log(
p

A
k

⌫
k,i

) +D
k,i

(z � zD⇤
k

) + E
k,i

(z � zD⇤
k

)2 +O(z � zD⇤
k

)3, l
i

(zD⇤
k

) = F
k,i

.

Note that we can compute the Taylor expansions of u and v thanks to the expression of u, given by

(A.24), and the expression of v
i

, obtained following Section A.2.1.2. Moreover, we can derive the value

of F
k,i

thanks to (A.25).

The above approximation allows us, similarly to Subsection A.1.2, to estimate the local moments of

the population’s distribution:

8
>>>>>>>>>><

>>>>>>>>>>:

⌫D⇤
",k,i

= ⌫
k,i

(1 + "K
k,i

) +O("2),

µD⇤
",k,i

= zD⇤
k

+ "(3Bk
A

2

k
+

Dk,i

Ak
) +O("2),

�D⇤ 2
",k,i

= "

Ak
+O("2),

 D⇤
",k,i

= 6Bk
A

3

k
"2 +O("3),

(A.26)

with

K
k,i

= F
k,i

+
E

k,i

+ 0.5D2

k,i

A
k

+
3(C

k

+B
k

D
k,i

)

A2

k

+
7.5B2

k

A3

k

.

Derivation of the analytic formula (A.26):

The above analytic formula for the moments of order 1  k  3 can be derived following similar

arguments as in Section A. To derive the explicit formula for ⌫D⇤
",k,i

we also use similar type of

arguments. We can indeed use the Taylor expansions above to compute

⌫D⇤
",k,i

=
R
Ok

n
",i

(z)dz

=
p
Ak⌫k,ip
2⇡

R
R e�

Ak
2

y

2

�
1 +

p
"(B

k

y3 +D
k,i

y) + "(0.5(B
k

y3 +D
k,i

y)2 + C
k

y4 + E
k,i

y2 + F
k,i

) +O("2)
�
dy

= ⌫
k,i

(1 + "(F
k,i

+
Ek,i+0.5D

2

k,i

Ak
+

3(Ck+BkDk,i)

A

2

k
+

7.5B

2

k
A

3

k
)) +O("2),

Note that to compute the integral terms above we have performed a change of variable z�zM⇤ =
p
"y,

therefore each term z � zM⇤ can be considered as of order
p
" in the integrations.
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A.2.2 The extreme source and sink case (where m
1

> 0 and m
2

= 0)

In this section, we provide the derivation of our approximations in the extreme source and sink

scenario. In Subsection A.2.2.1 we provide our derivation in the Adaptive Dynamics framework and

in Subsection A.2.2.2 we present the analysis for our first approximation. We do not provide the

derivation of our second approximation in the extreme source and sink scenario since it is similar to

the general case.

A.2.2.1 Adaptive dynamics in the extreme source and sink scenario We first recall the

evolutionary outcome in the first habitat which depends only on selection acting in habitat 1: the ESS

is �✓ and

N⇤
1

=
r
max,1

�m
1


1

.

In the second habitat, a part of the population 1, with trait �✓ and with size m

1

(r

max,1�m

1

)



1

, is present

thanks to migration. The growth rate of any other trait z in this habitat is given by w
2

(z;N⇤
2

) =

r
max,2

� s
2

(z � ✓)2 � 
2

N⇤
2

. Therefore the only trait, in addition to the trait z = �✓, that can be

present at the ESS is the maximum point of w
2

(z;N⇤
2

), that is z = ✓. This means that the ESS at

the second habitat, is whether monomorphic and given by {�✓} or dimorphic and given by {�✓, ✓}.
The dimorphism in the second habitat occurs if the trait ✓ is strong enough to compete with the

maladapted trait �✓ coming from the first habitat. This occurs under the following condition:

m
1

(r
max,1

�m
1

)


1

<
4s

2

✓2r
max,2


2

. (A.27)

Under this condition, there exists indeed a positive demographic equilibrium for the set of traits

