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1 INTRODUCTION

1 Introduction

Over the last decades, algorithmic improvements and increase of computational power
have led to solvers with higher levels of accuracy. A major subject for industrial com-
putation has been, and still is, steady state flow. It is important to converge rapidly to
steady state, and it has been recognized that dissipative schemes help, but detriment the
accuracy.

In some cases, the average quantities are not relevant to the flow physics. Consider
for example the time evolution of temperature T at a position where a flame is moving
back and forth. To the first order, T is alternatively equal to the burnt gas temperature,
Tb = 1500 K say, and to the fresh gas temperature, Tu = 300 K say. A perfect assess-
ment of the average temperature would lead to (Tb + Tu)/2, viz. 900 K in the example.
Clearly enough this value is not relevant to the thermodynamic state of the gas and only
an unsteady computation could really provide useful information. More generally, accu-
rate computation of unsteady compressible flow is needed in aero-acoustics, self-sustained
instabilities and combustion instabilities, combustion noise, flame dynamics description,
etc ...

Figure 1: Principle of the DNS, RANS and LES approaches. Typical time evolutions of
velocity that these three methods would provide downstream of a trailing edge at large
angle of attack.

Typical approaches are:

• Direct Numerical Simulation (DNS): the Navier-Stokes equations are solved without
additional modeling. Due to the scale separation in turbulent flows, this approach
would require a huge amount of grid points for practical applications. Since only
averaged quantities can be compared or used for modeling purposes, a statistical
treatment of the 3D unsteady solution is required after the simulation has been
completed. The DNS approach provides all the flow details (see figure 1) but it
is only suitable to perform fundamental studies of academic configurations with
moderate Reynolds number. See Moin and Mahesh (1998) for a recent review,

• Reynolds-Averaged Navier-Stokes equations (RANS): a statistical treatment is ap-
plied to the Navier-Stokes equations which are then solved to provide average quan-
tities (see figure 1) directly. In doing so, the small scales are not present in the
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1 INTRODUCTION

equations and less demand is put on the numerical method and mesh requirement.
This is the method mostly used in modern design chain to reduce the number of
experimental testing. The price to pay is the need to model the correlations which
appear when averaging the non-linear terms of the basic equations. This task proves
extremely difficult and it is nowadays accepted that no general turbulence model
exists, limiting the generality and the predictive potential of the RANS approach,

• Large Eddy Simulation (LES): the Navier-Stokes equations are low-pass filtered
before the numerical solution is sought. In doing so, only the small scales must be
modeled, the largest ones being computed directly (see figure 1). This approach
can be thought as an intermediate between the DNS and the RANS approaches.
It put more demand on the numerics than the RANS approach does, but requires
less modeling effort because the small scales are more universal in nature. It has
already been used quite often in place of DNS to address fundamental issues in
simple configurations (Mendez and Nicoud, 2008); it also has the greatest potential
for practical use in the industry (Schmitt et al., 2007).

The objective of this course is to address some of the issues which arise when designing
tools for unsteady flows. The basic governing equations for the compressible flow of an
homogeneous gas are recall in section §2 and some details about the Large Eddy Simulation
approach are given in section §3. The theory of characteristic-based boundary conditions is
given in section §4.1 while the importance of their numerical implementation is illustrated
in section §4.2. The last part is more devoted to numerical issues: the spectral analysis
of numerical schemes is described in section §5.1 and techniques for the stabilization of
computations based on low-dissipative schemes are discussed in section §5.2 for both the
incompressible and the compressible flow equations.
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2 THE GOVERNING EQUATIONS

2 The governing equations

Throughout this document, the index notation is adopted for the description of the gov-
erning equations. Summation rule is henceforth implied over repeated indices (Einstein’s
rule of summation). For sake of simplicity, only the simple case of an homogeneous gas is
considered in the main text. The governing equations for the case of a chemically react-
ing multi-species mixture are more relevant to combustion instabilities; they are given in
annex for completeness.

The set of conservation equation describing the evolution of a compressible flow reads:

∂ρ ui
∂t

+
∂

∂xj
(ρ ui uj) = −

∂

∂xj
[P δij − τij], (1)

∂ρ E

∂t
+

∂

∂xj
(ρ E uj) = −

∂

∂xj
[ui (P δij − τij) + qj], (2)

∂ρ

∂t
+

∂

∂xj
(ρ uj) = 0. (3)

Equations 1-3 correspond to the conservation of momentum, total energy and mass re-
spectively, and ρ, ui and E denote density, the velocity vector, the total energy per unit
mass.

It is usual to decompose the flux tensor into an inviscid and a viscous component. The
inviscid part reads:




ρ ui uj + P δij
(ρE + P δij) uj

ρ uj


 (4)

where the hydrostatic pressure P is given by the equation of state for a perfect gas, viz.
P = ρrT , where r is the gas constant of the mixture, r = R

W
, W being the mean molecular

weight and R = 8.3143 J/mol.K the universal gas constant. The adiabatic exponent is
given by γ = Cp/Cv.

The components of the viscous flux tensor take the form:




−τij
−(ui τij) + qj

0


 (5)

The stress tensor τij is given by the following relations:

τij = 2µ(Sij −
1

3
δijSll), (6)

and

Sij =
1

2
(
∂uj
∂xi

+
∂ui
∂xj

), (7)

Eq. 6 may also be written:

τxx = 2µ
3

(2∂u
∂x

− ∂v
∂y

− ∂w
∂z

), τxy = µ(∂u
∂y

+ ∂v
∂x

)

τyy = 2µ
3

(2∂v
∂y

− ∂u
∂x

− ∂w
∂z

), τxz = µ(∂u
∂z

+ ∂w
∂x

)

τzz = 2µ
3

(2 ∂z
∂w

− ∂u
∂x

− ∂v
∂y

), τyz = µ(∂v
∂z

+ ∂w
∂y

)

(8)
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2 THE GOVERNING EQUATIONS

where µ is the shear viscosity.
The heat flux is given by

qi = −λ
∂T

∂xi
, (9)

where λ is the heat conduction coefficient of the gas.
The molecular viscosity µ is often assumed to be given by the classical Sutherland law:

µ = c1
T 3/2

T + c2

Tref + c2

T
3/2
ref

(10)

where c1 and c2 must be determined so as to fit the real viscosity of the mixture. For air
at Tref = 273 K, c1 = 1.71e-5 kg/m.s and c2 = 110.4 K (see White (1999)). A second law
is sometimes preferred, called Power law:

µ = c1

(
T

Tref

)b
(11)

with b typically ranging between 0.5 and 1.0. For example b = 0.76 for air. The heat
conduction coefficient can be computed by introducing the molecular Prandtl number :

λ =
µCp
Pr

(12)

Note that Pr is usually supposed as constant in time and space.
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3 Large-Eddy Simulations

3.1 The LES Concept

In comparison to the more classical Reynolds Averaged Navier-Stokes (RANS) method-
ologies, Large Eddy Simulation (LES) (Sagaut, 1998; Pope, 2002) is nowadays recognized
as the approach with the highest potential as far as unsteady flows are concerned. Al-
though conceptually very different, these two approaches aim at providing new systems
of governing equations to mimic the characteristics of turbulent flows.

The new governing equations are obtained by introducing operators to be applied
to the set of compressible Navier-Stokes equations. Unclosed terms arise from these
manipulations and models need to be supplied for the problem to be solved. The major
differences between RANS and LES come from the operator employed in the derivation.
In RANS the operation consists of a temporal or ensemble average over a set of realizations
of the studied flow (Pope, 2002; Chassaing, 2000). The unclosed terms are representative
of the physics taking place over the entire range of frequencies present in the ensemble
of realizations under consideration. In LES, the operator is a spatially localized time
independent filter of given size, △, to be applied to a single realization of the studied
flow. Resulting from this spatial filtering is a separation between the large (greater than
the filter size) and small (smaller than the filter size) scales. In LES, the unclosed terms
are representative of the physics associated with the smallest structures (with highest
frequencies) present in the flow. Figure 2 illustrates the conceptual differences between
(a) RANS and (b) LES when applied to a homogeneous isotropic turbulent field.

(a) (b)

Figure 2: Conceptual representation of (a) RANS and (b) LES applied to a homogeneous
isotropic turbulent field.

Due to the filtering approach, LES allows a dynamic representation of the large scale
motions whose contributions are critical in complex geometries. The LES predictions of
complex turbulent flows are henceforth closer to the physics since large scale phenomena
such as large vortex shedding and acoustic waves are embedded in the set of governing
equations.

For the reasons presented above, LES has a clear potential in predicting turbulent
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3 LARGE-EDDY SIMULATIONS 3.1

flows encountered in industrial applications. Such possibilities are however restricted by
the hypothesis introduced while constructing LES models.

3.2 The Governing Equations

The filtered quantity f is resolved in the numerical simulation whereas f ′ = f − f is the
subgrid scale part due to the unresolved flow motion. For variable density ρ, a mass-
weighted Favre filtering is introduced such as:

ρf̃ = ρf (13)

The balance equations for large eddy simulations are obtained by filtering the instan-
taneous balance equations 1, 2 and 3:

∂ρ ũi
∂t

+
∂

∂xj
(ρ ũi ũj) = −

∂

∂xj
[P δij − τij − τij

t], (14)

∂ρ Ẽ

∂t
+

∂

∂xj
(ρ Ẽ ũj) = −

∂

∂xj
[ui (P δij − τij) + qj + qj

t], (15)

∂ρ

∂t
+

∂

∂xj
(ρ ũj) = 0, (16)

where a repeated index implies summation over this index (Einstein’s rule of summation).
The cut-off scale usually corresponds to the mesh size (implicit filtering); moreover, one
often assumes that the filter operator and the partial derivative commute.

In Eqs. 14, 15 and 16, the flux tensor can be divided in three parts: the inviscid part,
the viscous part and the subgrid scale turbulent part.

The three spatial components of the inviscid flux tensor are the same as in DNS but
based on the filtered quantities:




ρũi ũj + P δij
ρẼũj + P ujδij

ρkũj


 (17)

The components of the viscous flux tensor take the form:




−τij
−(ui τij) + qj

0


 (18)

Filtering the balance equations leads to unclosed quantities, which need to be modeled.
The components of the turbulent subgrid scale flux take the form:




−τij
t

qj
t

0


 (19)

The filtered diffusion terms are approximated in the following way :
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3.2 3 LARGE-EDDY SIMULATIONS

τij = 2µ(Sij −
1
3
δijSll),

≈ 2µ(S̃ij −
1
3
δijS̃ll),

(20)

and

S̃ij =
1

2
(
∂ũj
∂xi

+
∂ũi
∂xj

), (21)

In full, equation 20 may also be written:

τxx ≈
2µ
3

(2∂u
∂x

− ∂v
∂y

− ∂w
∂z

), τxy ≈ µ(∂u
∂y

+ ∂v
∂x

)

τyy ≈
2µ
3

(2∂v
∂y

− ∂u
∂x

− ∂w
∂z

), τxz ≈ µ(∂u
∂z

+ ∂w
∂x

)

τzz ≈
2µ
3

(2∂w
∂z

− ∂u
∂x

− ∂v
∂y

), τyz ≈ µ(∂v
∂z

+ ∂w
∂y

)

(22)

Regarding the filtered heat flux, one may write:

qi = −λ
∂T

∂xi
≈ −λ

∂T̃

∂xi
(23)

These forms assume that the spatial variations of molecular diffusion fluxes are negli-
gible and can be modeled through simple gradient assumptions.

The filtered compressible Navier-Stokes equations exhibit sub-grid scale (SGS) tensors
and vectors describing the interaction between the non-resolved and resolved motions. The
influence of the SGS on the resolved motion must be taken into account by a SGS model.
At this stage, it is common use to rely on the SGS eddy-viscosity concept (Boussinesq
assumption) to model the different contributions:

• the Reynolds tensor is :

τij
t = −ρ(ũiuj − ũiũj) ≈ 2 ρ νSGS(S̃ij −

1

3
δijS̃ll), (24)

where the SGS eddy-viscosity νSGS will be modelled in section § 3.3.

• the subgrid scale heat flux vector is:

qi
t = ρ(ũiE − ũiẼ) ≈ −λSGS

∂T̃

∂xi
, (25)

with

λSGS =
ρνSGSCp
P t
r

. (26)

The turbulent Prandtl number is usually fixed in the range 0.5-0.9.
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3.3 Models for νSGS

3.3.1 Static models

The first SGS model was proposed by Smagorinsky (1963) and has been heavily tested
for multiple flow configurations in the last decades. In this model, the eddy-viscosity is
assumed to be proportional to the subgrid characteristic length scale ∆ and to a charac-
teristic turbulent velocity taken as the local strain rate

∣∣S
∣∣:

νSGS = (Cs∆)2
∣∣S
∣∣ ,

∣∣S
∣∣ =

√
2SijSij. (27)

Following Lilly Lilly (1992), the constant Cs may be obtained by assuming that the
cut-off wave number kc = π/∆ lies within a k−5/3 Kolmogorov cascade for the energy spec-
trum E(k) = CKǫ

2/3k−5/3 and requiring that the ensemble-averaged subgrid dissipation
is identical to ǫ. An approximate value for the constant is then:

Cs =
1

π

(
3CK

2

)−3/4

.

For a Kolmogorov constant of CK ≃ 1.4, this yields Cs ≃ 0.18. However, this con-
stant value often leads to a significant over-estimation of the SGS dissipation and ad hoc
procedure must be used in order to handle wall bounded flows.

