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ABSTRACT

Thermoacoustic combustion instabilities continue to be a major hurdle in the

development of future gas turbine combustion systems. These instabilities are char-

acterized by large-amplitude pressure oscillations in the combustor. They are un-

desirable as they lead to severe vibrations increasing noise and pollutant emissions,

causing excessive thermal and mechanical stresses on combustor components, and

even threatening structural integrity. Large Eddy Simulation (LES) has proved

to be a powerful tool capable of predicting many unsteady combustor phenomena,

including instabilities. However, due to the high computational costs associated

with LES, it cannot be a standalone design tool to analyze all possible designs

and operating conditions to which instabilities remain extremely sensitive. This is

where analytical, reduced- or low-order models (ROM / LOM) tend to be valuable

and complement LES well, particularly during the predesign stages of combustor

development. While most available LOM tools make some important physical sim-

plifications (e.g., linearization of acoustics, flame response), they also typically use

over-simplified geometries. One primary objective is to address the latter limita-

tion and improve existing LOM techniques to be able to handle complex realistic

geometries.

A major part of the work revolves around developing and validating this new

acoustic network modeling tool based on modal expansions (Galerkin Series) and

state-space methods (viz. STORM: State-Space Reduced Order Model) for predict-

ing and analyzing instabilities. In STORM, a complex system to be analyzed is

decomposed and represented as a network of simpler geometrical elements (subdo-

mains), connection (coupling), flame, and impedance elements. The unique features

of STORM are the recently introduced Overcomplete Frame modal expansion tech-

nique for modeling acoustics in the network subdomains and the so-called surface

spectral connections methodology that was developed. Together they allow seam-

less interconnections between subdomains with 1D/2D/3D acoustics and construct

networks representing complex industry-relevant configurations. The rational ap-

proximation methods are discussed for incorporating realistic flame/acoustic inter-

action models (i.e., Flame transfer functions (FTFs)) in STORM networks. The

importance of a few physical constraints, particularly causality, in algorithms deriv-

ing these low-order, time-domain, state-space, data-driven flame response models

from experimental or high-order simulation data are highlighted. A special type of
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network impedance element, DECBC (Delayed Entropy Coupled Boundary Condi-

tion), is also developed that facilitates predicting mixed entropy-acoustic instabil-

ities. Overall, STORM presents a cost-efficient, modular and flexible tool for pre-

dicting thermoacoustic instabilities and should aid in determining stability regimes

and optimum passive control strategies.

In the second minor part of the thesis, the acoustic forcing of the turbulent

swirling spray flame is simulated by employing the Euler-Lagrange (EL) LES ap-

proach. The objective was to compute the FTF and assess the suitability of the

existing EL-LES two-phase combustion modeling framework for such a system iden-

tification problem. Recent work has demonstrated the potential of EL-LES in accu-

rately predicting self-sustained limit-cycle instability. However, forced simulations

exhibit some difficulties, as discussed. FTF retrieved numerically deviates from ex-

perimental reference values by about 20-30%. Results remain sensitive, in general,

to the modeling parameters, and further investigations are required to improve the

models and prediction fidelity.

Keywords: Thermoacoustics, Low-order modeling, Acoustic network, Flame Trans-

fer Function (FTF), Spray flame, Large Eddy Simulations (LES).



RÉSUMÉ

Les instabilités thermoacoustiques continuent d’être un obstacle majeur dans le

développement des systèmes de combustion des turbines à gaz. Ces instabilités sont

caractérisées par des oscillations de pression de grande amplitude dans la chambre de

combustion. Elles sont indésirables car elles entraînent de fortes vibrations augmen-

tant le bruit et les émissions de polluants, provoquant des contraintes thermiques

et mécaniques excessives sur les composants de la chambre de combustion, voire

menaçant l’intégrité structurelle du système complet. La simulation aux grandes

échelles (LES) s’est avérée être un outil puissant capable de prédire de nombreux

phénomènes de combustion instationnaires, y compris les instabilités. Cependant,

les coûts de calcul élevés associés empêchent cette approche d’être utilisée en phase

de conception pour analyser toutes les conceptions possibles et les conditions de fonc-

tionnement auxquelles les instabilités restent extrêmement sensibles. C’est pourquoi

les modèles de bas ordre (LOM) sont précieux et complètent bien les LES, en partic-

ulier pendant les étapes de préconception de la chambre de combustion. Bien que la

plupart des outils LOM disponibles effectuent des simplifications physiques impor-

tantes (par exemple, linéarisation de l’acoustique, réponse à la flamme), ils utilisent

également généralement des géométries trop simplifiées. L’un des principaux ob-

jectifs de ce travail est de remédier à cette dernière limitation et d’améliorer les

techniques LOM existantes pour pouvoir gérer des géométries réalistes complexes.

Une grande partie du travail s’articule autour du développement et de la val-

idation d’un nouvel outil de modélisation de réseaux acoustiques basé sur des ex-

pansions modales (Galerkin Series) et des méthodes d’espace d’états (viz. STORM)

pour prédire et analyser les instabilités. Dans STORM, un système complexe à

analyser est décomposé et représenté comme un réseau d’éléments géométriques

plus simples (sous-domaines), de connexion (couplage), de flamme et d’éléments

d’impédance. Les caractéristiques uniques de STORM sont la technique d’expansion

modale sur des Frame récemment introduite pour modéliser l’acoustique dans les

sous-domaines du réseau et la méthodologie dite des connexions spectrales de surface

qui a été développée récemment au CERFACS. Ensemble, ils permettent des inter-

connexions transparentes entre les sous-domaines avec une acoustique 1D/2D/3D

et construisent des réseaux représentant des configurations complexes pertinentes

pour l’industrie. Les méthodes d’approximation rationnelle sont discutées pour

incorporer des modèles réalistes d’interaction flamme/acoustique (c’est-à-dire, les

fonctions de transfert de flamme (FTF) dans les réseaux STORM. L’importance de

quelques contraintes physiques, en particulier la causalité, dans les algorithmes déri-

vant ces modèles de réponse de flamme d’ordre inférieur, dans le domaine temporel,
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dans l’espace d’états et basés sur les données à partir de données de simulation

expérimentales ou d’ordre élevé, est mise en évidence. Un type spécial d’élément

d’impédance de réseau, DECBC (Delayed Entropy Coupled Boundary Condition),

est également développé pour faciliter la prédiction des instabilités mixtes entropie-

acoustique. Dans l’ensemble, STORM présente un outil efficace, modulaire et flexi-

ble pour prédire les instabilités thermoacoustiques et devrait aider à déterminer les

régimes de stabilité et les stratégies de contrôle passif optimales.

Dans la deuxième partie mineure de la thèse, le forçage acoustique de la flamme

de pulvérisation tourbillonnante turbulente est simulé en utilisant l’approche Euler-

Lagrange (EL) LES. L’objectif était de calculer le FTF et d’évaluer la pertinence

du cadre de modélisation de la combustion diphasique EL-LES existant pour un tel

problème d’identification de système. Des travaux récents ont démontré le potentiel

de EL-LES pour prédire avec précision l’instabilité auto-entretenue. Cependant, les

simulations forcées présentent certaines difficultés et la FTF obtenue numériquement

s’écarte des valeurs de référence expérimentales d’environ 20 à 30%. Les résultats

restent sensibles, en général, aux paramètres de modélisation, si bien que d’autres in-

vestigations seront nécessaires pour améliorer les modèles et la fidélité des prévisions.

Mots clés: Thermoacoustique, Modélisation de bas ordre, Réseau acoustique,

Fonction de transfert de flamme (FTF), Flamme de spray, Simulations aux grandes

échelles (LES).
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1.1 Climate Change Crisis versus Energy Challenge

The United Nations Inter-Governmental Panel on Climate Change (IPCC) Assess-

ment Report 5 (AR5)1 published in 2014, brought stark warnings about inevitable

and irreversible climate change impact and paved the way to the historic 2015 United

Nations Climate Change Conference in Paris. It has been a vital milestone where

196 countries reached an agreement and pledged to take concrete actions towards

the cause of climate change for saving this planet. The agreement sets an ambitious

goal of limiting the rise in global temperature to 2 °C by the year 2100, in reference

to the pre-industrial times, with the current level already at 1.2 °C. Without any

new policies for mitigating climate change, projections suggest an increase in global

mean temperature by 4.0 - 4.8 °C, and current trends are far from consistent with

restricting it to 2 °C. What also matters is not just the mean global temperature

rise but its distribution on the earth’s surface. Figure 1.1(a) shows the projected

temperature distributions for two scenarios and clearly highlights the polar regions

1https://www.ipcc.ch/report/ar5/syr/

https://www.ipcc.ch/report/ar5/syr/
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Figure 1.1: (a) Average IPCC AR5 climate model projections for

2081–2100 relative to 1986–2005, under low and high emission scenarios

showing the temperature rise distribution. (b) Carbon budget available

(only 35%) for the goal of global temperature rise of 2 °C to be achievable

by the year 2100.

being the most vulnerable. The melting polar glaciers adversely affect ocean tem-

peratures and currents, disrupting weather patterns and cycles. Besides leading to

extreme weather events, already being observed worldwide, global warming poses a

severe threat to precipitation, freshwater, and food supply for all living beings in

the future.

The IPCC AR5 and World Energy Outlook (WEO) 2021 reports2 state that

currently, about 70% of the total Greenhouse-Gases (GHG) emissions are on account

of Energy (35%), Industry (21%) and Transport (14%) sectors, and for the goal of

2 °C to be probable, massive and immediate cuts in GHG emissions are imperative.

The urgency for reducing the human carbon footprint is evident from the narrow

window for action that is left for the target of 2 °C to be achievable as shown in

Fig. 1.1(b).

Key mitigation strategies can be broadly summarized as efficient use of exist-

ing energy sources, rapid increase in the proportion of low-carbon, no-carbon fuels,

non-conventional and renewable energy sources, maintaining and enhancing the most

potent carbon sinks, i.e., the forest cover, and conscious lifestyle, behavioral changes

by humans. Transitioning to sustainable energy sources and necessary infrastruc-

ture transformation across sectors presents immense economic, technological, and

political challenges, with the following few decades being pivotal. This matter is

being constantly reviewed, monitored, and tailored by world governments and poli-

cymakers.

2https://www.iea.org/reports/world-energy-outlook-2021

https://www.iea.org/reports/world-energy-outlook-2021
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Figure 1.2: Global CO2 emissions projection as per the International

Energy Agency, World Energy Outlook report 2021.

Figure 1.3: World primary energy consumption by source and the energy

mix according to U.S. Energy Information Administration (EIA) 2021

outlook.

While climate change is a hard reality, on the other hand, socio-economic devel-

opment and rising population indicate ever-growing energy demand — expected to

double by 2050 as per U.S. Energy Information Administration’s (EIA) 2021 out-

look,3 and also as shown in Fig. 1.3. The strong push towards the use of renewables

in recent times, and other decarbonization actions, e.g., electrification in transport

(evident from the increasing market share of electric vehicles, train locomotives), in-

tense R&D, implementation, and scaling-up of biofuels, and of late green hydrogen

combustion technology, is expected to help bend the CO2 emissions forecast curve

to some extent as shown in Fig. 1.2. However, a significant gap in the emissions

rate remains for meeting the global warming target. Primary difficulties in ma-

3https://www.eia.gov/outlooks/ieo/

https://www.eia.gov/outlooks/ieo/


4 Chapter 1. General Introduction

terializing the technological shift are also attributed to energy density, production

intermittency, storage, transport, and safety issues. The energy challenge in front

of humankind is further corroborated by the future (2050) energy mix forecast in

Fig. 1.3: despite rapid growth in the proportion of renewables, more than 65% of

the humungous energy demand, inevitably, will have to be fulfilled by conventional

fuels.

1.2 Thermoacoustic Combustion Instabilities in Gas Tur-

bines

Gas turbines will continue to play a vital role in the electric power generation and

air transport sectors for decades to come. Global electricity requirements, expected

to be primarily harnessed from natural gas (see Fig. 1.3), and predictions4 of an

annual growth rate of 3.9% and 2.7% in air traffic and air-cargo until the year 2040,

respectively, are encouraging prospects.

Figure 1.4: Structural damage of turbine first stage stator, and liner

transition piece for a stationary gas turbine engine due to thermoacoustic

combustion instabilities. Reproduced from [1].

In line with the responsibility towards climate change, some of the crucial fac-

tors driving research and development in the gas turbine industry are compliance

with emission regulations, enhancing the range of efficient variable load operation,

flexibility in terms of fuel and operating conditions. Technology migration to lean-

premixed combustion [2, 3, 4] indeed proved promising in developing modern low-

emission engines but have aggravated other problems such as self-excited combustion

instabilities and associated hazards of ignition, flashback, and flame blowout when

4AIRBUS Global Market Outlook 2021: https://www.airbus.com/en/products-services/

commercial-aircraft/market/global-market-forecast

https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast
https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast
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Figure 1.5: An overview of mechanisms that can potentially lead to com-

bustion instabilities in gas turbine engines. Reproduced from [6].

operating very close to the lean limits. Thermoacoustic combustion instabilities are

typically characterized by large-amplitude pressure oscillations in the combustor.

They are also undesirable as they lead to 1) severe vibrations that interfere with

the control-system operation of the engine, 2) enhanced heat transfer and thermal

stresses to combustor walls, 3) increased emissions of noise and pollutants such as

oxides of nitrogen, soot, and carbon mono-oxides, 4) oscillatory mechanical loads

that result in low- or high-cycle fatigue of the components affecting their lifespan

or even causing shut-downs and structural damages — for instance, see Fig. 1.4.

Self-excited combustion instabilities have posed to be a substantial challenge for

many decades, and the amount of research effort gone into understanding this phe-

nomenon and finding ways to predict and control them can be recognized from these

excellent reviews [5, 6, 1, 7, 8, 9, 10, 11, 12].

1.2.1 Combustion Instability Mechanisms

While several mechanisms can potentially contribute towards instabilities simul-

taneously through quite complex interactions (Fig. 1.5), the acoustic-flow-flame

coupling due to a closed-loop feedback cycle established between oscillatory com-

bustion (flame heat release) and upstream oscillating flow is found to be the most

dominant one. In the confined spaces of the combustion chamber, flames interact

with acoustic waves and can amplify one or more natural acoustic eigenmodes of

the system when the following Rayleigh criterion is fulfilled [13]:

∫
p′(x, t) q′(x, t) dV > 0 (1.1)
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The Rayleigh criterion states that when unsteady heat release fluctuations q′(x, t)

and acoustic pressure fluctuation p′(x, t) are in phase, the flame acts like a source

feeding the acoustic energy leading to high-amplitude pressure oscillations in the

confined volume V of the combustor. See [14, 15] for further discussion about

the suitability of the Rayleigh criterion as a necessary and sufficient condition of

instability.

Referring to Fig. 1.5, the mechanisms driving instability typically lead to flame

dynamics i.e., dynamic response of flame shape, position and most importantly heat

release, which acts as a source of acoustic waves, sitting right in the center of the

above diagram. Acoustic waves propagate and interact with the upstream injection

system, combustion chamber walls, outlet, and the flame again. Just like there are

instability driving mechanisms, there also exist damping processes that attenuate

the growth and limit the amplitude of instability. Some of these key physical driv-

ing and damping mechanisms are touched upon next (see the cited publications and

references therein for examples and in-depth explanations):

Instability Driving Processes

1. Thermoacoustic Mechanism: Arising due to pure flame-acoustics interaction

described above [13, 7], this is the fundamental mechanism that is aimed to

be modeled in the low-order tool developed in this thesis.

2. Equivalence Ratio Fluctuations: The acoustic perturbations modulate the air

and fuel supply from the burner, creating inhomogeneities in the fuel-air mix-

ing that are convected to the flame, affecting its flame speed/temperature and

thus the heat release [16, 17, 18].

3. Flame Wrinkling: Incident acoustic/flow fluctuations modify the flame shape,

its surface area, and heat release in corresponding manner, against its tendency

of restoring back to its steady state conditions [19, 20, 21, 22, 23, 24].

Figure 1.6: Block diagram representation of mechanisms generating heat-

release rate fluctuations in swirl stabilized flames. Reproduced from [25].
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4. Inertial/Swirl waves: As shown in Fig. 1.6, in the case of swirling flames,

acoustic waves incident on a swirler generate a vorticity wave (a.k.a inertial

wave/swirl wave) that constitute azimuthal velocity perturbations that are

convected by the flow in addition to axial acoustic waves. Both waves col-

lectively induce swirl number fluctuations resulting in flame angle oscillations

[26, 27, 25, 28].

5. Flame-vortex interactions and Hydrodynamic Instabilities: Combustion cham-

ber flows exhibit strong velocity and density gradients, particularly in the

shear layers between burner jets and recirculating zones, which are prone to

hydrodynamic instabilities forming vortices that interact with the flame front,

wrapping and wrinkling them. Besides, vortices are also shed at the edge of

sudden expansion between burner and combustor due to flow/acoustic pertur-

bations (see Fig. 1.6). These vortices often trap fresh gases that are convected

to the downstream part of the flame where these pockets burn, modulating

heat release [29, 30, 31, 32, 33, 34, 35, 36, 37].

Another global flow instability encountered in strongly swirling flames is the

presence of this coherent helical structure, called the Precessing-Vortex-Core

(PVC). The PVC global mode keeps whirling the vortex core of the swirling

flow itself around the central axis (precession). This synchronized oscillation

affects overall flame stabilization; and was understood to excite combustion

instability as reported in early literature. However, this is not true in general,

as reasoned in recent publications, and the converse could be manifested as

well. The excitation or suppression of PVC is an outcome of complex nonlin-

ear interaction between flow, flame topology, and acoustic modes - see, e.g.,

[38, 39, 40, 41, 42, 43].

6. Entropy-Acoustic Mechanism: Turbulent swirling flames and flow in combus-

tors produce pockets of hot gases (hot-spots), and large-scale eddies, which are

convected by the bulk flow from the reaction zone to the combustor outlet —

a.k.a entropy waves. One possible origin of these is the strong cold gas dilution

jets in the transverse direction near the reaction zone. When these entropy

inhomogeneities accelerate through the downstream nozzle and turbine stages,

they generate acoustic waves that propagate upstream and may form a feed-

back loop, perturbing the flame/flow, promoting formation of entropy waves

over again. This mechanism can lead to the so-called low-frequency mixed

entropy-acoustic instabilities [44, 45, 46]. Part of the generated acoustic waves

that propagate downstream constitute the so-called indirect combustion noise

[10, 47].

7. Flame-wall interaction: The overall cooling of the gases due to heat transfer

Abhijeet Badhe
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across the chamber walls (non-adiabaticity) affect the sound-speed, acous-

tic modes of the configuration, and even flame stabilization topology (V or

M shape flame) [48, 49, 50]. Periodic impinging of large parts of the flame

front and its quenching on cooled chamber walls can cause global heat-release

fluctuations [51, 52]. Besides that, heat transfer characteristics at the flame-

holder and its wall-temperature influence flame-root dynamics in the anchoring

region, causing significant overall flame movement, heat-release fluctuations,

thus generating acoustic waves [53, 54, 55, 56, 57].

8. Liquid-Fuel Spray Dynamics: In aero jet engines, liquid fuel is injected by

pressure or air-blast atomizers into the combustion chamber [2, 58, 59]. Fuel

spray undergoes a series of physical processes before burning, such as filming

on injector walls, atomization, evaporation, and mixing that typically results

in a complex flame structure, possibly containing premixed, diffusion, droplet-

group flame regimes all at the same time. Indeed, these processes are sensitive

to and couple with acoustic/flow oscillations, modulating fuel fed to the flame

and thus impacting the combustor instability [60, 61, 62, 63, 64, 65, 66, 67].

9. Intrinsic thermoacoustic modes: Recently discovered, in this mechanism, a

local feedback loop between the flame and acoustics/flow is established within

the reaction zone of the combustor. This special type of instability arises in-

dependently even when the boundaries of combustor geometry are highly dis-

sipative (nearly non-reflecting) so that all outgoing acoustic waves leave the

domain and do not reflect and couple with the flame [68, 69, 70, 71, 72, 73, 74].

Instability Damping/Dissipating Processes:

Acoustic waves, in general, undergo several physical damping/dissipation pro-

cesses irrespective of whether some acoustic modes of the system are amplified by

the flame (unstable) or not (stable). The magnitude of these damping processes

typically have a nonlinear dependency on the frequency and amplitude of acous-

tic perturbations in the combustor, and usually higher frequency modes are rather

quickly damped [1, 7]. The damping processes play an essential role in determining

the conditions under which the system would become unstable, and they collectively

control the oscillation amplitude in case of instability. Some of the key dissipation

mechanisms that remove acoustic energy from acoustic waves are:

1. Viscous and Heat-Transfer Damping Mechanisms : Acoustics induced flow per-

turbations near walls in boundary layers dissipate acoustic energy due to vis-

cous effects transforming it into vortical velocity fluctuations. In addition,

acoustic energy is converted into entropy fluctuation due to heat transfer in

the temperature boundary layer. Flow separation from sharp edges such as
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sudden expansion at combustor dump plane, dilution holes, effusion cooling

holes on chamber walls, transfer acoustic energy into vortices which are dissi-

pated by standard fluid dynamic processes [1].

2. Transfer of energy from natural acoustic modes to other frequencies : In the

case of a thermoacoustically unstable combustor, the oscillations, in general,

are composed of one or more nearly pure tones at specific frequencies which

are close to the natural frequencies (eigenmodes) of the system. Nonlinear pro-

cesses exist that transfer energy from these amplified/unstable modes to other

narrowband, coherent oscillatory modes (higher harmonics or sub-harmonics)

that may or may not be amplified. The energy is also transferred to inco-

herent, broadband fluctuations. Since energy at higher frequencies is usually

more rapidly dissipated, these nonlinear processes constitute as dissipation

mechanisms. See [75, 76] for recent relevant work on prediction and analysis

of unstable oscillations comprising of the fundamental mode and its higher

harmonics.

3. Convection and or Radiation of Acoustic Energy : Some of the acoustic energy

can be lost from the system, through the exhaust, by convective transport with

the mean flow, and also by propagation and radiation to the environment.

4. Supplementary Damping devices: Combustors by design commonly provide

very weak damping, and due to enormous rapid heat release (high energy-

density conditions), instability driving mechanisms often tend to dominate,

making the combustor considerably susceptible to instabilities over a wide

range of operating conditions. Therefore, as a countermeasure, external pas-

sive control devices are incorporated to artificially enhance acoustic damp-

ing and suppress instabilities such as baffles [77, 78], Helmholtz resonators

[79, 80, 81], perforated plates [82, 83, 84, 85] etc.

The balance between gain due to driving mechanisms and losses due to damping

processes dictates the intensity/amplitude of pressure oscillation inside the combus-

tor. Its commonly observed that when a particular unstable mode is suppressed

by suitable action, another mode potentially becomes unstable [11]. Reliable tools

are required for the prediction of conditions leading to instabilities and determining

passive control methods [1] to deal with it. Passive control methods imply creat-

ing inherently stable designs. Some standard techniques used by OEMs include a

combination of the following [6]: (1) Modifying of the injection system, distributing

or staging fuel/air to change the flame structure and characteristic time-delay be-

tween the fuel injection and its consumption, and altering the resonance conditions

by minor design changes, (2) deployment of acoustic liners, Helmholtz resonators

to augment the energy losses and reduce the level of organized perturbation in the
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system, (3) integration of baffles to protect the combustion zone from the oscillating

flow, and to eliminate the highly destructive transverse (screech) modes that are of-

ten encountered in jet engine afterburners, (4) Symmetry breaking [86, 87, 9, 88, 89],

especially in the case of annular combustion chambers.

Working out optimal passive control strategies, in practice, to curb instability

drivers and or increase the damping until amplitude drops under acceptable levels of

mean combustor pressure is certainly not a straightforward task. At the heart of the

problem lies the nature of thermoacoustic instabilities, their extra-sensitive behavior

to design and operating conditions, and uncertainties in modeling the phenomenon

[11, 90].

1.2.2 About Linear and Nonlinear Instability

Figure 1.7: Growth of an instability into a limit cycle. Taken from [13].

This sub-section will briefly review the concepts of Linear Stability, Non-Linear

Stability, Super-critical and Sub-critical bifurcations. The physical processes that

initiate combustion instabilities are in general amplitude-dependent and can exist in

two separate regimes - linear and non-linear [1, 91, 90]. A hypothetical dependency

of instability driving H(A) and damping D(A) functions is shown in Fig. 1.8, where

A is the amplitude of oscillation. The linear regime is characterized by infinitely

small-amplitude disturbances in comparison to the mean quantities; and as seen in

Fig. 1.8 near the origin, the H(A) and D(A) functions can be approximated to be

linearly varying with the amplitude, though at different rates. The A = 0 point is

linearly unstable since the system is overly sensitive to infinitesimal perturbation. In

this case, since the rate of driving is higher than damping, the perturbation grows

until it reaches an equilibrium point, i.e., the limit-cycle amplitude ALC . Fig. 1.7

shows a typical time trace of pressure oscillation in a combustor growing into a

limit-cycle. Linear stability analysis is thus often performed to determine whether

or not a system is inherently stable.
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Figure 1.8: Left: Hypothetical dependency of instability driving H(A)

and damping D(A) functions respectively. Right: Example of Super-

Critical Bifurcation. Adapted from [1]

As the amplitude of perturbation increases and becomes finite-valued, driving

and damping processes become non-linearly dependent on the amplitude, and as

a result, perturbation does not grow infinitely and saturates at some value — the

limit-cycle. At limit-cycle, although the system is oscillating at possibly large and

finite amplitude, it is an equilibrium point or fixed point or a stable state from a

system dynamics point of view. Any small-amplitude disturbance around this point

will bring the system back to that same point.