{�✓, ✓}:
nD⇤
2

= ↵�(z + ✓) + ��(z � ✓), ND⇤
2

= ↵+ � =
r
2


2

,

such that

m
1

N⇤
1

+ w
2

(�✓;ND⇤
2

)↵ = 0, w
2

(✓;ND⇤
2

)� = 0.
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We can indeed compute the densities ↵, � and ND⇤
2

:

ND⇤
2

=
r
2


2

, ↵ =
m

1

(r
max,1

�m
1

)

4s
2

✓2
1

, � =
r
max,2


2

� m
1

(r
max,1

�m
1

)

4s
2

✓2
1

.

When the condition (A.27) is not satisfied, then there is no such demographic equilibrium. The ESS

is then monomorphic with trait �✓ and the demographic equilibrium is given by

nM⇤
2

= N⇤
2

�(z + ✓), m
1

N⇤
1

+ w
2

(✓;NM⇤
2

)NM⇤
2

= 0,

leading to

NM⇤
2

=
1

2
2

⇣
r
2

� 4s
2

✓2 +

r
(r

max,2

� 4s
2

✓2)2 + 4

2


1

m
1

(r
max,1

�m
1

)
⌘
.

To understand the relation with Section A.2.1.1, note that the above computations are equivalent with

finding an ESS for the e↵ective growth rate W (z;N⇤
1

, N⇤
2

), corresponding to the principal eigenvalue

of A(z;N⇤
1

, N⇤
2

) which is given by

W (z;N⇤
1

, N⇤
2

) = max
�
w
1

(z;N⇤
1

)�m
1

, w
2

(z;N⇤
2

)
�
,

as a consequence of m
2

= 0.

A.2.2.2 Derivation of the first approximation in the extreme source and sink scenario

The population’s phenotypic density n⇤
",1

can be computed explicitly as in the one population scenario,

the example of quadratic growth rate: n⇤
",1

= N⇤
",1

f
"

, where N⇤
",1

= r

max,1�m

1

�"

p
Us

1



1

and f
"

is the

probability density of a normal distribution N (�✓, "
p
Up
s

1

) (see (11)). This allows us to compute u
",1

,

given by (16):

u
",1

= �
p
s
1

(z + ✓)2

2
p
U

+ " log

✓
s

1

4

1

⇣
N⇤

1

� "

p
Us

1


1

⌘◆
,

and hence

u
",1

= u
1

+ "v
1

+ "2l
1

+ o("2), N
",1

= N⇤
1

+ "K
1

+ o("),
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with

u
1

= �
p
s
1

(z + ✓)2

2
p
U

, v
1

⌘ log
�
s

1

4

1

N⇤
1

�
, l

1

⌘ �
p
Us

1


1

N⇤
1

, K
1

= �
p
Us

1


1

. (A.28)

To estimate the phenotypic density in the second habitat we study the equation on u
",2

given by (16)

and (A.20):

0 = "U
@2u

",2

(z)

@z2
+ U | @

@z
u
",2

(z)|2 + r
2

(z)� 
2

N⇤
",2

+m
1

exp(
u
",1

(z)� u
",2

(z)

"
). (A.29)

Note that here we have used the fact that m
2

= 0. As above we expect to have an asymptotic

expansion for u
",2

(z) and N⇤
",2

:

u
",2

(z) = u
2

(z) + "v
2

(z) + "2l
2

(z) + o("2), N⇤
",2

= N⇤
2

+ "K
2

.

Derivation of u
2

(z).

We replace the above expansion in (A.29). From the exponential term in (A.29) we deduce that

u
2

(z) � u
1

(z).

Otherwise this exponential term will tend to infinity. However, unlike Section A.2.1.2, here we don’t

have necessarily that u
1

(z) � u
2

(z), which means that we don’t have necessarily u
1

(z) = u
2

(z). This

is because m
2

= 0 and there is no such exponential term in the equation on u
",1

(z). This is why the

source and sink case is a degenerate case comparing to what we studied in Section A.2.1.2.