Note that the choice of the local strain rate to define the velocity scale at the cut-off
is quite arbitrary. If one considers that the velocity gradient tensor is a good candidate
to describe the turbulent fluctuations, other invariants based on this tensor could be
used for defining the velocity scale needed for the eddy-viscosity νSGS. The aim of this
latter quantity is to mimic the energy transfer from the resolved scales to the subgrid
ones through the subgrid dissipation (which is proportional to νSGS). Thus by defining
the eddy-viscosity from the local strain rate, one relates the subgrid dissipation to the
strain rate of the smallest resolved scales of motion. This choice is not in agreement with
the results from Wray and Hunt (1989) on the kinematic and dynamic properties of the
turbulent structures. From direct numerical simulations of isotropic turbulence, these
authors have shown that energy is concentrated in the streams and energy dissipation
in eddies and convergence zones. Clearly the classical Smagorinsky formulation does not
account for the contribution of the former which are regions where vorticity dominates
irrotational strain. On the other hand the dominant deformation in convergence zones
is irrotational strain so that the strain rate could be a good measure of their dissipative
activity. Thus a better subgrid scale model should be based on both

∣∣S
∣∣ and the rotational

rate. This requirement is met by the structure function model Metais and Lesieur (1992)
which reads:

νSGS = βC
−3/2
K ∆

√
F 2, (28)

where F 2 is the second order velocity structure function of the filtered field:

F 2(~x,∆) =
〈
||~u(~x, t) − ~u(~x+ ~r, t)||2

〉
||~r||=∆

,

and β is a constant which can be fixed from energetic considerations. Very good
results have been obtained with this model for isotropic homogeneous turbulence Lesieur
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3.3 Models for νSGS 3 LARGE-EDDY SIMULATIONS

and Métais (1996). Other formulations have been proposed to assess the subgrid scale
stress, based on the local strain and rotation rate tensors and products of themLund and
Novikov (1992).

An important point in LES is the behavior of the eddy-viscosity near solid walls.
By construction, the Smagorinsky model gives a non-zero value of νSGS as soon as a
velocity gradient exists. Near a wall, however, all turbulent fluctuations are damped
so that νSGS should be zero. This is the reason why the Van Driest Van Driest (1956)
exponential damping function 1− exp (−y+/A+) with A+ = 25, was used widely in early
LES studies. This standard modification improves the results dramatically and is very
easy to implement for simple geometries. However, it is an ad hoc modification based on
the distance to the wall. This is difficult to implement in the general case for complex
geometries. It also requires the use of a smaller value for the Smagorinsky constant
(Cs = 0.1) in order to sustain turbulence in a channel flow Moin and Kim (1982). Note
also that depending on the damping function used it may not produce the proper near-
wall scaling for the eddy-viscosity. The above-mentioned Van Driest damping produces
νSGS = O(y2) instead of O(y3). Neither is the classical structure function model well-
suited for wall bounded flows. Indeed, the F 2 function is of order O(1) near a wall when
computed as a local statistical average of square velocity differences between the current
position and the six closest surrounding points on the (structured) computational grid. A
possible remedy for this is to compute F 2 by using only the four closest points parallel to
a given plane. If the plane is parallel to the wall, F 2 is of order O(y) and better results
are obtained in a boundary layer Comte et al. (1994); Ducros et al. (1996). Another way
to produce zero eddy-viscosity at the wall is to modify the constant of the model (Cs for
the Smagorinsky model) in such a way as to enforce Cs ≃ 0 when turbulence activity is
reduced. This is done dynamically by the procedure proposed by Germano et al. (1991) ,
in which the variable C = C2

s appears in five independent equations. More details about
the dynamic procedure are provided in section §3.3.3.

All the above discussed models may be written in the generic form:

νSGS = Cm∆2OP (~x, t), (29)

where Cm is the constant of the model, ∆ is the subgrid characteristic length scale
(in practice the size of the mesh) and OP is an operator of space and time, homogeneous
to a frequency, and defined from the resolved fields. An operator meeting the following
properties would be a good candidate for SGS modeling purposes:

• it is invariant to any coordinate translation or rotation,

• it can be easily assessed on any kind of computational grid,

• it is a function of both the strain and the rotation rates, in agreement with re-
cent findings concerning the contribution of the turbulent structures to the global
dissipation,

• it goes naturally to zero at the wall so that neither damping function nor dynamic
procedure are needed to reproduce the effect of the no-slip condition.
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3 LARGE-EDDY SIMULATIONS 3.3 Models for νSGS

The WALE (Wall-Adapting Local Eddy-viscosity) model meets all the above require-
ments (Nicoud and Ducros, 1999). It reads:

sdij =
1

2
(g̃2
ij + g̃2

ji) −
1

3
g̃2
kk δij, (30)

νSGS = (Cw△)2
(sdijs

d
ij)

3/2

(S̃ijS̃ij)5/2+(sdijs
d
ij)

5/4
, (31)

where △ denotes the filter characteristic length (cube-root of the cell volume), Cw = 0.5
is the model constant and g̃ij denotes the resolved velocity gradient. This model is based
on a tensor invariant and reproduces the proper scaling at the wall (νSGS = O(y3)). It is
also well-suited for LES in complex geometries with structured or unstructured methods
because no explicit filtering is needed and only local information is required to build the
eddy-viscosity. Finally, it is sensitive to both the strain and the rotation rate of the small
turbulent structures.

Note that Cm is considered here as a true constant, assessed from the canonic case of
isotropic homogeneous turbulence. A potential improvement of the WALE model could
be to use the dynamic procedure (see section §3.3.3) to compute this constant. It seems
that this option has never been investigated so far although no major issue are expected
related to the writing of the dynamic WALE model.

3.3.2 Transport model

A drawback of the above models is that they directly relate the level of turbulent viscosity
to the local instantaneous resolved velocity gradients. Thus they cannot account for cases
where local levels of sub-grid scale energy are high in regions of low resolved gradients,
because the kinetic energy has been convected from regions with high sub-grid turbulence.
To overcome this difficulty, one possibility is to assume that the SGS viscosity is deduced
from the transported sub-grid scale turbulent kinetic energy ksgs.

νSGS = Ck△k
1/2
sgs (32)

where Ck is a model constant, △ denotes the filter characteristic length (cube-root of the
cell volume) and ksgs is the subgrid-scale turbulent kinetic energy defined as:

ksgs =
1

2
(ũiui − ũiũi) (33)

The filtered transport equation for ksgs reads:

∂ρksgs
∂t

+
∂ρksgsũj
∂xj

=
∂

∂xj

(
µt
∂ksgs
∂xj

)
+

(
2µtS̃ij −

2

3
ρksgsδij

)
∂ũi
∂xj

− ρCǫ
k

3/2
sgs

∆
(34)

where the terms on the left-hand side represent the turbulent diffusion of ksgs, its produc-
tion and its dissipation.

The model constants CK and Cǫ can be shown to depend as follows from the standard
Smagorinsky constant CS :

Ck = π
1
3

(
2

3CK

) 1
2

(CS)
4
3 , Cǫ = π

(
2

3CK

) 3
2

(35)
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yielding the following values for the standard values of CS = 0, 18 for a Homogeneous
Isotropic Turbulence (HIT) without shear and CS = 0, 1 for a pure shear layer:

CS Cǫ Ck

0, 18 1, 03 0, 10
0, 10 1, 03 0, 05

The drawback of the approach is the necessity to solve one more transport equation.

3.3.3 Dynamic procedure

Most of the SGS models used in practical simulation rely on the so-called Boussinesq
approximation and thus the key point in the SGS modeling is to devise an appropriate
expression of the SGS eddy-viscosity. As mentioned earlier, and from a simple dimensional
argument, such model for νSGS should read (see equation 29):

νSGS = Cm∆2OP (~x, t), (36)

where Cm is the constant, ∆ is the subgrid characteristic length scale (in practice the size
of the local cell in the mesh) and OP is an operator of space and time, homogeneous to a
frequency, and defined from the resolved fields. If one accepts that the size of the local cell
is the proper SGS characteristic length scale, there are only two ways of improving the
model for νSGS: either improve the constant value Cm, or improve the frequency operator
OP ; the latter option has been discussed in section §3.3.1. This is the purpose of the
dynamic procedure to provide the best possible value for Cm.

The dynamic procedure is rather general but it will be presented thereafter for the
Smagorinsky model only, equation 27. The key point of this procedure is the so-called
Germano identity which was discovered in the 90’s (Germano et al., 1991). Recall that if
a spatial filtering operation is applied to the flow motion equations, a SGS contribution
appears which must be modeled (see equation 24). For sake of simplicity, let us consider
here the case of an incompressible fluid. If the spatial filter . (characteristic length ∆)
is applied to the momentum equation:

∂ ui
∂t

+
∂

∂xj
( ui uj) = −

1

ρ

∂

∂xj
[P δij − τij], (37)

the following LES equation is obtained (assuming no filter-derivative commutative error):

∂ ui
∂t

+
∂

∂xj
( ui uj) = −

1

ρ

∂

∂xj
[P δij − τij − τ sgsij ], (38)

where τ sgsij is the SGS stress tensor defined as:

τ sgsij = −ρ (uiuj − uiuj) (39)

Let us define a second spatial filtering, noted .̂ (characteristic length ∆̂) and let us apply
it to equation 38. This results in the following double filtered momentum equation:

∂ ûi
∂t

+
∂

∂xj
( ûi uj) = −

1

ρ

∂

∂xj
[P̂ δij − τ̂ij − τ̂ sgsij ], (40)
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where τ̂ sgsij is given by:

τ̂ sgsij = −ρ
(
ûiuj − ûi uj

)
(41)

Now, let us combine the two previous filters in order to define .̂ = .̃ and let us apply
this latter filter to equation 37; this leads to:

∂ ũi
∂t

+
∂

∂xj
( ũi ũj) = −

1

ρ

∂

∂xj
[P̃ δij − τ̃ij − T sgsij ], (42)

where T sgsij is the SGS stress tensor associated to this third filter .̃ and is defined as:

T sgsij = −ρ (ũiuj − ũiũj) = −ρ
(
ûiuj − ûi ûj

)
(43)

Recalling that .̂ = .̃ , equations 40 and 42 can be combined to establish the following

relationship between τ̂ sgsij and T sgsij :

T sgsij = τ̂ sgsij − ρûi uj + ρûi ûj (44)

This equation is known as the Germano identity and can be used to dynamically adapt
the constant of any SGS model. As an illustration, its use to determine the Smagorinky
constant is detailed in the following.

Recall first that the Smagorinsky (1963) model for the SGS eddy viscosity correspond-
ing to the filter . of width ∆ reads:

νSGS = (Cs∆)2
∣∣S
∣∣ ,

∣∣S
∣∣ =

√
2SijSij. (45)

so that the corresponding SGS stress tensor is:

τ sgsij −
1

3
δijτ

sgs
ll ≈ 2 ρ (Cs∆)2

√
2Sij Sij Sij, (46)

Assuming that the same constant model Cs holds if the .̂ filter is used instead, and
noting ∆̂ the corresponding filter width, one obtains the following expression for T sgsij :

T sgsij −
1

3
δijT

sgs
ll ≈ 2 ρ (Cs∆̂)2

√
2Ŝij Ŝij Ŝij, (47)

Applying the .̂ filter to equation 46 one obtains also:

τ̂ sgsij −
1

3
δij τ̂

sgs
ll ≈ 2 ρ (Cs∆)2

̂√
2Sij Sij Sij, (48)

Injecting equations 47 and 48 into the Germano identity 44, one obtains:

2 ρ (Cs∆̂)2

√
2Ŝij Ŝij Ŝij +

1

3
δijT

sgs
ll = 2 ρ (Cs∆)2

̂√
2Sij Sij Sij +

1

3
δij τ̂

sgs
ll − ρûi uj + ρûi ûj

(49)
Equation 49 corresponds to five independent scalar equations involving the Smagorisnky
model Cs. Most of the time, this indeterminacy is dealt with by choosing the value of Cs
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3.3 Models for νSGS 3 LARGE-EDDY SIMULATIONS

(as a function of space and time) that best satisfies this over-determinated system Lilly
(1992). Recasting equation 49 in the form:

C2
sMij = Nij (50)

one obtains the following expression for Cs:

C2
s =

NijMij

MijMij

(51)

This procedure often leads to a significant fraction of negative values for C2
s , and

thus may generate numerical instabilities. A common remedy involves averaging Cs over
space but this approach is restricted/justified to simple geometries since the existence of
direction of flow homogeneity is required (as in a channel flow). A Lagrangian version of
the dynamic Smaogorinsky model has been proposed by Meneveau et al. (1996) to allow
the computation of complex configurations without direction of flow homogeneity. Very
good results have been obtained with this formulation which requires the resolution of
two other transport equations Meneveau et al. (1996). The dynamic localization models
(constrained or with a transport equation for the kinetic energy) proposed by Ghosal
et al. (1995) are in principle applicable to general inhomogeneous flows and do not require
spatial averaging. Still, the dynamic procedure is based on the energy transfer between
the resolved field and low-pass filtered field. Practically, the width of the filter is ∆ for
the first field and γ∆ for the second (γ ≃ 2 is often used). In simple geometries, the
filtering operations can be performed very precisely in Fourier space but defining a test
filter of width 2∆ in complex geometries may prove to be an issue Jansen (1994). Note
however that efficient filters with good commutativity properties can be developed in an
unstructured environment (Vasilyev et al., 1998; Marsden et al., 2002; Haselbacher and
Vasilyev, 2003). At last recall that the dynamic procedure is general and can virtually be
applied to any SGS model to adjust its constant. Notably, it can be applied to any model
for the SGS heat flux (see e.g. equation 25) in order to determine λSGS without assuming
a (constant) value for the SGS Prandtl number as in section §3.2.
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4 BOUNDARY CONDITIONS

4 Boundary Conditions

Unsteady computations have to reproduce all the wave propagation phenomena, and
dissipative schemes are out of the question from the start. With more accurate schemes,
higher demands are put on the boundary conditions and the need is evident of boundary
conditions which permit waves to leave the domain without unwanted reflections. Some
studies indicate that reflections may be of numerical origin.