Super-critical bifurcation [7, 91, 90] occurs at an operating point separating

linearly stable and unstable regimes. It is a point across which a linearly stable

system becomes linearly unstable, and the system abruptly begins to oscillate with

amplitude growing to reach a (limit cycle) equilibrium state. The right side plot

in Fig. 1.8 highlights super-critical bifurcation when varying a certain operating

parameter of the system, making the driving rate greater than damping.

Figure 1.9: Hypothetical dependency of instability driving H(A) and

damping D(A) functions respectively. Highlights nonlinear instability or

sub-critical bifurcation responsible for triggering of instability. Adapted

from [1]
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Unlike linear instability, a non-linearly unstable system is as such at an equi-

librium state for small-amplitude fluctuations, but it becomes unstable when the

amplitude of fluctuation becomes greater than some threshold value AT as shown

in Fig. 1.9. This form of instability is often referred to as sub-critical bifurcation

and describe the triggering [7, 92, 91] phenomenon of combustion instability when

a seemingly stable system is subjected to considerable magnitude disturbances.

1.3 Annular Combustors and Azimuthal Modes

Figure 1.10: (a) A helicopter engine’s annular combustor 3D LES com-

putation. Temperature field on a cylindrical plane passing through the

injectors with velocity magnitude isocontours. Reproduced from [93].

(b) Lab-scale annular MICCA-Spray rig with 16 swirled spray injectors,

operated at EM2C laboratory. Picture taken from [94].

Many engine architectures, especially those of helicopter and aero jet engines,

have annular combustion chambers with multiple (16-24) burners (See Fig. 1.10).

Unlike longitudinal combustors, analyzing combustion instabilities here is consider-

ably complex. Acoustic waves can travel azimuthally, interacting with these multiple

flames. Structure of acoustic eigenmodes [13], assuming only 1D azimuthal propaga-

tion, in general, is given by the superposition of two waves - one traveling clockwise

(CW) say with amplitude A+ and other in anti-clockwise (ACW) direction with

amplitude A−. Depending on the values taken by A+ and A−, different types of

azimuthal modes are possible, as shown in Fig. 1.11. When either of A+ or A−

is zero, we get a purely CW (clockwise) or ACW (anti-clockwise) Spinning mode

whose structure is characterized by constant modulus and linearly varying phase.

When A+ = A− we get Standing modes whose pressure modulus depict nodes and

anti-nodes and constant phase (0 or π) just as in 1D ducts. When A+ and A− each

have non-zero values, Mixed modes are obtained as shown in Fig. 1.11 for A+ = 0.5
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Figure 1.11: Structures of azimuthal acoustic eigenmodes: Spinning

(top), standing (middle) and mixed(bottom) shown through the modulus

and phase plots of complex acoustic pressure with respect to azimuthal

coordinate θ. Reproduced from [13].

and A+ = 1. It should be noted that the circumference of annular chambers is

usually greater or comparable to its length. Therefore, combustion instabilities are

often manifested as some possible combination of azimuthal and longitudinal acous-

tic modes becoming unstable and resulting in high-amplitude oscillations [9, 95].

Worth and Dawson [96, 97, 98] investigated the effect of burner spacing and swirl

orientation of burners on self-excited azimuthal instabilities — all burners swirling

in ACW direction (same-swirl configuration) or with alternate CW and ACW swirl

(alternate-swirl configuration). They found the azimuthal instability in general to

be degenerate (i.e., modes having the same frequencies but different structures). The

unstable limit-cycle modes were observed to be varying in amplitude and randomly

switching between standing and spinning modes with time (a.k.a. modal dynamics).

However, statistical analysis of the measured pressure probe signals and global heat

release fluctuations suggested a strong correlation between mode nature and burner

spacing for same-swirl configuration. The standing mode was statistically preferred

to appear for the alternate-swirl configuration irrespective of burner spacing. The

statistical probability of a particular nature of the azimuthal mode was attributed to

a couple of things: first, the extent of flame-flame interaction (flame merging), which

can cause significant re-distribution of global heat-release and formation of large-

scale coherent structures along the annulus, and second the bulk circumferential

fluid motion induced in the chamber by swirl burners.
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Similar modal dynamics were observed and reported in a series of articles by

Bourgouin et al. [99, 100, 101] again on swirling gaseous flames, and particularly

on the existence of a mixed azimuthal-longitudinal unstable mode (a.k.a. slanted

mode). Characterization of azimuthal modes and investigation into the prevalence

of a particular type (standing/spinning) was conducted for non-swirling bluff-body

stabilized flames by Mazur et al. [102], and for spray flames by Prieur et al. [103].

Prieur et al. in [104] also looked into the sensitivity of azimuthal instabilities to

two important parameters - the burner fuel equivalence ratio and bulk velocity, and

stability maps were generated distinct regions having a strong bias towards spinning

or standing unstable modes. Interestingly, there is also an overlap region where both

have an equal likelihood; however, a hysteresis phenomenon was observed where the

final nature depends on the ’history,’ i.e., in other words, the path through which

the unstable operating point in the overlap region was reached.

More recently: the impact of mean azimuthal bulk flow in the chamber, mainly

how it suppresses one unstable mode and destabilizes another mode [105]; the in-

fluence of gaseous fuel and liquid fuels of different volatility on the stability map

[94]; variations in azimuthal and or radial symmetry via fuel staging and resulting

modal dynamics [106] was examined. The impact of pressurized (2-3 atm) condi-

tions, significant-amplitude presence of higher harmonics in limit-cycles, dynamics

between azimuthal-longitudinal unstable modes was investigated as well [107].

Experiments are indeed essential in understanding azimuthal instabilities in gen-

eral, and the studies cited above highlight the intriguing physics and some of the

inherent complexities associated with the phenomenon. However, based on the

physical insights acquired, it is also vital to develop reliable numerical modeling

tools to aid industry design and development activities. The following section will

provide an overview of various modeling approaches for predicting and analyzing

thermoacoustic instabilities.

1.4 Reduced-Order Modeling of Thermoacoustic Com-

bustion Instabilities

Complementing experiments quite well has been the considerable progress made

in high-fidelity compressible reacting flow Large Eddy Simulations (LES)[108, 13].

By resolving most of the underlying physics by employing sophisticated physical

models and advanced numerical methods, it has proved to be a powerful tool in

predicting instabilities[93, 109, 51, 110, 57]. However, it is implausible for the high-

order LES method to be a standalone design tool due to prohibitive computational

costs. Therefore, simplified analytical or theoretical reduced-order (ROM) or low-

order (LOM) modeling tools (commonly referred to as acoustic tools) are typically
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employed in practice [111]. It is owing to the sensitivity of combustion instabilities

to configuration geometry and operating conditions [11, 90], methods allowing fast,

flexible stability analysis are necessary during pre-design evaluation stages. This is

especially true in assessing and determining optimal passive control strategies that

require generating stability maps and understanding the system behavior over wide

parameter space.

The fundamental principle behind reduced- or low-order models (ROM/LOM)

is to reduce the computational complexity of mathematical models in numerical

simulations of the physical phenomenon. In other words, it means reducing the

degrees-of-freedom (DoF) of the original model obtained from first principles and

deriving an approximate yet physically-consistent model. This could be achieved

either by making simplifying assumptions in physics (physics-based order reduction)

or by exploiting data from experiments/high-order simulations (data-driven model

order reduction). All ROMs/LOMs have the following general requirements:

• As small approximation error as possible compared to the full-order model.

• Conservation of the properties and characteristics of the full-order model (e.g.,

stability, causality)

• Computationally efficient, flexible, and robust.

Combustion instabilities physically are fully described from first-principles by

equations governing compressible reacting flow, i.e., the nonlinear Navier-Stokes

(NS) equations for reacting flow. A ubiquitous physics-based model-order reduc-

tion approach is the linearizing of classical flow equations (Navier Stokes or Euler)

and solving only for the acoustic perturbations around frozen (zero Mach number)

or some mean flow conditions [13, 1, 7, 112]. Flame-dynamics, i.e., the effect of

the flame on acoustics and vice-versa is modeled through the classical notions of

Flame Transfer Function (FTF) or Flame Describing Function (FDF) [113, 25, 12].

FTFs/FDFs define the unsteady flame response (heat release) to acoustic perturba-

tions at some reference location upstream of the flame and are further elaborated

in the following Sec. 1.4.2.

Fig. 1.12 provides a broad classification of modeling approaches and tools for

analyzing thermoacoustic instabilities, with their order (i.e., the cost and complex-

ities) increasing from left to right. Upcoming subsections briefly discuss, first the

low-order modeling of acoustics (Sec. 1.4.1), then followed by the low-order repre-

sentation of flame dynamics (Sec. 1.4.2).

1.4.1 Reduced- or Low- Order Modeling of Acoustics

In full-order methods such as LES, there is no separation of acoustics and flame

dynamics as such. Both large and smaller spatiotemporal scales are resolved on a
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Figure 1.12: An overview of the different classes of tools available

for modeling and prediction of combustion instabilities based on their

model-order. Development of the thermoacoustic network modeling tool

STORM is the Part-1 of this thesis.

finely discretized geometry (mesh): Acoustics, multi-species transport, convective

vorticity/entropy waves, hydrodynamic effects (PVC, vortex shedding), heat-fluxes,

etc., i.e., most of the physics that plays a role in combustion instabilities is resolved.

While the remaining very small (subgrid) scale effects of turbulence, turbulence-

chemistry interaction, combustion (species consumption/production) phenomena

are suitably modeled [13, 114, 115, 108].

Referring to Fig. 1.12, the acoustic tools obtained after linearizing the basic

reacting flow governing equations (NS or Euler) can be further classified into several

sub-categories, which are reviewed next.

1.4.1.1 Direct 3D FE/FV Discretization Methods: LNSE / LEE / Wave

/ Helmholtz Equations

One broad family of methods is in which the fundamental flow-equations — Navier-

Stokes (NS) or Euler (EE) equations — are linearized (LNSE/LEE) or possibly

further reduced to Wave or Helmholtz equations. They can be directly discretized

using Finite-Element (FE) or Finite-Volume (FV) methods and solved for any arbi-

trarily complex geometry. However, unlike LES or RANS, the mesh resolution can
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be much coarser since the equations only resolve for the larger-scale acoustic and

convected entropy/vorticity waves; and the complex flame dynamics is introduced

through low-order FTF/FDF representations.

Linearized Navier-Stokes (LNSE) and Euler (LEE) Equations:

The most general form of Navier-Stokes equations can be reduced to reach the

LNSE/LEE equations by making several simplifying physical assumptions to model

acoustic propagation. See [13, 7, 112] for details of mathematical development of

these equations. In the following, the key assumptions are listed, their purpose and

implications are discussed, and only the final form of equations is presented.

• H1: Multi-species transport, their different molar weights, thermo-fluid-dynamic

properties such as heat capacity, conductivity, diffusivity, and chemical reac-

tions are not considered.

• H2: Viscous diffusion of heat and momentum are neglected.

• H3: Fluid is considered as an ideal gas.

It is owing to H1 assumption, air is typically considered as the working fluid

medium along with its physical properties. The large temperature variations in the

combustor are crucial for sound speed and are usually accounted for in the mean

conditions around which the equations are linearized. H2 is the most important

assumption in obtaining Euler equations from NS and eventually LEE after lin-

earization. It discards any form of viscous acoustic damping due to hydrodynamic

interactions. H3 is usually valid for gas turbines, but for combustion instability

studies in rocket engines with cryogenic flames, extreme pressure, temperature con-

ditions makes real-gas thermodynamics critical - see for e.g., [116, 117].

The next important step is linearization. Any flow variable is decomposed as

f(~x, t) = f0(~x)+f
′(~x, t), where f0 is the mean-field, and f ′ is the coherent oscillating

part. Note that here the acoustic-turbulence interactions are not considered. In that

case, it would be necessary to introduce a triple decomposition f = f0+f
′+f ′′, with

f ′′ representing the non-coherent (random) turbulent fluctuations. The coherent

acoustic oscillations around mean steady-state is assumed to be linear, meaning:

• H4 (Linear Acoustics): For any flow variable f , the oscillating part f ′ is

assumed to be very small in comparison to the mean value f0, i.e., f ′/f0 =

ε << 1

After introducing the f(~x, t) = f0(~x) + f ′(~x, t) decomposition, only the terms of

order ε (first-order) are retained to get the set of LEE equations. For the sake of

brevity, the LEE are not shown here, but can be found in Chapter 5, Sec. 5.2 of this
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manuscript. (Similarly, in case assumption H2 is not applied, LNSE are obtained,

which will include corresponding linearized viscous terms as well.)

LNSE/LEE solve for pressure, velocity, density, and entropy fluctuations as-

suming mean reference quantities are known. Mean quantities are usually ob-

tained a prioriiori from high-order CFD such as RANS or time-averaged fields from

LES or approximated as presumed uniform fields. In the set of coupled mass,

momentum, and energy conservation equations in LNSE/LEE, the energy equa-

tion contains the heat release source term that needs closure. It is modeled and

achieved through FTFs/FDFs described in the following Sec. 1.4.2. LNSE and

LEE have significant applications in areas of aero-acoustics and combustion noise

studies [118, 10, 47, 119, 120], since they by construction provide a well-suited

reduced-order framework to model the propagation of not only acoustic but also

vorticity/entropy perturbations through combustor and turbine stages. Although

limited, LNSE/LEE have also been applied to thermoacoustic problems. E.g., to

study the effect of zero/non-zero mean flow on the thermoacoustic eigenmodes sta-

bility, [112], for analyzing the so-called non-normal effects in the presence of non-

zero mean flow [121], prediction of mixed entropy-acoustic instabilities [45]. More

recently, the research group of Sattelmayer and Schuermans at TU Munich have

published a series of articles on the development and use of FEM LNSE/LEE tools

for modeling and prediction of high-frequency transverse (screech) modes [122, 123].

They also proposed methods for modeling physical acoustic damping and getting

away (or undoing) the adverse impact of artificial numerical dissipation in LEE

[124, 125] — LEE particularly are highly susceptible to numerical instability issues

due to lack of physical viscous acoustic dissipation, and therefore introducing artifi-

cial damping in numerical schemes generally becomes necessary. Another challenge

is that LNSE/LEE are still a set of five coupled transport equations, and numerical

discretization of all the correlation terms between mean and fluctuating quantities

increases the complexities, and solving them can soon become computationally ex-

pensive for large industrial configurations. Therefore, often equations are further

simplified by invoking the zero-Mach number assumption.

• H5 (zero-Mach number): Mean flow is assumed to be at rest (M = 0).

H5 is a strong assumption and remains valid for thermoacoustic stability predic-

tions of systems only in very-low-Mach-number limit. Nicoud and Wieczorek [112]

demonstrated on simple academic 1D configuration analytically that zero-Mach as-

sumption can lead to significant errors in the prediction of thermoacoustic oscillation

frequencies, their growth rates (i.e., stability), especially when the mean flow is not

isentropic, a condition which is always met in combustion applications. Besides, the

net effect of the non-zero Mach number terms on the stability of thermoacoustic

modes also strongly depends on both the boundary conditions and the flame re-
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sponse5 - see [112, 45, 46]. Also, H5 will eliminate all convective terms ~u0 · ~∇(·)

and yield a set of coupled equations governing the fluctuating pressure, velocity, and

entropy around the stagnant mean flow - the zero-Mach linearized Euler Equations6.

Linearized Reactive Flow (LRF) Equations

Avdonin et al. [126] present an interesting approach, called Linearized Reac-

tive Flow (LRF) solver, which falls somewhere in between the high-order methods

(LES) and family of linearized reduced-order methods (LNSE/LEE). The authors

linearized compressible Navier-Stokes equations along with the species transport

equations and reaction source terms, thereby including a model for the dynamic

response of the flame to flow perturbations in an inherent manner. For conducting

stability analysis, LRF eliminates the need for FTFs, which otherwise have to be

externally provided for all the low-order acoustics modeling approaches discussed

in this section. Alternatively, the method also proves to be a low-cost option for

computing FTFs. While the LRF method was successfully applied to a simple lami-

nar premixed flame, its suitability to turbulent flames remains to be seen as per the

authors.

Wave and Helmholtz Equation:

Thanks to the zero-Mach H5 condition, the LEE equations can be combined

and further reduced to just one PDE that governs the propagation of linear acoustic

waves in the fluid called as Wave-Equation and or its frequency-domain equivalent

the Helmholtz Equation [127, 13]. The wave equation is written as:

∇ ·

(
1

ρ0
~∇p′
)
−

1

γp0

∂2p′

∂t2
= −

γ − 1

γp0

∂q′

∂t
(1.2)

Wave-equation can be directly solved for thermoacoustic stability analysis - see

[128] for example. However, a more widely adopted approach in thermoacoustic

community are the Helmholtz equations solvers [127, 129]. Often in linear acoustics

harmonic oscillations are assumed and stability analysis is performed in frequency-

domain. Therefore, fluctuating quantities in time-domain can be related to their

frequency-domain counterpart through Fourier Transform and its inverse:

p̂(~x, ω) =

∫ +∞

−∞
e−jωtp(~x, t)dt, p(~x, t) =

∫ +∞

−∞
ejωtp̂(~x, ω)dω (1.3)

Applying Fourier Transform to the Wave-Equation gives frequency-domain Helmholtz

equation as follows:

∇ ·

(
1

ρ0
~∇p̂

)
+

ω2

γp0
p̂ = −jω

γ − 1

γp0
q̂ (1.4)

5Further discussion on this in Chapter 5.
6Detailed derivation can be found in [112, 7, 13], or their final form in Ch. 5, Sec. 5.2
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For homogenous uniform mean fields of sound-speed c0, density ρ0, specific heat

ratio γ, the following simplified version of Helmholtz equation is realized:

c20∇
2p̂(~x, ω) + ω2p̂(~x, ω) = −jω(γ − 1)q̂ (1.5)

Note that for solving the above Helmholtz equation, additional elements are neces-

sary:

• zero-Mach linearized momentum equation: for computing acoustic velocity

field from pressure. They are related by following equation in frequency-

domain:

jωρ0~̂u+ ~∇p̂ = 0 (1.6)

• FTF/FDF: Source terms on the right-hand side due to flame dynamics, i.e.

heat release oscillation, is modeled through FTF/FDFs discussed in the fol-

lowing Sec. 1.4.2.

• Acoustic Boundary Conditions (BCs): Can be (i) simple homogeneous Dirich-

let BC p̂ = 0 for boundary that is open to the atmosphere (pressure-release

BC); or (ii) homogeneous Neumann BC ~∇p̂ · ~ns = 0 (rigid-wall BC), where

~ns outward surface normal unit vector; or (iii) more generic Robin-type BC:

p̂+Z(jω)ρ0c0~̂u·~ns = 0, where Z(jω) is a frequency-dependent, complex-valued

acoustic impedance.

Solutions of the frequency-domain homogeneous Helmholtz equation, i.e., with-

out heat release source term or nontrivial Robin’s type of BCs, provide the natural

acoustic eigenmodes of the system. In the resulting complex-valued eigenvalues

(eigenfrequencies) ω = ωr + jωi, the real part is the mode’s oscillation frequency,

and the imaginary part is its growth rate. The modes are neither amplified nor

damped, i.e., their ωi 0. However, solutions to the general inhomogeneous Eq.

(1.4), the eigenmodes would get stabilized (ωi < 0) or get unstable (ωi > 0) in the

presence of complex impedances and or active flames feedback.

Helmholtz solvers have undergone significant developments over the past decade

and have been successfully employed from laboratory-scale to complex industrial

geometries for predicting thermoacoustic eigenmodes and their linear stability[109].

Flame describing function (FDF) too has been coupled with Helmholtz solvers for

predicting limit-cycle amplitudes [130, 131]. Acoustic dissipation effects due to

multi-perforated liners of combustors and acoustic-hydrodynamic interactions that

are quite prominent in geometrically complex components such as swirlers were

modeled [132, 133, 134]. Besides that, convective flow effects and coupled entropy-

acoustic modes [45, 46] could be accounted for as well.

The in-house Helmholtz solver AVSP [127] has been used in the current work.

More details and discussion will follow in upcoming Chapters 3 and 4.
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1.4.1.2 Acoustic Network LOMs

Another family of low-order acoustic tools is the so-called ”network models.” They

are much faster than FV/FE-based solvers and are used in practice for fast resolu-

tions and parametric studies, especially during pre-design stages. These tools are

based on theoretical, quasi-analytical techniques wherein a complex configuration

is decomposed into simpler acoustic sub-domains. They are connected/coupled to-

gether to construct a network and are solved using simple numerical methods. Net-

work tools can be categorized based on the spatial description used for the acoustic

waves [111] in the sub-domains of the network as Characteristic Wave-based (Rie-

mann Invariants) or Modal expansion (Galerkin Projection) models. These are

briefly discussed here in this sub-section.

Characteristic Wave-based (Riemann Invariants) Network LOMs:

Wave-based methods usually assume quasi-1D acoustic sub-domains wherein pla-

nar wave propagation is assumed in the forward (amplitude A+
k ) and backward (am-

plitude A−
k ) directions as shown in Fig. 1.13. Jump relations [13, 135, 136, 137, 138]

are used at connection interfaces to ensure pressure and flow-rate continuity, and

across infinitely thin flames if present — flames are usually assumed acoustically

compact, i.e., their thickness is negligible in comparison to the acoustic wavelength.

The amplitudes of the forward and backward propagating waves are determined

by connecting each duct element to satisfy all jump relations and boundary condi-

tions. The resulting system of equations can be recast into a matrix form yielding

a frequency-domain scalar dispersion relation F (jω) = 0 — e.g., [135, 136] from

the recent literature for such problem formulation. This linear system can then be

solved to get the system eigenfrequencies and mode shapes.

Early works on wave-based low-order network modeling pursued in many re-

Figure 1.13: (a) Wave-based 1D network made of a series of longitudinal

ducts with section area jumps. (b) A wave-based canonical Plenum-

Burner-Chamber (PBC) network (adapted from [111]).
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search groups can be found in [139, 140, 141]. More recent applications are of Han

et al. [142], Li and Morgans [143] who used their wave-based network tool OSCI-

LOS for linear and nonlinear stability analysis for longitudinal configurations and

have successfully predicted limit-cycles observed in experiments. Orchini et al. [144]

highlight crucial differences between the nonlinear oscillatory response of the system

predicted by the frequency-domain and time-domain (state-space based) methods.

Schuller et al. [135] examined conditions when coupling/decoupling of the chamber,

plenum modes in longitudinal configurations would occur. Since wave-based meth-

ods assume planar 1D acoustic wave propagation in the network elements, they

cannot capture non-planar modes or multi-dimensional modes in complex configu-

rations. For instance, 1) unstable transverse modes that are often observed in rocket

engines, afterburners of military jet engines, despite their combustor geometry be-

ing longitudinal; 2) mixed longitudinal and azimuthal modes in annular combustors.

However, an advantage of wave-based 1D networks is that it is quite easy to consider

non-zero mean-flow - see, e.g., [112, 145, 87]. Bauerheim et al. [136, 87] proposed an

Analytical Tool to Analyze and Control Azimuthal Modes in Annular Combustors

(ATACAMAC) for examining azimuthal instabilities in a canonical Plenum-Burner-

Chamber (PBC) configuration. This wave-based network model, shown in Fig. 1.13

will be used to validate linear stability analysis results from the methodology in

STORM (based on modal expansions) presented in Ch. 3 on the same PBC geom-

etry.

Modal Expansion (Galerkin Projection) LOMs

In the Modal Expansions method, the thermoacoustic pressure field (i.e. solution

to the Wave equation above) in each sub-domain of the network is sought as a

linear combination of (or series expansion) natural acoustic eigenmodes of that sub-

domain.

p(~x, t) =
N∑

n=1

Γ̇n(t)φn(~x) = Γ̇T (t)φ(~x) (1.7)

The unknown modal coefficients vary in time under the influence of volumetric

forcing due to an active flame if present and boundary forcing imposed due to

connections with neighboring sub-domains. The technique originating in the field

of theoretical acoustics was first applied for investigating combustion instabilities

by Culick [5], and Zinn [146] many decades ago. Since then, many researchers have

exploited it for in-depth investigations of nonlinear effects in instabilities for simple

Rijke tube-like geometries [147, 148], academic thin annulus-like geometry [149, 150,

151]. Simplified plenum-burner-chamber configurations [152, 153, 154, 155] where

burners are modeled as transfer matrices, while modal expansion is used to express

the pressure field in plenum and chamber were investigated as well.