In order to identify u
2

(z) we first notice that keeping the "0 order terms in (A.29) and using the

positivity of the exponential term in (A.29), we obtain that, for all z 2 R,

�U |u0
2

(z)|2 � r
2

(z)� 
2

N⇤
2

. (A.30)

Next, we consider two cases:

(i) Let z be such that u
1

(z) < u
2

(z). In this case, exp
�
u",1(z)�u",2(z)

"

�
tends to 0, and keeping the "0

18



order terms in (A.29) we obtain

�U |u0
2

(z)|2 = r
2

(z)� 
2

N⇤
2

. (A.31)

(ii) Let z be such that u
1

(z) = u
2

(z). Assuming that the equality holds on an open interval including

z, we can write

�U |u0
2

(z)|2 = �U |u0
1

(z)|2 = r
1

(z)� 
1

N⇤
1

�m
1

. (A.32)

Thanks to (A.30) and (A.32) we deduce in particular that if at some trait z
0

,

r
1

(z
0

)� 
1

N⇤
1

�m
1

< r
2

(z
0

)� 
2

N⇤
2

,

then u
1

(z
0

) 6= u
2

(z
0

) and hence u
2

solves (A.31) at z
0

.

Combining the above properties we can determine the equation on u
2

. To this end, we consider three

cases:

(1) Let s
2

< s
1

. In this case, there exists (z
1

, z
2

) such that z
1

< �✓ < z
2

< ✓ and

r
1

(z)� 
1

N⇤
1

�m
1

� r
2

(z)� 
2

N⇤
2

, for z 2 [z
1

, z
2

],

and

r
1

(z)� 
1

N⇤
1

�m
1

< r
2

(z)� 
2

N⇤
2

, for z 2 (�1, z
1

) [ (z
2

,1).

This leads to the following equation on u
2

(z):

�U |u0
2

(z)|2 = g
1

(z) := max
�
r
2

(z)� 
2

N⇤
2

, r
1

(z)� 
1

N⇤
1

�m
1

�
.

(2) Let s
1

< s
2

. In this case, there exists (z
1

, z
2

) such that �✓ < z
1

< ✓ < z
2

and

r
1

(z)� 
1

N⇤
1

�m
1

 r
2

(z)� 
2

N⇤
2

, for z 2 [z
1

, z
2

],

and

r
1

(z)� 
1

N⇤
1

�m
1

> r
2

(z)� 
2

N⇤
2

, for z 2 (�1, z
1

) [ (z
2

,1).
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This leads to the following equation on u
2

(z):

�U |u0
2

(z)|2 = g
2

(z),

with g
2

(z) given by

g
2

(z) =

8
>><

>>:

r
1

(z)� 
1

N⇤
1

�m
1

, if z  z
1

,

r
2

(z)� 
2

N⇤
2

, if z > z
1

.

(3) Let s
1

= s
2

. In this case, there exists a point z
1

such that �✓ < z
1

< ✓ and

r
1

(z)� 
1

N⇤
1

�m
1

� r
2

(z)� 
2

N⇤
2

, for z 2 (�1, z
1

],

and

r
1

(z)� 
1

N⇤
1

�m
1

< r
2

(z)� 
2

N⇤
2

, for z 2 (z
1

,1).

This leads to the following equation on u
2

(z):

�U |u0
2

(z)|2 = g
3

(z),

with

g
3

(z) = g
1

(z) = max
�
r
2

(z)� 
2

N⇤
2

, r
1

(z)� 
1

N⇤
1

�m
1

�
.

From the above formula we can determine u
2

(z):

Monomorphic case: Under condition

4s
2

✓2r
max,2


2

<
m

1

(r
max,1

�m
1

)


1

,

the functions g
i

(z) have a unique maximum point at �✓. This means in particular that the ESS is

monomorphic (see condition (21)). This leads to the following formula for u
2

(z)

u
2

(z) = � 1p
U

��
Z

z

�✓

p
�g

i

(x)dx
��2, (A.33)
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where we use g
i

, with i = 1, 2, 3, for case (i).