Practical applications need various inflow and outflow boundary conditions like non-
reflecting inlet or outlet, unsteady inlet with fluctuating velocity fields, as well as wall
conditions. These conditions should meet the following criteria:

• The right number of constrains has to be imposed at a given boundary to ensure
well-posedness. This number can be derived analytically (Kreiss, 1970; Engquist
and Majda, 1977; Higdon, 1986; Gustafsson and Sundstrom, 1978).

• The physics of the problem has to be properly translated into the wave/boundary
interactions. For example, with a pressure imposed outlet, an acoustic wave leaving
the domain should be transformed into an ingoing one of the same amplitude.

• A numerical implementation of the mathematical and physical statements has to be
chosen so as to minimize the numerical perturbations generated at the boundaries.
There is clear experimental evidence that backward propagating acoustic waves may
trigger an hydrodynamic instability of the Kelvin-Helmholtz type (Rockwell and
Naudascher, 1979). If the acoustic wave comes from any physical sound generation
process, this interaction leads to a feedback instability. However, if the acoustic
wave is induced by an improper boundary treatment, the obtained feedback loop
has no physical meaning (Buell and Huerre, 1988; Tam and Auriault, 1996).

• The properties of the initial flow field should become unimportant after a charac-
teristic time of the problem has been computed. This requirement seems obvious
for any unsteady or steady computation, but may not be met by certain advanced
boundary conditions.

Different boundary condition treatments based on the characteristic approach have
been proposed in the literature (Chakravarthy, 1983; Thompson, 1987; Poinsot and Lele,
1991; Hirsh, 1990), which handle in various degree the above requirements. Several au-
thors focused essentially on the best way to write a non-reflecting boundary condition
for the Euler equations (Giles, 1990; Hayder and Turkel, 1995; Atkins and Casper, 1994;
Rudy and Strikwerda, 1980). See Givoli (1991) for a review. It is now commonly accepted
(Colonius et al., 1993; Ta’asan and Nark, 1995; Freund, 1997) that a perfect formulation is
not reachable for the non-linear case and it has been found necessary to add non physical
exit zones onto the computation domain. The objective of this section is to clarify the
common points of some characteristic boundary conditions found in literature, as well
as the way they differ from an analytical point of view. We want to show on simple
unsteady test cases how these formal differences change the results. A general procedure
for comparing boundary conditions is provided to explain the numerically observed differ-
ences. Section § 4.1 presents the general ideas behind the characteristic approach for the
boundary conditions as well as different formulations already available in the literature.
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It will be shown that a key difference is the method used to interpret the variation of the
characteristic variables (also called the amplitude or the strength of the waves). Some
ideas are presented about the implementation of these characteristic methods in a gen-
eral unstructured code. Section § 4.2 shows to what extent the quality of the results for
unsteady computations is improved or damaged by the choice of the definition for these
variations.

4.1 General formalism

For hyperbolic equations, most advanced boundary treatments make use of the character-
istic approach, which is described in many basic articles or textbooks (Hirsh, 1990). Char-
acteristic boundary conditions are based on distinguishing ingoing and outgoing waves at
the boundary of the domain. Information carried by outgoing waves is left untouched,
while the boundary condition must supply information corresponding to the ingoing waves.
This can take the form of e.g. prescribing the strength of ingoing waves, or extrapolating
characteristic variables, or Riemann invariants.

The time dependent Euler equations are hyperbolic, and can be reformulated in a set of
characteristic advection equations. Let us consider the 3D Euler equations in quasi-linear
form:

∂V

∂t
+ A

∂V

∂x
+ B

∂V

∂y
+ C

∂V

∂z
= 0 . (52)

In this equation, V = (ρ, u, v, w, P )T is the vector of the primitive variables and the
matrices A, B and C are defined as:

A =




u ρ . . .
. u . . 1/ρ
. . u . .
. . . u .
. γP . . u




B =




v . ρ . .
. v . . .
. . v . 1/ρ
. . . v .
. . γP . v




C =




w . . ρ .
. w . . .
. . w . .
. . . w 1/ρ
. . . γP w



,

(53)

where γ, ρ, ~v = (u, v, w)T and P represent the isentropic coefficient, the density, the
velocity vector and the static pressure respectively. Each of the matrices A, B and C has
its own complete set of real eigenvalues and of right and left eigenvectors, which differ
from one matrix to the other. The matrix En defined as Anx +Bny +Cnz is introduced,
where ~n is an arbitrary unit vector. The eigenvalues matrix obtained by diagonalizing En

reads as:

Λn = LnEnL
−1

n
= diag (λ1

n, λ
2
n, λ

3
n, λ

4
n, λ

5
n) = diag (un, un, un, un + c, un − c) , (54)

where un = ~u.~n and c is the speed of sound. The matrices with left (resp. right)

VKI - 18 -



4.1 4 BOUNDARY CONDITIONS

eigenvectors as rows (resp. columns) Ln and L−1

n
are given by

Ln =




1 0 0 0 −1/c2

0 s1x s1y s1z 0
0 s2x s2y s2z 0
0 nx ny nz 1/ρc
0 −nx −ny −nz 1/ρc



, andRn = L−1

n =




1 0 0 ρ/2c ρ/2c
0 s1x s2x nx/2 −nx/2
0 s1y s2y ny/2 −ny/2
0 s1z s2z nz/2 −nz/2
0 0 0 ρc/2 ρc/2



.

(55)

They relate variations of the characteristic variables Wn to the variations of the prim-
itive vector V by:

δWn = LnδV δV = L−1

n
δWn , (56)

or in full :

δWn =




δW 1
n

δW 2
n

δW 3
n

δW 4
n

δW 5
n




=




δρ− 1
c2
δP

~s1.δ~u
~s2.δ~u

+~n.δ~u+ 1
ρcδP

−~n.δ~u+ 1
ρcδP




(57)

and

δVn =




δρ
δu
δv
δw
δP




=




δW 1
n +

ρ
2c(δW

4
n + δW 5

n)

s1xδW
2
n + s2xδW

3
n + nx

2 (δW 4
n − δW 5

n)

s1yδW
2
n + s2yδW

3
n +

ny
2 (δW 4

n − δW 5
n)

s1zδW
2
n + s2zδW

3
n + nz

2 (δW 4
n − δW 5

n)

ρc
2 (δW 4

n + δW 5
n)




. (58)

Unit vectors ~s1 and ~s2 are such that they form with ~n an orthonormal basis (~n, ~s1, ~s2).
Note that for each unit vector ~n, a different set of characteristic variables is obtained.
Also the choice of right and left eigenvectors influences the scaling of the characteristic
variables. The first characteristic variation is proportional to entropy variations, the
second and third are related to variations in shear velocity, and the last two represent
acoustic disturbances.

The five characteristic variables satisfy a set of convection equations, the compatibility
equations, with the speed of propagation given by Eq. (54) and with source terms related
to pressure and velocity variations in the (~s1,~s2)-plane. These equations are obtained by
multiplying Eq. (52) with Ln :
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4 BOUNDARY CONDITIONS 4.1

∂W 1
n

∂t
+ ~u.~∇W 1

n = 0 ,

∂W 2
n

∂t
+ ~u.~∇W 2

n +
1

2
c~s1.

(
~∇W 4

n + ~∇W 5
n

)
= 0 ,

∂W 3
n

∂t
+ ~u.~∇W 3

n +
1

2
c~s2.

(
~∇W 4

n + ~∇W 5
n

)
= 0 ,

∂W 4
n

∂t
+ (~u+ c~n) .~∇W 4

n + c
(
~s1.~∇W

2
n + ~s2.~∇W

3
n

)
= 0 ,

∂W 5
n

∂t
+ (~u− c~n) .~∇W 5

n + c
(
~s1.~∇W

2
n + ~s2.~∇W

3
n

)
= 0 .

(59)

In general, these equations are decoupled only in 1D, where the second and third line
vanish, with ~s1 = ~s2 = ~0. In the case of the Navier-Stokes equations, additional source
terms appear which are related to the viscous effects.

For boundary conditions, ~n is chosen normal to the considered boundary, either inward
or outward. In the following, we take the normal outward, which means that negative
speed represents information convected into the computational domain. Positive speed
correspond to information leaving the domain, independent of the physical boundary
condition. However, the decomposition of the Euler equations into a set of waves with ~n
normal to the boundary is a crude and sometimes inadequate assumption (Mazaheri and
Roe, 1997).

The ingoing information depends on the physical boundary condition, the numerical
evaluation of outgoing waves, the truncation error in the boundary approximation chosen
and the way relevant boundary variables are updated. Several methods can be used,
which can be classified in different ways. Without being complete, we distinguish:

• Extrapolation methods. Space, time or space-time extrapolation of the conserva-
tive/primitive (Griffin and Anderson, 1977; Gottlieb and Turkel, 1978) or charac-
teristic (Yee et al., 1982) variables. This includes e.g. a symmetry condition by
annihilating normal velocity, or a wall boundary condition which sets the speed to
zero for Navier Stokes equations. Characteristic extrapolation includes the use of
Riemann invariants which we will discuss and test here (see sections § 4.1.4 and
§ 4.2.1).

• Application of boundary conditions at the level of the partial differential equa-
tions. This category makes use of information about the characteristics, present in
the problem. This can be done in the compatibility relations (Hirsh, 1990), or in
the equations of motion (Poinsot and Lele, 1991), with a one-sided discretization.
This latter technique is more appropriate for the Navier-Stokes equations, when the
boundary conditions have to be separated from the viscous terms. In the following,
we will focus on this category, which has in common that the boundary conditions
act on variations, rather than the variables themselves. It means that the strength
of incoming waves is calculated as a function of the physical boundary conditions
imposed and the strength of the outgoing waves.

Applying an Euler explicit time discretization to Eq. (52), the update of primitive
variables can be written as:
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∆V = Vn+1 − Vn = −∆tR = −∆t

[
A
∂V

∂x
+ B

∂V

∂y
+ C

∂V

∂z

]
(60)

For a given boundary with normal ~n, the full residual R in Eq. (60) can be split into a
normal part Rn (involving only normal derivatives) and a tangential part Rs (involving
only derivatives along ~s1 and ~s2). E.g., in case ~n = (1, 0, 0)t, that is ~n aligned with the
x-axis, Rn = A ∂V/∂x and Rs = B ∂V/∂y + C ∂V/∂z.

Let us call Vn the boundary value at time level n, δVP the predicted boundary update
due to the interior scheme, before application of the boundary conditions, δVP

w the part of
δVP to which the boundary conditions will be applied, and δVU = δVP−δVP

w the part of
the boundary update which is not affected by the characteristic boundary conditions. As
an example, in methods which identify waves only using terms normal to the boundary,
and in the case ~n = (1, 0, 0)t, δVP

w is the predicted value of −∆tRn = −∆tA ∂V/∂x and

δVU is equal to −∆t
[
B∂V

∂y
+ C∂V

∂z

]
. Note that δVU could also contain other contributions

like the diffusive terms in the case of the Navier-Stokes equations or the heat release for
combustion. The boundary conditions are then applied as follows:

1. Decide the part δVP
w of the residual to which the boundary conditions are going to

be applied to. If it is the full residual, then δVP
w = −∆tR and δVU = 0.

2. Using Eq. (57), decompose δVP
w , into characteristic variations δW in,P

n and δW out
n

due to ingoing and outgoing waves, with corresponding primitive variations δVin,P
w

and δVout
w .

3. Modify the amplitude of the incoming wave(s) δW in,P
n corresponding to the physical

requirements at the boundary. This gives corrected amplitudes, δW in,C
n . Note that

the outgoing waves δW out
n must be kept as they are. As an example, consider a

pressure imposed subsonic outlet, δP = 0. The characteristic speeds un and un + c
are positive, and the only wave to be affected by the boundary condition is the
ingoing acoustic with speed un − c. Eq. (58) states that δP = δW 4

n + δW 5
n , which

gives δW 5,C
n = −δW 4

n .

4. Combine the waves δW in,C
n and δW out

n , and transform back to primitive variables
using L−1

n
, Eq. (58). This gives δVC

w . The boundary point is then updated according
to

Vn+1 = Vn + δVU + δVC
w = Vn + δVU + δVin,C + δVout

The decomposition of the Euler equations into a set of waves traveling normally to
the boundary provides us with a theoretical basis to derive proper boundary condition
treatments. However the theory says nothing on the best choice for defining the part of
the update related to the waves (δVP

w). It seems that only the full residual approach
(Thompson, 1990) (δVP

w = δVP ) and the normal approach (Thompson, 1987) (δVP
w =

−∆tRn) have been proposed in the literature as a basis of a general procedure to derive
boundary conditions for the Euler equations.
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4.1.1 Full residual approach

Applying the boundary conditions to the full residual, we have δVP = −∆tR = δVP
w and

δVU = 0, which means that the update becomes Vn+1 = Vn+δVC
w = Vn+δVin,C+δVout.

As soon as the evaluation of R by the interior scheme leads to R = 0, the strengths of the
waves vanish. Therefore, the boundary point does not vary anymore, and steady state
is reached. This boundary conditions has been tested with a large variety of physical
boundary inlet and outlet conditions, and in a wide range of test cases. Its behavior
is very satisfactory. One undesirable side-effect has been found with the simplest non-
reflecting boundary condition, Eq. (61), for the case of a shear flow leaving the domain
(see section § 4.2.2).

4.1.2 Normal approach

Here, the boundary conditions are applied to the part of the residual related to the normal
derivatives, δVP

w = −∆tRn. It has been proposed by Thompson (1987) for the non-
reflecting condition and by Poinsot and Lele (1991) as a basis of a general procedure to
derive boundary conditions for the Navier-Stokes equations. A part of the residual (δVU)
is not touched by the boundary conditions, and therefore, an additional non-characteristic
correction is needed.