Unlike wave-based low-order modeling, this method is not limited to planar
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acoustic waves and can resolve both multi-dimensional modes. However, incorpo-

rating mean-flow effects is not straightforward, just like conventional Helmholtz

solvers [127, 45, 46], due to the inherent zero-Mach assumption.

The eigenfunctions used as the basis in the expansion can be obtained analyt-

ically for simple geometries. For complex arbitrary shaped 3D geometries, a basis

can be constructed from the natural acoustic eigenmodes calculated a priori from a

Helmholtz solver as was shown by Bethke et al. [156] and Laurent et al. [157].

The use of the modal expansion technique for building extensive acoustic or

thermoacoustic networks has been rather limited in the past. A notable exception is

the work of Schuermans, Bellucci, Noiray, Bothien, and colleagues, who have been

developing this so-called TA3 tool for two decades. The tool has been successfully

applied to realistic 3D combustor geometries, can take complex impedances into

account, and has been used for active control, stability analysis, and nonlinear

time-domain simulations. It has also been extensively validated with engine test

data. Few select publications - [152, 162, 163, 149, 164].

The research group of Candel and Ducruix at EM2C Paris is developing a

reduced-order modeling tool called StaHF, especially targeting high-frequency in-

stabilities in rocket engines. See works of Méry [158], Gonzalez-Flesca et al. [159],

Marchal et al. [160], Fougnie et al. [161].

STORM - State-space Reduced Order Modeling, is an in-house thermoacoustic

network modeling tool based on generalized modal expansion recently proposed by

Laurent et al. [157]. It draws inspiration and is conceptually similar to the TA3

tool of Schuermans and colleagues, but there is one fundamental difference too.

Laurent et al. [157] improved the classical modal expansion technique to overcome

an important limitation relating to the modal basis functions that have critical

implications for explicitly constructing networks with multiple, multi-dimensional

acoustic subdomains.

The development of STORM is one of the primary subjects of this Ph.D. work,

and the modeling principles are detailed in the following Ch. 3 of this manuscript.

Hybrid Network LOMs

Recently, Yang et al. [165], and Orchini et al. [166] employed both wave-based

and modal expansion methods together for low-order modeling of canonical plenum-

burner-chamber configurations. Burners were modeled with 1D waves, whereas

plenum and chamber as 2D acoustic elements with modal expansion. They investi-

gated nonlinear modal interactions to identify conditions favoring a particular mode

structure- spinning/standing/slanted or longitudinal mode, and random switching

between them due to its sensitivity to nonlinear flame response parameters.

Abhijeet Badhe
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1.4.2 Low-Order Modeling of Flame Dynamics

After presenting an overview of low-order modeling (LOM) of acoustics in the pre-

vious sub-section, approaches for low-order representation of flame dynamics are

introduced and briefly discussed here.

In Sec. 1.2.1 and Fig. 1.5, it was discussed how unsteady heat release due to

flame dynamics (which acts as a source of acoustic waves due to gas dilatation) is

at the core of thermoacoustic instability mechanisms. It is vital to recognize the

wide spatio-temporal scale separation between acoustic waves and flames in this

context. The acoustic wavelengths (λ = c/f) are typically of the same order as the

geometry, and much larger than global flame/reaction-zone length scales (L) in most

practical cases. However, the scales of vorticity, equivalence-ratio, entropy waves

perturbing the flame are usually smaller, and the local flame-thickness, where most

heat-release occurs, furthermore - typically of O(10−5) to O(10−3) m. Therefore,

most practical flames can be considered as acoustically compact7 but convectively

non-compact. This is respectively characterized by nondimensional Helmholtz (He)

and a Strouhal (St) numbers [1, 7] given as

He ≡
fL

c
<< 1 ⇒ Acoustically compact flame (1.8)

St ≡
fL

ū
<< 1 ⇒ Convectively compact flame (1.9)

where ū is a characteristic convection velocity.

Modeling flame dynamics from first principles ought to account for chemical

kinetics, turbulence-chemistry interaction, hydrodynamic effects, flame-wall inter-

action, etc., as is done in high-order methods such as LES or RANS. These intricate

phenomena actually motivate the idea of separating acoustics and flame dynam-

ics: acoustics is resolved explicitly, while the finer flame dynamics processes are

all reduced down and modeled, rather described, through FTFs/FDFs. Normally

FTFs/FDFs are then coupled with acoustic solvers to close the thermoacoustic feed-

back loop and conduct stability analysis. Indeed, modeling flame-dynamics in the

context of low-order modeling of combustion instabilities is the most challenging

aspect as described in these reviews [25, 12].

Flame-Transfer Function (FTF), defined in frequency domain8, is the ratio of

relative global heat-release rate fluctuations to the relative axial velocity fluctuations

7Acoustic compactness typically is not true when there are long flames in the combustor [145] or
high-frequency transverse (screech) modes are under question (see for eg. [167, 168, 169, 170, 9]).
Also, in annular combustion chambers, while an individual flame is compact with respect to an
azimuthal mode, the heat-release zone of all flames collectively is not compact [171].

8considering Fourier convention ejωt for temporal harmonic variation of any fluctuating quantity.
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impinging on the flame; calculated for small relative axial velocity fluctuations (cf.

H5: linear acoustics).

F (ω) =
Q̇′ (ω) / ¯̇Q

u′/ū
= G (ω) e−jϕ(ω) (1.10)

where, u′/ū is acoustic velocity fluctuation levels at a reference location upstream

of the flame, and G = |F|, ϕ(ω) = ∠(F) are respectively the gain and phase of FTF

F(ω). The phase difference between heat-release and velocity oscillations contains

a time-delay that denotes the delay between acoustic perturbation at the reference

location and the corresponding resulting heat-release fluctuation. This is inspired

from the classical the n − τ model proposed of Crocco [172] in 1950s, where n

is the flame-interaction index (gain) and τ is the time-delay such that the phase

ϕ(ω) = ωτ .

Note that an FTF provides linear response of the flame to the incoming acoustic

velocity perturbation and is applicable only for small-amplitude fluctuations at the

onset of instability. It does not account for nonlinear effects such as saturation of

heat-release fluctuations required to model and predict limit cycles.

More advanced formulations of FTFs were also proposed:

1. For some simple flame geometries such as conical or V-shaped flames, closed-

form analytical FTFs based on flame-front tracking using level-set methods

(a.k.a G-Equation) are available [19, 20, 18, 173].

2. FTFs that take into account effect of different flow-flame-acoustic interaction

mechanisms simultaneously by superposition (thanks to linearity) of multiple

corresponding individual FTFs, for e.g., effect of flow (u′/ū), pressure (p′/p̄),

equivalence ratio (φ′/φ̄) perturbations etc. [174, 175, 176].

3. Furthermore, global FTFs of realistic flames are also often characterized by not

one or two delay time-scales, but by a distribution of time-delay (a.k.a Dis-

tributed Time Delay (DTD) models). For eg., a presumed Gaussian distribu-

tion around mean delay τ with standard deviation σ, giving rise to the so-called

n− τ − σ type of FTFs, can be found in the literature - see [12, 177, 178, 179]

and references therein.

4. In case of acoustically noncompact flames, global FTFs become inaccurate rep-

resentation of the flame response. In such cases, spatio-temporal variations of

heat-release fluctuations must be taken into account, and therefore, some au-

thors have also proposed FTF where the gain and time-delay spatial distribu-

tion n(~x) and τ(~x) are characterized in form of local FTFs [127, 128, 180, 181].

However, here the n(~x) and τ(~x) spatial distributions are typically taken to

be independent of frequency ω.
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Flame-Describing Function (FDF), an extended concept of FTF, is simply a

family of transfer functions corresponding to different amplitude levels of incident

velocity perturbations, defined as

F
(
ω,
∣∣u′
∣∣) = Q̇′ (ω, |u′|) /Q̇

u′/ū
= G

(
ω,
∣∣u′
∣∣) e−jϕ(ω,|u′|) (1.11)

When coupled with acoustic solvers, FDFs can help predict limit-cycle amplitude,

mode-switching, triggering (cf. Sec. 1.2.2) and other such nonlinear9 instability

characteristics [113, 182, 130, 143, 183] briefly discussed earlier in Sec. 1.2.2. See

[184, 75] for more advanced formulations of FDFs which can predict for example

the simultaneous presence of the fundamental unstable mode and its harmonics

in a limit-cycle oscillation; and [185, 186] for nonlinear stability analysis with G-

equation-based flame dynamics model.

Figure 1.14: Flame dynamics mechanisms involved in azimuthal instabil-

ities. Adapted from [111]

Lastly, before closing this subsection, the modeling of flame dynamics pertinent

to the annular combustors is touched upon. It is certainly closely linked to the nature

(standing/spinning) of azimuthal instabilities present in the chamber [98, 9, 111], es-

pecially the position of flames for the given azimuthal mode structure. Experiments

[98], and even LES [93, 109] have revealed few mechanisms as shown in Fig. 1.14:

azimuthal mode modulates the axial mass flow rate in the burners but also creates a

transverse excitation. Both mechanisms can also generate flame-flame interaction,

whose effect on thermo-acoustic instabilities is not well-understood yet. Azimuthal

modal dynamics (cf. Sec. 1.3) during self-excited instabilities further complicates

the modeling of flame dynamics in annular combustors. Currently, in most studies,

the FTFs/FDFs used for stability analysis of annular configurations are obtained

by axially forcing single burner setups [187, 188, 183]. Ignoring the influence of

transverse excitation and or flame merging (if relevant) is indeed disputable. There-

fore, literature investigating flame response to individual and simultaneous trans-

verse+axial forcing experimentally [189, 190, 169, 191], theoretically/numerically

9Note that here low-order acoustics model remains in the linear regime (cf. H5 assumption in
Sec. 1.4.1), and it is the (nonlinear) flame response that is the primary source of nonlinearity.)
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[192, 193, 194] are emerging in recent times, and is a topic active research. Note

that transverse flame forcing is relevant not only for azimuthal instabilities but also

in the context of high-frequency screech modes in longitudinal combustors. Nygård

et al. [195, 196] applied azimuthal forcing in an annular rig to control, impose and

sustain the mode nature (spinning-CW/spinning-ACW/standing), the mode order

and analyzed flame dynamics under such conditions. The authors also introduce the

so-called Azimuthal Flame Describing Function (AFDF) that quantifies the varia-

tions in heat release response based on the mode nature and suggest it to be useful

in future low-order modeling effort.

1.5 PhD Thesis Objectives and Outline

The author of this Ph.D. manuscript has carried out the work as Early Stage Re-

searcher (ESR) under the Marie-Curie Innovative Training Network (ITN) project

ANNULIGhT10. The author acknowledges the funding received from the European

Commission, and is grateful to CERFACS for the opportunity.

Broadly, there are two parts in this PhD thesis work: The primary and major

Part-1 deals with development of STORM (State-Space Reduced-Order-Modeling)

- a low-order thermoacoustic network tool under development at CERFACS, and

Part-2 will present a brief application study of high-order Euler-Lagrange (EL) LES

of turbulent swirling spray flame.

• Chapter 1 - General Introduction: This current chapter provided a gen-

eral introduction to the overarching subject matter of this thesis, i.e., the

problem of thermoacoustic combustion instabilities in gas turbine engines.

The underlying physical mechanisms were briefly explained. Peculiarities of

azimuthal combustion instabilities observed in annular combustors were dis-

cussed. The chapter also provided an overview of Reduced-Order (ROM) or

Low-Order (LOM) Modeling approaches for predicting and analyzing thermoa-

coustic combustion instabilities. The development of ROMs/LOMs is ubiqui-

tous and a major research theme in the thermoacoustics community since they

provide a low-cost option for modeling a rather complex physical phenomenon.

They allow necessary parametric studies for determining strategies for passive

control of the instabilities.

PART-1: Development of STORM

STORM is a LOM tool where the modeling of acoustics is based on the idea of

modal-expansions, and the state-space framework is employed for building network

representation of the systems. Development of STORM was initiated only a few

years ago in the preceding Ph.D. of C. Laurent [197].

10https://www.ntnu.edu/annulight

https://www.ntnu.edu/annulight
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• Chapter 2 - State-Space Reduced-Order Thermoacoustic Network

Modeling Tool: will describe the underlying theory and modeling principles

of STORM accompanied with a few canonical examples. The salient features

of the tool are discussed. The most distinguishing one is the improved and gen-

eralized modal expansion based on the so-called Over-Complete (OC) Frame

[157] in contrast to classical Orthogonal-Basis (OB) for low-order modeling of

acoustics. Thanks to OC-Frame, it will be shown how it facilitates seamless

and full-fledged network construction between subdomains with 1D/2D/3D

acoustics and model complex impedances and multi-perforated liners [198].

• Chapter 3 - STORM Linear Stability Analysis of Annular Config-

urations: will apply STORM to build more complex networks of annular

configurations. Idealized Plenum-Burner-Chamber (PBC) geometry studied

by Bauerheim et al. [136] will be analyzed, and the results from STORM are

validated with their 1D wave-based network shown in Fig. 1.13. STORM

is also employed to perform the linear stability analysis of lab-scale annular

MICCA-spray rig and an actual SAFRAN engine combustor.

It must be acknowledged that most of the foundational work of the methodology,

from conceptualization to mathematical formulation and software coding, was car-

ried out by C. Laurent et al. [197, 157]. The objective of Chapters 2 and 3 is to

succinctly present and elucidate the essential elements of the modeling approach

and provide some complementary results. Complete details, rigorous mathematical

derivations, and convergence assessments can be found in C. Laurent’s Ph.D. thesis

[197]. The author of this manuscript supported the development of the tool through

extensive testing and validation studies. The main contribution has been extending

the modeling approach to 3D [198, 199], its coding, developing necessary pre-, post-

processing tools11, and successfully demonstrating the stability analysis of complex,

realistic configurations, as illustrated in Chapter 3.

• Chapter 4 - Modeling of Linear Flame Dynamics in STORM: The

previous work of C. Laurent [197], the results presented in preceding chapters,

mainly focused on developing and validating the low-order network modeling

of acoustics. In almost all the examples, the low-order flame dynamics were

represented with simplest, constant n − τ type FTFs. Therefore, a natural

progression was to pursue ways to incorporate more realistic FTFs and de-

velop such modeling capabilities to increase the fidelity of stability analyses.

This chapter will focus on this aspect and is a step in that direction. Since

11All the pre- and post-processing tools developed are largely based on ANTARES - an in-house
python data processing library for CFD (https://cerfacs.fr/antares/). Thanks to Dr. Marc
Montagnac and the ANTARES development team for helpful discussions and support.

https://cerfacs.fr/antares/
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STORM is based on state-space (SS) method — a time-domain representation

— rational approximation techniques, and a couple of algorithms for fitting SS

model on frequency-domain FTF data are reviewed from the literature. Few

important physical constraints that must be respected in such data-driven

identification of flame-response SS models are described, and some relevant

theory, particularly about the causality characteristic of the SS model and

FTF data, is discussed as well.

• Chapter 5 - Delayed Entropy Coupled Boundary Condition (DECBC):

This chapter develops this special impedance boundary condition (DECBC)

within the STORM framework that helps predict low-frequency mixed entropy-

acoustic instabilities. Modal expansion technique in STORM inherently in-

volves zero-Mach mean flow assumption. DECBC indirectly accounts for

mean-flow effects, convected entropy-waves from flame to the combustor out-

let. The concept is quite analogous and follows the work of Motheau et al.

[45, 46] who developed DECBC for FEM Helmholtz solver AVSP. This chapter

presents modeling and validation on a reference 1D case from [45].

PART-2: Euler-Lagrange (EL) LES of SICCA-spray Burner

The minor Part2 of the manuscript is an application study where acoustically

forced turbulent swirling spray flame has been simulated using the Euler-Lagrange

(EL) LES approach in an attempt to predict its Flame-Transfer-Function (FTF)

[200]. The objective is to qualify the EL approach, a two-phase combustion modeling

framework for such a system identification problem, and at the same time assess the

sensitivity of the results to some uncertain modeling parameters.

The work was initiated with the author’s wish to develop skills in performing

two-phase spray combustion LES. A colleague Ermanno Lo Schiavo - another ESR

in the ANNULIGhT project, had built and successfully simulated self-sustained

instability in the SICCA-spray burner [60, 201]. Taking E. Lo Schiavo’s work as

a reference, this complementary task was identified and undertaken with a limited

scope. Indeed, FTF/FDF is one of the most crucial inputs required to perform

thermoacoustic stability analysis with reduced-order (LEE, Helmholtz solvers) or

low-order network models such as STORM. Besides experiments, these are usually

computed from high-fidelity methods such as LES. The work was carried out in the

latter half of the second year (June 2020 - Jan 2021).

• Chapter 6 - Euler-Lagrange (EL) LES Modeling of Spray Flames

Spray combustion is a physical phenomenon characterized by strongly coupled

and complex interaction between spray (liquid-phase), flow/turbulence (gas

phase), evaporation (phase change), mixing, and of course, chemical reactions.

This chapter starts with an overview of relevant spray combustion physics,
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followed by a description of the Euler-Lagrange modeling framework. All the

specific models employed in the simulations are described while noting the

inherent assumptions and known limitations.

• Chapter 7 - Combustion Dynamics in SICCA-spray Burner

This chapter reviews the key results from the work of E. Lo Schiavo et al.

[60, 201] and then presents the results of the forced simulations of SICCA-

spray flame.

• Chapter 8 - Thesis Conclusions and Perspectives
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2.1 Acoustic Network Representation of Systems

STORM is a new low-order acoustic-network modeling (LOM) tool that is being

developed at CERFACS for studying thermoacoustic combustion instabilities in
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Figure 2.1: Schematic of a gas turbine combustor split into an acoustic

network. Arrows indicate coupling between connected subsystems. Each

subsystem in the network can be modeled separately. Figure reproduced

from [197].

complex realistic configurations, under the assumption of zero-Mach mean flow con-

ditions. It is employs the state-space framework, and acoustics modeling is based

generalized modal expansions [157, 198, 197, 199].

The acoustic network representing a system to be analyzed is built by dividing it

into network objects: simpler geometrical subdomains, connection, impedance and

flame elements. The subdomains can be trivial geometries with 1D/2D acoustics

or arbitrary shapes with 3D acoustics. Connection elements are required to couple

subdomains in the network by imposing appropriatea physical coupling conditions

at the interfaces. A representative example of such decomposition into a network is

shown in Fig. 2.1.

The state-space framework adopted in thermoacoustics by many research groups

in the context of acoustic network modeling [152, 154, 163, 144, 202, 203] has been

employed to allow convenient interconnections between different network objects.

The state-space (SS) method is briefly introduced in the following subsection.

2.1.1 Introduction to State-Space Method

Dynamical systems are often mathematically modeled from first principles as ordi-

nary differential equations (ODEs) of finite order if the underlying interacting com-

ponents that make up the system are well characterized, and the physics describing
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them is known. A well-known canonical example of a dynamical mechanical system

is a spring-mass-damper oscillator governed by a second-order ODE. State-Space

analysis is a method of representing, solving, and controlling a dynamical system

- an approach commonly adopted in modern control engineering [204, 205]. In the

state-space method, any finite order ODE governing the system dynamics is recast

into a group of first-order ODEs where the variables in each are together known

as state variables. It is worthwhile to present some key definitions and equations

related to state-space methods [204, 205]:

• State and State Variables: The state of a dynamic system is the smallest

set of variables (called state variables) such that the knowledge of these vari-

ables at t = t0, along with the inputs for t ≥ t0, completely determines the

behavior of the system for any time t ≥ t0. Note that state variables need

not be physically measurable or observable quantities. Such freedom in choos-

ing state variables is an advantage of the state-space methods. Practically,

however, it is always convenient to choose easily measurable quantities for the

state variables, if possible, to define optimal control laws for the dynamical

system.

• State-Vector and State-Space: A column vector containing these n state

variables is called the state-vector X(t). And the n dimensional space spanned

by the state-vector is called the state-space.

• State-Space Equations: There are three types of variables involved in the

modeling of dynamical systems - 1) state variables which are intrinsic to the

system under consideration, and 2) input- and 3) output- variables that, as

such, are external and independent of the system. The equations relating all

these together are the so-called state-space equations. As mentioned earlier,

the dynamical system is written as a family of first-order ODEs for each state

variable in the state-space approach. All these equations are typically written

in a compact matrix form given as follows for linear time-invariant (LTI)

systems.1

Ẋ(t) = AX(t) +BU(t) (2.1)

Y(t) = CX(t) +DU(t) (2.2)

The first equation is called the state-equation that governs the dynamic evolu-

tion of system state where X(t) is the state vector, A is the system dynamics

1State-space analysis, however, applies in general to any dynamical system - linear, nonlinear,
time-varying, time-invariant. Nonlinear systems are often linearized around certain operating states
called fixed-points, for instance, to carry out linear stability analysis prior to nonlinear prediction
and control of system behavior.
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matrix, U(t) is the input vector containing the input variables, and B is the

input matrix. Besides, the second equation above is the state-space output

equation that computes the system output vectorY(t), containing the vari-

ables of interest. It is computed from the state vector X(t), C the output

matrix, and lastly, D the feedthrough matrix, input vector U(t), which repre-

sents the direct transmission of the input signal to the output, bypassing the

system and its intrinsic dynamics.

Coupling multi-input multi-output (MIMO) state-space systems (Red-

heffer Star product):

Figure 2.2: Connection of two MIMO systems P and Q. Subscripts P

(resp. Q) designate state-space representation matrices and vectors for

the subsystem P (resp. Q). Inputs and outputs ports 2 in P are those

connected to the subsystem Q, while inputs and outputs ports 1 in P

are connected to other systems in the network. Conversely, inputs and

outputs ports 1 in Q are those connected to the subsystem P, while inputs

and outputs ports 2 in Q are connected to other systems in the network.

Figure reproduced from [197].

State-space (SS) models, in general, can have multiple inputs and outputs, i.e.,

a given subsystem can couple/connect with more than one subsystem to build a

network representation of a whole system. There could be multiple connections

between the given two subsystems as well. Fig. 2.2 shows a state-space block

diagram of two LTI dynamical systems P and Q. In this hypothetical case, each

has two input ports and two output ports, and they are connected as shown. For
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clarity, and because it is the case for most of the state-space realizations considered

presently, all the feedthrough matrices D are zero [197].

Then exploiting the so-called Redheffer star product [206, 152], the two sub-

models can be reduced into one resultant state-space model R by relating their

interacting inputs and outputs (actually via matrix product of corresponding port

input/output matrices). For example, the SS submodel P in matrix block-structure

is written as (and Q similarly)

ẊP (t) = APXP (t) +
[
BP1 BP2

]

︸ ︷︷ ︸
BP

[
UP1(t)

UP2(t)

]

︸ ︷︷ ︸
UP (t)

(2.3)

YP (t) =

[
YP1(t)

YP2(t)

]
=

[
CP1

CP2

]

︸ ︷︷ ︸
CP

XP (t) (2.4)

then the Redheffer star product leads into resultant R = P ⋆ Q state-space model:

[
ẊP (t)

ẊQ(t)

]

︸ ︷︷ ︸
ẊR(t)

=

[
AP BP2CQ1

BQ1CP2 AQ

]

︸ ︷︷ ︸
AR

[
XP (t)

XQ(t)

]
+

[
BP1

BQ2

]

︸ ︷︷ ︸
BR

[
UP1(t)

UQ2(t)

]

︸ ︷︷ ︸
UR(t)

(2.5)

[
YP1(t)

YQ2(t)

]

︸ ︷︷ ︸
YR(t)

=

[
CP1

CQ2

]

︸ ︷︷ ︸
CR

(
XP (t)

XQ(t)

)
(2.6)

In Eq. (2.5), AR is the dynamics matrix of the resultant system. The extra-

diagonal blocks within it are coupling terms between subsystems P and Q [197] —

more precisely, BP2CQ1 represents the effect from Q onto the dynamics of P, and

conversely BQ1CP2 represents the influence of P onto the dynamics of Q.

On similar lines, the Redheffer product can be recursively applied to all the SS

submodels to couple them and reduce them into one full/global SS model for the

entire system as follows:

Ẋf (t) = AfXf (t) +BfUf (t) (2.7)

Note that for the above global SS equation, the intrinsic dynamical characteristics

are all contained inside the global dynamics matrix Af . The input vector Uf (t)

and matrix Bf are usually zero unless there is some external forcing applied to the

global system. The global SS model can then be solved in one of the following two

ways: [197]
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1. Time-domain Resolution: Eq. 2.7 can be integrated in time to obtain the

system-level dynamics starting from an initial condition or temporal evolution

under external forcing Uf (t).

2. Frequency-domain Resolution: by finding the eigenvalues and eigenvec-

tors of the global dynamics matrix Af so as to obtain the stability information

of the eigenmodes of the whole system.

The Redheffer star product is a well-established technique that can couple any

number of given state-space network objects as long as the physical quantities com-

municated between them through multiple inputs/outputs are consistent. In the

combustion dynamics community, it was proposed and applied in the state-space

LOM by Schuermans et al. [152] as early as 20 years ago. What is rather a more

challenging task is to derive state-space models for individual objects.