Dimorphic case: Under condition

4s
2

✓2r
max,2


2

>
m

1

(r
max,1

�m
1

)


1

,

the functions g
i

(z) have two maximum points at �✓ and ✓. This means that the ESS is dimorphic

and zD⇤
1

= �zD⇤
2

= �✓. Moreover, the function u
2

(z) can be computed as below

u
2

(z) = max
⇣
� 1p

U

��
Z

z

�✓

p
�g

i

(x)dx
��2,� 1p

U

��
Z

z

✓

p
�g

i

(x)dx
��2
⌘
, (A.34)

where we use g
i

, with i = 1, 2, 3, for case (i).

Derivation of v
2

(z).

To compute the next order term v
2

(z), we also consider two cases:

(i) Let z be such that u
1

(z) < u
2

(z). As above, in this case, exp
�
u",1(z)�u",2(z)

"

�
tends to 0, and keeping

the " order terms in (A.29) we obtain

�U u00
2

(z) = 2U u0
2

(z)v0
2

(z)� 
2

K
2

.

Since we have already computed the expression for u
2

(z) ((A.33) and (A.34)) we can compute v0
2

(z)

(and hence v
2

(z)) from the above formula. In particular, in the dimorphic case, the computations are

straight forward. In this case u0
2

(z) is given by (A.31) with r
2

(z)� 
2

N⇤
2

= �s
2

(z � ✓)2. Therefore,

u0
2

(z) = �
p
s
2p
U

(z � ✓), u00
2

(z) = �
p
s
2p
U
.

Combining the above equalities we obtain that v0
2

(z) = 0, and hence v
2

(z) is constant in this zone:

v
2

(z) = v
2

(✓), K
2

= �
p
Us

2


2

.
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(ii) Let z be such that u
1

(z) = u
2

(z). Then, keeping the "0 order terms in (A.29) we obtain

�U |u0
2

(z)|2 = r
2

(z)� 
2

N⇤
2

+m
1

exp(v
1

(z)� v
2

(z)).

Since u
2

(z) and v
1

(z) are already given by (A.33), (A.34) and (A.28), the above formula allows us to

compute v
2

(z):

v
2

(z) = v
1

(z)� log

✓
r
1

(z)� 
1

N⇤
1

�m
1

� r
2

(z) + 
2

N⇤
2

m
1

◆
.

The above computations are relevant for z far from the point z̄
0

such that

r
1

(z̄
0

)� 
1

N⇤
1

�m
1

= r
2

(z̄
0

)� 
2

N⇤
2

.

From the expression of v
2

(z) above we notice indeed that there is a singularity at the point z̄
0

since the

value inside the logarithmic term vanishes at z̄
0

. This shows that such approximation does not hold

close to the point z̄
0

. In our numerical simulations in Figure 6 we use indeed a linear approximation

of the formula above for v
2

(z) which provides already convincing results.

A.3 Derivation of a Hamilton-Jacobi equation in the case of model (2)

Our approach can also be used to study the more general model (2). The objective would be to provide

an approximation of the equilibrium solution n⇤
i

when the variance of the mutation distribution is small.

We assume indeed that the variance of the mutation distribution K
"

scales as "2V
0

. More precisely,

we assume that K
"

(y)dy = K(y
"

)dy
"

(for instance a Gaussian distribution with mean 0 and variance

"2�2 has such form). Then, the stationary version of (2) may be written as

0 = U
� R

+1
�1 n⇤

",i

(z � "y)K(y)dy � n⇤
",i

(z)
�
+ n⇤

",i

(z)
⇣
r
i

(z)� 
i

R
+1
�1 n⇤

",i

(t, y)dy
⌘

+m
j

n⇤
",j

(z)�m
i

n⇤
",i

(z).

Next, analogously to our work in the case of (3), we use the ansatz (16):

n⇤
",i

=
1

2⇡"
exp

�u
",i

"

�
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and postulate an expansion for u
",i

in terms of ":

u
",i

= u
i

+ "v
i

+O("2).