When the interior scheme evaluation leads to R = 0, the strengths of the waves do
not vanish anymore. Take the example of a pressure imposed outlet, and assume that
the boundary is at the prescribed pressure. If the normal residual is non-zero (as it is
for a Blasius boundary layer, since ∂u

∂x
is not zero), decomposition results in an outgoing

characteristic, which has to be matched by an ingoing characteristic to keep the pressure
constant.

4.1.3 Non-reflecting boundary conditions

It is straightforward to derive the strength of the incoming waves for physical boundary
conditions like an outlet where pressure or Mach number is imposed. Likewise, an in-
let with total pressure and temperature and the flow angles, or total temperature and
mass flux poses no problem. It is more complicated to design a non-reflecting boundary
condition.

The simplest form of this condition is to set the strength of the incoming wave to zero.
In 2D, with W 4 the ingoing characteristic for a subsonic outlet, the full residual approach
gives (Chakravarthy, 1983; Hayder and Turkel, 1995, 1993; Thompson, 1990):

∂W 4

∂t
= 0 (61)

whereas the normal approach leads to (Thompson, 1987; Poinsot and Lele, 1991):

(un − c)
∂W 4

∂n
= 0 (62)

Hirsh (1990) argues that the simple non-reflecting condition, has to be applied to the
advection terms of the bicharacteristic equations:

(un − c)
∂W 4

∂n
+ us

∂W 4

∂s
= 0 . (63)
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A more elaborate analysis is performed by Engquist and Majda (1977), and trans-
lated for practical implementation by Giles (1990). The analysis for the linearized Euler
equations is based on a Fourier decomposition of the solution at the boundary, that is
decomposition of plane waves in arbitrary directions. Now, the strength of each ingoing
Fourier component is set to zero, and consequently, the ingoing waves in the space-time
domain are finite. This introduces a dependency of the incoming characteristic on the
tangential derivatives at the boundary. For one-dimensional flow, Eq. (61) is recovered.
Here we consider the approximate, two-dimensional unsteady formulation Giles (1990),
which for a 2D outlet gives:

∂W 4

∂t
= −un

∂W 2

∂s
− us

∂W 4

∂s
, (64)

where un and us are the normal and tangential velocity at the boundary, and ∂/∂s denotes
the tangential derivative.

Eq. (61), (62), (63) and (64) are all non-reflecting boundary conditions based on
characteristic analysis. They do not produce the same results however. This may be
explained by formulating all of them in the same framework: indeed, any (non-reflecting)
boundary condition can be written either in terms of time derivatives (temporal form) or in
terms of normal derivative (spatial form). These two forms are linked by the compatibility
relations, Eq. (59), and imposing a boundary condition on the time derivative can be
translated into a condition on the normal derivative and vice versa. An overview of the
presented conditions written in their two equivalent forms (temporal and spatial) is given
in table 1. A key reference is used to name each boundary condition. The conversion
between the two forms may be obtained with the 2D version of the compatibility relations
which for the ingoing characteristic reduces to:

∂W 4

∂t
+ (un − c)∂W

4

∂n
+ us

∂W 4

∂s
+ c∂W

2

∂s
= 0 . (65)

Name temporal form spatial form

Thompson (1990) ∂W 4

∂t
= 0 Eq. (61) ∂W 4

∂n
= − 1

un−c

{
us

∂W 4

∂s
+ c∂W

2

∂s

}

Poinsot and Lele (1991) ∂W 4

∂t
= −

{
us

∂W 4

∂s
+ c∂W

2

∂s

}
∂W 4

∂n
= 0 Eq. (62)

Hirsh (1990) ∂W 4

∂t
= −c∂W

2

∂s
∂W 4

∂n
= − us

(un−c)
∂W 4

∂s
Eq. (63)

Giles (1990)
∂W 4

∂t
= −un

∂W 2

∂s
− us

∂W 4

∂s
Eq.

(64)
∂W 4

∂n
= ∂W 2

∂s

Table 1: Correspondence between the temporal and the spatial form for some non-

reflecting boundary conditions. 2D case.

This table provides a way to formally compare these boundary conditions. Of course,
the results of a computation depends only on the choice of the boundary (the rows in the
table) and not on the form under which it is written (the columns in the table). It is
straightforward to derive the 3D version of these correspondences:
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Name of the BC temporal form spatial form

Thompson (1990) ∂W 5

∂t
= 0

∂W 5

∂n
= − us1

un−c
∂W 5

∂s1
− us2

un−c
∂W 5

∂s2
−

c
un−c

∂W 2

∂s1
− c

un−c
∂W 3

∂s2

Poinsot and Lele (1991)
∂W 5

∂t
= −us1

∂W 5

∂s1
− us2

∂W 5

∂s2
−

c∂W
2

∂s1
− c∂W

3

∂s2

∂W 5

∂n
= 0

Hirsh (1990) ∂W 5

∂t
= −c∂W

2

∂s1
− c∂W

3

∂s2

∂W 5

∂n
= − us1

(un−c)
∂W 5

∂s1
− us2

(un−c)
∂W 5

∂s2

Giles (1990)
∂W 5

∂t
= −un

∂W 2

∂s1
− un

∂W 3

∂s2
−

us1
∂W 5

∂s1
− us2

∂W 5

∂s2

∂W 5

∂n
= ∂W 2

∂s1
+ ∂W 3

∂s2

Table 2: Correspondence between the temporal and the spatial form for some non-

reflecting boundary conditions. 3D case.

4.1.4 About the Riemann invariants

The Riemann invariants is the name given to the integrated 1D characteristics variables,
under the assumption of isentropic flow (Hirsh, 1990; Anderson, 1982). They are:

R1 =
P

ργ

R2 = un +
2c

γ − 1
(66)

R3 = un −
2c

γ − 1

These quantities are constant along the characteristics dx/dt = un, dx/dt = un+c and
dx/dt = un − c respectively. A main difference in the application of boundary conditions
to the Riemann invariants is that the boundary conditions are now imposed on variables
rather than on variations. These treatments use directly the predicted and the previous
values of the primitive vector to build its corrected value. Another difference is the
assumption of isentropic flow which is not made in the treatments described in the previous
subsections. An example of the effect of this hypothesis is given in the next section.

4.2 Comparison of non-reflecting BC

As an illustration of the sensibility of unsteady calculations to the boundary conditions
used, the non-reflecting formulations described in the previous sections are tested for
different academic test cases (see figure 3):

• a 1D acoustic or entropy wave leaving the computation domain through a non-
reflecting outlet (section § 4.2.1),

• the establishment of a 2D shear layer in a domain with no velocity at the initial
time (section § 4.2.2),
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• a two-dimensional vortex leaving the computation domain through a non-reflecting
outlet (section § 4.2.3).

The tested formulations are designed as Riemann invariants, Giles (Giles, 1990),
Poinsot (Poinsot and Lele, 1991), Hirsh (Hirsh, 1990) and Thompson (Thompson, 1990)
(see table 1 for the definition of these conditions). Except otherwise stated, all the fol-
lowing computations are performed with a second-order centered scheme in space and a
third order explicit Runge-Kutta time stepping. No artificial viscosity is used.

Test cases Tested conditions

- Riemann invariants
- Thompson (1990)
- Poinsot and Lele (1991)
- Hirsh (1990)
- Giles (1990)

- Thompson (1990)
- Poinsot and Lele (1991)
- Hirsh (1990)
- Giles (1990)

- Poinsot and Lele (1991)
- Hirsh (1990)
- Giles (1990)

Figure 3: Academic test cases for the non-reflecting outlet boundary conditions. The
dashed line corresponds to the tested boundary.

4.2.1 One-dimensional cases

A Gaussian perturbation of small amplitude is superimposed to the uniform density field
and the other variables are initialized so as to keep energy in only one mode of propagation,
either the progressive acoustic one or the entropy one. The mean Mach number is set to
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0.25 in both cases and the number of grid points is 201 (uniform mesh). Figures 4 and
5 show the convection of the acoustic perturbation through the evolution of the density
at different simulation times. The perturbation leaves the computation domain for t =
0.5L/(U0 +c), where L is the length of the domain and Uo is the mean convection velocity.
The bottom parts of the figures show that the wave leaves the domain in producing
a small amount of numerical perturbation. These sawtooth instabilities have a non-
physical negative group velocity of order −U0 − c, in agreement with theoretical analysis
(Vichnevetsky and Bowles, 1982). The amplitude of the reflected perturbation is of order
of 0.05% of the strength of the outgoing wave, showing that both the Thompson and
the Riemann invariants approaches are efficient in this case. Similar results are obtained
with the other characteristic treatments cited above. The results for the entropy wave
are shown in figures 6 and 7. The characteristic approach produces the same type of
result as for the acoustic wave, with the group velocity for the reflected numerical waves
which is now of order −U0. The use of the Riemann condition leads to the formation of a
regressive acoustic wave (U0 − c) when the entropic wave leaves the computation domain.
The density perturbation associated with the reflected wave is even larger than the one
related to the outgoing wave. This unacceptable behavior of the Riemann condition is a
direct consequence of the isentropic flow assumption used to derive the invariants: this
formulation should be used only for isentropic flows. Only characteristic treatments based
on the variations of the primitive/characteristic vector will be considered in the following
subsections.

4.2.2 Two-dimensional shear-layer

Consider the computation domain defined by 0 < x < 1 and 0 < y < 1. The initial
condition is uniform for the density and the static pressure, zero for the velocity in the
y-direction. For the streamwise velocity, we impose u(x, y) = U0(1.5 + tanh(10(y− 0.5)))
for x = 0, u(y) = 0 elsewhere. U0 corresponds to 0.25 for the Mach number, so that
the flow is subsonic everywhere. The Thompson (full residual) characteristic approach
is used at the inlet to impose the velocity components and the temperature while a
non-reflecting condition is tested at the outlet. The Poinsot non-reflecting characteristic
condition is used for both y = 0 and y = 1 to allow acoustic disturbances in the y-
direction to leave the domain. The velocity profile is expected to propagate downstream
during the computation. The steady solution is obviously u(x, y) = u(0, y) for all x-
values. Numerically, several convective times of propagation are simulated before the
results are examined. Typical velocity profiles obtained with the Thompson formulation
of the outlet boundary are shown in figure 8. Clearly the outlet condition prevents the
hyperbolic tangent profile from propagating along the x-direction. Instead, the u-velocity
tends to be uniform near the exit. In fact this result is due to the formulation which, by
imposing ∂W 4

n/∂t = 0, forces the temporal evolutions of the streamwise velocity and the
pressure to remain nearly proportional. At the initial time, both quantities are uniform
at the exit, so that their profiles keep the same shape during the computation if 1/ρc
does not depend on y. This feature of the boundary is well recovered by the computation
(see figure 9) but is not compatible with the present physical configuration. Instead, the
pressure profile should remain uniform and the u-profile should start from zero and tend
to the imposed hyperbolic tangent profile at the inlet. The use of the Poinsot’s approach
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0.0 0.2 0.4 0.6 0.8 1.0
0.999990

0.999995

1.000000

1.000005

1.000010

t = 0.75 L / (U0 + c)
t = 1.00 L / (U0 + c)

0.0 0.2 0.4 0.6 0.8 1.0
0.990

0.995

1.000

1.005

1.010

1.015

1.020
t = 0
t = 0.25 L / (U0 + c)
t = 0.50 L / (U0 + c)

Figure 4: Spatial evolution of density before and after the acoustic wave leaves the domain
through the Thompson (1990) (full residual) non-reflecting condition.

for the outlet leads to the correct behavior for the velocity profiles, as shown in figure
10. Indeed, the constraint on the ingoing acoustic wave is now written in terms of spatial
gradients, so that the temporal evolutions of the pressure and the velocity at the exit are
no more proportional (see table 1). The correct behavior is also obtained for the other
characteristic treatments cited above. However the computed physical time needed to
reach the steady solution has been found to be greater for the Giles condition than for
both the Poinsot and the Hirsh formulations. By comparing these boundary conditions
in table 1, it appears that three different terms appear in the right-hand-side of their
temporal forms: A = us

∂W 4

∂s
, B = c∂W

2

∂s
and C = un

∂W 2

∂s
. At least one term is needed to

make a boundary condition able to reach the correct steady state. The Poinsot’s and the
Hirsh’s conditions leading to equivalent results, the A term above seems not critical for
the present test case (this term is the difference between two boundary conditions which
give the same results, see table 1). Thus the B term is responsible for the success of
the computations with those conditions. One observes also that the C term in the Giles
condition is nothing but un

c
B, smaller than B because the test case is subsonic. Thus

the observed numerical result (longer relaxation time to the steady state with the Giles
treatment) is consistent with the formal comparison of the different boundary conditions.
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0.0 0.2 0.4 0.6 0.8 1.0
0.999990

0.999995

1.000000

1.000005

1.000010

t = 0.75 L / (U0 + c)
t = 1.00 L / (U0 + c)

0.0 0.2 0.4 0.6 0.8 1.0
0.990

0.995

1.000

1.005

1.010

1.015

1.020
t = 0
t = 0.25 L / (U0 + c)
t = 0.50 L / (U0 + c)

Figure 5: Spatial evolution of density before and after the acoustic wave leaves the domain
through a non-reflecting condition based on the Riemann invariants.

Only the formulations proposed by Giles, Poinsot and Hirsh have been retained for the
next test case.

4.2.3 Two-dimensional vortex

Consider the computation domain defined by 0 < x < 1 and 0 < y < 1 and the following
stream function:

ψ(x, y, t = 0) = ψoe
−

((x−xo)2+(y−yo)2)

a2 (67)

The corresponding velocity field u = ∂ψ
∂y

and v = −∂ψ
∂x

defines a steady vortex with
center at x = xo and y = yo with no vorticity at infinity. ψo and a are related to the
strength and the size of the vortex respectively. The pressure field associated with this
flow is P = Po − ρψ2/a2. To define the initial field, a uniform flow (M = 0.25) in the
streamwise direction is superimposed to the previous vortex flow with xo = yo = 0.5. Two
cases (A and B) have been computed.