Therefore, in order to build thermoacoustic networks, the overall objective is

to derive appropriate state-space (SS) submodels for all possible types of network

objects viz., geometrical (acoustic) subdomains, connection (or coupling) elements,

flame, impedance, etc.

2.2 Over-complete Frame Modal Expansion of Acoustic

Subdomains

This section will describe the most vital and distinguishing attribute of STORM,

i.e., this concept of generalized modal expansion that was mentioned earlier.

In the modal-expansion method, the thermoacoustic pressure field in each geo-

metrical sub-domain of the network is expressed as a linear combination or series

expansion of natural acoustic eigenmodes of that particular subdomain (the basis

functions),

p(~x, t) =
N∑

n=1

Γ̇n(t)φn(~x) = Γ̇T (t)φ(~x) (2.8)

where N is a finite number of natural eigenmodes, φn(~x) denote the basis functions

and Γ̇n(t) are the corresponding modal amplitudes or coefficients. Note that in the

above equation, the natural modes are known a priori as analytical or numerical so-

lutions to homogeneous Helmholtz equation (without flame source term, non-trivial

boundary impedances.) for a given subdomain. The modal amplitudes are, there-

fore, the unknown variables to be determined. They are subject to the influence

of boundary conditions imposed by neighboring subdomains and to the volumetric

forcing exerted by active flames if present. The modal basis represents the spa-

tial structure of the acoustic pressure field, while the modal amplitudes determine

Abhijeet Badhe
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its temporal evolution. The acoustic velocity field in the subdomain can also be

constructed from the gradient of the modal basis as follows:

~u(~x, t) = −
1

ρ0

N∑

n=1

Γn(t)~∇φn(~x) = −
1

ρ0
ΓT (t)~∇φ(~x) (2.9)

Laurent et al. [157, 197] improved and generalized the classical modal expansions

(Galerkin projection) technique. Most previous studies based on modal expansions

employed rigid-wall natural eigenmodes as an orthogonal2 basis for seeking the

thermoacoustic pressure field solution. However in this recently proposed approach,

one can use as the basis functions either an over-complete set of acoustic eigenmodes

— called as an Over-Complete (OC) Frame — or a simple Orthogonal Basis

(OB) as has been the norm so far. The former, where deemed necessary, offers

enhanced convergence, correct representation of acoustic variables at the interfaces

of interconnecting subdomains, and fixes the issue of Gibbs oscillations in the global

network solutions.

In practice, a convenient way to build a frame is by collating rigid-wall (u′ = 0)

and pressure release (p′ = 0), two families of natural eigenmodes. The second

family verifies at least one p′ = 0 boundary, usually located at the connection

boundary between two subdomains. Modal Expansion on an OC-frame eventually

relaxes (or unconstrains) the u’=0 (and p’=0) conditions owing to the constituent

orthogonal bases, thus facilitating the correct representation of acoustic variables at

the interface.

The points made above regarding Overcomplete Frame expansions are elaborated

with the help of a simple 1D example in the following Subsec. 2.2.1.

2.2.1 Example 1: 1D-1D Ducts with Section Jump

Consider a pure acoustics problem involving a 1D ducts as shown in Fig. 2.3(a). The

physical quantities in the ducts are assumed to be constant and homogenous. The

aim is to compute natural acoustic eigenmodes of the system via network decompo-

sition in STORM as depicted in Fig. 2.3(b). The network comprises two geometrical

subdomains - long narrow ducts with 1D acoustics, noted as Ω1,Ω2, and a connec-

tion element Ωsc to impose the right coupling/jump conditions [13, 135] between

them, viz., acoustic pressure and flux continuity.

For this network configuration, as shown in Fig. 2.4, a the suitable OC-frame

for duct/subdomain Ω1 is built by concatenating two families of OB bases that

satisfy different boundary conditions on right hand side connection boundary: (i)

2Orthogonality: Natural acoustic eigenmodes of any arbirtrary geometry are orthogonal to
each other. This can be verified [127], say for set natural eigenmodes ξn(~x, ω), by taking (scalar)
inner-product between them: 〈ξn, ξm〉 = 0 ∀m 6= n. More details to follow in this and Sec. 2.2.2.
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L1 = 0.5 m

L2 = 1 m

𝛀𝟏

𝛀𝟐

𝛀𝒔𝒄

S2 , T2

S1 , T1

1D
Frame: CC-CO

1D
Frame: CC-OC

1D-1D

(b)(a)

Figure 2.3: (a) An acoustics example of 1D ducts with cross-section area

jump, used for illustrating the concept of overcomplete frame modal ex-

pansion. The two extreme ends are considered to be closed rigid walls.

(b) Network representation of the system. See also Fig. 2.4.

first family3 CC satisfies u′ = 0 rigid-wall condition (the blue ξ
(Ω1)
n modes), and

(ii) second family4 CO verifies p′ = 0 pressure-release condition (the orange ζΩ2
n

modes). Analogously, for the duct Ω2 an appropriate choice of frame, with respect

to duct Ω1, will be CC-OC. The natural acoustic eigenmodes for each duct and

each family are straightforward to derive analytically as cosine/sine functions - see,

e.g., in [13, 207, 135]. Hence, the analytical OC-frames for the two ducts can be

mathematically defined as follows:




(
φ
(Ω1)
n (x1)

)
n6N1

=
(
cos
(
nπx1
L1

))
n6N1/2

⋃(
cos
(
(2n−1)πx1

2L1

))
n6N1/2(

φ
(Ω2)
n (x2)

)
n6N2

=
(
cos
(
nπx2
L2

))
n6N2/2

⋃(
sin
(
(2n−1)πx2

2L2

))
n6N2/2

(2.10)

where N1, N2 are total number of modes in the OC frames of subdomains Ω1,Ω2

respectively.

The 1D network configuration in Fig. 2.3 is solved with STORM to compute

the acoustic eigenmodes of the whole two-duct system, and the first three eigenfre-

quencies are listed in the Tab. 2.1 along with analytically computed [13, 207, 135]

values. The STORM problem is solved in two ways: first employing the classical

rigid-wall OB (i.e. only ξ
(Ω1)
n and ξ

(Ω2)
n orthogonal bases) in both the ducts, and

second with the newly proposed OC-frames as well. In the following, same number

(N1 = N2 = N = 20) of natural modes are used for the modal expansion in the two

subdomains. Note that the eigenfrequencies from both OB and OC modal expan-

sions cases in STORM are correct and in good agreement with analytical solution

for this problem, however, there is a major issue with eigenmode shapes between

the two as highlighted in Fig. 2.5 and Fig. 2.6.

The rigid-wall OB modal expansion imposes a velocity node at the interface,

despite the actual mode shape having non-zero pressure and velocity. In other

3CC: Closed-Closed
4CO: Closed-Open
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Figure 2.4: Overcomplete (OC) frames for 1D network subdomains Ω1

and Ω2 from Fig. 2.3.

words, the OB bases constrain the velocity at the junction since they both inher-

ently satisfy rigid-wall (u’=0) boundary condition. In Fig. 2.5 although the full

pressure mode shape is predicted reasonably well, minor discrepancies exist locally

near the interface. For the more problematic velocity mode shape, characteristic

Gibbs- effect/oscillations/wiggles/fringes can be observed in the network solution,

i.e., in both the ducts, due to the imposed velocity node. Laurent et al. [157, 197]

therefore proposed OC-frame modal expansions to deal with this issue. It addresses

the following fundamental question associated with OB modal expansion based net-
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Parameters Mode Analytical STORM (OB & OC)

T1 = T2, c0 = 347.0 m/s 1 105.5 105.5

P0 = 1 atm, ρ0 = 1.17 kg/m3 2 241.5 241.5

S1 = 2S2 = 0.1 m2 3 347.0 347.0

Table 2.1: Frequencies (Hz) of the first three acoustic eigenmodes for

the configuration in Fig. 2.3. The eigenfrequencies from STORM are

identical from both OB-basis and OC-frame for this example. Physical

and geometrical parameters for the specific problem solved are as given

in the first column.

Figure 2.5: First acoustic eigenmode shape (105.5 Hz) of the network in

Fig. 2.3, obtained with rigid-wall Orthogonal Basis (OB) modal expan-

sions.

Figure 2.6: First acoustic eigenmode shape (105.5 Hz) of the network in

Fig. 2.3, obtained with Overcomplete (OC)- Frame modal expansions.

works [157, 197]: how can a solution expressed as a series expansion of rigid-wall

modes converge towards a solution satisfying a non-rigid-wall boundary condition?

Figure 2.6 depicts how OC-frame expansion improves the mode shapes providing

excellent agreement with analytical solution. Referring to Fig. 2.4, in case of OC-
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frames, the rigid-wall (u′ = 0) OB basis of each subdomain (blue ξn modes) is

augmented with another family of OB basis verifying pressure-release boundary

condition (p′ = 0) at the interface (orange ζn modes). As a result, OC-frame

provides an additional degree of freedom for acoustic variables at the interface in

final network resolution. Both pressure and velocity become unconstrained a priori

and can attain their correct actual values. Therefore, OC-frame modal expansions

accurately represent acoustic variables or pressure-velocity relation (or impedance

in other words)5at the interface between two subdomains in the network resolution.

The OB or OC-frame size, i.e., the finite number of natural eigenmodes (N) used

in the modal expansion of subdomains, is an important parameter in STORM com-

putations. OC-frame significantly improves the convergence of the modal expansion

can provide the first couple of global eigenmodes accurately with very few frame

modes (N < 10 for this example). On the contrary, for OB, increasing basis size

N to order of ∼ 100 improves the overall accuracy, but locally near the interface

velocity node, and Gibbs fringes are not eliminated. Also, as expected, accurately

capturing higher-order modes of the global system will require larger OC-frames of

the subdomains. A systematic convergence assessment and error analysis, for the

same example above and others, was carried out in the thesis of C. Laurent [197],

and will not be repeated here to keep this presentation concise.

Now that the concept of OC-frame is established through the simple acoustics

example of 1D ducts in Fig. 2.3, the next subsection will describe the details of

state-space (SS) representation of any type of acoustic subdomain. Also, the con-

nection domain/element Ωsc that coupled the two 1D ducts in the example above

is essentially quite important and will be presented in the following Sec. 2.2.3.

2.2.2 State-space Model of an Acoustic Subdomain

This section will summarize the state-space representation of a generic acoustic

subdomain based on its OC-frame modal expansion - that forms the backbone of

STORM tool, as proposed in the previous Ph.D. work of C. Laurent [197].

Consider a general, hypothetical, thermoacoustic network in Fig. 2.7 that con-

tains all elements that are typically found in a gas turbine combustor that must be

accounted for comprehensive stability analysis. It contains several different types of

network objects as detailed in the accompanying tables in Fig. 2.7.

Focussing on acoustic subdomain Ωi, the frequency-domain 6 thermoacoustic

pressure field p̂(~x, ω), under zero-Mach mean-flow assumption (see Ch. 1, Sec. 1.4.1)

5Consequently, OC-frame modal expansions become the foundation for: (i) modeling complex
boundary impedances (in Chapter 5), and (ii) surface spectral connections[198] used to model
multi-perforated liner conductivity, or simply couple subdomains with 2D/3D acoustics (described
in the forthcoming Sec. 2.3).

6Following Fourier Transform defintion in Eq. (1.3) with convention p′(~x, t) = ℜ{p̂(~x, ω)ejωt}.
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is solution to the following of inhomogeneous Helmholtz Equation containing volu-

metric and boundary surface acoustic source terms:




c20∇
2p̂(~x, ω)− jωαp̂(~x, ω) + ω2p̂(~x, ω) = ĥ(~x, ω) for ~x ∈ Ωi

∇sp̂ = 0 for ~xs ∈ Swi,

p̂ = 0 for ~xs ∈ Sai,

∇sp̂ = f̂ (~xs, ω) or p̂ = ĝ (~xs, ω) for ~xs ∈ Sci

(2.11)

where, α is an ad-hoc acoustic loss coefficient for applying homogenous and uniform

acoustic damping in the subdomain, ĥ(~x, ω) is a volumetric acoustic source term,

∇sp̂(~x, ω) = ∇p̂(~x, ω)·~ns is the acoustic surface flux, ~ns is being the outward pointing

surface normal vector at the point ~xs. Note that boundary condition on connection

boundaries Sci in general are inhomogeneous of Neumann type or Dirichlet type

with f̂ (~xs, ω) and ĝ (~xs, ω) being the surface source terms imposed on subdomain

Ωi by its neighboring subdomains (or by non-trivial global boundary impedances).

In other words, Sci connection interfaces are neither ∇sp̂ = 0 (rigid-walls) nor

p̂ = 0 (open-to-atm) and this where OC-frame expansions in subdomains (Ωi and

others) will be instrumental in correct charaterization of acoustic variables on these

interfaces. The term ĥ(~x, ω) comprises the contributions of the MH volumetric heat

source network objects/submodels H
(l)
i within subdomain Ωi:

ĥ(~x, ω) = −jω(γ − 1)

MH∑

l=1

H
(l)
i (~x)Q̂l(ω) (2.12)

where, Q̂l(ω) is the global fluctuating heat-release of the flame H
(l)
i , and H

(l)
i (~x) its

spatial distribution.

The part of the thermoacoustic pressure field of the global network solution, in

a given subdomain Ωi, is then sought by projecting the inhomogeneous Helmholtz

Eq. (2.11) onto that subdomain’s OC-frame/OB-basis φn(~x) through the Galerkin-

projection/Modal-expansion process as given by Eq. (2.8).

The OC-frame/OB-basis φn(~x) are natural acoustic eigenmodes of subdomain

Ωi— i.e. solutions of homogeneous Helmholtz equation, same as Eq. (2.11) but

without source terms. As mentioned earlier, OC/OB can be defined analytically

for simple geometries (e.g., 1D-ducts in previous Sec. 2.2.1 - Eq. (2.10)), or can

be found numerically using FEM-based Helmholtz solvers [127, 129] (examples to

follow).

The Galerkin projection procedure and its rigorous, lengthy mathematical deriva-

tion for both cases: the classical modal expansion based on OB, and the new ap-

proach of OC-frame, is detailed in the thesis of C. Laurent [197].

In modal expansion based LOMs, a volume scalar (inner) product is required

that is defined as

〈f, g〉 =

∫∫∫

Ωi

f(~x)g(~x)d3~x (2.13)
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Figure 2.7: Schematic of a generic STORM thermoacoustic network

involving different types of objects: multiple acoustic subdomains and

flames, different types of domain-domain connection elements and non-

trivial boundary impedance elements. Refer the adjacent tables. Figure

adapted from [197].

The basis eigenmodes in OB are orthogonal to each other [127], and can be verified

with the above scalar product, which will vanish for any two φm and φn ∀ m 6= n.

However, this is not true for an OC-frame. The frame modes of one constituent fam-

ily may not be orthogonal to modes from the other family. This non-orthogonality

has major implications on the OC-frame-based modal expansion and will be de-

scribed along the way in this chapter. An associated L2 norm can be defined as

||f ||2 = 〈f, f〉
1/2.

The Galerkin projection of Eq. (2.11) on an OC-frame yields a system of dynamic

ODEs that govern the modal expansion coefficients Γ̇n(t), Γn(t) in Eq. (2.8) and

Eq. (2.9) as follows [197]:

Γ̈n(t) = −αΓ̇n(t)− ω
2
nΓn(t)

+

MS∑

m=1

∫∫

S
(m)
ci

ρ0c
2
0

(
ϕS

(m)
ci (~xs, t)

[
Λ−1

∇sφ (~xs)
]
n
− u

S
(m)
ci
s (~xs, t)

[
Λ−1φ (~xs)

]
n

)
d2~xs

+

MH∑

l=1

(γ − 1)Ql(t)
[
Λ−1

〈
φ,H

(l)
i

〉]
n

(2.14)

where terms in the above equation are explained below:

• ωn is pulsation frequency (rad/s) of the natural acoustic modes in OB/OC-
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frame of the subdomain Ωi.

• Subdomain Ωi is coupled/connected to m = 1 to MS adjacent subdomains

over S
(m)
ci connection boundaries.

• In the right hand side, the surface integrals over each S
(m)
ci , are boundary

source terms representing the acoustic potential ϕS
(m)
ci (~xs, t) and acoustic ve-

locity u
S
(m)
ci
s (~xs, t) forcing on Ωi from adjacent subdomains in the network

respectively.

It was necessary to work with acoustic variables - (potential, velocity) instead

of what would have been a more natural choice - (pressure, velocity) since

potential provided crucial simplification in the derivation of Eq. (2.14), par-

ticularly in its inverse Fourier transform from its frequency-domain precursor.

The acoustic potential is defined as:

ϕ(t) = −
1

ρ0

∫
p(t′)dt′ (2.15)

• Gram-Matrix Λ of the OC-frame of Ωi whose elements are given by

Λnm = 〈φn, φm〉 =

∫∫∫
φn(~x)φm(~x)d

3~x (2.16)

Note that in the case of OB, Λnm reduces to a diagonal matrix Λn due to

orthogonality of eigenmodes discussed above. However, OC-frames and their

non-orthogonality have strong implications: its leads to highly ill-conditioned

Gram matrix Λ, the apparition of spurious unphysical modes in the global

network resolution, their interaction, and other numerical challenges - (covered

in Sec. 2.4).

• ∇sφ(~xs) is a column vector containing the normal gradients of the OC/OB

modes on the connection boundaries S
(m)
ci .

• [ ]n denotes the nth component of the column vector.

• A subdomain Ωi can also have none or l = 1 to MH number of heat sources

(or flames) noted H
(l)
i within it, and the last term is this volume source term.〈

φ,Hli(~x)
〉

a column vector containing the inner products, i.e., projection of

the physical flame shape Hli(~x) on the OB/OC-frame modes φn(~x), while Ql(t)

is the global fluctuating heat release rate of corresponding heat sources.

It is worth emphasizing here that it is not necessary to use an OC-frame modal

expansion for all subdomains at all times. The choice is based on geometrical and

physical considerations, as will be pointed out in the following examples in this and

the subsequent chapter. Under many situations, a simple OB basis is sufficient. In
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such a case, the φn(~x) could be replaced by (or would represent) an OB basis, and

the above system of equations (Eq. (2.14)) specific to frames are still applicable,

thanks to their generality. They simply reduce to the classical Galerkin projection

equations due to the orthogonality of OB basis modes. Hence, the proposed OC-

frame expansion is referred to as a generalized modal expansion method [157, 197].

The dynamical system of ODEs in Eq. (2.14) can be recast into a State-space

(SS) sub-model for the acoustic subdomain7 Ωi which is given as follows:

SS Dynamics Equation

d

dt




Γ1(t)

Γ̇1(t)
...

ΓN (t)

Γ̇N (t)




︸ ︷︷ ︸
xΩi (t)

=




0 1

−ω2
1 −α

. . .

0 1

−ω2
N −α




︸ ︷︷ ︸
AΩi




Γ1(t)

Γ̇1(t)
...

ΓN (t)

Γ̇N (t)




+




B
S
(1)
ci

1 . . . B
S
(MS)
ci

1 B
H

(1)
i

1 . . . B
H
(MH)
i

1
...

. . .
...

...
. . .

...

B
S
(1)
ci
N . . . B

S
(MS)
ci

N ′i B
H

(1)
i

N . . . B
H
(MH)
i

N




︸ ︷︷ ︸
BΩi




US
(1)
ci

...

US
(MS)
ci

Q1(t)
...

QMH
(t)




︸ ︷︷ ︸
UΩi (t)

(2.17)

where blocks in the SS input matrix BΩi and SS input vector UΩi(t) are

B
S
(m)
ci
n = ρ0c

2
0∆S

(m)
ci

(
0

−
[
Λ−1φ (~xsm)

]
n

0[
Λ−1∇sφ (~xsm)

]
n

)

B
H

(l)
i

n =

(
0

(γ − 1)
[
Λ−1

〈
φ,H

(l)
i

〉]
n

)
, US

(m)
ci =

(
uS

(m)
ci (~xsm, t)

ϕS
(m)
ci (~xsm, t)

) (2.18)

Here an important assumption is made: that each connection boundary Sci is

spatially very small of surface area ∆Sci, such that acoustic variables can be ap-

proximated to be uniform of on it. This simplifies the boundary surface integral in

Eq. (2.14). The assumption is justified for narrow interconnecting ducts with 1D

acoustic waves as in the previous example, but is not true in general, especially for

7Many state-space (SS) representations, from subdomains to other types of network objects,
that are presented in this manuscript, are also described in the Appendix of C. Laurent’s thesis
[197]. Reproduced here for the ease of readability and explanation of theory and concepts.
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the kind of connection boundaries with large surfaces shown in Fig. 2.7. In this lat-

ter case, the above equations will have to be adapted by spatially discretizing 8 each

connection boundary S
(m)
ci into smaller sub-surfaces (indexed with subscript r) lead-

ing to enlarged block structure inside the SS matrices/vectors: for instance, instead

of each B
S
(m)
ci
n (resp. US

(m)
ci ) there will be B

S
(m)
ci

n,1 · · · B
S
(m)
ci
n,r (resp. U

S
(m)
ci

1 · · · U
S
(m)
ci
r ).

SS Output Equation

Accompanying the SS Dynamics equation is the SS output equation of the sub-

domain given below. Note that the feedthrough matrix D is not required and is

zero.




YS
(1)
ci

...

YS
(MS)
ci




︸ ︷︷ ︸
YΩi (t)

=




C
S
(1)
1

1 . . . C
S
(1)
ci

N
...

. . .
...

C
S
(MS)
ci

1 . . . C
S
(MS)
ci

N




︸ ︷︷ ︸
CΩi




Γ1(t)

Γ̇1(t)
...

ΓN (t)

Γ̇N (t)




︸ ︷︷ ︸
XΩi (t)

(2.19)

where the blocks inside SS output matrix CΩi and output vector Y Ωi(t) are

YS
(m)
ci =

(
us (~xsm)

p (~xsm)

)
, C

S
(m)
ci
n =

(
− 1
ρ0
∇sφn (~xsm) 0

0 φn (~xsm)

)
(2.20)

SS Dynamics Eq. (2.17) convey how the state-vector, for the subdomain Ωi under

consideration, evolves in time under the influence of inputs: the acoustic potential

and velocity boundary forcing from the neighboring subdomains, and volumetric

sources, i.e., flames. Simultaneously, the complementary SS Output Eq. (2.19),

computes the desired acoustic variables (velocity, pressure) from state-variables at

the boundaries of a subdomain as output for the neighboring subdomains. The

modal expansion coefficients are the state variables because their values completely

describe the acoustic field in the subdomain at any time instant.

Accordingly, the above sets of equations together constitute a multi-input multi-

output (MIMO) state-space sub-model for an acoustic subdomain Ωi, which can then

couple with other SS sub-models via Redheffer star product (Sec. 2.1.1) to build a

network of the whole system. It must be highlighted here that an acoustic subdomain

does not communicate directly with another subdomain, but a connection network

element/object in between them facilitates this. The next subsection will elaborate

more on connection elements, their purpose, and how they function.

8Further elaboration on this assumption in the upcoming examples. Also, an alternative ap-
proach employing spectral discretization of large connection boundaries of subdomains, instead of
spatial, is the topic of Sec. 2.3.
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2.2.3 State-space Model of the 1D-1D Connection Element

After dividing a complex system into simpler subdomains as in Figs. (2.1, 2.3, 2.7),

the acoustic subdomains become independent of each other. Then as expected,

special attention is required at the junctions between subdomains for them to be

appropriately coupled. The connection elements/objects in the STORM network

ensure proper communication between subdomains by imposing expected physical

coupling conditions at the junction/interface. For example, the pressure continuity

and acoustic flux continuity is what is imposed by the 1D-1D connection domain

Ωsc in the previous example of Fig. 2.3 - then it is due to sudden section area change

that causes a jump in the acoustic velocity at the interface.

Acoustic subdomains in a STORM network, in general, can be of varied di-

mensions with 1D/2D/3D acoustics. Therefore, different connection elements are

required depending upon the subdomains considered in a pair. E.g., the 1D-1D con-

nection element is the most fundamental type of connector that is explained in this

section below along with its state-space modeling [197]. Other types of connection

elements are presented in the upcoming sections.

Referring to Fig. 2.3, for obtaining a SS submodel for the connection element, a

small fictitious subdomain (or control-volume) Ωsc is considered around the section

change such that its length Lsc <<< L1, L2, i.e. it is acoustically compact. In

reality, the acoustics around sudden section-change is 3D locally; however, these

3D perturbations have negligible impact on the overall acoustics of the ducts and

eigenmodes of the global system. It is therefore not explicitly resolved in Ωsc.

However, instead, an integral approach is employed whereby the acoustics in Ωsc

is expressed with volume-averaged linearized Euler equations (LEE), again under

zero-Mach mean flow conditions (- being consistent with the acoustic subdomains).

Acoustic damping due to conversion into vorticity at the sharp edge is neglected.