The computation of the above terms allows us to provide approximations of the population phenotypic

densities n⇤
",i

(z) and their moments. To compute these terms, analogously to what we presented for the

di↵usion case, thanks to the combination of the above equalities, we derive some equations satisfied by

u
i

and v
i

. The resolution of such equations, which is less straight forward comparing to the di↵usion

case, allows us to compute these terms. We provide here, the equation satisfied by the zero order term

u
i

. To this end, we replace (16) in the above equation to obtain

8
>>>>>><

>>>>>>:

�U
R
+1
�1

�
e

u",1(z�"y)�u",1(z)

" � 1
�
K(y)dy = r

max,1

� 
1

N⇤
",1

+m
2

exp(u",2�u",1

"

)�m
1

,

�U
R
+1
�1

�
e

u",2(z�"y)�u",2(z)

" � 1
�
K(y)dy = r

max,2

� 
2

N⇤
",2

+m
1

exp(u",1�u",2

"

)�m
2

.

Similarly to Subsection A.2.1.2, the exponential terms, coming from the migration terms, suggest that

when m
i

> 0 for i = 1, 2, as "! 0, u
",1

and u
",2

converge to the same limit u. The limit u solves the

following Hamilton-Jacobi equation

8
>><

>>:

�U
R
+1
�1

�
e�y

@
@zu(z) � 1

�
K(y)dy = W (z;N⇤

1

, N⇤
2

),

max
z2R u(z) = 0,

(A.35)

where (N⇤
1

, N⇤
2

) is the demographic equilibrium corresponding to the ESS and W is the largest eigen-

value of matrix A given by (15). See Barles et al. 2009 where the details of such computations are

provided in the case of a homogeneous environment.
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B Some expressions for the case studies

B.1 Local densities in the dimorphic case for general and symmetric scenarios

In this section, we provide the expressions of the local densities in the dimorphic case in the Adaptive

Dynamics framework and for the general non-symmetric scenario with m
i

> 0. The expressions of

the local densities in the symmetric case can be obtained from the same formula, using m
1

= m
2

=

m,
1

= 
2

= , s
1

= s
2

= g, r
max,1

= r
max,2

= r
max

.

To this end, we first recall the values of the global densities at the ESS:
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.

Then the local densities ⌫
k,i

, for k = I, II and i = 1, 2, are given by
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B.2 Condition for dimorphism in a general non-symmetric scenario

We provide below the expressions of the constants ↵
i

, �
i

and ⌘
i

which appear in the condition for

dimorphism in the main text in the general non-symmetric scenario (see also Subsection A.2.1.1):
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B.3 Analytic formula for the moments of the dimorphic phenotypic distribution

in the symmetric case

We provide below our analytic approximations of the local moments of the phenotypic distribution,

in the dimorphic case, for both the symmetric scenario and the source and sink scenario. Such local

moments are defined in Subsection A.2.1.3). One can compute the global moments of the population’s

distribution from such local moments.

For the symmetric scenario, we define � =
q
1� m

2

4s

2

✓

4

. Our approximation is then given by
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where the subscripts I and II indicate that the local moments are in the sets O
I

= (�1, 0) and

O
II

= (0,1) which include respectively zD
I

and zD
II

.

B.4 Some expressions for the source and sink scenario

When the condition (21) holds, the evolutionary equilibrium is monomorphic and the evolutionary

stable strategy is z⇤ = �✓ and the total population size is given by

N⇤
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=
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2
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� 4s
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)
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.

25



There is indeed a population of size N⇤
2

in the second habitat which is of type z⇤ = �✓ : this population
is very maladapted.

Our second approximation provides analytic formula for the moments of the phenotypic distribution

in the sink (see Figure 6 for a comparison between the first and the second approximations):
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When the condition (21) is not satisfied, the evolutionary equilibrium is dimorphic in the second

habitat:
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Then, the moments of the population’s distribution in this habitat can be approximated as below:
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