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1 Introduction

Large-Eddy Simulations (LES) are developed to investigate the instantaneous three-dimen-
sional structure of turbulent flows. Not only qualitative but quantitative results are now
expected from these approaches both for simple and complex geometries. However, typical
numerical and subgrid-scale parametrization requirements usually satisfied for the simulation
of turbulent flows in simple geometries may no longer be achieved for LES in complex geome-
tries. This leads to difficulties when LES developed for simple academic flows must be used
for real flows in complex geometries. On the other hand, a short overview of industrial-type
applications of LES shows what a proper LES for realistic aeronautical flows should at least
do: provide a local eddy-viscosity, able to switch off during the early stages of transition and
offering a proper wall scaling to get a good prediction of friction coeflicient.
The objectives of the present effort are to give some elements for such a modeling.

2 Classical modeling

In LES for incompressible flows, scales smaller than the grid size are not resolved but ac-
counted for through the subgrid scale tensor 73; given by T;; = u;u; — w;u;. Most subgrid
scale modeling are based on an eddy-viscosity assumption to model the subgrid scale tensor:
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Modeling the subgrid-scale tensor in the spectral space with the same assumption leads to

v as vi(k,m) = v (k,m) ﬂ%l, E(kc,t) is the cutoff kinetic energy, k. = % is the cutoff
wavenumber. v} is an increasing function of k accounting for a cusp-behaviour near the
cutoff and a decreasing function of m, the slope of the kinetic energy spectrum: F(k) x k=™
(see [5]). The form v;(k,m) has two interesting properties: vy is zero as soon as there is no
energy near the cutoff, that is for transitional state and vy decreases near walls since the slope

m is larger in the wall than in the core regions of boundary layer. A simplified version of

vt (k,m) w is used to get vy in physical space. Assuming that v; does no longer depend

c

on k and provides the same dissipation € as an isotropic incompressible turbulence leads to
o J— J—
€= 21/15/ sz(k)dk, € =20 < 94555 > (2.2)
0

<> standing for an average on the whole physical domain. Using E(k) = Cr 3513
(Ck =~ 1.4 is the Kolmogorov constant) in eq. 2.2 gives
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Since the cusp behaviour and the dependence on m are forgotten, the physical reasons ac-
counting for damping of v; near wall regions are no longer contained in the model.

Coming back to physical space requires to express eq. 2.3 with a local operator leading to
models of the generic forms:

vi = C1AOP(,t) or v = (CoA) /OPy(7,1). (2.4)

A is a characteristic length scale of the cutoff length scale. €' is determined by a relation of
following type (requiring isotropy):

<OP;>= /kCQ(E(k),k)dk, P12, (2.5)

®(E(k), k) being a function of E(k) and k. E(k.) is determined with the aid of 2.5, which
gives E(k.) = F(< OP; >), which is plunged in eq. 2.3 to get C; when comparing eq. 2.3
and eq. 2.4. This process covers a set of several models, each based on a different invariant
(see also table 1):

e 5:;5;;, for Smagorinsky’s model,

e Fy(r), for the structure function model. A distinction is classically made within four-
F45 and six- F'6, point formulation

BRrya=N 1 —/ = — = — —/ = —/ = —
F6(2)y(r) = ¢ Y (@) — @7 + Awid)||* + ||E(F) — @(F - Awi&)l|* , (2.6)
=1
1 2
FA@)y(r) = S i) = @7 + Awi@)||* + ||@(F) — @(F - Awid)|]* , (2.7)
=1

FA4(Z),(r) being evaluated in directions parallel to the wall.

The basic structure function and Smagorinsky’s models are now well known ([5],[9]). In order
to get rid of the large scales responsible for spurious contribution in the evaluation of v; and
to construct a better evaluation of F(k.), the same operators have been defined on high-pass
filtered velocity fields, giving:

—

o HP(Fyp)(r) = ||HP(W(Z + 7,t)) — HP(u(Z,1))||?> for the filtered structure function
model [2],

2 EES

o HP(S;;) =13 (8HP(m) + 8}15951@)) for the filtered Smagorinsky’s model [3].

HP(u;) is obtained by applying a high-pass filter on the resolved velocity fields. The filtering
process is quite arbitrary. However, it can be shown that standard centered differencing

b
leads to filters of transfer function of the following form ngéf) = a(%) , leading to specific
constant C'(a,b) (see table 1). In practice, the eddy-viscosity is made local by forgetting the

average <>, which leads to the expression 2.4.