Introducing volume-averaged (vol-avg) acoustic pressure (p̄(t)), velocity (ū(t))

and potential (ϕ̄(t)), the vol-avg-LEE is given as [197, 112]:





dū
dt = 1

ρ0Lsc

(
pΩ1(t)− pΩ2(t)

)

dp̄
dt =

2ρ0c20
Lsc(S1+S2)

(
S1u

Ω1
s (t) + S2u

Ω2
s (t)

) (2.21)

where pΩ1(t) and uΩ1
s (t) (resp. pΩ2(t) and uΩ2

s (t)) are the pressure and the normal

acoustic velocity imposed by the subdomain Ω1 (resp. Ω2) onto Ωsc. The + sign

in the second equation is due to the fact that the outer normals at Sc1 and Sc2 (-

connection boundaries of Ω1,Ω2) are defined with respect to Ω1 and Ω2 respectively,

and therefore are pointing in opposite directions [197]. For low-frequencies, these

conservation equations reduce to the classical quasi-static jump relations pΩ1 = pΩ2

and S1u
Ω1
s = −S2u

Ω2
s . Vol.avg. acoustic variables then make an appropriate choice
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of state-variables for the SS sub-model as they completely express the dynamic state

of the connection domain Ωsc under the influence of acoustics from the subdomains

on its two sides (and for their geometrical specificities - section areas for this case).

Pressures and normal velocities imposed back by Ωsc onto the two ducts Ω1

and Ω2 can then be calculated thanks to 0th-order approximations (i.e. piece-wise

constant functions) as:





us (xsc = 0, t) = 1
2

(
1 + S2

S1

)
ū(t), p (xsc = 0, t) = p̄(t)

us (xsc = Lsc, t) = −
1
2

(
1 + S1

S2

)
ū(t), p (xsc = Lsc, t) = p̄(t)

(2.22)

In other words, satisfying the above equations Eq. (2.21) and Eq. (2.22) ensures ap-

propriate coupling and determines the values of acoustic variables on the respective

interfaces of the two subdomains.

The above system can then be recast into a state-space sub-model for coupling

1D-1D subdomains as below:

SS Dynamics:

d

dt




ū(t)

p̄(t)

ϕ̄(t)




︸ ︷︷ ︸
X(sc)(t)

=




0 0 0

0 0 0

0 −1/ρ0 0




︸ ︷︷ ︸
A(sc)




ū(t)

p̄(t)

ϕ̄(t)




+




0 1
ρ0Lsc

0 − 1
ρ0Lsc

2S1ρ0c20
Lsc(S1+S2)

0
2S2ρ0c20

Lsc(S1+S2)
0

0 0 0 0




︸ ︷︷ ︸
B(sc)




uΩ1
s (t)

pΩ1(t)

uΩ2
s (t)

pΩ2(t)




︸ ︷︷ ︸
U(sc)(t)

(2.23)

SS Output:




us(0, t)

ϕ(0, t)

us (Lsc, t)

ϕ (Lsc, t)




︸ ︷︷ ︸
Y(sc)(t)

=




1
2

(
1 + S2

S1

)
0 0

0 0 1

−1
2

(
1 + S1

S2

)
0 0

0 0 1




︸ ︷︷ ︸
C(sc)




ū(t)

p̄(t)

ϕ̄(t)


 (2.24)

Note that the SS submodel of Ωsc connection element outputs acoustic (veloc-

ity,potential) since the subdomains needs expect these quantities in their inputs -

see Eq. (2.17). Similar argument applies to the input vector of Ωsc and output

vectors of the subdomains.
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In closing, it is worth mentioning that the development of other types of connec-

tion, and even impedance objects, is inspired by this fundamental 1D-1D connector

and is based on this idea of vol-avg-LEE in a small fictitious domain surrounding

the connection interface.

2.2.4 State-space Model of the 1D-3D Connection Element

The connection element described in this section couples a 1D acoustic subdomain

with a 3D subdomain.9 This would typically be the case when long narrow ducts

lead to a large cavity. For example, Helmholtz resonators, used as acoustic damping

devices in gas turbines, involve a long narrow duct (neck) attached to a large (cavity);

or narrow duct-like hypothetical burners feeding into a large combustion chamber.

An example calculation of a Helmholtz resonator with STORM is illustrated in the

next Sec. 2.2.5.

This connection element is a special adaptation of the previous 1D-1D connector.

Using the same notations: let Ω1 and Ω2 be the 1D and 3D subdomains, and Ωsc

the fictitious subdomain of small thickness Lsc enclosing the junction. Unlike 1D-

1D case, here the flux conservation equation S1u
Ω1
s = S2u

Ω2
s becomes degenerate

because S1 << S2 and uΩ2
s << uΩ1

s .

In this situation, physically, the acoustic conditions at the junction are such

that the pressure from the cavity is imposed on the duct (just like a duct open to

an atmosphere), and flux from the duct (due to large velocity) is imposed on the

cavity boundary. According to this qualitative explanation, the 1D-1D connector

Ωsc state-space submodel is adapted as follows:

SS Dynamics:

d

dt
(ū(t))︸ ︷︷ ︸
X(sc)(t)

= (0)︸︷︷︸
A(sc)

(ū(t)) +
(

0 1
ρ0Lsc

0 − 1
ρ0Lsc

)

︸ ︷︷ ︸
B(sc)




uΩ1
s (t)

pΩ1(t)

uΩ2
s (t)

pΩ2(t)




︸ ︷︷ ︸
U(sc)(t)

(2.25)

SS Output:




us(0, t)

ϕ(0, t)

us (Lsc, t)

ϕ (Lsc, t)




︸ ︷︷ ︸
Y(sc)(t)

=




1

0

0

0




︸ ︷︷ ︸
C(sc)

(ū(t)) +




0 0 0 0

0 0 0 0

−1 0 0 0

0 0 0 0




︸ ︷︷ ︸
D(sc)




uΩ1
s (t)

pΩ1(t)

uΩ2
s (t)

pΩ2(t)




︸ ︷︷ ︸
U(sc)(t)

(2.26)

9Although it is referred to as 1D-3D connector, it can also be used for 1D-2D connections.
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Note that the above SS dynamics equation imposes only pressure continuity

without influencing velocity. In low-frequency limit, it reduces to quasi-static re-

lation pΩ1(t) = pΩ2(t). While the correct acoustic flux exchange between the two

subdomains is accounted by the SS output equation of Ωsc with the help of a non-

zero feedthrough matrix D(sc). Note here that Ωsc directly transfers velocity uΩ1
s in

input vector (from Ω1) to the output vector (us(Lsc, t), meant for Ω2) with just a

change in the sign.

2.2.5 Example 2: Coupling 1D-3D Acoustic Cavities

This sub-section will demonstrate the calculation of acoustic eigenmodes of a system

comprising 1D and 3D acoustic cavities with STORM as shown in Fig. 2.8. In

the network, acoustic subdomains are coupled with the 1D-3D connection element

described in the previous sub-section. Results are validated with Helmholtz solver

AVSP [127] computations of the whole system. As shown in the Fig. 2.8, the

geometry consists of a large cavity and a long narrow duct (say Neck).

Figure 2.8: (a) System geometry. All global boundaries are presumed

rigid walls. Dimensions and physical paramters in Tab. 2.2 below.

Contours denote the magnitude |p| of complex-valued pressure Mode-

4 (1765.20 Hz) from AVSP. (b) STORM network representation of this

case.

Numerical 3D OB basis for cavity subdomain: It is worth noting here that

for the 3D acoustic subdomain in the STORM network, a simple rigid-wall OB-basis

is sufficient. An OC-frame modal expansion is unnecessary since the Neck is a long,

narrow duct with a tiny cross-section compared to the cavity. In other words, 1D

duct makes a point-like connection with the 3D subdomain. The 2D surface of

the 3D cavity acts as a large rigid wall except for the small connection interface

with the 1D Neck. The 3D OB-basis for the cavity subdomain is constructed in

a separate pre-processing step wherein the rigid-wall eigenmodes of the subdomain
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are computed from FEM Helmholtz solver AVSP [127].

Analytical 1D OC-frame for the neck subdomain: On the other hand, for

the 1D subdomain, at the junction, the acoustic conditions can be expected to differ

from rigid-wall (u′ = 0) or open-atmosphere (p′ = 0) and must remain undetermined

a priori. Therefore, an overcomplete frame CC-CO (just like the 1D ducts example

presented earlier in Sec. 2.2.1) is employed here.

Above geometrical considerations are not valid, of course, when high-frequency

transverse (global system-level) modes are in focus for this or similar configurations.

The 1D subdomain’s OC-frame (and the 1D-3D connector) can inherently repre-

sent/resolve only global modes having 1D spatial dependence in the Neck. Local-

ized cavity-level transverse modes, for which the acoustic perturbation in the Neck

is negligible (i.e., decoupled cavity eigenmodes) are, however, correctly predicted by

STORM for the current network construction - e.g.: the Mode-5 in Tab. 2.2. This

is expected since they are naturally present in the rigid-wall OB basis of the 3D

cavity.

Table 2.2 gives results of the first few computed eigenfrequencies of the res-

onator from AVSP and STORM. An overall good agreement can be observed in the

frequencies with less than 1.0 % error.

Parameters Mode AVSP STORM Nature

c0 = 347.0 m/s 1 332.72 329.571 1L

P0 = 1 atm, ρ0 = 1.17 kg/m3 2 941.74 932.54 2L

S1 = 0.02, S2 = 0.08 (m2) 3 1540.00 1525.61 3L

L1 = 0.27 , L2 = 0.10 (m) 4 1765.20 1758.05 4L

5 2174.25 2169.63 1T

Table 2.2: Frequencies (Hz) of the first few acoustic eigenmodes of the

system in Fig. 2.8. Physical and geometrical parameters for the specific

problem solved are as given in the first column. L : Longitudinal, T :

Transverse.

The pressure magnitude of the fourth mode (1765.20 Hz) computed for the

whole geometry in AVSP is depicted in Fig. 2.8(a). It is a higher-order longitudinal

mode, and a detailed comparison of its mode structure (pressure and axial velocity)

between reference AVSP and STORM network resolution is provided in Fig. 2.9.

The mode structure is plotted along a center-line passing through both the neck and

the cavity in Fig. 2.9.

In Fig. 2.9, the acoustic Mode-4 overall pressure shape is captured reasonably

well by STORM network employing 1D-3D connector, though, at the point-like

junction, there is a minor discrepancy in the case of STORM. For velocity, in AVSP,

the velocity perturbation magnitude drops sharply but continuously at the interface
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Neck Cavity

CavityNeck

Neck Cavity

Neck Cavity

(a) (b) 

Figure 2.9: Structure of longitudinal Mode-4 in Tab. 2.2 along the center

line passing through the system. (a) Pressure magnitude and phase. (b)

Axial velocity magnitude and phase.

since it is resolved over a mesh. STORM, however, predicts the velocity jump at

sudden expansion notably without the Gibbs effect. Overall, the global system mode

structure and frequencies are predicted well.

2.3 Surface Spectral Connections

This section is dedicated to introduce and describe the fundamental working prin-

ciple of surface spectral connections [198, 197, 199]. It is a methodology devised

that facilitates coupling between network subdomains with 2D or 3D acoustics over

topologically large and curved boundary interfaces. Thanks to OC-frame expan-

sions, these special class of connection elements also provide an opportunity to

impose Rayleigh conductivity or complex impedance on the interface/boundary of

the subdomain to model it as a multi-perforated liner wall / complex-impedance

boundary.

It was mentioned earlier how 1D subdomains make point connections with other
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subdomains in a network. Acoustic variables, indeed, are uniform in the trans-

verse direction in 1D subdomains by definition, and they only have a longitudinal

spatial dependence. However, connections between 2D-2D (or 2D-3D) and 3D-3D

subdomains in a network would constitute line-connection and surface-connection

respectively. For any generic subdomain Ωi, the surface integrals in the boundary

acoustic forcing terms in Eq. (2.14) (the system of ODEs governing modal expan-

sion coefficients) simplify for point connections to the variable values at the bound-

ary. Evaluation of these surface integrals in the case of multi-dimensional surface-

(or line-) connections is the key challenge addressed by this spectral connections

methodology [198, 197].

Recall from Sec. 2.2.2, Eq. (2.17) another relevant point, where this assumption

was invoked that each connection boundary Sci of any generic acoustic subdomain

is spatially very small of surface area ∆Sci. Certainly, when multi-dimensional

2D/3D subdomains are to be coupled, this assumption is clearly invalid. One ap-

proach to solving this problem that was initially examined was to spatially dis-

cretize the boundary surface into a smaller number of surface elements such that

the variables could be considered uniform over each of them, thus leading to a piece-

wise approximation of the surface integrals. This approach did work in the case

of simple subdomains for which OC-frames are prescribed analytically. However,

numerical issues and inconsistent results were encountered [197] in cases where sub-

domain frames were numerically generated from a FEM-based Helmholtz solver.

Besides that, deciding on the locations where a complex 3D configuration should be

split/decomposed to build a network and the optimum number of discretized sub-

surfaces on each connection interface is practically not straightforward. To over-

come these aforementioned challenges, the current methodology relying on spectral

discretization was developed.

2.3.1 Illustrative Examples: Coupling 3D-3D Subdomains

The modeling principles underlying surface spectral connections are explained over

the following sub-sections with the help of a couple of examples. While surface-

type connections are considered in these examples, an analogous explanation would

apply to line spectral connections as well.

Consider the first example (Ex-1) where a simple acoustic network of two 3D

subdomains — rectangular Box1 (say subdomain Ωi) and Box2 (subdomain Ωj) as

shown in Fig. 2.10 (exploded view), that are to be coupled together to compute

the natural acoustic eigenmodes of the combined system. For doing so, a (3D-3D-

Conn: 3D-3D surface spectral connection element) is defined by considering a thin,

fictitious, shell-like (quasi-2D) connection domain (or control volume) Ωsc as shown

in Fig. 2.10, quite analogous to the 1D-1D connector discussed earlier. The Ωsc
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A pressure eigenmode of the combined system

Box1

Box2

Connection 

domain

A fictitious surface 
connection domain

AVSP STORM

388 hz 386 hz

Figure 2.10: Example 1 (Ex-1): Two 3D subdomains coupled to each

other via a surface spectral connection in STORM. A multi-dimensional,

natural acoustic pressure eigenmode of the combined system compared

with that obtained from Helmholtz solver AVSP[127]. Parameters: Box1

length = 0.4 mm, Box2 length = 0.6 mm, both boxes height = 0.5 mm,

width = 0.4 mm, P0 = 1 atm, c0 = 347.0 m/s, ρ0 = 1.17 kg/m3.

domain is topologically identical in shape, enclosing the connection interface i.e.

boundaries Sci and Scj of subdomains Ωi and Ωj respectively. Note that the sub-

domain connection interfaces, and thus the connection domain, could be arbitrarily

curved shaped too.

Another canonical example (Ex-2) to illustrate surface spectral connections is

depicted in Fig. 2.11, where the cylindrical and annular cavities are considered

being acoustically coupled through multi-perforated (MLPF) liner wall. Let’s call

the connection element in the following as 3D-3D-MLPF. Therefore, the aim, in this

case, is to model the connection interface as a liner-wall by imposing its characteristic

Rayleigh conductivity [83, 132, 208], given by well-known Howe’s model [82] as the

physical coupling condition between the subdomains. STORM results are validated

against AVSP [127, 132].

Unlike previous Ex-1 Fig. 2.10, the Howe’s model is the physical coupling con-
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0.208 m
0.26 m

Gap = 

0.002 m

Cylinder and annular 
cavities separated with 

a multi-perforated liner.

AVSP STORM

1st Azimuthal mode

(392.49 – i7.06) hz (395.37 – i7.11) hz

(803.91 – i47.32) hz (809.0 – i49.31) hz

1st Radial mode

Figure 2.11: Example-2 (Ex-2): Surface spectral connection for model-

ing multi-perforated liner between the annular (Ω1) and cylindrical Ω2

cavities. Two eigenmodes of the system, their frequencies and growth

rates noted at the bottom of each. Note that the thin surface connection

domain Ωsc in between the two subdomains is not shown.

dition that is enforced by the surface spectral connection domain Ωsc (not shown in

Fig. 2.11). The acoustic damping effect induced by the liner is captured fairly well

in STORM as highlighted from a couple of system eigenmodes and their negative

growth rates.

2.3.2 Curvilinear Helmholtz Equation

First step in developing surface-spectral connections framework is to derive set of

equations governing the acoustics over the topologically large, curved connection

domain Ωsc. Laurent et al. [198, 197] derived set of linearized Euler Equations

(LEE) in a curvilinear spatial coordinate system: (α, β, ξ), where (α, β) are two

tangential directions and ξ the normal direction of the connection boundaries Sci
and Scj .

The equations are averaged along the ξ-direction, under the limit that thickness

of Ωsc, LD → 0, and are expressed in terms of ξ-averaged acoustic pressure p̄(α, β, t)

and normal velocity ūξ(α, β, t). In these curvilinear LEE equations, the pressure

variable p̄ is replaced by acoustic potential ϕ̄, to obtain the curvilinear Helmholtz
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Equation in ϕ̄ as below. The accompanying LEE momentum equation in ūξ(α, β, t)

required later, is also given





∂ūξ
∂t (α, β, t) =

1
LDρ0

[
pΩi(α, β, t)− pΩj (α, β, t)

]

c20∇
2
cϕ̄(α, β, t)−

∂2ϕ̄
∂t2

(α, β, t) =
c20
LD

[
uΩi

ξ (α, β, t)− u
Ωj

ξ (α, β, t)
] (2.27)

where ∇2
c is the curvilinear Laplacian operator. Note that the superscripts Ωi (resp.

Ωj) denote the corresponding physical quantities on the connection boundary Sci

(resp. Scj), respectively.

The above set of ξ-averaged equations govern the acoustics in Ωsc, i.e. at the

connection interface, under the influence of acoustics from neighboring subdomains.

Eq. (2.27), meant for developing 3D-3D surface spectral connection element, are

analogous to the volume-averaged LEE (Eq. 2.21) for 1D-1D connection discussed

earlier but with a major difference: while in case of 1D-1D point connection, those

Eq. (2.21) could be directly represented into state-space form. However this is

not possbile for in the current surface connection case, where acoustic variables are

varying spatially in transverse directions (α, β). This challenge is addressed with

so-called surface modal expansion elucidated in the following Sec. 2.3.4.

2.3.3 Embedding Coupling Conditions

For 1D-1D connection, Eq. (2.21) inherently imposes acoustic pressure and flux

continuity, and thus also includes jump conditions owing to sudden section change

— see Sec. 2.2.3. Likewise, pressure and flux continuity can be imposed by above Eq.

(2.27) , as demonstrated in Ex-1 in Fig. 2.10. Besides such basic acoustic coupling

of subdomains, thanks to OC-frame modal expansions, the ξ-averaged curvilinear

Helmholtz equations (resp. vol. avg. LEE in 1D-1D case) can be embedded with

other non-trivial physical coupling conditions such as: Complex Acoustic Impedance

Z(jω) or MLPF-liner Rayleigh Conductivity KR(jω). The Ex-2 in Fig. 2.11 is an

example of the latter. In fact, any generic impedance/conductivity models, if are or

can be expressed in form of a rational polynomial10 Z(jω) = N (jω)/D(jω), where

numerator N and denominator D are polynomials in jω, can be implanted into such

ξ-averaged curvilinear Helmholtz equation (resp. 1D vol. avg LEE). An example of

acoustic impedance applied to the outlet of a real engine combustor is provided in

Sec. 3.3 of following Chapter 3. 11

10Chapter 4 will discuss in detail about generating impedance/FTF models (more precisely,
state-space models) from data acquired in experiments or high-order simulations via rational ap-
proximations.

11Chapter 5 will illustrate 1D case imposing at the outlet a more complex impedance model of
supersonic choked nozzle for predicting mixed entropy-acoustic instabilities.



2.3. Surface Spectral Connections 57

2.3.3.1 State-space sub-model for MLPF-liner Conductivity (KR(jω)):

The mathematical formulation of the Surface spectral connection element, specifi-

cally for the case of MLPF-liner (3D-3D-MLPF connection), is presented along with

key equations over the remaining of the following sub-sections. In continuation of

the point made above regarding coupling conditions, an acoustic conductivity model

for an MLPF-liner must be included in the curvilinear Eq. (2.27). Similarly, anal-

ogous surface spectral connectors can be deduced for other coupling conditions by

slightly adapting the equations.

MLPF liner plates/walls usually have some finite thickness (h), innumerous small

apertures of radius (a), with inter-aperture spacing (d), and have a bulk bias flow

speed U through them. These liners impose the following acoustic jump conditions

across them [82, 132]. Thus this infinitesimally thin interface between two 3D sub-

domains (Ωi and Ωj), which is enclosed inside connection domain Ωsc, is expected

to model/impose these jump conditions:





û
Ω

(−)
i

ξ (α, β, ω) = û
Ω

(+)
j

ξ (α, β, ω)

[
p̂Ω

(+)
j (α, β, ω)− p̂Ω

(−)
i (α, β, ω)

]
= −jωd2ρu

KR(jω) û
Ω

(−)
i

ξ (α, β, ω)

(2.28)

Note that the above liner coupling/jump conditions are expressed in frequency-

domain. The superscripts Ω
(−)
i denote the acoustic variables just upstream of the

connecting surface Sci, and Ω
(+)
j are values just downstream of connecting surface

Scj . KR is the Rayleigh conductivity, whose value depends on the geometry of liner

plate, physical properties of the fluid, and is given by the well-known analytical

Howe’s model [82, 132]. Howe’s model for KR is a complex frequency-dependent

function involving Bessel’s functions and thus is not feasible to be directly inserted

into Eq. (2.28) for subsequent mathematical development and state-space formu-

lation. Therefore, Laurent et al. [198, 197] proposed replacing the original model

with its simpler 2nd-order polynomial expansion as below:

KR(jω) = −K
A
Rjω −K

B
R (jω)

2, with KA
R = −

πa2

2U
, KB

R =
2a3

3U2
+
πa2h

4U2
(2.29)

The above expansion accurately approximates the original model with discrepan-

cies less than 1% for (aω/U) ≤ 0.2, condition that is satisfied for most practicat

situations.

For given conductivity KR, the second row in Eq. (2.28), basically relates

pressure-jump across the liner (interface) to upstream velocity. Using inverse Fourier

transform, this same equation can be expressed as a single-input single-output

(SISO) state-space realization AKR
,BKR

,CKR
as follows [198, 197].
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SS-Dynamics:

d

dt
(z(t))︸ ︷︷ ︸
XKR

(t)

=
(
−KA

R/K
B
R

)
︸ ︷︷ ︸

AKR

(z(t)) +
(
−1/KB

R

)
︸ ︷︷ ︸

BKR

(
si

(
uΩi

S | Kk

))

︸ ︷︷ ︸
UKR

(t)

(2.30)

SS-Output:

(YKR
(t)) =

(
−ρud

2
)

︸ ︷︷ ︸
CKR

(z(t)) (2.31)

Above state-space model, with some abstract state-variable z(t), relates output in

time-domain YKR
(t) (pressure-jump) to input UKR

(t) (velocity). The expression for

input UKR
(t) = si

(
uΩi
s | Kk

)
will be elaborated in the upcoming sub-sections. It is

the projection of velocity uΩi
s on the so-called surface modal basis (Kk) introduced

in the next subsection.

Finally, the above liner coupling/jump condition, in the form of a SISO state-

space representation, can be embedded into the curvilinear Eqs. (2.27) for connec-

tion domain Ωsc as follows:




∂ūξ
∂t (α, β, t) =

1
LDρ0

[
pΩi(α, β, t)− pΩj (α, β, t) + YKR

(t)
]

c20∇
2
cϕ̄(α, β, t)−

∂2ϕ̄
∂t2

(α, β, t) =
c20
LD

[
uΩi

ξ (α, β, t)− u
Ωj

ξ (α, β, t)
] (2.32)

For the given conductivity KR, the SISO state-space model will output the

expected pressure jump across the liner, which is then enforced by the YKR
(t) term

in the above curvilinear equation. Eventually, this models the interface between Ωi

and Ωj as an MLPF-liner. If there is no liner, there is no pressure jump, YKR
(t)

vanishes, and the original curvilinear Eqs. (2.27) is retrieved that enforces acoustic

pressure and velocity continuity, as necessary for the basic acoustic coupling between

the two 3D subdomains (Fig. 2.10).

2.3.4 Surface Modal Expansion

Previous subsections derived the set of curvilinear Eqs. (2.32) with MLPF-liner

coupling conditions implanted, which govern the acoustics in the vicinity of the

connection interface as per the acoustic conditions in the neighboring subdomains

Ωi and Ωj .

The next and final objective is to derive a SS submodel (for the network con-

nection element 3D-3D-MLPF ), that couples with SS submodels of the acoustic

subdomains. This is to solve the Eqs. (2.32), determine the appropriate acoustic

variables ϕ̄(α, β, t) and ūξ(α, β, t) on the connection surfaces Sci and Scj , while re-

specting the coupling conditions, when the global network is resolved. Recall, it

was mentioned earlier that Eqs. (2.32) cannot be directly transformed into a SS
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submodel due to transverse spatial (α, β) variability of acoustic variables. To deal

with this, instead of spatially discretizing the connection surface, another approach

based on spectral discretization was developed [198, 197] by introducing surface

modal expansion.