Table 3 gives the numerical values of the initial stream function ψo, the size of the
vortex a and its strength, defined as ωmaxa/U0.
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0.0 0.2 0.4 0.6 0.8 1.0
0.999990

0.999995
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t = 0.75 L / U0

t = 1.00 L / U0

0.0 0.2 0.4 0.6 0.8 1.0
0.990
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1.015

1.020
t = 0
t = 0.25 L / U0

t = 0.50 L / U0

Figure 6: Spatial evolution of density before and after the entropy wave leaves the domain
through the Thompson (1990) (full residual) non-reflecting condition.

Case A corresponds to a weak vortex for which the induced velocity is only 1 % of the
mean convection velocity U0. The second case B stands for a strong vortex for which the
induced velocity is 90 % of U0. Note that the absolute velocity is always positive for both
cases so that the section x = 1 is always a subsonic outlet. The Poinsot’s non-reflecting
characteristic condition is used for both y = 0 and y = 1 to allow the acoustic disturbances
in the y-direction to leave the domain. It is also used for x = 0 while the tested non-
reflecting boundary condition is used for x = 1. The vortex is convected downstream
during the computation and leaves the domain at time t = 0.5L/U0, where L is the length
of the computation domain. With the above presented characteristic formulations for the
outlet, the vortex leaves the domain and no vorticity perturbation is produced near the
exit.

Case ψo a strength

A 0.0005 0.106 0.09
B 0.05 0.159 2.82

Table 3: Strength and size of the computed vortices.
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0.0 0.2 0.4 0.6 0.8 1.0
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t = 0.75 L / U0
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t = 0
t = 0.25 L / U0

t = 0.50 L / U0

Figure 7: Spatial evolution of density before and after the entropy wave leaves the domain
through a non-reflecting condition based on the Riemann invariants.

Figures 11, 12, 13 and 14 show the root-mean-square value of both the vorticity (ωrms)
and the divergence (divrms) in the computation domain for Cases A and B. In the first
stage of the simulation, both quantities show a plateau because the vortex is still in the
domain and there is no dissipation. Around t = 0.25, the vortex starts its interaction with
the outlet boundary so that the divergence increases. At t = 0.5, the center of vortex
leaves the computation domain and the level of ωrms sharply decreases. The acoustic per-
turbations propagate upstream and leave the domain through the different non-reflecting
boundaries at the inlet and both the top and the bottom. After t ≃ 1, the level of
divergence falls to its initial value.

Figures 11 and 12 show the results for the Case A (weak vortex) with the outlet section
treated with the (Poinsot and Lele, 1991) and the Giles (1990) formulation respectively.
1 For both formulations, the computed time evolution of ωrms compares well with the
analytical one. This latter is the solution of the simple linear convection problem which

1the non-reflecting boundary condition given by Hirsh (1990) produced results very similar to those
obtained with the approach of Poinsot so that the corresponding plots are not shown for clarity.
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x = 0 (inlet)
x = 0.25 L
x = 0.50 L
x = 0.75 L
x = L (exit)

Figure 8: Velocity profiles at different abscissa for the Thompson (1990) (full residual)
non-reflecting outlet boudary condition.

is valid as far as the velocity induced by the vortex is small compared to the convection
velocity. On the other hand, the treatments produce an amount of dilatation which may be
related to the amplitude of the reflected acoustic wave when the vortex leaves the domain
(Colonius et al., 1993). A coefficient of acoustic reflection may be defined as the ratio
of the maximum of divergence in the computation domain during the exit process to the
maximum of vorticity in the incident vortex. It is much smaller for the Giles formulation
than for the other one (4 %). Note that for the vortex strength and the spatial resolution
considered in Case A, the amount of divergence produced by the Giles exit boundary is
of the same order than the initial level of divergence which is related to the truncation
error of the second-order spatial scheme used for the computations. As a consequence
the reflexion coefficient for this case can hardly be measured except if the resolution is
drastically increased. Instead, we preferred to increase the accuracy of the numerical
method to check the behavior of the Giles condition in the linear range. Indeed, this
condition is exact for the linearized Euler equations (Giles, 1990). It is a second order
condition so that the vorticity-acoustic reflexion coefficient should tend to zero as the
strength of the vortex does. On the other hand, the first order Poinsot condition should
produce a nearly constant reflexion coefficient. These features have been well recovered
in the present study (see figure 15) by using a sixth-order compact scheme and a third
order Runge-Kutta formulation for the time steping.
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−2.00 −1.00 0.00 1.00 2.00
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(u − umean) / (u − umean)max

(P − Pmean) / (P − Pmean)max

Figure 9: Comparison of the shape of the streamwise velocity and static pressure profiles
at the exit plane. The shape of g is defined as (g − gmean)/(g − gmean)max, where gmean is
the mean value of g at the exit.

Figures 13 and 14 correspond to the case B. Even for the non-linear vortex, the de-
crease of the vorticity in the computation domain is well reproduced by both boundary
treatments. Note that the ’exact’ solution in these figures correspond to a simulation with
a domain of length 2, the root-mean-square of vorticity being computed over the first half
of it. In terms of reflected acoustic wave, the difference between the two boundary treat-
ments decreases when the strength of the vortex increases, as suggested by figure 15. For
case B, both conditions lead to the same order of reflexion coefficient (around 4 % for
both). This is due to non-linear effects which are not properly accounted for, whatever
the boundary formulation. A way to overcome this difficulty is to insert a buffer region
before the exit section, so as to make the perturbation linear before it interacts with the
boundary (Colonius et al., 1993).

4.3 More about BC treatments

4.3.1 Linear relaxation

The classical characteristic formulation is widely used since it provides a theoretical basis
to derive proper boundary condition treatments, following the steps described in section
§4.1. Consider the case of a subsonic outlet where the static pressure is known. Such a
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Figure 10: Velocity profiles at different abscissa for the Poinsot and Lele (1991) non-
reflecting outlet boundary condition.

condition must be based on the relationship between the pressure variations δP and the
variations of the characteristics variables δW 4

n and δW 5
n . From Eqs. (58) one obtains:

δP =
ρc

2
(δW 4

n + δW 5
n) (68)

which may be rewritten as:

δW 5
n = −δW 4

n +
2

ρc
δP (69)

Note that this boundary condition is fully reflecting acoustically: any physical or numerical
perturbation generated during the calculation cannot leave the computational domain. To
ensure the stability of the simulation, one often makes use of dissipative schemes in order
to damp the perturbations that cannot be evacuated through the boundaries. However,
using dissipative numerical schemes for calculating unsteady flows may lead to erroneous
results (Colin and Rudgyard, 2000). Experience proves that it may be sufficient, and safer
numerically, to use a boundary treatment that is not fully reflecting. In order to built an
essentially non-reflecting boundary condition where the ingoing wave does not depend on
the outgoing wave, we write, instead of Eq. (69) :

δW 5
n = +

2

ρc
δP (70)

VKI - 33 -



4 BOUNDARY CONDITIONS 4.3

0.0 0.5 1.0 1.5
time (L/U0)

10
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−3
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−2
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−1

ωrms − Poinsot
divrms − Poinsot
ωrms − exact

Figure 11: Time evolutions of the rms of vorticity and divergence during the exit of a
linear vortex through a non-reflecting subsonic outlet condition. Case A - Treatment of
Poinsot.

In the case of a fully non-reflecting condition, we would have no acoustic wave entering
the domain, that is δW 5

n = 0. However, it turns out that such condition is ill-posed and
might lead to very large uncontrolled pressure drift. To avoid this, one relaxes the pressure
at the boundary PB toward the target value P t by choosing δP = αP (P t − PB), leading
to :

δW 5
n = αP

2

ρc
(P t − PB) (71)

In order to make the effect of the dimensionless relaxation parameter αP independent on
the time step ∆t, it is preferable to take instead :

δW 5
n = αP

2

ρc
(P t − PB)∆t (72)

where the relaxation parameter αP is homogeneous to a frequency. In absence of wave
reflexion from the domain (that is if δW 4

n = 0), this choice for the variation of the ingoing
characteristic variable δW 5

n has the effect to move the pressure at the boundary from the
value PB to the value PB+αP (P t−PB)∆t, which is closer to the target value P t provided
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Figure 12: Time evolutions of the rms of vorticity and divergence during the exit of a
linear vortex through a non-reflecting subsonic outlet condition. Case A - Treatment of
Giles.

the relaxation coefficient is not too large. The net effect is to avoid large pressure drift
if αP is large enough (to compensate the causes of the drift). This is similar to what
proposed Rudy and Strikwerda (1980). They showed that the relaxation coefficient is
related to the characteristic size of the domain and the characteristic Mach number. The
condition (72) is virtually non-reflecting if PB is close to P t but prevents the computed
pressure from being too different from the reference. Note that, contrary to the full
reflecting formulation (69), equation (72) does not guaranty that PB is strictly equal to
P t. It can be shown that the inclusion of a relaxation term as in equation 72 makes
the boundary transparent only for perturbation whose frequency is larger than a cut-off
frequency fc which can be related to the relaxation coefficient αP . A simple analytical
model allows to show that fc = αP/4π (Selle et al., 2004).

4.3.2 Approximate boundary conditions

The purpose of any characteristic boundary condition is to prescribe proper value(s) of
the ingoing characteristic variable(s) so that the expected physical boundary condition is
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Figure 13: Time evolutions of the rms of vorticity and divergence during the exit of a
non-linear vortex through a non-reflecting subsonic outlet condition. Case B - Treatment
of Poinsot.

obtained. The linear relaxation methodology described above can be used to construct
any kind of (well-posed) inlet/outlet boundary condition. A few examples are provided
below

• Mass flow rate ’imposed’ outlet: One assumes that the normal mass flow rate
ρun is known at a subsonic outlet. From Eqs. (58) and (57) one obtains:

δρun =
ρ

2
(1 +Mn)δW

4
n −

ρ

2
(1 −Mn)δW

5
n + unδW

1
n (73)

which may be rewritten as:

δW 5
n =

1

1 −Mn

[
(1 +Mn)δW

4
n +

2

ρ
unδW

1
n −

2

ρ
δρun

]
(74)

In these equations, Mn stands for the normal Mach normal at the boundary. Note
that for an outlet, un is positive and Mn could tend toward 1 for high subsonic
flows. As a consequence, this boundary condition becomes ill-posed in the transonic
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Figure 14: Time evolutions of the rms of vorticity and divergence during the exit of a
non-linear vortex through a non-reflecting subsonic outlet condition. Case B - Treatment
of Giles.

regime (which could have been expected since the flow rate through a choked nozzle
is imposed from the upstream conditions only). As in section §4.3.1, the essentially
non-reflecting outlet with relaxation toward the target value ρutn is obtained by
assuming that the incoming wave does not depend on the outgoing characteristics:

δW 5
n =

2αρun

ρ(1 −Mn)
(ρutn − ρuBn ) (75)

• Inlets with velocity and temperature ’imposed’: It is common use to impose
the velocity vector and static temperature at subsonic inlets. Such condition should
be based on the relationships between the velocity and temperature variations and
the variations of the characteristics variables. From Eqs. (57) and (58) one obtains
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Figure 15: Coefficient of acoustic reflection as a function of the amplitude of the incident
vortex. Comparison between a first order (Poinsot, Hirsh) and a second order (Giles)
condition in the linear range. Results from a code based on a sixth-order compact scheme.

(using the state equation to express δT = TdeltaP/P − Tδρ/ρ):




δW 1
n

δW 2
n

δW 3
n

δW 5
n


 =




(γ−1)ρ
c2

[−CpδT − cδun + cδW 4
n ]

δut1
δut2

δW 4
n − 2δun


 (76)

The essentially non-reflecting inlet relaxation toward the target values utn, u
t
t1
, utt2

and T t is obtained by making the incoming waves independent on the outgoing one
(δW 4

n):




δW 1
n

δW 2
n

δW 3
n

δW 5
n


 =




(γ−1)ρ
c2

[
−CpαT (T t − TB) − cαun

(utn − uBn )
]
∆t

αut
(utt1 − uBt1)∆t

αut
(utt2 − uBt2)∆t

−2αun
(utn − uBn )∆t


 (77)

• Inlets with mass flow rate and total temperature ’imposed’: This is a
variant of the previous condition. Similarly, the starting point is the relationships
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between the mass flow rate and total temperature variations and the variations of
the characteristics variables. From Eqs. (57) and (58) one obtains (using the state
equation to express δT ):




δρun
δρut1
δρut2
δTt


 =




ρ
2
(1 +Mn)δW

4
n − ρ

2
(1 −Mn)δW 5

n + unδW
1
n

ρδW 2
n + ut1δW

1
n + ρ

2
Mt1(δW

4
n + δW 5

n)
ρδW 3

n + ut2δW
1
n + ρ

2
Mt2(δW

4
n + δW 5

n)
1
Cp

[
ut1δW

2
n + ut2δW

3
n − c2

ρ(γ−1)
δW 1

n + 1
2
(c+ un)δW

4
n + 1

2
(c− un)δW

5
n

]




(78)
where Mt1 and Mt2 are the Mach numbers in the ~t1 and ~t2 directions respectively.
With some algebra, Eqs. (78) can be inverted to provide the following expressions
for the ingoing waves :




δW 1
n

δW 2
n

δW 3
n

δW 5
n


 =




1
∆

[
ρ(γ−1)(1−M2)

c
δW 4

n + S1

]

1
∆

[−γMt1δW
4
n + S2]

1
∆

[−γMt2δW
4
n + S3]

1
∆

[(1 + γMn + (γ − 1)M2)δW 4
n + S4]


 (79)

where ∆ = 1 − γMn + (γ − 1)M2 and the terms S1, S2, S3 and S4 are equal to :




S1

S2

S3

S4


 =




γ−1
c

[
−(1 −Mn)

(
ρCp

c
δTt −Mt1δρut1 −Mt2δρut2

)
− (1 −Mn −M2

t1
−M2

t2
)δρun

]

1
ρ

[
(γ − 1)Mt1

(
ρCp

c
δTt + (1 −Mn −M2

s )δρun

)
+ (1 − γMn + (γ − 1)M2

n)δρut1

]

1
ρ

[
(γ − 1)Mt2

(
ρCp

c
δTt + (1 −Mn −M2

s )δρun

)
+ (1 − γMn + (γ − 1)M2

n)δρut2

]

−2
ρ

[
Mn(γ − 1)

(
ρCp

c
δTt −Mt1δρut1 −Mt2δρut2

)
+ (1 + (γ − 1)M2

s )δρun

]




(80)
where M2

s = M2
t1

+M2
t2
.