3 An alternative operator

For reasons connected with the wall behaviour of the subgrid-scale model (see section 5), we
define a new operator based on the traceless symmetric part of the square of the gradient

velocity tensor g,; = %;
J
1 1
d —2 _2 _9
Sij =3 (gij + gﬁ) — géijgkkv (3.1)
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Table 1: Fp and HP(Fp) stands for six and four-point formulation, s, (z) = 1 — sinz/x,
Cy= [y w53 sing (2)de

where gfj = G;19k;- The second invariant of this tensor is proportional to OP = SZ»djSidj. We

cannot connect any average of this operator with the kinetic energy spectrum as proposed
in 2.5. However, this operator can be used in the form v, = (CA)*)(OP), (H(OP) is
homogeneous to a frequency) the constant C' being numerically evaluated so that the use of
v, produce the same average dissipation as in 2.2 when using the Smagorinsky’s model for
example. This leads to

>
— (3:2)

4 Operators as function of strain and rotation rate

Operators are supposed to act locally where small scales responsible for dissipation take place.
1 { ow; ow
2 (a;] ~ T
order velocity derivatives gives (for the six-point formulation, see [1])

Developing the structure function in function of 5;; and Q;; = ) when using first

A? _
< FQ(T) >= (?) \/252 + 024 O(Az) ,52 = SZ']‘SZ']‘, 02 = QijQij- (4.1)

Making use of the Cayley-Hamilton theorem, the operator OP = SidjSidj can be developed as:

1 2 o
S%S% = 6 <5252 + 9292) + 55292 + 21Vsq, IVsq = SikSkaﬂQH (4.2)

From relations 4.2 and 4.1, a LES model based on SidjSidj or on Fy will detect turbulence
structures with either (large) strain rate, rotation rate or both, in agreement with more
probable localisation of dissipation [11]. In the particular case of pure shear (e.g. g,; = 0
except Gyy), we get 52 =02 =455 and IVgq = —%5252 so that SidjSidj is zero: this means
that almost no eddy-viscosity would be produced in the case of a wall-bounded laminar flow
by a model using SZ»djSidj. Thus the amount of turbulent diffusion would be negligible and
allows the development of linearly unstable waves, as filtered operators do. This is a great

advantage over the non-filtered operators.

5 Behaviour of the operators for wall bounded flows

If y is the direction normal to a wall, the expansion of the subgrid scale tensor in the limit
y ~ 0 and y > 0 shows that lim,—oT;; = O(y>). As the behaviour of §;; is of order
O(1) in the same limit, it is classically admitted that the eddy-viscosity v; should scale in
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O(y®). Assuming that the cutoff lenght A plays no important roles in the behaviour of v
near the wall and that the constants (' remains constant, none of the previous operator does
exhibit the proper behaviour (see table 2). A proper behaviour for v; near the wall can be

oprP lim,—oOP(y)
< F6y(r) > 0(1)
2 < ?Z']‘?ij > ( )
< HP(F65) > O(1)
2 < HP(5,) AP(5,) > O(1)
< Fdy(r) > O(y?)
< HP(F44) > O(y?)
S8 O(y*)

Table 2: Wall behaviour of the classical operators used for subgrid scale modeling

obtained in a very pragmatic manner using a damping law of Van-Driest type. However,
this procedure requiring the knowledge of the friction coeflicient and of the wall position
encounters strong limitations. A way to get a proper scaling consists in combining some of
the previous operators of different behaviour. Here are two examples (among many):

¢ Adapted Filtered Structure Function

— CA (HP(Ty)"? (ﬂ) (5.1)

Fdy 4 69

(' is consistant with the theoretical determination of the constant obtained for the standard
filtered model, because the wall correction 2(F43)/(F4; + F62) is about 1 for isotropic tur-
bulence. This models provides good results on coarse grid for boundary layers, see [10].

¢ WALE model

/
(5,507 + (stst)”

('}, is obtained using the relation 3.2, which gives, for a collection of isotropic turbulent fields
obtained with various resolutions, €2, ~ 10.6C2 ([6]). Both models 5.1 and 5.2 are local,
have a proper behaviour near the wall, and are defined to handle with transitional problem
in parietal flow.