The idea behind surface modal expansion is that the ξ-averaged acoustic vari-

ables ϕ̄(α, β, t) and ūξ(α, β, t) in the connection domain are sought by expanding

them over an orthogonal basis (Kk(α, β)) of known natural surface eigenmodes of

the middle-surface Ssc of thin Ωsc domain, as below:

ϕ̄(α, β, t) =

Ks∑

k=1

νk(t)Kk(α, β) = νT (t)KKK (~xs)

ūξ(α, β, t) =

Ks∑

k=1

µk(t)Kk(α, β) = µT (t)KKK (~xs) (2.33)

The middle-surface Ssc is thus strictly a curved 2D manifold (α, β) even through

Ωsc was considered of infinitesimal thickness, LD → 0. The finite number (Ks) of

2D surface eigenmodes in the basis (KKK (~xs)) are determined a priori from analytical

or numerical solutions of homogeneous curvilinear Helmholtz equation below:





c̄0
2∇2

cKk(α, β) + ω2
kKk(α, β) = 0 over Ssc

Kk = 0 or ~∇cKk = 0 on ∂Ssc

(2.34)

where, ∇2
c and ~∇c are curvilinear Laplacian and gradient operators [198, 197], ∂Ssc

are the 1D contours of peripheral/lateral boundary of the 2D middle-surface ∂Ssc,

and the above homogeneous Dirichlet or Neumann boundary condtions on ∂Ssc must

be chosen to match the lateral BCs of subdomains Ωi and Ωj .

The OB basis of natural surface eigenmodes follows the 2D surface inner product:

(f |g) =

∫∫

Ssc

f(~xs)g(~xs)d~xs (2.35)

and the squared L2 norm of the basis surface eignemodes are noted as λk = (Kk|Kk).

In practice, the surface OB basis is generated not by directly solving Eq. (2.34),

but solving the regular cartesian homogeneous Helmholtz equation over a very thin

fictitious shell-like domain (synonymous to Ωsc) as shown in Fig. 2.10, for example.

The quasi-2D modes are then projected onto a 2D-manifold/surface.

Finally, the last step to derive equations governing the unknown surface modal

expansion coefficients νk(t) and µk(t) is described next. The classical Galerkin

projection procedure [197] is then replicated by substituting the surface modal ex-

pansion in Eq. (2.33) into the inhomogeneous curvilinear Eqs.(2.32) presented in the

previous subsection. In addition, the source terms in those equations — the acoustic
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pressure and velocity on connections boundaries Sci and Scj— are substituted from

OC-frame modal expansions of subdomains Ωi and Ωj , i.e. Eq. (2.8) and Eq. (2.9).

As a result, the following dynamical systems of ODEs are obtained that governs the

values of the surface modal expansion coefficients of Eq. (2.33).

ν̈k(t) + ω2
kνk(t) = −

c0
2

λkLD


si

N(i)∑

n=1

−
1

ρ
(i)
0

(
∇sφ

(i)
n | Kk

)
Γ(i)
n (t)

− sj

N(j)∑

n=1

−
1

ρ
(j)
0

(
∇sφ

(j)
n | Kk

)
Γ(j)
n (t)


 (2.36)

µ̇k(t) =
1

λkLDρ0


si

N(i)∑

n=1

(
φ(i)n | Kk

)
Γ̇(i)
n (t) + sj

N(j)∑

n=1

(
φ(j)n | Kk

)
Γ̇(j)
n (t)

+ si

N(i)∑

n=1

−
1

ρ
(i)
0

(
∇sφ

(i)
n | Kk

)
YKR

{
Γ(i)
n (t)

}

 (2.37)

In the above two systems of ODEs, note the subscript k. It refers to the kth com-

ponent for k = 1 to Ks, Ks being the number of modes (dimension) of the surface

modal basis. Terms in the above equations are explained further below:

• The superscripts (i) and (j) refer to quantities evaluated in subdomains Ωi, Ωj

of OC frame sizes N (i), N (j) respectively.

• si = ~n
(i)
s · ~eξ = ∓1 and sj = ~n

(i)
s · ~eξ = ±1 (such that sisj = −1) defines the

orientation of the subdomains, i.e. their outwards normals ~n
(i)
s on Sci with

respect to some chosen orientation of the normal ~eξ of the middle-surface.

(Resp. for Scj).

• In Eq. (2.37), the term
(
φ
(i)
n | Kk

)
is the scalar inner product of profile of

nth OC-frame mode of Ωi on its connection surface Sci, with kth component of

independently computed surface modal basis Kk. The first term in Eq. (2.37)

inside the bracket, from Eq. (2.8), is thus also ≡ si
(
p(i) | Kk

)
. (Resp. for

boundary Scj).

• In Eq. (2.36), the term
(
∇sφ

(i)
n | Kk

)
can be explained same as above point,

but for the normal gradient of the frame mode on connection surface Sci.

The first term in Eq. (2.36) inside the bracket, from Eq. (2.9), is thus also

≡ si
(
u
(i)
s | Kk

)
. (Resp. for boundary Scj).

• The presence of the time-dependent subdomain modal amplitudes Γ
(i)
n (t),

Γ̇
(i)
n (t), Γ

(j)
n (t) and Γ̇

(j)
n (t) corroborates that the surface connection element

indeed couples the acoustics in Ωi to that in Ωj , and vice versa.
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• The last term in Eq. (2.37) appears from the SISO state-space sub-model for

MLPF-liner conductivity coupling condition discussed earlier in Sec. 2.3.3.1.

Note that this term would be absent for Ex-1 in Fig. 2.10 - a case of basic

coupling between two 3D subdomains where YKR
= 0.

Recall the original challenge for which the current spectral connections method-

ology was developed in the first place: the evaluation of surface integral source terms

in the dynamical system of ODEs Eq. (2.14) that governs the modal expansion co-

efficients of the subdomain. Note that these boundary source terms are exerted by

the neighboring subdomain, not directly, but through the relevant connection ele-

ment. Therefore, ultimately the surface modal expansions of Eq. (2.33) allow these

surface integrals to be rewritten as follows (in compact vector/matrix notations):

∫∫

S
(m)
ci

ρ0c
2
0 ϕ

S
(m)
ci (~xs, t)

[
Λ−1

∇sφ (~xs)
]
n
d2~xs =

ρ0c
2
0

[
Λ−1

(
∇sφ|KKK

T
)]
n,∗

ν(t) (2.38)

∫∫

S
(m)
ci

ρ0c
2
0 u

S
(m)
ci
s (~xs, t)

[
Λ−1φ (~xs)

]
n
d2~xs =

siρ0c
2
0

[
Λ−1

(
φ|KKK T

)]
n,∗

µ(t) (2.39)

where [M]n,∗ denotes the nth row of the matrix M. The surface source terms in

Eq. (2.14) are now evaluated thanks to the surface modal projections
(
φ|KKK T

)

and (∇sφ|KKK
T ) [198, 197] instead of simple spatial discretization and piecewise

approximation.

In Ex-2 depicted in Fig. 2.11, cylindrical and annular cavities separated by a

multi-perforated liner are modeled in STORM with 3D-3D-MLPF surface spectral

connection. Unlike Ex-1 in Fig. 2.10, where basic coupling (3D-3D-Conn) is em-

ployed, Howe’s MLPF conductivity model is enforced in Ex-2. The acoustic damping

effect induced by the liner is captured fairly well in STORM, as highlighted from a

couple of system eigenmodes and their negative growth rates. The STORM results

are validated with FEM Helmholtz solver AVSP [127, 132].

2.3.5 SS sub-model for 3D-3D-MLPF Liner Spectral Connection

The systems of ODEs, Eq. (2.36) and Eq. (2.37), can be converted into a MIMO

state-space submodel representing the 3D-3D-MLPF surface spectral connector in

the network coupling two 3D subdomains. Here this subsection will present the

general state-space (SS) representation of this connection element.

To help ease the rigorous notations in the upcoming equations, refer back to

Fig. 2.7 as a quick reminder. The following is a SS submodel of the surface spectral
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connection element, at boundary S
(m)
ci of subdomain Ωi with its neighbor Ωj , consid-

ering it to be an MLPF-liner (3D-3D-MLPF). As discussed earlier, this framework

will largely remain the same and would require only small adaptations for other

kinds of spectral connections, viz. the basic acoustic coupling (3D-3D-conn) or

complex impedance boundary (3D-Z-conn).

Note that the surface spectral connections framework is similar to the 1D-1D

connection element in many ways, just that the equations are a bit more involved.

It is urged strongly to compare the SS submodel of 1D-1D point-like connector dis-

cussed in Sec. 2.2.3 with the following, to better appreciate the SS realization of

surface 3D-3D-MLPF connector.

SS Dynamics:

All the k = 1 to Ks components can be put together in a matrix block structure

to yield the following realization for SS dynamics equation:

d

dt




X
S
(m)
ci

1
...

X
S
(m)
ci

Ks




︸ ︷︷ ︸
X

S
(m)
ci (t)

=




A
S
(m)
ci

1
. . .

A
S
(m)
ci

Ks




︸ ︷︷ ︸
A

S
(m)
ci




X
S
(m)
ci

1
...

X
S
(m)
ci

Ks


+




B
Ωi,j

1
. . .

B
Ωi,j

Ks




︸ ︷︷ ︸
B

S
(m)
ci




U
Ωi,j

1
...

U
Ωi,j

Ks




︸ ︷︷ ︸
U

S
(m)
ci (t)

(2.40)

where the kth component block of the state-vector X
S
(m)
ci

k , dynamics-matrix A
S
(m)
ci

k ,

input-matrix B
Ωi,j

k and input-vector U
Ωi,j

k are as given below:

X
S
(m)
ci

k =




νk(t)

ν̇k(t)

µk(t)

XKR,k(t)


 , A

S
(m)
ci

k =




0 1 0 0

−ω2
k 0 0 0

0 0 0 1
λkLρ0

CKR

0 0 0 AKR




B
Ωi,j
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0 0 0 0

− c02

λkLD
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si
(
uΩi
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)

si
(
pΩi | Kk

)

sj

(
u
Ωj
s | Kk

)

sj
(
pΩj | Kk

)




(2.41)

In the above equation, note the terms with subscript KR
. It is the SISO state-space

submodel for Howe’s conductivity KR(jω) — Eqs. (2.30), (2.31), that is embed-
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ded in the SS representation of the current 3D-3D-MLPF connector. A natural

choice of state-variables are the unknown surface modal expansion coefficients and

the state-variable from SISO model stacked together. The SS input vector of 1D-1D

connector in Eq. (2.23) had velocity and pressure at point interfaces with both the

subdomains. In this case, there are Ks component blocks in the input vector, and

a kth block has velocity, pressure projections of subdomain boundaries on the kth

component (direction) of the surface modal basis — cf. Eqs. (2.37) and (2.36)).

SS Output:

The SS output vector of the 1D-1D connector in Eq. (2.24) had appropriate

values of acoustic velocity and potential that respect the coupling conditions, which

are imposed back at point locations of both the subdomains. Similarly, in this case,

the 3D-3D-MLPF connection element should output appropriate acoustic variables

back on the surfaces of the subdomains. The SS output equation is given as follows:




Y
Ωi,j

1
...

Y
Ωi,j

Ks




︸ ︷︷ ︸
Y

S
(m)
ci

(t)

=




C
Ωi,j

1
. . .

C
Ωi,j

Ks




︸ ︷︷ ︸
C

S
(m)
ci




X
S
(m)
ci

1
...

X
S
(m)
ci

Ks




︸ ︷︷ ︸
X

S
(m)
ci (t)

(2.42)

where the kth component block of output-matrix CS
(m)
ci and output-vector YS

(m)
ci is:

Y
Ωi,j

k =




µk(t)

νk(t)

µk(t)

νk(t)


 , C

Ωi,j

k =




0 0 1 0

1 0 0 0

0 0 1 0

1 0 0 0


 (2.43)

Note that the 3D-3D-MLPF connection element simply outputs the surface modal

expansion coefficients to both the subdomains so that their surface integral source

terms, from this particular connection, can be determined as in Eq. (2.38) and Eq.

(2.39). However, the source terms are actually computed in the SS submodel of the

subdomain Ωi (resp. Ωj) as detailed in the following subsection.

2.3.6 Adapted SS sub-model of Acoustic Subdomain for Spectral

Connection

Earlier Sec. 2.2.2 detailed the SS representation of a generic acoustic subdomain in

a STORM network — see Eqs.(2.17), (2.19). However that representation assumed

point-like connection interfaces. For larger surface connections, it was mentioned

how the connection interfaces could be spatially discretized leading to an enlarged

block structure of SS input/ouput matrices/vectors.
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Similarly, in the case of surface spectral connections too, the aforementioned SS

realization needs to be adapted or expanded: over the Ks components of the surface

modes (i.e., spectrally discretized) instead of small spatial surface elements. These

SS equations for a subdomain Ωi making surface spectral connection are indicated

below. For the sake of conciseness, Ωi here is assumed to only couple with another

subdomain over a 3D-3D-MLPF type surface connection, and there are no other

point/surface connections or even any flames within.

SS Dynamics:

d

dt




Γ1(t)

Γ̇1(t)
...

ΓN (t)
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
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


U
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1
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U
S
(m)
ci

Ks




︸ ︷︷ ︸
UΩi (t)

(2.44)

where the blocks B
S
(m)
ci

n,k and U
S
(m)
ci

k in the input matrix and input vector are

B
S
(m)
ci

n,k = ρ0c
2
0

(
0 0

−si
[
Λ−1

(
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(m)
k

)]
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(
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(m)
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)
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)
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1
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
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(
u
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(m)
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(
ϕS

(m)
ci | Kk

)




(2.45)

The input matrix BΩi along with the input vector UΩi(t) evaluates the overall

boundary surface integral source terms from Eqs. (2.38), (2.39). The input vector

in this case have surface modal expansion coefficients from the 3D-3D-MLPF con-

nection element consistent with its SS output vector (Eq. 2.42), unlike point values

of acoustic velocity us and potential ϕ in Eqs.(2.17).

SS Output:



2.4. Solver Structure, and Numerical Strategies for Spurious
Eigenmodes 65



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1
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Y
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


︸ ︷︷ ︸
CΩi




Γ1(t)

Γ̇1(t)
...

ΓN (t)

Γ̇N (t)


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XΩi (t)

(2.46)

where the blocks C
S
(m)
ci

k,n and Y
S
(m)
ci

k in the output matrix and output vector are

Y
S
(m)
ci

k = si

(
(us | Kk)

(p | Kk)

)
, C

S
(m)
ci

k,n = si

(
− 1
ρ0

(∇sφn | Kk) 0

0 (φn | Kk)

)
(2.47)

SS output equation of the subdomain Ωi in this case will compute and output

projection components of surface values of acoustic velocity and pressure on the

connection boundary consistent with the input vector of 3D-3D-MLPF connector

(Eq. 2.40), unlike point-values in Eq. (2.19).

In closing this Sec. 2.3 on surface spectral connections methodology, it can be

overall summarized as follows: A network including surface spectral connection can

be viewed as a nested and coupled modal expansion (Galerkin projection) problem.

The acoustic field in a subdomain, expanded onto a modal OC-frame, depends on

the boundary forcing from adjacent subdomains through a fictitious 2D connection

domain/element imposing coupling conditions; and these boundary source terms

are further expanded onto an orthogonal basis of surface eigenmodes. The surface

source terms evaluated based on a finite number of surface eigenmodes imply spectral

discretization rather than spatial. Hence the name surface spectral connections.

2.4 Solver Structure, and Numerical Strategies for Spu-

rious Eigenmodes

This section will briefly discuss the implications, underlying challenges associated

with OC-frame modal expansions compared to classical OB-basis, and numerical

strategies/procedures to deal with them. Motivation and fundamental ideas behind

these strategies are summarized only qualitatively. Complete mathematical details

are not repeated here and can be found in (Ch. 3, Sec. 3.5 of C. Laurent thesis

[197]).

Figure 2.12 portrays the internal structure of the core STORM solver and its

workflow. The first important step is to build individual state-space submodels of

all the network objects. It is followed by assembling all of the MIMO SS submod-

els together through recursive Redheffer Star Product presented earlier in Sec. 2.1.1.
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Figure 2.12: Work flowchart of STORM, including the core solver that

builds, assembles state-space submodels of network objects, and solves

the global system. API hosting the pre- and post-processing tools that

interact with other CERFACS codes is also highlighted. Figure adapted

from C. Laurent thesis [197].
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General Internal Structure of Global SS Dynamics Matrix:

In STORM, all the network objects can be classified into two broad classes:

(i) Passive Elements that contain acoustic subdomains, connection, and impedance

elements; and (ii) Active Elements that comprise of flame elements. A convention

that is followed while assembling SS blocks is that all the passive elements are

assembled first, and the active (flame) SS blocks are appended at the last — reason

for this will be clarified shortly in the following. After assembling all the network

SS subsystems, the matrix block structure of global SS dynamics matrix can be

represented as follows:

Af =

(
Aa Cfl→a

Ca→fl Afl

)
(2.48)

where Aa and Afl are blocks containing SS dynamics matrices of the passive ele-

ments and flame elements, respectively. Cfl→a contains the coupling blocks from

flames to acoustic elements (i.e., the heat-release source terms), while Ca→fl rep-

resents the coupling from the acoustic elements to flames (i.e., velocity or pressure

fluctuations at the reference points, that are prescribed for FTFs).12

In the absence of flames, Af = Aa, it represents the passive acoustic network,

and its eigensolutions give the natural eigenmodes of the global system. Thermoa-

coustic modes can then be found after coupling the acoustic network Aa with the

flame elements Afl. Depending upon the number of passive elements, Aa will have a

large matrix block structure internally after SS assembly. For instance, the global SS

dynamics equation, depicting the internal block structure of the 1D-ducts example

discussed earlier in Sec. 2.2.1, Fig. 2.3 is as follows:

d

dt




X(1)(t)

X(sc)(t)

X(2)(t)




︸ ︷︷ ︸
Xf (t)

=




A(1) B(1)C
(sc)
1 0

B
(sc)
1 C(1) A(sc) B

(sc)
2 C(2)

0 B(2)C
(sc)
2 A(2)




︸ ︷︷ ︸
Af




X(1)(t)

X(sc)(t)

X(2)(t)


 (2.49)

where, A,B,C are SS dynamics, input and output matrices, and the superscripts

(1, 2, sc) denote subdomains Ω1, Ω2 and 1D1D connector Ωsc respectively.

Energy-based Criterion for Identification of Spurious Modes:

While they have their advantages, OC-frames come at the cost of heightened

numerical issues. Over-completeness of frames (i.e., they are a superposition of two

OBs), and the non-orthogonality of frame modes - highlighted earlier in Sec. 2.2.2,

leads to the following key problems:

12Following Ch.3 will present STORM examples with flames, and Ch.4 will dive deep into linear
flame response (FTF) modeling in STORM.
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1. Highly ill-conditioned Gram Matrix Λ : The condition number, C(Λ) = |Λ||Λ−1|

(where |Λ| is the Frobenius matrix norm) can typically go as high as 1020 to

1024. The set of ODE’s governing the modal expansion coefficients of a subdo-

main - (Eq. (2.14)), involves Λ−1. Calculating Λ−1 is the first basic numerical

difficulty, and it is achieved by employing the Singular-Value-Decomposition

(SVD) based Moore-Penrose pseusdo-inverse - (see [197] for more details).

During each STORM calculation, the errors stemming from inversion of Λ of

each subdomain in the network is typically cross-checked aposteriori to remain

low.

2. Spurious components : Due to the inherent overcomplete nature of frames,

even after accurate inversion of Λ, there still exist spurious components in

Eq. (2.14) governing the unknown state-variables or the modal expansion

coefficients. The components appear in the final global system resolution

as unphysical, spurious modes with frequencies comparable to sought-after

physical modes. Therefore, a technique for automatically identifying these

spurious modes was critical and proposed by Laurent et al. [157, 197]. In

this technique, energy (to be precise norms) of the restrictions of the global

pressure mode shapes to each subdomain are evaluated and analyzed. It was

found that all spurious system modes have low energies compared to physical

modes. This fact is utilized to identify and flag spurious components present

in the global state-space passive acoustic network, i.e., in the matrix Aa.

Apparition of spurious modes is linked to OC-frames, and they exist irrespective of

whether or not flames are present in a particular STORM network. Besides identi-

fication of spurious modes, the convention of the separate grouping of passive and

flame elements inside global dynamics matrix Af facilitates subsequent application

of numerical strategies to mitigate problems arising due to spurious modes. These

aspects are described next.

Decoupling of Active Flames from Spurious Modes:

In systems with flames, the spurious modes in the passive acoustic network tend

to not only interact/couple with the flame elements but also cause erroneous cou-

pling between pure acoustic physical and spurious modes. This can be observed

from the flame heat-release source term on the right side of Eq. (2.14). Flames also

respond to spurious modes, just like physical modes, and the resulting heat-release

perturbations in turn influence both physical and spurious modes. Consequently,

some (otherwise stable) spurious modes are destabilized, and even worse, the physi-

cal thermoacoustic modes of interest are adversely impacted. Recall that the Gram

matrix Λ is not diagonal in the case where frames are used, so that the modal ex-

pansion coefficients are coupled through Λ−1 in Eq. (2.14). Especially when the
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flame response is non-negligible, the errors induced become significant, corrupting

the overall resolution of thermoacoustic modes and their stability.

Therefore, a decoupling operation was implemented [197] to alleviate the in-

terference of spurious acoustic modes between flames and spurious acoustic modes

of the network. Before this mitigatory step is applied, the core solver first inter-

nally solves a passive eigenvalue problem for the matrix Aa to identify the spurious

modes based on the energy-criterion mentioned above (also indicated in Fig. 2.12).

Knowledge of the spurious modes is then exploited to decouple them from flames,

whereby, the coupling matrix blocks between passive acoustic network and flames

are corrected : Cfl→a to C̃fl→a and Ca→fl to C̃a→fl, (̃ ) denoting the corrected blocks.

The operation, essentially eliminates the receptivity of the spurious eigenmodes to

the heat-release fluctuations, and flame receptivity to acoustic fluctuations stem-

ming from spurious eigenmodes, respectively.

Artificial Damping of Spurious modes:

Eventhough the dissociation operation discussed above drastically improves the

resolution of thermoacoustic modes, in practice it is observed that a weak coupling

still exists between spurious modes and flames. In cases where the flame response is

very strong, the previous operation alone does not serve the purpose entirely. There-

fore, a supplementary strategy is also implemented where the identified spurious

modes in the passive network are selectively and artificially damped with arbitrarily

large negative growth rates. Consequently, the energy exchange between flames and

spurious modes is forced to be minimum; the spurious modes remain largely damped

without affecting physical modes. As a result, the flames then mostly interact with

physical acoustic modes as expected, thereby improving the accuracy of the overall

thermoacoustic problem. In this operation the passive acoustic matrix is corrected

from Aa to Ãa.

Ultimately, the numerical strategies of identifying the spurious modes, decou-

pling them from flames, and artificially damping them yields the updated global SS

dynamics matrix Ãf as below. Solving the eigenvalue problem again for Ãf then

furnishes the thermoacoustic modes of the system under investigation.

Ãf =

(
Ãa C̃fl→a

C̃a→fl Afl

)
(2.50)

Selection algorithm for modes in the surface modal basis:

The finite number of surface modes Ks, i.e., the size of the orthogonal surface

modal basis Kk, is obviously the most crucial parameter in surface spectral connec-

tions. An SVD-based selection algorithm was also designed, where: from a relatively
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large set of user-prescribed surface modes for a given network problem, not all but

an optimum (i.e., reduced) number of principal components Ks, are used to con-

struct the OB basis Kk (basically, reducing the dimensions of the surface modal

OB basis). The weaker components are ignored and not used. This algorithm was

necessary for two reasons: (i) to check that the basis is large enough for accurate

surface projections from subdomain boundaries, and (ii) to improve the numerical

conditioning and robustness of the method avoiding unnecessarily large basis —

another challenge associated with ill-conditioning and spurious components of OC-

frame modal expansion of subdomains that was discussed earlier in Sec. 2.4. For a

given network, analysis indicates that the optimum Ks is a strong function mainly

of the OC-frame size N (i), N (j) in subdomains Ωi and Ωj . The general trend, as

expected, is that larger Ks is required as the frame sizes go up. A detailed conver-

gence analysis (for the same case of Ex-2 in Fig. 2.11), and mathematical details of

the selection algorithm are not repeated here can be found in [198, 197].

In summary, it is must be reiterated that the substantial advantages offered

by OC-frame modal expansion, as highlighted so far and in the upcoming chapter,

come with several associated challenges of numerical accuracy and robustness. The

strategies presented above to deal with them are critical for the success of the OC-

frame modal expansion method.