4.3.3 Integral boundary conditions

The above mentioned boundary treatments require the pointwise knowledge of the physical
quantity to be imposed at the boundary. For example, consider an isentropic subsonic
inlet where the velocity is prescribed, the tangential component being zero. Following the
previous reasoning, the following relationship should be used to compute the incoming
acoustic wave if the approximate boundary is to be used:

δW 5
n = −2αu

(
uBn − ut

)
∆t, (81)

However, pointwise information about ut is not always available and the knowledge of the
bulk velocity utbulk is often less challenging. Integrating the RHS of equation (81) over
the boundary B one obtains an integral, approximate boundary condition (Nicoud and
Schönfeld, 2002):

δW 5
n = −2αu

(
1

SB

∫

B

uBn dSB − utbulk

)
∆t, (82)

where SB is the area of B. In this formulation, the incoming acoustic wave depends only
on time and drives the total flow rate entering the domain through B. The shape of
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the velocity profile comes out from the terms not modified by the boundary treatment,
i.e. δVU in section §4.1. Note that the integral term in (82) should be assessed at each
iteration of the simulation and the input ubulk is a function of time only.

The performance of the above treatment is illustrated in figure 4.3.3. which displays
the results from an unsteady Poiseuille flow computation. The averaged bulk Reynolds
number is Reh = 870 with h half the channel cross section. The length of the straight
channel is 40h. The unsteady flow is pulsated at frequencies defined by the Womersley
number Wo = h

√
ω/ν = 15 with ω the pulsation of the flow rate variation. The maximal

amplitude is 45% of the mean flow rate. At the channel inlet the integral values of both
the flow rate and the temperature are imposed, while at the outlet only the integral
value of the flow rate is imposed. The velocity profiles at the inlet and outlet sections
at three different instances are displayed in figure 4.3.3. The velocities are scaled by the
mean flow velocity < Ubulk >. The CFD results are compared to the analytical solution
(Womersley, 1955) obtained by assuming no dependence in the streamwise direction in a
channel submitted to a pressure gradient of the form ∇P = ∇P0 +∇P1exp(jωt), that is:

u(y, t) = −
∇P0

µ
(h2 − y2) + R

[
j
∇P1

ρω

(
1 −

cos(αy/h)

cos(α)

)]

where y is the normal coordinate and α = Wo exp(3jπ/4).
From the results, it appears that the application of sucking outlet conditions is simpler

to realize than imposing ’blowing’ inlet conditions. This is because the time scale of the
diffusion terms in the normal (to the wall) direction is larger than the time scale of
the unsteadiness (the Womersley number is a measure of the ratio between these two
characteristic times). For smaller values of Wo, this is no longer the case and the results
at the inlet improve. In the limit Wo → 0, the integral boundary treatment allows to
recover exactly the parabolic (Poiseuille) profile.

The concept of integral boundary condition can easily be extended to any well-posed
subsonic inlet or outlet characteristic based boundary condition, such as those described
in section §4.3.2. For example, it is possible to control the bulk pressure at a subsonic
outlet boundary, a feature which proves useful when computing swirled flows where the
static pressure in planes normal to the main stream is not constant.

4.3.4 Advanced non-reflecting conditions

The formalism presented in section § 4.1 constitutes the basis of the characteristic-based
boundary treatments. Given the sensibility of the results to the ’details’ of the boundary
conditions (see section §4.2), many studies have been published in the recent years to
propose improvements. One issue that is often addressed is related to the spurious pres-
sure oscillations that the standard non-reflecting boundary conditions create when applied
to turbulent flows. For example, Polifke et al. (2006) proposed to identify plane waves
and a slight modification of the relaxation term (as in equation 81) in order to make the
approximate non-reflecting condition exactly transparent for all the frequencies, at least
for plane waves traveling normally to the boundary. Prosser (2005) performs an analysis
of the characteristics used to define non-reflecting boundary conditions. The analysis is
conducted in terms of a low Mach number asymptotic series and allows a better under-
standing of the reason why spurious pressure oscillations are generated. From the Mach
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Figure 16: Velocity profiles for steady (left column) and unsteady (right column) Poiseuille
flow, at inlet (top row) and outlet (bottom row). Lines indicate CFD calculations, symbols
correspond to the analytical solution. Three different phases (0, 70 and 180 degrees) are
shown for the case Wo = 15.

number expansion, and related scale separation, an improved boundary treatment can be
formulated, which is virtually transparent to acoustic waves and allows the prescription of
turbulent vortical fluctuations. Characteristic-based boundary treatments have also been
proposed to handle more complex situations such as the subsonic flow of multi-species
gaseous mixtures (Baum et al., 1994; Okong’o and Bellan, 2002; Moureau et al., 2004)
with the inclusion of chemical source terms (Sutherland and Kennedy, 2003).
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5 Numerical issues

5.1 Effective wave number

In many cases, turbulence results from the development, amplification and saturation
of unstable hydrodynamic modes of the main flow. Thus, any numerical method used to
compute such flow must be able to represent the growth of these modes, viz. it must not be
too dissipative. Besides, since the scale separation can be large in high-Reynolds number
flows (the integral to Kolmogorov length scale ratio behaves like R3/4, with R = k2/(νǫ),
where k is the turbulent kinetic energy, ν the cinematic viscosity and ǫ the rate of energy
dissipation), it is worth minimizing the number of grid point necessary to represent the
smallest scales. Moreover, the effective dissipation at the Kolmogorov scale level must not
be overestimated if the actual Reynolds number of the flow is to be accounted for (with
R = k2/(νǫ), any extra dissipation decreases R). Thus an important constraint put on
the numerics is that the numerical dissipation is as small as possible for all the length
scales present in the flow. This is the reason why spectral methods have been considered,
till the early 90’s, as the only appropriate methods for performing direct or large-eddy
simulations of turbulent flows.

These methods have been introduced by Orszag (1969). Their main interest is that
there is no dispersion/dissipation error associated to the estimation of spatial deriva-
tives until the cut-off wave number π/∆ is reached, with ∆ the mesh size. A Fourier
decomposition is used most often in homogeneous directions while Chebishev polynoms
are preferred when periodicity cannot be assumed. The main drawback of fully spectral
methods is related to the non-linear term (convection) of the Navier-Stokes equations.
Compute these terms in the frequency space requires assessing convolution products by
triadic summation, a rather CPU consuming process. This has motivated the development
of pseudo-spectral methods where only the diffusive and pressure terms are computed in
the frequency space, the physical space being used for assessing the convective contribu-
tion. Of course this approach requires a fast and accurate way to pass from one space
to the other since such transformation is done twice per iteration. Note that spectral
methods are not exact, even if there is no error in the assessment of the spatial deriva-
tives. The aliasing error is related to the non-linear terms and from scales which cannot
be represented on the computational grid. Such scale can potentially appear when two
small (but resolved) scales are multiplied together (simply because cosα sinα ∝ sin 2α).
In spectral methods, these errors are usually avoided thanks to the 2/3 rule which consists
in using information from only a part of the Fourier modes that can be represented on the
computational grid. In spite of this limitation, spectral methods are certainly the method
of choice for performing large-eddy or direct simulations of simple configurations (e.g.
incompressible flow, with 2 or 3 homogeneous directions). However, despite some work
about spectral elements (Orszag and Patera, 1984; Henderson and Kardianakis, 1995;
Chu and Karniadakis, 1993), spectral methods are not well suited to complex geometries.
More details about spectral methods can be found in Canuto et al. (1988).

In the case of complex geometries or boundary conditions, spectral methods cannot
be used and the simulations must be based on either a finite volume, a finite element or a
finite difference method. In the finite volume method, volume integrals of the conservative
equations are taken over each cell of the mesh and converted to surface integrals, using
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the divergence theorem. These terms are then evaluated as fluxes at the faces of each
finite volume. Because the flux entering a given volume is identical to that leaving the
adjacent volume, these methods are conservative in nature. In the finite element method,
the flow motion equation are first written in the weak form. The best approximation of
the corresponding solution is then sought for in the linear space spanned by a set of basis
functions related to the computational mesh. Finding this best approximation amounts to
determining its components in the basis function, viz. solving a set of ordinary differential
equations. The order of accuracy of the method can be made arbitrarily large (at least
theoretically) by using higher order elements (e.g.: replacing piecewise linear elements
by piecewise quadratic elements). Eventually, the finite difference method consists in
approximating each partial derivatives of the flow equations by finite difference formula
which are obtained by combining Taylor series of the nodal unknowns. This results in a
system of algebraic equations whose unknown are the nodal values of the flow quantities
(velocity, pressure, ...).

The three methods mentioned above can be used for performing unsteady simulation as
long as appropriate spatial scheme and temporal time stepping procedure are used. The
finite volume and finite elements methodologies are well suited to complex geometries
since they can be formulated within an unstructured mesh framework. Finite differences
are more intuitive but only appropriate to simple geometries since the computational grid
must be cartesian. Note that in 1D, the three methods are equivalent so that the finite
difference framework is often used for analysing numerical schemes.

As mentioned earlier in this section, the numerical error must be controlled and min-
imized for all the length scales present in the unsteady flow to be computed. This means
that the accuracy of a numerical scheme cannot be only reduced to its order of accuracy.
This is different from the case of the numerical methods devoted to steady flow compu-
tations for which higher order usually means higher overall accuracy. As far as unsteady
flow computations are concerned, it is necessary to perform a wavelength based numerical
analysis. In the spectral analysis, one considers an harmonic perturbation of the form
f(x) = exp(jkx) and compares how the discrete and the exact derivatives operate on
this perturbation. For example, consider the first spatial derivative and its second order
centered approximation:

df

dx
(xi) ≡

fi+1 − fi−1

2∆x
(83)

where ∆x is the distance (supposed constant) between two consecutive nodes and fi stands
for f(xi). Injecting f(x) = exp(jkx) into equation 83 leads to:

df

dx
(xi) ≡ jk′ exp(jkxi), with k′ =

sin(k∆x)

∆x
(84)

where k′ is the effective wavenumber of the perturbation once its derivative is assessed
by the finite difference formula 83. The effective-to-exact wavenumber ratio can then be
used to quantify the errors related to the numerical scheme. In the above example this
ratio is:

k′

k
=

sin(k∆x)

k∆x
(85)

Consider the simple linear convection equation:

∂f

∂t
+ u0

∂f

∂x
= 0 (86)
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From equation 84, solving equation 86 with perfect time integration and finite difference
83 is equivalent to solve exactly the following equation:

∂f

∂t
+ u0

sin(k∆x)

k∆x

∂f

∂x
= 0 (87)

Thus the k′/k ratio can also be interpreted as the error in the speed of propagation of a
perturbation of wavelength k. In the general case, the k′/k ratio can be written in the
form k′/k = E(k∆x) = Er(k∆x) + jEi(k∆x) and the effective equation is:

∂f

∂t
+ u0E(k∆x)

∂f

∂x
= 0 (88)

Assuming that the initial condition is f(x, t = 0) = exp(jkx), the exact solution of
equation 88, viz. the numerical solution of equation 86, is simply:

f(x, t > 0) = exp (jk (x− E(k∆x)u0t)) = exp (kEi(k∆x)u0t) exp (jk (x− Ei(k∆x)u0t))
(89)

When k∆x tends to zero the number of grid point per wavelength tends to infinity,
the k′/k = E(k∆x) tends to unity and the exact solution of equation 86 is recovered,
viz. exp (jk (x− u0t)). In the case where the imaginary part of k′/k is not zero, viz.
Ei(k∆x) 6= 0, the amplitude of the harmonic perturbation is not conserved; it is damped
if Ei(k∆x) < 0 and it becomes unbounded if Ei(k∆x) > 0. The effective-to-exact wave-
length ratios relative to some classical finite difference schemes are reported in table 4
and plotted in figure 17.

The centered finite difference schemes have pure real k′/k ratio and thus are non
dissipative, whatever their order is. This property is not shared by the biased schemes
which all introduce an amount of dissipation. Comparing the analysis for the 2nd order
centered and upwind schemes it is clear that the order of accuracy is not enough to qualify
the properties of a scheme; the centered one is non dissipative whereas the second one
dissipates energy. Actually one can show that the order of accuracy is related to the
behavior of E(k∆x) when k∆x goes to zero, namely E(k∆x)− 1 ∝ (k∆x)p if the scheme
is of order p. Note also that a property shared by all the finite difference schemes is that
they cannot propagate wiggles accurately (E(π) = 0).