6 Results

The Standard Smagorinsky’s, Filtered Smagorinsky’s (FiSm) and the WALE models have
been implemented in a code based on the COUPL ! software library that has been developed
at CERFACS and Oxford University [8]. This library uses cell-vertex finite-volume techniques
based on arbitrary unstructured and hybrid grids to solve the three-dimensional compressible
Navier-Stokes equations. It has already been successfully used to perfom LES [7,3].

This numerical tool has been used for the simulation of a turbulent pipe flow in the same
configuration as in [6], [3] for the FiSm and the WALE models. The pipe radius is R, its

!Cerfacs and Oxford University Parallel Library
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length 4R, it is periodic in the streamwise direction z. The Mach number is about 0.25
and the Reynolds number based on the bulk velocity Uy is R, = 10000 (Rt ~ 320 based
on the friction velocity and the pipe radius). The simulations have been performed using a
hybrid mesh with structured hexahedral cells near the wall and prisms in the core region.
The resolution is about &} ~ 28, ér+ ~ 2.1 (at the wall) and Ré; ~ 8.8 in the streamwise,
radial and azimuthal directions respectively. The initial condition consists of a Poiseuille
flow superimposed to a white noise of small amplitude (0.1%). A source term is added to the
Navier-Stokes equations to simulate a pressure gradient corresponding to the fully turbulent
state. Transition to turbulence occurs for both FiSm and WALE models, before a statistically
steady state is reached (see details in [6]).

Profiles of streamwise velocity obtained with both models are plotted in figure 1. For
yT > 30, our results exhibit the classical logarithmic law almost up to the centerline of the
pipe flow, as expected from published results [4]. Results obtained with WALE suggest 0.416
for the Von Karman’s constant £ and ' ~ 5., which is in the common range for turbulent
velocity profiles. Smaller values of the constants are representative of FiSm results (k = 0.39,
C ~ 4.5). Streamwise and radial fluctuation velocities are compared with the available PIV
measurements [4] at a lower Reynolds number (Rp = 5450). The location and the level of the
maximum of the turbulence intensity in the streamwise direction are well predicted by the
computations. The WALE model produces a level of radial fluctuations slightly lower, which
is in better agreement with the experimental data.

The curves in figure 2 have been obtained by applying the classical Smagorinsky’s, the
FiSm, and the WALE models to a turbulent field obtained with the WALE model. For the
WALE model, vy is of order 72 near the pipe wall, confirming its proper scaling. The eddy-
viscosity is two orders of magnitude smaller than the molecular viscosity in the sublayer.
Both the Smagorinsky’s and the FiSm models produce a large amount of eddy-viscosity at
the wall. For the Smagorinsky’s model, this leads to a complete relaminarization. For the
FiSm model, the wrong behaviour at the wall reduces the effective Reynolds number so that
only 85 % of the expected mass flow rate in the pipe was obtained. The correct bulk velocity
has been reached with the WALE formulation. Note also from figure 2 that the three models
lead to similar eddy-viscosity in the core region of the pipe, where the turbulence is nearly
isotropic.

Different visualisations of instantaneous 3D fields have been also performed. Evidences
of turbulent motions at very small scales near the wall can be observed. In the core region of
the pipe, the turbulence develops at a larger scale, justifying the use of larger prismatic cells
near the centerline (see Fig. 2).

7 Conclusion

An analysis of the behaviour of the more often used invariants for LES applications is pro-
posed. A new operator based on the square of the gradient velocity tensor is proposed and
shown to behave in y? near a wall. A general way to build operators having a proper be-
haviour in the case of wall-bounded flow is proposed. Two new models are proposed to
illustrate this methodology, leading to an adaptation of the filtered structure function model
and to the Wall Adapted Local Eddy viscosity model. The latter is used to perform the
transition to turbulence of the flow is a pipe on an unstructured grid. These results are
compared with previous calculations obtained with the filtered Smagorinsky’s model and are
shown to improve the prediction of the wall stress rate, as well as turbulent intensities.
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Figure 1: Comparison between FiSm and WALE results: left: Mean velocity profiles in
semi-log coordinates, plus the laws «™ = y* and vt = %ln(y"’) + C, right:Root-mean-
square streamwise and normal velocity. Comparison between the filtered-Smagorinsky model
and the WALE formulation. Experimental data from Eggels et al. (see also [6]).
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Figure 2: left:Ratio of average eddy-viscosity to molecular viscosity in log-log coordinates.
Comparison between the classical Smagorinsky model, its filtered version and the WALE
model. right: cut in the total velocity for a turbulent state.
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