2.5 Conclusions

This chapter described the recently introduced and under development low-order

acoustic-network modeling (LOM) tool STORM based on generalized modal-expansions

[157, 197, 198, 199] and the state-space (SS) framework to study thermoacoustic

combustion instabilities in complex realistic configurations. Some of the key obser-

vations and conclusions can be compiled as follows:

• Thermoacoustic network modeling, from literature survey in previous Ch. 1,

was mostly limited to planar wave-based 1D networks and idealized annu-

lar geometries. Although known for a while, the classical modal expansion

(Galerkin projection) method has not really been a go-to choice for building

full-fledged, extensive acoustic networks. A core impediment has been the re-

liance on an orthogonal rigid-wall (OB) basis. This shortcoming was resolved

with the proposed overcomplete (OC) frame modal expansion technique.

• OC-frame modal expansion method, a generalization of the classical approach

significantly improves the convergence of expansion and yields correct repre-

sentation of acoustic variables at the interfaces of subdomains in the network.

Also, issues such as Gibbs oscillations/fringes are fixed that arise due to im-

posed velocity node at the junction due to rigid-wall OB bases of subdomains.
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• The state-space method, along with the Redheffer product, renders a powerful

framework to represent a variety of network objects as SS submodels and

combine them together to build thermoacoustic networks. Stability analysis

of the given system can then be performed in frequency-domain, time-domain,

or both. However, results in this manuscript are limited to linear, frequency

domain analysis. The nonlinear, time-domain analysis will be undertaken in

the future.

• OC-frame modal expansions approach provides an opportunity for intercon-

necting subdomains with 1D/2D/3D acoustics. The surface spectral connec-

tions methodology [198, 197] makes it possible to not only couple 3D subdo-

mains over topologically large and curved interfaces but also allows imposing

multi-perforated (MLPF) liner conductivity at the junction or even complex

impedance at the global system boundaries.

• The drawback of OC-frame expansions is the high numerical ill-conditioning

of the global system to be solved, inducing some accuracy and robustness

issues. Furthermore, the over-complete nature of the frames leads to the pres-

ence of spurious unphysical components, which tend to interact with physical

components, particularly in the case of systems with flames. Sever numerical

strategies developed to systematically deal with these challenges and mitigate

their impact were briefly discussed.

Overall, the STORM delivers a very modular, flexible, and computationally

fast (low-cost) tool for investigating thermoacoustic stability analysis of complex,

realistic gas turbine combustors. While this chapter mainly focused on conveying the

modeling concepts for building acoustic networks with the help of simple examples,

the next chapter will illustrate larger networks of annular configurations and flames

to carry out their linear thermoacoustic stability analysis.
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After describing the low-order thermoacoustic network modeling tool STORM

[157, 198, 197, 199] in the previous chapter, to further highlight its current capa-

bilities, a few examples of annular configurations with flames are presented in this

chapter. In Sec. 3.1, a network of an academic, simplified Plenum-Burner-Chamber

(PBC) gas turbine combustor model is discussed. Subsequent Sec. 3.2 and Sec. 3.3

will demonstrate the application of STORM to carry out linear stability analysis

(LSA) of the following complex, real 3D configurations: first is the MICCA-spray

lab-scale annular rig from EM2C lab, and second a SAFRAN aeronautical engine

combustor.

3.1 Simplified Plenum-Burner-Chamber (PBC) Config-

uration

Figure 3.1(a) depicts the simplified Plenum-Burner-Chamber (PBC) geometry whose

linear stability analysis with STORM is presented in this section. It is the same

configuration examined analytically by Bauerheim et al. [136], and their results

are used as reference. The geometry consists of two simple annular plenum and

chamber cavities connected with four narrow duct-like burners. The end-effects on

acoustic modes due to narrow ducts opening into large volumes, are accounted for

applying standard lenght corrections [209] on the two ends of the burner tubes:

Li = L0
i +2× 0.4

√
4Si/π, where L0

i is the length of the ith burner before correction

and Si is the cross-section area.



74
Chapter 3. STORM Linear Stability Analysis of Annular

Configurations

Four acoustically-compact flames are placed as concentrated heat sources in

the four burners at αLi distance from the plenum junction, where α = 0.88 (kept

fixed). Although a flame thickness is specified (in Tab. 3.1) , they are modeled

as infinitely thin in the ATACAMAC network with jump conditions. Their FTF

reference coincides with the flame location. Uniform unburned and burned physical

conditions of the gases (pressure, density, temperature, sound speed) are considered

upstream and downstream of the flames and are similar to that found typically in

a gas turbine engine. The geometrical dimensions and the physical conditions are

detailed in Tab. 3.1.

Total 26 state-space 

blocks

Chamber

Burners

Plenum

Chamber

(2D annulus)

Plenum 

(2D annulus)

B1

(1D)
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(1D)

1

D

1

D
1

D

1

D

1D2D
1D2D 1D2D

1D2D

1D2D
1D2D 1D2D
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Subdomains Flames

Flame-Location connection

Domain-Domain connection
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FTF

1

B1
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Plenum
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a) c)
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Flames

ATACAMAC 1D Network

STORM Network

Figure 3.1: (a) Simplified Plenum-Burner-Chamber (PBC) configuration

considered for thermoacoustic linear stability analysis with STORM. (b)

The reference planar 1D wave-based acoustic network (ATACAMAC)

from [136]. (c) Acoustic network representation in STORM.

Bauerheim et al. [136] use the so-called Annular Reduction Network (ANR)

strategy to build a 1D network assuming 1D azimuthal wave-propagation in the

chamber and plenum, while being longitudinal in the burners, see Fig. 3.1(b). The

annular ducts were further split into sectors at the annulus-burner T-junctions,

where acoustic jump-relations were utilized. The ANR strategy was advantageous

to explicitly study the coupling between the two annular cavities through burners;

however, it was not possible to account for axial dependence of the acoustics in the

chamber/plenum. This limitation is addressed in STORM’s acoustic network.

STORM acoustic network for the PBC configuration contains 26 sub-state-space

models: 2 2D annular subdomains representing radially thin plenum and chamber,



3.1. Simplified Plenum-Burner-Chamber (PBC) Configuration 75

Chamber, Plenum Annulus

Axial Length Lc , Lp 1.5 m

Mean Radius Rc , Rp 2.1 m

Radial Thickness Wc , Wp 0.4 m

Burner Ducts

Length Lbi,0 0.6 m

Section Si 0.03 m2

Fresh gases

Mean pressure p0 2 · 106 Pa

Mean temperature Tu,0 700 K

Mean density ρu,0 9.79 kg/m3

Mean sound speed cu,0 743 m/s

Burnt gases

Mean pressure p0 2 · 106 Pa

Mean temperature T0 1800 K

Mean density ρ0 3.81 kg/m3

Mean sound speed c0 1191 m/s

Flame parameters

Interaction index ni variable −

Time-delay τi variable s

Thickness efl 0.03 m

Table 3.1: Above PBC case geometrical and physical parameters [136].

8 1D ducts for the cold and hot parts of the geometrically narrow burners, 4 com-

pact 1D flames, and 12 appropriate connection elements coupling the subdomains.

Note that each flame element makes two connections with the subdomains: one

corresponds to the FTF reference location just upstream of the flame and the other

with the flame heat-release location. Note that unlike domain-domain connection

elements (1D-1D, 1D-2D in Fig. 3.1(c)), these flame-subdomain connections do not

constitute separate state-space (SS) sub-models. In fact, they communicate with

each other directly. While the SS sub-models of acoustic subdomains, 1D1D, 1D-2D

connectors, were reviewed previously in Ch. 3, SS sub-model of flame/FTF is a

topic briefly described in the upcoming Sec. 3.2, and covered in detail in Ch. 4.

Since the narrow 1D burner ducts make four discrete point-like connections with

the chamber backplane, it is modeled as a rigid wall (same for the plenum-outlet

plane). Yet, note that the acoustic velocity could be non-zero at these connection

points after resolving the global system. Besides, the system’s external BCs at

plenum-inlet and chamber-outlet are presumed as rigid walls initially. Therefore,

an analytical orthogonal basis for a 2D annulus that verifies rigid-wall BCs, defined

as ψn,m in Eq. (3.1), is sufficient for the chamber subdomain (note subscript c and

same OB basis also for plenum). For burner 1D ducts, to avoid imposing any a priori



76
Chapter 3. STORM Linear Stability Analysis of Annular

Configurations

constraints on acoustic variables at connection boundaries, CC-OO overcomplete

frames1 as φn in Eq. (3.2) are used instead of orthogonal bases.

ψn,m (xc,θc) =

[
cos

(
nπxc
Lc

)
cos (mθc)

⋃
cos

(
nπxc
Lc

)
sin (mθc)

]
(3.1)

φn (xB) =

[
cos

(
nπxB
LB

) ⋃
sin

(
nπxB
LB

)]
(3.2)

Following are the sizes of the OB basis / OC-frame employed for the geometrical

subdomains in the STORM network (Fig. 3.1(c)) in obtaining the results presented

in this secton: (i) For the rigid-wall OB basis of 2D annular chamber/plenum sub-

domains Nψ = 30 (15 eigenmodes from each set in Eq. 3.1), and (ii) for the CC-OO

frame of 1D ducts, Nφ = 50 (25 from each family in Eq. 3.2).

Bauerheim et al. [136] in their ATACAMAC tool (Analytical Tool to Analyze

and Control Azimuthal Modes in Annular Chambers), have derived explicit analyt-

ical relations for the so-called coupling parameters for the PBC configuration shown

in Fig. 3.1. These parameters help describe the conditions and, quantitatively

to some extent, the degree of coupling between the plenum and chamber through

the burners. The values of coupling parameters depend upon geometry, physical

conditions, and the FTF parameters. Depending upon the values they take, the

thermoacoustic eigenmodes of the system could be classified into Weakly-Coupled

(WC) and Strongly-Coupled (SC) modes.

Figure 3.2 compares trajectories of different system eigenmodes from STORM

with ATACAMAC on the complex frequency plane, obtained after 50 successive

calculations by varying the n− τ FTF’s flame-response delay parameter τ in small

increments for different fixed, constant values of flame gain parameter n. For smaller

flame interaction indices (n < 4 for this configuration), the coupling between the

two cavities is weak. The red and green color curves in Fig. 3.2 show the trajectories

of Weakly-Coupled-Chamber first azimuthal (WCC1) mode and Weakly-Coupled-

Plenum first azimuthal (WCP1) mode. As the time-delay τ/τc values vary, both

these modes show these characteristic elliptical trajectories where the chamber and

plenum modes are almost independent and oscillate at distinct frequencies. Not

shown in this Fig. 3.2, but similar and smaller tracks are obtained for values of

n < 3 (see [136]), and are enclosed inside that of n = 3 shrinking in size.

For larger values (n > 4), though, the acoustic flame-response is intense enough

to meet the criterion favoring strong coupling between plenum and chamber cavities

[136]. Trajectories of the first two Strongly-Coupled (SC) system-modess, for n = 8,

are shown as the SC1 and SC2 (blue and magenta) curves in Fig. 3.2. At initial

τ/τc values, SC1 and SC2 modes are still close to their WC counterparts at lower

1CC-OO: a 1D overcomplete frame with one family verifying rigid-wall (u′ = 0) on both ends
(Closed-Closed) and other family verifying open (p′ = 0) conditions (Open-Open).
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Figure 3.2: Trajectories of different modes in the complex-frequency

plane for different flame interaction indices n and varying normalized

flame-delay (τ/τc). N: Starting point, ×: last point of the trajectories. τc
is the time taken by an acoustic wave to traverse the chamber annulus.

n values in terms of complex frequency and mode shapes. This is confirmed for eg.

from the pressure structure of the SC2 mode in Fig. 3.3 at n = 8 and τ/τc = 0.10:

the mode shows strong acoustic activity only in the chamber. Note that the pressure

in both chamber and plenum is normalized by the max pressure in the system so as

to compare their relative amplitudes.

But as τ/τc values increase (for n = 8) the modes bifurcate as observed from

the drifting frequencies in Fig. 3.2. SC2 mode moves towards the frequency of

WCP1, and SC1 is moving towards a longitudinal mode (not shown on the complex

plane). Examining the structure of SC2 mode at an intermediate point τ/τc = 0.54

(not shown) reveals apparition of acoustic activity in the plenum, indicating the

onset of strong coupling with the entire system resonating at the same frequency.

Fig. 3.4 shows the SC2 mode structure at the last point τ/τc = 1.0 with azimuthal

acoustic activity in both cavities (relatively stronger in plenum since its close to

WCP1 mode).

All of the interesting physics examined with the ATACAMAC model [136] for

this Plenum-Burner-Chamber (PBC) configuration is retrieved fairly well by the
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Figure 3.3: SC2 Mode shape for flame-index n = 8 and delay τ/τc = 0.1.

Figure 3.4: SC2 mode shape for flame-index n = 8 and delay τ/τc = 1.0.

STORM acoustic network tool. Few discrepancies observed in the mode trajectories

in Fig. 3.2 could be attributed to the following deviations:

1. Flames in ATACAMAC network analytical solutions are infinitely thin and

modeled with jump conditions. Besides, the FTF flame reference point also
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Figure 3.5: PBC: Mixed azimuthal-longitudinal chamber mode in the

case of open (p′ = 0) boundary condition on chamber outlet.

coincides with the flame location. However, in case of STORM, the 1D flame

has a finite thickness, within which a Gaussian distribution of heat-release (cf.

flame shape Hi(x) in Eq. 2.14) is presumed. In such academic cases, thin but

finite thickness 1D flames are preferred in STORM since infinitely thin flames

cause discontinuous velocity jump in thermoacoustic modes, which cannot be

accurately captured by finite OB-basis/OC-frame of the modal expansion. It

leads to Gibbs fringes in velocity around the flame inside the subdomain. If

the velocity at the FTF reference point is affected by these fringes, it can

cause spurious flame-response adversely affecting the accuracy of resolution of

thermoacoustic modes, particularly their growth rate - see [197] for a demon-

stration of this point. Secondly, the FTF reference location STORM cannot

be inside the flame thickness is approximately considered just upstream (a

couple of millimeters) of the flame location.

2. Another major deviation that apparently has a more substantial influence in

the discrepancies of mode trajectories in Fig. 3.2 is the fact that plenum and

chamber are modeled as 2D annular subdomains, contrary to the fully 1D

ATACAMAC network.

As a consequence of point (2) above, the 2D annular subdomains allow account-

ing for the axial dependence of the acoustics in the chamber/plenum. This PBC

configuration can also be analyzed for the case where the chamber is open to the

atmosphere by simply modifying the analytical orthogonal basis of the 2D annulus

in Eq. (3.1) such that it verifies open (p′ = 0) boundary conditions at the outlet.

Figure 3.5 shows, for example, a mixed azimuthal and longitudinal mode structure

correctly represented in the chamber for some arbitrarily chosen n = 3.0 and τ = 2.0

milliseconds values. The frequency of this unstable mode is (216 + 0.282j)Hz.
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3.2 MICCA-Spray Annular Lab-scale Rig

This section reports thermoacoustic linear stability analysis (LSA) of the MICCA-

spray configuration using STORM, along with FEM Helmholtz solver AVSP [127]

as reference. MICCA-spray is atmospheric pressure annular combustor rig operated

at EM2C laboratory [104, 210, 95, 94] as shown in Fig. 1.10(b).

Reference Experimental Data:

Soundararajan et al. [94] experimentally investigated self-sustained azimuthal

instabilities in the MICCA-spray rig for three different fuels with distinct volatil-

ity. The fuels assessed are liquid heptane, liquid dodecane, and gaseous propane.

Indeed in an annular configuration with 16 burners, obtaining a comprehensive

understanding of the underlying mechanisms influencing the thermoacoustic insta-

bilities is a rather challenging task. Therefore, a complementary strategy adopted

has been to investigate the liquid-spray and flame dynamics in a simpler single in-

jector SICCA-spray burner under similar operating conditions (see Fig. 7.1 in Ch.

7) to understand the prevailing mechanisms. See the following studies, for example

[211, 212, 60, 201, 62, 213, 214].

Geometry details: The MICCA-spray rig, shown in Fig. 1.10, consists of [94]

an air plenum connected to the combustion chamber through sixteen spray-swirl

injectors. The plenum is 80 mm in height with an internal diameter of 280 mm and

an outer diameter of 420 mm. The combustion chamber consists of two concentric,

cylindrical, and vertical quartz walls of height 400 mm, each with a thickness of

8 mm. The inner quartz wall has an outer diameter of 300 mm, while the outer

quartz wall has an inner diameter of 400 mm.

Operating point P φ ṁair ub

(kW) (−)
(
gs−1

) (
ms−1

)

F-1 (Heptane) 6.4 0.85 2.6 43

Table 3.2: SICCA-spray operating condition at which FDF was measured.

Note the corresponding F-1 operating point of the annular MICCA-spray

on its stability map as black star in Fig. 3.6.

From the experiments performed on MICCA-spray [94], stability maps were

plotted for different fuels for varying thermal power-rating and global equivalence

ratio. Of these, the map for Heptane fuel is shown in Fig. 3.6. The operating point

(F-1) highlighted with (∗) corresponds to one of the several operating points at which

FDF/FTF measurements were conducted in SICCA-spray — see Tab. 3.2. Since

there are 16 burners in MICCA-spray, the thermal power rating of the SICCA-spray

is approximately (1/16)th of the MICCA-spray power as marked in Fig. 3.6.
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Figure 3.6: MICCA-spray stability map for varying power P, and Hep-

tane fuel equivalence ratio φ: color contours indicate oscillation frequency

(right) and amplitude (left). Reproduced from [94]. The black star is

MICCA-spray operating point, that corresponds to single burner SICCA-

spray F-1 conditions at which FDF was measured - see Tab. 3.2. The

diamond and black dot are for different fuels [94] and can be ignored.

MICCA-spray LSA discussed in this report is performed at the F-1 operating

point employing the measured FTF. Since the combustion chamber outlet is open

to the atmosphere, longitudinal and mixed azimuthal-longitudinal instabilities are

likely to appear. In the work of [94], only operating conditions leading to unstable

1A1L type chamber azimuthal-longitudinal modes were considered. Note in Fig. 3.6

that a moderate 1A1L type instability is observed at the F-1 operating point at a

frequency around 800 Hz with pressure oscillation amplitude 795 Pa.

SICCA-spray FDF measurements published in [94] followed an indirect approach

wherein the FDF measured with respect to the velocity (measured with hot-wire

HW1, see Ch. 7, Fig. 7.1) at a location in plenum was corrected with the swirl-

injector response, i.e., an injector describing function. Injector dynamics were char-

acterized under cold flow conditions with the same HW1 in the plenum and HW2

placed in the chamber just above the injector lip. As a result, actual flame dynam-

ics, now for a reference location (HW2) very close to the flame, was isolated from

(injector+flame) dynamics. Note that the SICCA-spray FDF/FTF data published

in [94] is not used to carry out the MICCA-spray linear stability analysis. In-

stead, new FDF measurements involving direct measurement of velocity with LDV

(Laser-Doppler-Velocimetry) under hot-flow conditions at a reference location close

to the flame were utilized for MICCA-spray stability analysis.2. The FDF reference

location precisely is 4mm from the axis and 2.5 mm above the backplane.

2Courtesy EM2C laboratory for sharing this FDF data via private communication. It was
officially published only recently in Soundararajan et al. [214].
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Figure 3.7: (a) Left scatter plot: Experimental FDF measurements for

varying loud-speaker voltages and frequency. The color map denotes the

(u′/ū) velocity fluctuation amplitude at the FDF reference location. Note

that the phase is unwrapped, and the Fourier convention used is not the

same as in STORM and the fit in adjacent plot on the right. (b) Right

plot: (Blue x) set of data points from FDF measurements at 1500 mV

that is treated as FTF. Black curve shows the multi-pole expansion fit of

the FTF for STORM computation.

The SICCA-spray flame was pulsed with two loudspeaker driver units upstream

of the plenum, and FDF measurements were made for different fixed loudspeaker

voltages and frequencies. The loudspeaker voltages applied were from 500 mV to

3000 mV in increments of 500 mV. All the data points are put together on gain

and phase scatter plots in Fig. 3.7(a). Note that the velocity fluctuation amplitude

(u′/ū) recorded at the reference location (for direct LDV case mentioned above)

varies with frequency for a fixed loudspeaker voltage. The velocity perturbation

amplitude at each point is thus highlighted with the color contour.

STORM Network and Linear Stability Analysis Results:

While a variety of subdomains 1D/2D/3D could be interconnected to construct

an acoustic network in STORM, in this particular case, decomposition of the geom-

etry into subdomains (e.g., combustor, plenum, burners, etc.) is not necessary. The

entire geometry with all its intricate details intact is represented as a single, complex

3D subdomain in the network to which 16 discrete 3D flame elements connect. Since

there are no domain-domain coupling or complex boundary impedances, an orthog-

onal modal basis (OB) is enough; an over-complete (OC) frame is unnecessary for

Abhijeet Badhe

Abhijeet Badhe
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this 3D complex domain. The modal basis of any 3D arbitrarily shaped geometry

is generated numerically from Helmholtz solver [127] by solving computationally

faster and cheaper Linear Eigenvalue Problem (LEVP) — more discussion on this

in upcoming Sec. 3.4, since its also applicable to the example of engine combustor in

subsequent Sec. 3.3. The following STORM computation uses an orthogonal basis

of size N = 60 natural acoustic eigenmodes and is found to be sufficient.

For the present MICCA-spray case, the acoustic boundary conditions assumed

are rigid-wall (u′ = 0) at the plenum inlet and open to the atmosphere (p′ = 0) at

the chamber outlet. Naturally, the OB basis generated above for the 3D complex

subdomain also verifies these boundary conditions.

Mean sound speed field and flame shape are required for AVSP and STORM

computations and taken from the time-averaged LES solution of MICCA-spray con-

figuration.3 Fig. 3.8 depict the mean sound speed field and flame-volume shapes.

The color contours of flame volume simply demarcate them (flagged unity) from the

rest of the chamber volume (flagged zero).

Figure 3.8: Mean sound speed [m/s], and flame shape H(l)
i (~x) where l = 1

to 16. Required both for AVSP and STORM calculations.

As far as flames are considered, all of them are 3D in shape and considered

identical. They are assumed to respond only to axial flow perturbations induced

in individual injectors by the azimuthal acoustic modes in the plenum/chamber.

Flame-flame interaction and flame dynamics to transverse flow-acoustic perturba-

tions are neglected.

From the SICCA-spray FDF measurements described earlier, gain and phase

data at a moderate loudspeaker voltage (1500 mV) are considered, and the data

is scatter-plotted in Fig. 3.7(b) (blue x). The minimum, max and mean values of

3Courtesy Dr. Davide Laera, who is conducting LES of MICCA-spray configuration.
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(u′/ū) fluctuation levels over the frequency bandwidth at fixed 1500 mV is 0.033,

0.14 and 0.098 respectively. The mean value is low enough to assume the flame forc-

ing is in a linear regime, and hence this smaller data-set (at 1500 mV) is treated as

frequency-dependent, but (u′/ū) amplitude independent FTF. This measured FTF

data is extrapolated beyond 800 Hz because chamber 1A1L type modes of inter-

est (investigated in experiments under self-sustained limit-cycle conditions) have a

slightly higher frequency in linear eigensolutions from AVSP/STORM, as seen in

the following. So while the extrapolation of phase is linear, that of gain is somewhat

arbitrary.

The flame response in this example, for each flame in the network, is described

by classical FTF that gives unsteady heat release in terms of acoustic velocity per-

turbation at some upstream reference point — see Eq. (1.10). FTFs are standard

flame response models used in linear thermoacoustics. While FTF can be directly

introduced in frequency-domain Helmholtz solvers (AVSP [127] here) , it ought to

be transformed into a time-domain state-space (SS) representation before they can

be used in a STORM network.

Therefore, SS submodels for flames/FTFs in STORM are obtained through so-

called Multi-Pole expansion (rational approximation) by fitting a series of rational

functions as below to the analytical/experimental FTF data as shown in Fig. 3.7(b).

G(ω)e−jϕ(ω) ≈

MPBF∑

k=1

−2akjω

ω2 + 2ckjω − ω2
0k

(3.3)

where G(jω) and ϕ(ω) is the FTF gain and phase respectively. The fit coefficients

ak, ck, ω0k are determined with the help of rational approximation algorithms. It is

then possible to transform the multipole expansion into a SS submodel. See Ch. 4

for more details.

Table 3.3 lists the first few thermoacoustic (TA) modes of the combustor obtained

from STORM along with the reference solution from AVSP. The complex frequen-

cies predicted by STORM are in quite good agreement. Growth rates are usually

quite sensitive, and some discrepancies exist between STORM and AVSP. Never-

theless, the sign (stability) of the modes, their growth rate magnitudes (whether

they are strongly or marginally stable/unstable), and mode structures are predicted

reasonably well. As mentioned earlier for Fig. 3.6, an unstable chamber 1A1L type

mode was observed in experiments at 800 Hz at limit-cycle conditions, and indeed

an unstable mode close to this frequency and structure is predicted by both AVSP

and STORM. The pressure mode shape ℜ{p̂(~x, ω)} = |p̂|cos(∠p̂) is highlighted in

Fig. (3.9). More discussion to follow in Sec. 3.4.
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Eigenmodes AVSP TA modes STORM TA modes Nature

352 351− 0.76j 350− 1.18j (P, 1A, S)

352 352− 1.12j 352− 1.72j (P, 1A, S)

452 445 + 20.0j 442 + 26.0j (C, 1L,−)

652 653 + 0.42j 653 + 0.64j (P, 2A, S)

652 653− 0.015j 653− 0.017j (P, 2A, S)

824 833− 10.0j 842− 14.2j (C, 1A1L, S)

824 836 + 0.22j 844 + 1.7j (C, 1A1L, S)

Table 3.3: MICCA-spray acoustic eigenmodes and thermoacoustic (TA)

modes (in Hz) computed from AVSP and STORM. The real and

imaginary parts denote the mode frequency and linear growth rates.