As an illustration of the effect of the above described numerical errors, the results
obtained for different schemes applied to equation 86 with u0 = 1 m/s and f(x, t = 0) =
exp(−x2/4a2) with a = 0.2 m are presented in figure 18. Three different resolutions are
compared for the four schemes discussed above. The computational domain is taken wide

FD name Er Ei
fi−fi−1

∆x
1st order upwind sin(k∆x)

k∆x
cos(k∆x)−1

k∆x
fi+1−fi−1

2∆x
2nd order centered sin(k∆x)

k∆x
0

3fi−4fi−1+fi−2

2∆x
2nd order upwind sin(k∆x)

k∆x
(2 − cos(k∆x)) − cos(2k∆x)+4 cos(k∆x)−3

k∆x
−fi+2+8fi+1−8fi−1+fi−2

12∆x
4th order centered sin(k∆x)

3k∆x
(4 − cos(k∆x)) 0

Table 4: Classical finite difference formula for the spatial first derivative and associated
error.
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Figure 17: Effective-to-exact wavelength ratios for the schemes displayed in table 4. The
imaginary part (right plot) is zero for centered schemes. The 1st order upwind and the
2nd order centered schemes share the same real part (left plot). These graphs can be
interpreted as the effective-to-exact convection velocity ratio, or as the effective-to-exact
first derivative ratio.

enough to avoid spurious boundary effects; the time step has been chosen small enough
to consider that the numerical errors are only related to the spatial discretization. The
dissipative nature of the upwind schemes appear clearly in this figure (first row) which
also demonstrate that two schemes with the same order of accuracy can lead to very
different unsteady results (compare the 2nd and 3rd rows). Note that the decrease of
signal amplitude observed for the 2nd order centered scheme should not be associated to
a dissipation of energy; it is actually a dispersive effect, viz. the different Fourier modes
which constitute the initial Gaussian perturbation are not convected at the same velocity
because the k′/k ratio depends on k∆x. For this scheme, this ratio is less than unity
(see figure 17) and the signal tends to be delayed (see figure 18, second row). On the
contrary, the real part of the k′/k ratio is greater than unity for the 2nd order upwind
scheme (see figure 17) and consistently the computed pulse tends to be in advance at time
t=5 s (see figure 18, third row). Note that the 1st order upwind scheme suffers from the
same dispersive error than the 2nd order scheme (they have the same real part of k′/k);
however, the dissipative error for this scheme is so large that the signal distortion is not
appearant in the first row of figure 18.

The same kind of analysis can be done for analysing second derivative formula. The
k′2/k2 ratios corresponding to two different 2nd order centered schemes are displayed in
figure 19. The two schemes considered are the 3-point stencil scheme:

d2f

dx2
(xi) ≡

fi+1 − 2fi + fi−1

∆x2
(90)

and the 5-point stencil scheme:

d2f

dx2
(xi) ≡

fi+2 − 2fi + fi−2

4∆x2
(91)

The first scheme can be obtained from Taylor series written at node i. The latter one
is obtained by two successive applications of the 2nd order centered scheme 83 for the
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Figure 18: Numerical convection of a Gaussian pulse with the finite difference schemes
presented in table 4. The vertical line indicates the theoretical position of the maximum
of the Gaussian perturbation.

first derivative. This way of discretizing second derivatives is often chosen in 3D codes for
complex geometries because of its simplicity. Although both second order accurate, these
two schemes have different spectral responses, as illustrated in figure 19. The limiting
behaviors when k∆x −→ 0 are of course the same since these schemes share the same
order of accuracy. However, when k∆x −→ π the 3-point stencil scheme is much more
accurate that the 5-point scheme. For this latter one, the effective diffusion coefficient
tends to zero near the cut-off wavenumber. It is important to note that such a numerical
behavior is not acceptable for LES of turbulent flows (Nicoud et al., 1998). Indeed, the
effective energy dissipation at the small scales is always close to zero, whatever the SGS
model is. As a result, the energy flux from the largest to the smallest scales cannot
be balanced and there is an energy accumulation at the smallest resolved scales. This
behavior is illustrated in figure 20.

5.2 Handling stability issues

A key issue when performing LES of turbulent flows is the necessity to use virtually
non-dissipative schemes to handle flow fields which contain a lot of energy at large wave
numbers. Since numerical errors are large for the smallest scales, the risk for such com-
putation to run unstable is real. Thus some kind of stabilization technique must be used,
especially when the LES is performed on a complex geometry. Different approaches can
be used, depending on the nature of the equation solved. Note that the stability issues
that are dealt with in this section are related to the non-linearity of the flow equations. In
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Figure 19: Effective-to-exact wavelength ratios for the 3-point and 5-point stencil (real
part). These graphs can be interpreted as the effective-to-exact diffusion coefficient ratio,
or as the effective-to-exact second derivative ratio.

other words, we are talking about instabilities arising from simulations based on linearly

stable schemes. As such, these issues are out of reach of a classical stability analysis (for
example the Von Neumann analysis).

5.2.1 Kinetic energy conservation

As far as incompressible Navier-Stokes equations are concerned, experience has shown that
the kinetic energy must be conserved if a stable and dissipation-free numerical method
is sought. Indeed, such property ensures that the sum of the square of the velocities
cannot grow, even through non-linear interactions between modes. As a consequence, a
numerical scheme which conserves kinetic energy cannot be unstable. Moreover, it makes
unnecessary the use of numerical stabilization through up-winding which is known to
introduce too much artificial damping in DNS/LES computations. Morinishi et al. (1998)
developed a set of fully conservative (mass, momentum and kinetic energy) high order
schemes for incompressible flow. A formulation adapted to cylindrical coordinates was
proposed by Morinishi et al. (2004) and a generalization to low-Mach number flows was
proposed by Nicoud (2000). A key ingredient in such approach is the use of a skew-
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Figure 20: Time evolution of the turbulent kinetic energy spectrum from a LES of ho-
mogeneous isotropic turbulence performed with a 5-point stencil scheme for the diffusive
terms.

symmetric form of the non-linear term. This latter reads:

Convection =
1

2
uj
∂ui
∂xj

+
1

2

∂uiuj
∂xj

(92)

and is neither equal, in the discrete sense, to the divergence (∂uiuj/∂xj) nor the convective
(uj∂ui/∂xj) form, even if, the flow being incompressible, the velocity divergence is zero
(∂uj/∂xj = 0). Discuss the details of such kinetic energy conserving scheme for the low-
Mach number or incompressible Navier-Stokes equations is out of the scope of this course.
All the details can be found in the references cited above; see also Mahesh et al. (2004)
for a second order accurate implementation appropriate for unstructured meshes. To give
a flavor of the importance of the form used to represent the non-linear term, the case of
the 1D Burgers equation is discussed in the following. One considers solving

∂u

∂t
+
∂u2

∂x
= 0 (93)
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over a 1D periodic domain 0 < x < L. Multiplying equation 93 by u and integrating over
space, the overall kinetic energy K =

∫ L
x=0

u2dx/2 follows the following equation:

dK

dt
= −

∫ L

x=0

u
∂u2

∂x
dx (94)

The RHS can be readily integrated as follows:

∫ L

x=0

u
∂u2

∂x
dx = 2

∫ L

x=0

u2∂u

∂x
dx = 2

[
u3

3

]L

0

(95)

which is zero since L-periodicity is assumed. Thus the overall kinetic energy should be
conserved, whatever the initial condition is.

Suppose a random periodic field is used to initialize the computation over a uniform
mesh. Suppose also that no significant error is introduced by the time integration. The nu-
merical test consists in computing a few turn over times L/

√
K(t = 0) and check whether

a) the computation is stable and b) K remains constant. Several spatial schemes have

Figure 21: Time evolution of the overall kinetic energy from the Burgers equation in the
L-periodic domain. Only the mixed scheme of equation 98 lead to the expected constant
evolution.

tested (see table 5) and the results are plotted in figure 21. As expected, the 1st order up-
wind leads to a stable computation but introduces a significant energy dissipation. With
the centered schemes based on the divergence and the advective forms, the kinetic energy
tends to increase over time, especially with the divergence form which proved unstable in
many cases. These formulations are indeed not conservative for the kinetic energy, as it
is appearant when multiplying the non-linear term at node i by the nodal velocity value
ui at the same place and summing all the contributions. For the divergence form one
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name form of the convective term FD scheme

upwind ∂u2

∂x

u2
i−u

2
i−1

∆x

advective 2u∂u
∂x

2ui
ui+1−ui−1

2∆x

divergence ∂u2

∂x

u2
i+1−u

2
i−1

2∆x

mixed 4
3
u∂u
∂x

+ 1
3
∂u2

∂x
4ui

ui+1−ui−1

6∆x
+

u2
i+1−u

2
i−1

6∆x

Table 5: Finite difference schemes tested for solving the Burgers equation 93.

obtains:

Node i− 2 : ...

Node i− 1 : ui−1
u2

i−u
2
i−2

2∆x

Node i : ui
u2

i+1−u
2
i−1

2∆x

Node i+ 1 : ui+1
u2

i+2−u
2
i

2∆x

Node i+ 2 : ...
2∆x× Sum : ...+ ui−1u

2
i − uiu

2
i−1︸ ︷︷ ︸+uiu

2
i+1 − ui+1u

2
i︸ ︷︷ ︸+... (96)

whereas for the advective form:

Node i− 2 : ...

Node i− 1 : 2u2
i−1

ui−ui−2

2∆x

Node i : 2u2
i
ui+1−ui−1

2∆x

Node i+ 1 : 2u2
i+1

ui+2−ui

2∆x

Node i+ 2 : ...
∆x× Sum : ...+ u2

i−1ui − u2
iui−1︸ ︷︷ ︸+u2

iui+1 − u2
i+1ui︸ ︷︷ ︸+... (97)

Note that the errors in the kinetic energy associated to the divergence and advective
schemes have similar forms and it is thus possible to combine these two discretizations to
generate a kinetic energy conserving scheme. Namely, comparing equations 96 and 97, it
is clear that the following scheme:

2

3
adv +

1

3
div = 4ui

ui+1 − ui−1

6∆x
+
u2
i+1 − u2

i−1

6∆x
(98)

should be conservative. This result is nicely supported by the numerical result of figure
21.

It should be noted that the concept of kinetic energy conservation is only valid for
incompressible or low-Mach number flows. Since there is no extension of this principle to
compressible situations, one should rely on numerical stabilization via artificial viscosity
to stabilize LES of such flow.

5.2.2 Artificial viscosity

In order to minimize numerical dissipation, the spatial schemes used for LES are often
essentially centered. An example of such scheme is provided in Colin and Rudgyard (2000)
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(see also Moureau et al. (2005) for its extension to moving grids). These authors developed
a Taylor Galerkin scheme (Donea et al., 1987) suitable for LES over unstructured meshes
and third order accurate in both time and space. An interesting feature of this scheme
is that, besides being essentially non-dissipative, its dispersion error was minimized by
tuning the free parameters of the general two-steps method.

When a non-dissipative scheme is used, the (unavoidable) numerical perturbations
generated throughout the computational domain are not damped efficiently, especially
when high Reynolds number flows are considered. When the flow domain is unbounded
(as in external aerodynamics for example), one can deal with this issue, at least partly,
by using non-reflecting boundary conditions which let the unphysical perturbations leave
the domain. Regarding wall bounded flows (as in combustors for example), the situation
is more critical since the unphysical perturbations can neither be damped nor evacuated
through boundaries. This is why it is common practice to add a so-called artificial vis-
cosity (AV) term to the discrete equations, to avoid spurious oscillations (also known
as “wiggles”) and in order to smooth very strong gradients. We describe here different
methods which can be used and which proved useful in practical applications.

These AV models are characterized by the ’linear preserving’ property which leaves
unmodified a linear solution on any type of element. The models are based on a combi-
nation of a “shock capturing” term (called 2nd order AV) and a “background dissipation”
term (called 4th order AV). Adding AV in a code is done in two steps:

• first a sensor detects if AV is necessary, as a function of the flow characteristics,

• then a certain amount of 2nd and 4th AV is applied, depending on the sensor value
and on user-defined parameters.

Classical Sensors:

A sensor ζΩj
is a scaled parameter which is defined for every cell Ωj of the domain and

which takes values from zero to one; ζΩj
= 0 means that the solution is well resolved and

that no AV should be applied while ζΩj
= 1 signifies that the solution has strong local

variations and that AV must be applied. This sensor is obtained by comparing different
evaluations (on different stencils) of the gradient of a given scalar (pressure, total energy,
mass fractions, . . . ). If these gradients are identical, then the solution is locally linear
and the sensor is zero. On the contrary, if these two estimations are different, local non-
linearities are present, and the sensor is activated. The key point is to find a suitable
sensor-function that is non-zero only at places where stability problems occur. A widely
used sensor is the one proposed by Jameson et al. (1981).

For every cell Ωj, the Jameson cell-sensor ζJΩj
is the maximum over all cell vertices of

the Jameson vertex-sensor ζJk :

ζJΩj
= max

k∈Ωj

ζJk (99)

Denoting S the scalar quantity the sensor is based on (usually S is the pressure), the
Jameson vertex-sensor is:

ζJk =
|∆k

1 − ∆k
2|

|∆k
1| + |∆k

2| + |Sk|
(100)
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Where the ∆k
1 and ∆k

2 functions are defined as:

∆k
1 = SΩj

− Sk ∆k
2 = (~∇S)k.(~xΩj

− ~xk) (101)

where the k subscript denotes cell-vertex values while Ωj is the subscript for cell-averaged

values. (~∇S)k is the gradient of S at node k. ∆k
1 measures the variation of S inside

the cell Ωj (using only quantities defined on this cell). ∆k
2 is an estimation of the same

variation but on a wider stencil (using all the neighboring cell of the node k).
For example, on a 1D uniform mesh, of mesh size ∆x and for the cell [k∆x; (k + 1)∆x],
the ∆k

1 and ∆k
2 functions are estimated as follows:

∆k
1 =

∆x

2

Sk+1 − Sk
∆x

∆k
2 =

∆x

2

Sk+1 − Sk−1

2∆x
(102)

The numerator of eq. (100) is then

|∆k
1 − ∆k

2| =
∆x2

4
|
Sk+1 − 2Sk + Sk−1

∆x2
| =

∆x2

4
|∆FD

k,∆xS| (103)

∆FD
k,∆x is exactly the classical FD Laplacian operator evaluated at vertex k and of size ∆x.

The Jameson sensor is thus proportional to the second derivative of S, which is zero when
S is linear and which is maximum when the gradient of S varies rapidly. This is what
happens for example on each side of a front or when wiggles occur.

