
Wall-Adapting Local Eddy-Viscosity models for simulations incomplex geometriesF. Ducros F. Nicoud T. PoinsotCERFACS, 42, Avenue Gaspard Coriolis, 31057 Toulouse cedex, France.1 IntroductionLarge-Eddy Simulations (LES) are developed to investigate the instantaneous three-dimen-sional structure of turbulent 
ows. Not only qualitative but quantitative results are nowexpected from these approaches both for simple and complex geometries. However, typicalnumerical and subgrid-scale parametrization requirements usually satis�ed for the simulationof turbulent 
ows in simple geometries may no longer be achieved for LES in complex geome-tries. This leads to di�culties when LES developed for simple academic 
ows must be usedfor real 
ows in complex geometries. On the other hand, a short overview of industrial-typeapplications of LES shows what a proper LES for realistic aeronautical 
ows should at leastdo: provide a local eddy-viscosity, able to switch o� during the early stages of transition ando�ering a proper wall scaling to get a good prediction of friction coe�cient.The objectives of the present e�ort are to give some elements for such a modeling.2 Classical modelingIn LES for incompressible 
ows, scales smaller than the grid size are not resolved but ac-counted for through the subgrid scale tensor Tij given by Tij = uiuj � uiuj . Most subgridscale modeling are based on an eddy-viscosity assumption to model the subgrid scale tensor:Tij � 13Tkk�ij = 2�tSij ; Sij = 12 �@ui@xj + @uj@xi� : (2.1)Modeling the subgrid-scale tensor in the spectral space with the same assumption leads to�t as �t(k;m) = �+t (k;m)qE(kc;t)kc ; E(kc; t) is the cuto� kinetic energy, kc = �� is the cuto�wavenumber. �+t is an increasing function of k accounting for a cusp-behaviour near thecuto� and a decreasing function of m, the slope of the kinetic energy spectrum: E(k) / k�m(see [5]). The form �t(k;m) has two interesting properties: �t is zero as soon as there is noenergy near the cuto�, that is for transitional state and �t decreases near walls since the slopem is larger in the wall than in the core regions of boundary layer. A simpli�ed version of�+t (k;m)qE(kc;t)kc is used to get �t in physical space. Assuming that �t does no longer dependon k and provides the same dissipation � as an isotropic incompressible turbulence leads to� = 2�t Z 10 k2E(k)dk; � = 2�t < SijSij > ; (2.2)<> standing for an average on the whole physical domain. Using E(k) = CK�2=3k�5=3(CK � 1:4 is the Kolmogorov constant) in eq. 2.2 gives�t = 23C�3=2K sE(kc)kc : (2.3)1



2 Ducros,Nicoud & PoinsotSince the cusp behaviour and the dependence on m are forgotten, the physical reasons ac-counting for damping of �t near wall regions are no longer contained in the model.Coming back to physical space requires to express eq. 2.3 with a local operator leading tomodels of the generic forms:�t = C1�qOP1(~x; t) or �t = (C2�)2qOP2(~x; t): (2.4)� is a characteristic length scale of the cuto� length scale. C is determined by a relation offollowing type (requiring isotropy):< OPi~x >= Z kc0 �(E(k); k)dk; i 2 [1; 2]: (2.5)�(E(k); k) being a function of E(k) and k. E(kc) is determined with the aid of 2.5, whichgives E(kc) = F(< OPi >), which is plunged in eq. 2.3 to get Ci when comparing eq. 2.3and eq. 2.4. This process covers a set of several models, each based on a di�erent invariant(see also table 1):� SijSij , for Smagorinsky's model,� F 2(r), for the structure function model. A distinction is classically made within four-F42 and six- F62 point formulationF6(~x)2(r) = 16 3Xi=1 jj~u(~x)� ~u(~x+�xi~ei)jj2+ jj~u(~x)� ~u(~x��xi~ei)jj2 ; (2.6)F4(~x)2(r) = 14 2Xi=1 jj~u(~x)� ~u(~x+�xi~ei)jj2 + jj~u(~x)� ~u(~x��xi~ei)jj2 ; (2.7)F4(~x)2(r) being evaluated in directions parallel to the wall.The basic structure function and Smagorinsky's models are now well known ([5],[9]). In orderto get rid of the large scales responsible for spurious contribution in the evaluation of �t andto construct a better evaluation of E(kc), the same operators have been de�ned on high-pass�ltered velocity �elds, giving:� HP (F 2p)(r) = jjHP (~u(~x + ~r; t)) � HP (~u(~x; t))jj2 for the �ltered structure functionmodel [2],� HP (Sij) = 12 �@HP (ui)@xj + @HP (uj)@xi � for the �ltered Smagorinsky's model [3].HP (uj) is obtained by applying a high-pass �lter on the resolved velocity �elds. The �lteringprocess is quite arbitrary. However, it can be shown that standard centered di�erencingleads to �lters of transfer function of the following form EHP (k)E(k) = a� kkc�b, leading to speci�cconstant C(a; b) (see table 1). In practice, the eddy-viscosity is made local by forgetting theaverage <>, which leads to the expression 2.4.3 An alternative operatorFor reasons connected with the wall behaviour of the subgrid-scale model (see section 5), wede�ne a new operator based on the traceless symmetric part of the square of the gradientvelocity tensor gij = @ui@xj : Sdij = 12 �g2ij + g2ji�� 13�ijg2kk ; (3.1)