The Jameson sensor is smooth and was initially derived for steady-state computations:
it is roughly proportional to the amplitude of the deviation from linearity. For most
unsteady turbulent computations it is however necessary to have a sharper sensor, which
is very small when the flow is sufficiently resolved, and which is nearly maximum when
a certain level of non-linearities occurs. Useful properties for a sensor ζCΩj

adapted to
unsteady calculations can be summarized as follows:

• ζCΩj
is very small when both ∆k

1 and ∆k
2 are small compared to SΩj

. This corresponds

to low amplitude numerical errors (when ∆k
1 and ∆k

2 have opposite signs) or smooth
gradients that are well resolved by the scheme (when ∆k

1 and ∆k
2 have the same

sign).

• ζCΩj
is small when ∆k

1 and ∆k
2 have the same sign and the same order of magnitude,

even if they are quite large. This corresponds to stiff gradients well resolved by the
scheme.

• ζCΩj
is big when ∆k

1 and ∆k
2 have opposite signs and one of the two term is large

compared to the other. This corresponds to a high-amplitude numerical oscillation.

• ζCΩj
is big when either ∆k

1 or ∆k
2 is of the same order of magnitude as SΩj

. This
corresponds to a non-physical situation that originates from a numerical problem.

The following sensor (proposed by O. Colin during his PhD work at CERFACS) meets
the above mentioned properties:

ζCΩj
=

1

2

(
1 + tanh

(
Ψ − Ψ0

δ

))
−

1

2

(
1 + tanh

(
−Ψ0

δ

))
(104)
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with:

Ψ = max
k∈Ωj

(
0,

∆k

|∆k| + ǫ1Sk
ζJk

)
(105)

∆k = |∆k
1 − ∆k

2| − ǫk max
(
|∆k

1|, |∆
k
2|
)

(106)

ǫk = ǫ2

(
1 − ǫ3

max
(
|∆k

1|, |∆
k
2|
)

|∆k
1| + |∆k

2| + Sk

)
(107)

Possible numerical values are:

Ψ0 = 2.10−2 δ = 1.10−2 ǫ1 = 1.10−2 ǫ2 = 0.95 ǫ3 = 0.5 (108)

Artificial viscosity model:

Artificial viscosity can be used in many different ways in a CFD code. The term
“model” denotes a combination of several parameters:

• the choice of the sensor and the variable which is used for the sensor,

• the way the 2nd order and the 4th order operators are combined,

• and finally on which variables the operators are applied.

A classical implementation uses the ’Jameson’ sensor, equation 99, applied to the static
pressure.

ζJAM = ζJΩj
(P ) (109)

The amount of 2nd order AV that is applied is directly proportional to this sensor and
to the user parameter smu2. The amount of 4th order AV also depends on the sensor.
Actually, the input parameter smu4 is replaced by:

smu4
′ = max(0, smu4 − ζJAM smu2) (110)

This formulation allows to put 4th order AV only where the sensor is small (as well as the
amount of 2nd order AV). On the other hand, if the sensor is large, it is no use to put 4th

order AV, because the 2nd order AV operates fully and overcomes most of the problems.
Both operators are applied on all variables (momentum, energy and species).

This model was originally proposed by Jameson et al. (1981). It is very well suited for
“aerodynamics” configurations, with shocks and without combustion, solved with a RANS
solver. However it appears that for reacting LES, this model is much too dissipative and
must only be used during transient phases. It allows to stabilize a computation when non-
physical processes of high amplitudes happen (at the initialization phase for example).
An AV implementation based on the Colin sensor described above, equation 104 proved
more suitable for unsteady calculations. Moreover, the experience shows that it is often
useful to apply the 4th order AV term only to the mass and energy equations. In doing
so, no artificial damping is added to the momentum equation and a significant part of the
resolved kinetic energy can be affected to the smallest scales, as it is expected in LES.
More details about this implementation can be found in Colin (2000).
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MIXTURE

A Governing equations for a multi-species, reacting

gaseous mixture

Throughout the first part of this document, the index notation is adopted for the de-
scription of the governing equations. Summation rule is henceforth implied over repeated
indices (Einstein’s rule of summation). Note however that index k is reserved to refer to
the kth species and will not follow the summation rule unless specifically mentioned or
implied by the

∑
sign.

The set of conservation equation describing the evolution of a compressible flow with
chemical reactions of thermodynamically active scalars reads,

∂ρ ui
∂t

+
∂

∂xj
(ρ ui uj) = −

∂

∂xj
[P δij − τij], (111)

∂ρ E

∂t
+

∂

∂xj
(ρ E uj) = −

∂

∂xj
[ui (P δij − τij) + qj] + ω̇T +Qr, (112)

∂ρk
∂t

+
∂

∂xj
(ρk uj) = −

∂

∂xj
[Jj,k] + ω̇k. (113)

In Eqs 111-113 respectively corresponding to the conservation laws for momentum, total
energy and species, the following symbols denote respectively ρ, ui, E, ρk, density, the
velocity vector, the total energy per unit mass and ρk = ρYk for k = 1 to N ( N is
the total number of species). The source term in the total energy equation, Eq. 112s,
is decomposed for convenience into a chemical source term and a radiative source term
such that: S = ω̇T +Qr. Corresponding source terms in the species transport equations,
Eq. 113, are noted, ω̇k.

It is usual to decompose the flux tensor into an inviscid and a viscous component.
They are respectively noted for the three conservation equations:

Inviscid terms:




ρ ui uj + P δij
(ρE + P δij) uj

ρk uj


 (114)

where the hydrostatic pressure P is given by the equation of state for a perfect gas (Eq.
122).

Viscous terms:

The components of the viscous flux tensor take the form:




−τij
−(ui τij) + qj

Jj,k


 (115)

Jk is the diffusive flux of species k and is presented in section § A.3 (Eq. 133). The
stress tensor τij is explicited in section § A.4 (Eq. 134). Finally, section § A.5 is devoted
to the heat flux vector qj (Eq. 137).
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MIXTURE A.1 Thermodynamical variables

A.1 Thermodynamical variables

The standard reference state we used is P0 = 1 bar and T0 = 0 K. The sensible mass
enthalpies (hs,k) and entropies (sk) for each species are tabulated for 51 values of the
temperature (Ti with i = 1...51) ranging from 0K to 5000K with a step of 100K. Therefore
these variables can be evaluated by:

hs,k(Ti) =

∫ Ti

T0=0K

Cp,kdT =
hms,k(Ti) − hms,k(T0)

Wk

, and (116)

sk(Ti) =
smk (Ti) − smk (T0)

Wk

, with i = 1, 51 (117)

The superscript m corresponds to molar values. The tabulated values for hs,k(Ti) and
sk(Ti) can be found in the JANAF tables (Stull and Prophet, 1971). With this assumption,
the sensible energy for each species can be reconstructed using the following expression :

es,k(Ti) =

∫ Ti

T0=0K

Cv,kdT = hs,k(Ti) − rkTi i = 1, 51 (118)

Note that the mass heat capacities at constant pressure cp,k and volume cv,k are sup-
posed constant between Ti and Ti+1 = Ti + 100. They are defined as the slope of the
sensible enthalpy (Cp,k =

∂hs,k

∂T
) and sensible energy (Cv,k =

∂es,k

∂T
). The sensible energy

henceforth varies continuously with the temperature and is obtained by using a linear
interpolation:

es,k(T ) = es,k(Ti) + (T − Ti)
es,k(Ti+1) − es,k(Ti)

Ti+1 − Ti
(119)

The sensible energy and enthalpy of the mixture may then be expressed as:

ρes =
N∑

k=1

ρkes,k = ρ

N∑

k=1

Ykes,k (120)

ρhs =
N∑

k=1

ρkhs,k = ρ

N∑

k=1

Ykhs,k (121)

A.2 The equation of state

The equation of state for an ideal gas mixture writes:

P = ρ r T (122)

where r is the gas constant of the mixture dependent on time and space: r = R
W

where
W is the mean molecular weight of the mixture:

1

W
=

N∑

k=1

Yk
Wk

(123)
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A GOVERNING EQUATIONS FOR A MULTI-SPECIES, REACTING GASEOUS

MIXTURE

The gas constant r and the heat capacities of the gas mixture depend on the local gas
composition as:

r =
R

W
=

N∑

k=1

Yk
Wk

R =
N∑

k=1

Yk rk (124)

Cp =
N∑

k=1

Yk Cp,k (125)

Cv =
N∑

k=1

Yk Cv,k (126)

where R = 8.3143 J/mol.K is the universal gas constant. The adiabatic exponent for
the mixture is given by γ = Cp/Cv. Thus, the gas constant, the heat capacities and
the adiabatic exponent are no longer constant. Indeed, they depend on the local gas
composition as expressed by the local mass fractions Yk(x, t):

r = r(x, t), Cp = Cp(x, t), Cv = Cv(x, t), and γ = γ(x, t) (127)

The temperature is deduced from the the sensible energy, using Eqs. 119 and 120.
Finally boundary conditions make use of the speed of sound of the mixture c which is
given by:

c2 = γ r T (128)

A.3 Conservation of Mass: Species diffusion flux

In multi-species flows the total mass conservation implies that:

N∑

k=1

Yk V
k
i = 0 (129)

where V k
i are the components in directions (i=1,2,3) of the diffusion velocity of species

k. They are often expressed as a function of the species gradients using the Hirschfelder
Curtis approximation:

Xk V
k
i = −Dk

∂Xk

∂xi
, (130)

where Xk is the molar fraction of species k : Xk = YkW/Wk. In terms of mass fraction,
the approximation 130 may be expressed as:

Yk V
k
i = −Dk

Wk

W

∂Xk

∂xi
, (131)

Summing Eq. 131 over all k’s shows that the approximation 131 does not necessarily
comply with equation 129 that expresses mass conservation. In order to achieve this, a
correction diffusion velocity ~V c is added to the convection velocity to ensure global mass
conservation (Poinsot and Veynante, 2001) as:
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V c
i =

N∑

k=1

Dk
Wk

W

∂Xk

∂xi
, (132)

and computing the diffusive species flux for each species k as:

Ji,k = −ρ

(
Dk

Wk

W

∂Xk

∂xi
− YkV

c
i

)
, (133)

Here, Dk are the diffusion coefficients for each species k in the mixture (see section
§ A.6). Using Eq. 133 to determine the diffusive species flux implicitly verifies Eq. 129.

A.4 Viscous stress tensor

The stress tensor τij is given by the following relations:

τij = 2µ(Sij −
1

3
δijSll), (134)

and

Sij =
1

2
(
∂uj
∂xi

+
∂ui
∂xj

), (135)

Eq. 134 may also be written:

τxx = 2µ
3

(2∂u
∂x

− ∂v
∂y

− ∂w
∂z

), τxy = µ(∂u
∂y

+ ∂v
∂x

)

τyy = 2µ
3

(2∂v
∂y

− ∂u
∂x

− ∂w
∂z

), τxz = µ(∂u
∂z

+ ∂w
∂x

)

τzz = 2µ
3

(2 ∂z
∂w

− ∂u
∂x

− ∂v
∂y

), τyz = µ(∂v
∂z

+ ∂w
∂y

)

(136)

where µ is the shear viscosity (see section § A.6).

A.5 Heat flux vector

For multi-species flows, an additional heat flux term appears in the diffusive heat flux.
This term is due to heat transport by species diffusion. The total heat flux vector then
writes:

qi = −λ
∂T

∂xi︸ ︷︷ ︸
Heat conduction

−ρ
N∑

k=1

(
Dk

Wk

W

∂Xk

∂xi
− YkV

c
i

)
hs,k

︸ ︷︷ ︸
Heat flux through species diffusion

= −λ
∂T

∂xi
+

N∑

k=1

Ji,khs,k,

(137)
where λ is the heat conduction coefficient of the mixture (see section § A.6).

A.6 Transport coefficients

In CFD codes for multi-species flows the molecular viscosity µ is often assumed to be
independent of the gas composition and close to that of air2 so that the classical Sutherland

2This introduces errors that are less important than those related to the thermodynamic properties.
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law can be used:

µ = c1
T 3/2

T + c2

Tref + c2

T
3/2
ref

(138)

where c1 and c2 must be determined so as to fit the real viscosity of the mixture. For air
at Tref = 273 K, c1 = 1.71e-5 kg/m.s and c2 = 110.4 K (White, 1999). A second law is
sometimes preferred, called Power law:

µ = c1(
T

Tref
)b (139)

with b typically ranging between 0.5 and 1.0. For example b = 0.76 for air.
The heat conduction coefficient of the gas mixture can then be computed by introduc-

ing the molecular Prandtl number of the mixture as:

λ =
µCp
Pr

(140)

with Pr supposed as constant in time and space.
The computation of the species diffusion coefficients Dk is a specific issue. These

coefficients should be expressed as a function of the binary coefficients Dij obtained from
kinetic theory (Hirschfelder et al., 1954). The mixture diffusion coefficient for species k,
Dk, is computed as (Bird et al., 1960):

Dk =
1 − Yk∑N

j 6=kXj/Djk

(141)

The Dij are complex functions of collision integrals and thermodynamic variables. For
a DNS code using complex chemistry, using Eq. 141 makes sense. However in most cases,
DNS uses a simplified chemical scheme and modeling diffusivity in a precise way is not
needed so that this approach is much less attractive. Therefore a simplified approximation
is often used for Dk. The Schmidt numbers Sc,k of the species are supposed to be constant
so that the binary diffusion coefficient for each species is computed as:

Dk =
µ

ρSc,k
(142)

Note that the Schmidt number for each species k is assumed to be constant in time
and space. Pr and Sc,k model the laminar (thermal and molecular) diffusion. Usual values
of Schmidt and Prandtl numbers for premixed flames are those given by PREMIX in the
burnt gas.
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