WALE models for LES in complex geometries. 3< OP >~x �(E(k); k) Ctheoretical �tp(<OP>< Fp2(r) > 4k2E(k)sc1(k�) 13�4=3C�3=2K C�1=20 0:063�2 < SijSij > k2E(k) 1� � 3CK2 ��3=4 (0:18�)2< HP (Fp2) > 4k2EHP (k)sc1(k�) 13�4=3C�3=2K C�1=2b ��ba �1=2 Cf;F(a; b)�2 < HP (Sij)HP (Sij) > k2EHP (k) 1� � 3CK2 ��3=4 � 4a3b+4��1=4 (Cs;F(a; b)�)2Table 1: Fp and HP (Fp) stands for six and four-point formulation, sc1(x) = 1 � sinx=x,Cb = R �0 x�5=3+bsinc1(x)dx .where g2ij = gikgkj . The second invariant of this tensor is proportional to OP = SdijSdij . Wecannot connect any average of this operator with the kinetic energy spectrum as proposedin 2.5. However, this operator can be used in the form �t = (C�)2 (OP ), ( (OP) ishomogeneous to a frequency) the constant C being numerically evaluated so that the use of�t produce the same average dissipation as in 2.2 when using the Smagorinsky's model forexample. This leads to C2 = C2s p2 < �SijSij�3=2 ><  (OP )SijSij > (3.2)4 Operators as function of strain and rotation rateOperators are supposed to act locally where small scales responsible for dissipation take place.Developing the structure function in function of Sij and 
ij = 12 � @ui@xj � @uj@xi� when using �rstorder velocity derivatives gives (for the six-point formulation, see [1])< F 2(r) >= ��23 �p2S2 + 
2 + O(�2) ; S2 = SijSij ; 
2 = 
ij
ij : (4.1)Making use of the Cayley-Hamilton theorem, the operator OP = SdijSdij can be developed as:SdijSdij = 16 �S2S2 + 
2
2�+ 23S2
2 + 2IVS
; IVS
 = SikSkj
jl
li (4.2)From relations 4.2 and 4.1, a LES model based on SdijSdij or on F 2 will detect turbulencestructures with either (large) strain rate, rotation rate or both, in agreement with moreprobable localisation of dissipation [11]. In the particular case of pure shear (e.g. gij = 0except g12), we get S2 = 
2 = 4S12 and IVS
 = �12S2S2 so that SdijSdij is zero: this meansthat almost no eddy-viscosity would be produced in the case of a wall-bounded laminar 
owby a model using SdijSdij. Thus the amount of turbulent di�usion would be negligible andallows the development of linearly unstable waves, as �ltered operators do. This is a greatadvantage over the non-�ltered operators.5 Behaviour of the operators for wall bounded 
owsIf y is the direction normal to a wall, the expansion of the subgrid scale tensor in the limity ' 0 and y > 0 shows that limy�!0Tij = O(y3). As the behaviour of Sij is of orderO(1) in the same limit, it is classically admitted that the eddy-viscosity �t should scale in



4 Ducros,Nicoud & PoinsotO(y3). Assuming that the cuto� lenght � plays no important roles in the behaviour of �tnear the wall and that the constants C remains constant, none of the previous operator doesexhibit the proper behaviour (see table 2). A proper behaviour for �t near the wall can beOP limy�!0OP (y)< F62(r) > O(1)2 < SijSij > O(1)< HP (F62) > O(1)2 < HP (Sij)HP (Sij) > O(1)< F42(r) > O(y2)< HP (F 42) > O(y2)SdijSdij O(y2)Table 2: Wall behaviour of the classical operators used for subgrid scale modelingobtained in a very pragmatic manner using a damping law of Van-Driest type. However,this procedure requiring the knowledge of the friction coe�cient and of the wall positionencounters strong limitations. A way to get a proper scaling consists in combining some ofthe previous operators of di�erent behaviour. Here are two examples (among many):� Adapted Filtered Structure Function�t = C� �HP (F 2)�1=2� 2(F42)F42 + F62� (5.1)C is consistant with the theoretical determination of the constant obtained for the standard�ltered model, because the wall correction 2(F42)=(F42 + F62) is about 1 for isotropic tur-bulence. This models provides good results on coarse grid for boundary layers, see [10].� WALE model �t = (Cm�)2 �SdijSdij�3=2�SijSij�5=2 + �SdijSdij�5=4 ; (5.2)Cm is obtained using the relation 3.2, which gives, for a collection of isotropic turbulent �eldsobtained with various resolutions, C2m � 10:6C2s ([6]). Both models 5.1 and 5.2 are local,have a proper behaviour near the wall, and are de�ned to handle with transitional problemin parietal 
ow.6 ResultsThe Standard Smagorinsky's, Filtered Smagorinsky's (FiSm) and the WALE models havebeen implemented in a code based on the COUPL 1 software library that has been developedat CERFACS and Oxford University [8]. This library uses cell-vertex �nite-volume techniquesbased on arbitrary unstructured and hybrid grids to solve the three-dimensional compressibleNavier-Stokes equations. It has already been successfully used to perfom LES [7, 3].This numerical tool has been used for the simulation of a turbulent pipe 
ow in the samecon�guration as in [6], [3] for the FiSm and the WALE models. The pipe radius is R, its1Cerfacs and Oxford University Parallel Library



WALE models for LES in complex geometries. 5length 4R, it is periodic in the streamwise direction x. The Mach number is about 0:25and the Reynolds number based on the bulk velocity Ub is Rb = 10000 (R+ ' 320 basedon the friction velocity and the pipe radius). The simulations have been performed using ahybrid mesh with structured hexahedral cells near the wall and prisms in the core region.The resolution is about �+x ' 28, �r+ ' 2:1 (at the wall) and R�+� ' 8:8 in the streamwise,radial and azimuthal directions respectively. The initial condition consists of a Poiseuille
ow superimposed to a white noise of small amplitude (0:1%). A source term is added to theNavier-Stokes equations to simulate a pressure gradient corresponding to the fully turbulentstate. Transition to turbulence occurs for both FiSm and WALE models, before a statisticallysteady state is reached (see details in [6]).Pro�les of streamwise velocity obtained with both models are plotted in �gure 1. Fory+ > 30, our results exhibit the classical logarithmic law almost up to the centerline of thepipe 
ow, as expected from published results [4]. Results obtained with WALE suggest 0:416for the Von Karman's constant � and C ' 5:, which is in the common range for turbulentvelocity pro�les. Smaller values of the constants are representative of FiSm results (� = 0:39,C ' 4:5). Streamwise and radial 
uctuation velocities are compared with the available PIVmeasurements [4] at a lower Reynolds number (Rb = 5450). The location and the level of themaximum of the turbulence intensity in the streamwise direction are well predicted by thecomputations. The WALE model produces a level of radial 
uctuations slightly lower, whichis in better agreement with the experimental data.The curves in �gure 2 have been obtained by applying the classical Smagorinsky's, theFiSm, and the WALE models to a turbulent �eld obtained with the WALE model. For theWALE model, �t is of order r3 near the pipe wall, con�rming its proper scaling. The eddy-viscosity is two orders of magnitude smaller than the molecular viscosity in the sublayer.Both the Smagorinsky's and the FiSm models produce a large amount of eddy-viscosity atthe wall. For the Smagorinsky's model, this leads to a complete relaminarization. For theFiSm model, the wrong behaviour at the wall reduces the e�ective Reynolds number so thatonly 85 % of the expected mass 
ow rate in the pipe was obtained. The correct bulk velocityhas been reached with the WALE formulation. Note also from �gure 2 that the three modelslead to similar eddy-viscosity in the core region of the pipe, where the turbulence is nearlyisotropic.Di�erent visualisations of instantaneous 3D �elds have been also performed. Evidencesof turbulent motions at very small scales near the wall can be observed. In the core region ofthe pipe, the turbulence develops at a larger scale, justifying the use of larger prismatic cellsnear the centerline (see Fig. 2).7 ConclusionAn analysis of the behaviour of the more often used invariants for LES applications is pro-posed. A new operator based on the square of the gradient velocity tensor is proposed andshown to behave in y2 near a wall. A general way to build operators having a proper be-haviour in the case of wall-bounded 
ow is proposed. Two new models are proposed toillustrate this methodology, leading to an adaptation of the �ltered structure function modeland to the Wall Adapted Local Eddy viscosity model. The latter is used to perform thetransition to turbulence of the 
ow is a pipe on an unstructured grid. These results arecompared with previous calculations obtained with the �ltered Smagorinsky's model and areshown to improve the prediction of the wall stress rate, as well as turbulent intensities.
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Figure 1: Comparison between FiSm and WALE results: left: Mean velocity pro�les insemi-log coordinates, plus the laws u+ = y+ and u+ = 1� ln(y+) + C, right:Root-mean-square streamwise and normal velocity. Comparison between the �ltered-Smagorinsky modeland the WALE formulation. Experimental data from Eggels et al. (see also [6]).
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