Modes with +ve growth rates are unstable. (P:Plenum, C:Chamber,

A:Azimuthal, L:Longitudinal, S: Spinning, St:Standing)

Figure 3.9: Unstable C-1A1L mode structure from AVSP and STORM.

This mode was also observed in experiments at 800 Hz (see Fig. 3.6).

3.3 SAFRAN Engine Combustor

One of the main goals behind initiating the development of the tool STORM was

to make faster and computationally cheaper thermoacoustic stability analysis of

realistic configurations possible. Most low-order network models available in the

literature involve drastic simplifications to geometry - for instance, the PBC ATA-

CAMAC case discussed earlier in Sec 3.1. Real engine combustors, on the contrary,

include intricate geometrical complexities, multiple cavities, and components such

as the chamber, casing, plenum, swirlers, dilution holes, multiperforated liners, up-

stream compressor diffuser, and downstream turbine stages, all of them interacting

acoustically and thus playing a role in the stability of the engine.
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Figure 3.10: Annular Aeronautical Engine Combustor: a) 20 burners and

the mean 3D flame shapes, b) cross-sectional cut of the combustor. An

illustrative acoustic-network representation in STORM of two different

cases based on chamber outlet impedance: c) Case Z=∞ (i.e. rigid wall)

and d) Case Z=10

Some previous works of Schuermans et al. [152, 163], Bellucci et al. [154], Bethke

et al. [156], that was based on the state-space framework and classical Galerkin

expansions did analyze industrial combustors in the context of low-order modeling.

However, the acoustics description was constrained to be based on an orthogonal

basis modal expansions, with burners being considered as acoustically compact,

lumped elements and were modeled as acoustic transfer matrices. Bethke et al.

[156] had demonstrated how arbitrarily complex geometries could be represented

as a thermoacoustic LOM by expanding the pressure onto a set of basis functions

computed in a preliminary step from a FEM Helmholtz solver.

Linear stability analysis of a SAFRAN aeronautical engine combustor with

STORM is presented in this section and validated with classical FEM-based Helmholtz

solver (AVSP) [127] predictions. Two cases are considered: 1) Case-Z∞: Chamber

Outlet Acoustic Impedance Z =∞ (rigid-wall) and 2) Case-Z10: Outlet Acoustic

Impedance Z=10 (arbitrarily chosen for this demonstration). The second case will

demonstrate how an over-complete frame in STORM along with the surface spec-

tral connection method helps model non-trivial acoustic boundary conditions at the

chamber outlet. Note that the multi-perforated combustion chamber walls are not

modeled in this example.

Similar to the MICCA-spray case discussed in the previous section, here as well
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the entire geometry, with all its intricate details intact, is represented by a single

3Dcomplex subdomain in the network Fig. 3.10(c) to which 20 discrete flames con-

nect. The modal basis (or frame as necessary) for the 3Dcomplex domains of arbi-

trary shapes are generated numerically from AVSP. An advantage of using numerical

modal basis/frame is the possibility to account for the inhomogeneous temperature

field (or sound speed field) in the combustor.

For the Case-Z∞, due to simple rigid-wall (u′ = 0) boundary condition presumed

at the combustor inlet and outlet, and also since there are no domain-domain con-

nection, an orthogonal basis made of N=60 modes is chosen and found to be enough.

Connection 

domain for 

outlet Z

Figure 3.11: Surface spectral connection domain created to model the

chamber outlet impedance. Note that in the figure only a sector of the

combustor is shown to emphasize the connection domain at the outlet.

However, for the Case-Z10 (outlet Z = 10), an OC-frame is necessary to model

the non-trivial resistive impedance considered at the chamber outlet. A frame of

the same size N = 60 is built from two families of modes: one verifying rigid-wall

(u′ = 0) and the other open (p′ = 0) at the outlet boundary. The surface spectral

connections methodology, described in previous Ch. 2, Sec. 2.3, is employed to

impose the impedance on the outlet surface: the combustor 3D subdomain couples

with a fictitious connection domain as shown in Fig. 3.11 and as Outlet-Z in its

network representation in Fig. 3.10(d). The 2D modes required for surface modal

expansion are computed in this thin connection domain. The spectral connections

modeling framework (i.e., the system of equations) discussed in Sec. 2.3.3 needs

to be slightly adapted for embedding the impedance coupling condition in it. It is

so because the connection domain couples with only one 3D subdomain instead of

two. A simple first-order complex rational function in Eq. (3.4) for the impedance

is assumed and fit (with parameters r and ωc) to get the desired impedance value,

Z = 10 in this case.

Z(jω) =
1

ρ0c0

p̂(~x, ω)

û(~x, ω)
=

1

r + jω/ωc
(3.4)

It can be noted that the above Z(jω) impedance function fit will be fair and ap-

proximately yield Z = 10 only over a certain frequency range. E.g., setting r = 0.10

and ωc to a large value, Z(jω)→ 10 for a range of low ω values.
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Natural

Modes

(hz)

TA

Mode

STORM

(Case-Z∞)

(hz)

AVSP

(Case-Z∞)

(hz)

STORM

(Case-Z10)

(hz)

AVSP

(Case-Z10)

(hz)

308 1 (292− 7.7j) (292− 7.6j) (291−14.9j) (291−11.6j)

308 2 (304−17.5j) (304−17.4j) (305−24.9j) (304−21.2j)

389 3 (398+28.4j) (398+27.4j) (398+20.3j) (395+21.9j)

497 4 (494+13.9j) (494+13.8j) (494 + 3.7j) (492 + 7.9j)

497 5 (502+15.6j) (501+15.4j) (501 + 4.0j) (498 + 8.6j)

Table 3.4: Natural and Thermoacoustic (TA) modes of the annular engine

combustor computed from STORM and Helmholtz solver AVSP. Modes

with positive imaginary part (growth rate) are unstable modes.

Figure 3.12: STORM: unstable TA Mode4 in Tab. 3.4 for Case-Z10.

Figure 3.13: AVSP: unstable TA Mode4 in Tab. 3.4 for Case-Z10.
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The 3D mean flame shape shown in Fig. 3.10 is obtained from combustor sec-

tor LES simulations performed in the Ph.D. work of F. Dupuy [215]. Similar to

the previous MICCA-spray case, yet again each 3D flame is represented as separate

flame-elements in the STORM network shown in Fig. 3.10. This also offers modu-

larity and flexibility to keep the option of studying symmetry-breaking effects open

by modifying the flame response (say due to fuel-staging or using different burners

along the annulus).

The flames are assumed to respond only to the axial perturbation in the burners

induced by azimuthal waves, and the response is taken identical for all of them. It

is associated with one global constant gain and delay (n− τ) type FTF transformed

into a SS submodel via rational approximation as was described earlier for MICCA-

spray.

The results of the first few thermoacoustic (TA) modes computed from STORM

and reference FEM AVSP Helmholtz solver are listed in Tab. 3.4. The complex-

valued frequencies of TA modes from STORM can be seen to be in very good

agreement with the AVSP Helmholtz solver, and so are the mode shapes. For

instance, Fig. 3.12 and Fig. 3.13 shows the pressure mode shape of TA Mode 4 (in

Tab. 3.4) for Case-Z10 from STORM and AVSP respectively. As one can observe,

it is a system mode spanning this complex geometry’s computational domain; it

is not localized in any particular cavity (chamber/plenum/casing) and has a mixed

azimuthal-longitudinal structure. Comparing Case-Z∞ and Case-Z10, the increased

damping caused due to the resistive impedance at the outlet surface, modeled via

surface spectral connections methodology, is evident in the growth rates of the TA

modes in Tab. 3.4.

3.4 Numerical Efficiency

Previous sections demonstrated the capabilities of modal-expansion and state-space-

based STORM network tools from academic, simplified Plenum-Burner-Chamber

(PBC) configuration to an actual aeronautical engine combustor. What remains is

an assessment of the numerical efficiency (or cost) in solving thermoacoustic prob-

lems with STORM compared to the reference method - FEM Helmholtz solver AVSP

[127].

Recall the general inhomogeneous Helmholtz Eq. (1.4) that was discussed in

Ch .1, Sec. 1.4.1. Finite-Element Method (FEM) discretization of the frequency-

domain, homogenous Helmholtz equation (i.e. Eq. (1.4) without non-trivial bound-

ary conditions, and or flame source terms) over a 3D mesh of the geometry, translates

into a numerical linear eigenvalue problem (LEVP) problem [127, 216], which in
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compact matrix notation can be written as

AV = 0 (3.5)

where A is a constant-valued matrix, and V its eigenvector. Non-trivial solutions

of the above linear system yield the natural acoustic eigenvalues (frequencies) and

eigenmodes (spatial shape) of the 3D complex geometry. Since the 3D geometries

being dealt with can be big and complex, their mesh sizes of the order of 106

to 107 (cells), special iterative numerical schemes, and even parallel computations

are essential for solving such large eigenvalue problems. Parallel implementation of

iterative numerical schemes such as Arnoldi, Jacobi-Davidson, Krylov-Schur, etc.,

is available in AVSP. Details of these will not be discussed here. See Nicoud et

al. [127] and thesis of P. Salas [216] for the formulation of the FEM problem and

implementation of the numerical schemes. A broad and in-depth mathematical

review on large, linear/nonlinear EVPs and numerical methods for solving them

can be found in the seminal literature [217, 218].

On the other hand, FEM discretization of the general inhomogeneous Helmholtz

Eq. (1.4), i.e. in presence of active flames and or complex impedance boundaries

Z(jω), leads to a nonlinear eigenvalue problem (NLEVP) which can be represented

as follows [127, 216]:

AV = B(jω)V (3.6)

where B(jω) is a matrix resulting that depends on the frequency (ω). This is due

to physical nonlinear dependency of flame-response/FTF (see Eqs. 1.10, 3.3) and

impedances Z(jω) on frequency ω. Non-trivial solutions of the above Eq. (3.6) then

yield the thermoacoustic modes of the system. Solving NLEVP in comparison to

LEVP is significantly computationally expensive. Solver techniques, such as fixed

point algorithm, are required that solve NLEVP by linearizing it with an initial guess

of the eigen-solution (ωi,Vi) (typically the natural acoustic modes of the system).

The solver then iteratively converges to some true solution (thermoacoustic mode)

being sought, and in the due process solving multiple LEVPs.

For both the MICCA-spray annular rig and engine combustor examples dis-

cussed earlier, the modal OB-basis/OC-frame, for the 3D complex subdomain were

generated numerically by solving computationally fast and cheap linear eigenvalue

problems (LEVPs). Such 3D numerical modal basis/frame could be constructed

along with other required quantities of interest such as the pressure gradients, the

Gram-matrix, etc., (cf. Eq. 2.14) through a one-time pre-processing step. Once

done, this creates input files for the core state-space network builder and solver,

which can be re-used in any STORM acoustic network as many times as desired.

Similarly, in another one-time pre-processing step, the 3D flame shapes are projected

onto the 3D modal basis/frame generated, and the projection coefficients associated
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with every flame are stored in an input file for the STORM core. With this, the

flames can then be re-used in the STORM calculations. Varying their individual

response could be easily done since their FTF characteristics (gain and phase) are

separately handled and come from the rational approximations (see Fig. 2.12).

In AVSP, unlike LEVPs, which yield a specified number of acoustic eigenmodes

in one calculation, TA modes must be individually converged by providing initial

guesses. This process can become really cumbersome and computationally expen-

sive, especially for large industrial configurations. Note also that often convergence

difficulties are encountered, for instance: 1) cases when there is significant drift in

frequencies due to very strong flame response, 2) in case of azimuthal modes which

always come in pair, 3) when there are many TA modes of the system clustered on

the complex-frequency plane, there is no guarantee that convergence to each of them

would be achieved. There are some promising new approaches proposed by other

research groups for efficient and faster computations of thermoacoustic NLEVP

problems, for example, 1) the approach based on contour integration [219], 2) appli-

cation of Bloch-Wave theory to configurations with rotational symmetry [220], and

very recently 3) sub-space accelerated reduced-order method for NLEVPs [221]. An-

other new numerical scheme [222], based on rational approximation, was developed

recently for NLEVPs.

In comparison to AVSP, STORM performs exceedingly well in this context.

Thanks to the rational approximation, the nonlinearity in the EVP due to FTFs

(and even Z(jω)) is transformed in a way into linear state-space flame/impedance

submodels (see next Ch.4 for more details). Ultimately, after building the network,

what is obtained is a time-domain global reduced-order linear state-space model (Eq.

2.7), whose eigenvalues and vectors can be then resolved quite easily. STORM gave

the stability of all the TA modes of the annular configurations discussed in this

chapter in just one calculation within a few seconds of time. The pre-processing

steps described above for constructing the numerical basis/frame, and the projec-

tion of 20 flames on it, are slightly CPU-intensive calculations than the STORM

calculation itself. Still, a comparison of total CPU-time required by AVSP for com-

puting the first few TA modes and STORM (including the preprocessing) gave a

factor larger than 103. Thermoacoustic calculations of a full-scale annular industrial

configuration at such a low cost and speed are indeed worth noting.

3.5 Conclusions

The primary objective of this chapter was to illustrate some of the current capa-

bilities of the STORM tool, complementing examples and conclusions (Sec. 2.5)

of previous Ch. 2. Thermoacoustic linear stability analysis of complex, realistic

annular configurations along with flame elements was presented.
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The simplified Plenum-Burner-Chamber (PBC) configuration was expressed as

a relatively large network of 26 state-space submodels involving acoustic 1D/2D

subdomains, connection, and flame elements; all put together. The linear stability

analysis results with the current modeling methodology of STORM were in reason-

ably good agreement with the purely 1D wave-based ATACAMAC network. The

physical analysis of coupled/decoupled modes described by ATACAMAC theory

was consistently retrieved with STORM. An added benefit due to modal-expansion-

based acoustics modeling is the possibility of capturing multi-dimensional modes. A

simple change in the modal basis of the chamber helped correctly predict the mixed

azimuthal-longitudinal chamber modes when the chamber outlet condition is open

to the atmosphere (p′ = 0).

The tool’s capabilities were further highlighted by carrying out the linear sta-

bility analysis annular MICCA-spray lab-scale rig and SAFRAN engine combustor.

The process of generating the numerical basis/frame of arbitrary 3D geometries ex-

ploits the cheap, efficient resolution of acoustic eigenmodes with AVSP Helmholtz

solver and ultimately resolves the thermoacoustic NLEVP with STORM was de-

scribed. For the SAFRAN engine combustor, the two cases that were analyzed

illustrated the flexibility to use classical OB-basis or OC-frame as required and the

strength of the latter, for example, to model the non-trivial outlet impedance with

the help of surface spectral connection approach. The significant gain in required

CPU-time by three orders of magnitude against Helmholtz solver AVSP in solving

NLEVP for thermoacoustic modes is worth noting. STORM’s network approach’s

computational speed, modularity, and flexibility suggest the feasibility of conducting

extensive parametric studies directly on industrially relevant configurations.
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4.1 Introduction

The previous chapters elucidated STORM’s acoustic network modeling approach

based on generalized modal expansions and state-space methods. Several exam-

ples, from simple canonical cases to complex industrial configurations, illustrated

the application of the tool to perform thermoacoustic linear stability analysis. All

the examples in C. Laurent’s thesis [197], and in the preceding chapters of this
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manuscript, the flames were modeled with the simplest constant n − τ type flame

response model or FTF except for the case of MICCA-spray rig. How the multipole

expansion-based rational approximations were employed to obtain the state-space

representation of the FTFs was touched upon only briefly. This chapter will cover

this topic in more details.

FTFs and acoustic impedances are physical quantities usually expressed in the

frequency domain [1, 113, 25, 12], and the state-space models, on the other hand,

are defined in the time domain. Barring simple laminar premixed flames, analytical

flame models for realistic flames encountered in lab-scale rigs [19, 20, 18], engine

combustors (and likewise complex impedances at combustor inlet/outlet bound-

aries) are often not available. Therefore in practice, data-driven "black-box" flame

dynamics models are determined from experimental measurements or high-fidelity

LES simulations. It is done by acoustically exciting the flames (or subpart of the

geometry whose acoustic impedance is to be characterized)1 in a well-controlled en-

vironment and measuring its response. This process - a.k.a System Identification,

yields a flame dynamics model usually in the form of the discrete impulse response

or frequency-response data. No presumptions are made regarding the functional

form of the response model, and it relies only on the input and output data. In the

case of frequency-response data, the gain and phase of such FTFs can be typically

observed to vary with frequency when represented on Bode plots and showcase pe-

culiar characteristics to be discussed in the next section. Furthermore, as explained

by Polifke [12], using such system identification data, "parametric gray-box" (em-

pirical) models can be constructed in terms of a presumed functional form that is

fully described by a small number of empirical parameters. The widely used n− τ

model is a classic example of such a parametric model, defining flame response by

two parameters. It is possible to assign physical meaning to those parameters, but

their values are frequently not determined from the first principles. Instead, they

are tuned, using phenomenological knowledge of underlying physical mechanisms to

match experimental observations, and or are varied over a certain range in order to

study parametric sensitivities. In that sense a gray-box model cannot predict, but

only describe flame dynamics.

This chapter takes the linear-time-invariant (LTI) system’s view of a flame el-

ement in a STORM thermoacoustic network and dives deeper into exploring the

methods for generating state-space submodels from flame frequency response data-

sets (or samples). The chapter will begin by recalling the basic concepts of LTI sys-

tems theory, particularly the three equivalent ways of characterizing the dynamics

of such systems entirely - viz. transfer functions, impulse responses, and state-space

representations. The following sections will describe the rational approximation

1Here on, flames are mainly addressed, but the entire discussion in this chapter is applicable
for general frequency-dependent acoustic impedances as well.
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techniques and algorithms to obtain state-space submodels and elaborate on a few

critical physical constraints necessary for the physical admissibility of such time-

domain models deduced from FTF/impedance data in frequency-domain. Causality

is one property that will be a topic of particular interest in the subsequent parts of

this chapter.

4.2 Three equivalent representations of a flame as an

LTI system

Linear-time-invariant (LTI) systems theory has far-reaching applications in areas of

control engineering, signal processing, system identification, electrical circuit anal-

ysis, acoustics, etc. [223, 205, 224, 225, 226, 227, 204], and in general, any technical

area where linear ODEs mathematically model the systems. The defining properties

of LTI systems are: (i) Linearity: the system follows the superposition principle, i.e.,

if two distinct inputs produce two different outputs, a particular linear combination

of these two inputs will give an output that is the same linear combination of the

individual outputs, and (ii) Time-Invariance: this fundamental property identifies

those systems that do not change their behavior with time. If the system yields a

specific output when excited with input at one time instant, the system will give

the same output when that input is applied at some later time instant.

Many concepts from LTI systems and control theory such as transfer functions,

impulse response, state-space models, notions of open-loop or closed-loop feedback

systems, Nyquist stability criteria, etc., are drawn and employed by the combus-

tion dynamics community to describe and analyze instabilities in thermoacoustic

systems. As discussed earlier in Ch. 1, Sec. 1.4.2, flame dynamics is predominantly

modeled/described in terms of the flame transfer function (FTF) or flame describ-

ing function (FDF), something which is omnipresent in the literature - see e.g.,

[1, 113, 25, 228, 12] and references therein. That is, a frequency-domain approach

is adopted, quite evidently because it is convenient to carry out linear stability

analysis (LSA) of the thermoacoustic system by coupling a flame dynamics model

(FTF) with an acoustics solver (e.g., Helmholtz solvers or network models) wherein

the eigenmodes are computed. The imaginary part of the complex eigenfrequencies

denotes the modes’ growth rate (or stability).

The dynamics of LTI systems can be completely described in three equivalent

ways: 1) Transfer functions in the frequency domain and 2) Impulse response, 3)

State-space models in time-domain. Figure 4.1 denotes a generic open-loop, single-

input single-output LTI system that generates an output response r(t) to an input

signal s(t). In the context of combustion dynamics, the flame can be viewed as a

system whose response is manifested as heat-release-rate fluctuations to an input
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LTI System
• Impulse Response : h(t) or hl

• Transfer Function: H(j𝜔)

• State-space: 

(Dynamics matrix A ,  state vector X)

s(t) or sl
(continuous or discrete time 

input signal)

S(j𝜔)
(Frequency domain 

input signal)

r(t) or rl
(continuous or discrete 

time response)

R(j𝜔)
(Frequency domain 

response)

Figure 4.1: Three equivalent representation of an LTI system: 1) Im-

pulse Respose and 2) State-Space Model and 3) Transfer-Fucntion that

completely describe its dynamics.

— most commonly the acoustic velocity at some upstream reference location in the

case of premixed flames. However, as discussed in Sec. 1.4.2, the flame response

could be linked to other perturbations in other quantities as well, such as acoustic

pressure or equivalence ratio. Each of these mentioned LTI system representations

is briefly discussed next.

4.2.1 Frequency-domain Representation (Transfer Function)

In the frequency domain, it is well established that transfer function H(s) com-

pletely describes the linear dynamics of the LTI system in general, defined with

complex-valued Laplace variable s = σ+jω, where the real part σ is the growth rate

and imaginary part ω the frequency of oscillation (in radians/sec) of the Laplace-

transformed signals. Given an input and system transfer function, the output can

be directly determined from an algebraic product between H(s) and input signal in

s-domain (See Fig. 4.1).

R(s) = H(s)S(s) (4.1)

Acoustics and combustion dynamics community, equivalently, often adopt a Fourier

transform definition that is extended over the whole complex plane. It is defined for

a complex-valued frequency ω̃, to describe Flame Transfer Function (F(ω̃)), where

the real and imaginary parts denote the frequency of oscillation and its growth rate

respectively. 2

Q̇′

¯̇Q
= F(ω̃)

u′

ū
(4.2)

An important property of LTI systems is its frequency response, which strictly

is different from the transfer function though closely related. It is encountered in

2Note the difference that arises depending upon whether Laplace or Fourier transform is used:
s = jω̃ = j(−jσ + ω). That is, when a complex-valued frequency is referred, the oscillation
frequency is ω = ℜ{ω̃} = ℑ{s} and the growth rate is σ = ℑ{ω̃} = ℜ{s}. H(s) and F(ω̃) above
are equivalent quantities in Laplace and extended-Fourier domains respectively.
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thermoacoustics literature that often the terms Flame Transfer Function (FTF)

and Flame Frequency Response (FFR) are used interchangeably. The frequency

response of the system is, in fact, the response under steady-state conditions to

pure harmonic signals, where both input and resulting output are sinusoidal signals

without any transient growth or decay. If the transfer function H(s) is known, the

frequency response can be simply obtained by evaluating H(s) along imaginary ω-

axis of the complex s-plane i.e., for s = jω and σ = 0 yielding H(jω). Conversely,

if the FFR is known, estimating approximately the complete transfer behavior i.e.,

transfer function over the complex s-plane is not a trivial task, and there are different

methods to approximate it, as discussed in System Identification books [226, 227],

and by Schmid et al. [229].

Flame frequency response of realistic flames, contrary to theoretical n− τ flame

models that are characterized with a constant gain and single-time-delay (i.e., linear

phase, see Eqs. 1.10, 4.2), when plotted against frequency exhibit peculiar features

such as excess gain, i.e., FTF magnitude larger than unity at some frequencies,

local maxima, and minima in the gain, and also low-pass filter behavior, i.e., gain at

higher frequencies decaying to zero. For the phase, there are deviations from linear

variation with frequency, rapid changes, and even inflection at frequencies where the

gain maxima/minima are present. All these features can be observed in Fig. 4.2,

and can be explained based on the constructive and destructive superposition of

the flame responses owing to the underlying physical mechanisms of flame dynamics

that were described in Ch. 1 - Sec. 1.2.1, and Sec. 1.4.2.

Flame(s), when considered as an isolated thermoacoustic network element or as

an open-loop LTI system, is expected to be a stable system. It is when they are cou-

pled with an acoustic network that the feedback loop between flame(s) and acoustic

field is established, leading to some eigenmodes of the whole (closed-loop) system

becoming stable or unstable. In most practical cases, FFR at a few discrete points

in the frequency bandwidth of interest is the only available data from experiments

or simulations. While carrying out quantitative linear stability analysis (LSA), a

common practice is to directly and only use the FFR instead of an FTF. It im-

plicitly means extrapolating the FFR along the σ-axis by a constant value (simple

extrusion). Schmid et al. [229] elaborate that the accuracy and reliability of such

LSA predictions are quite sensitive to how well the FFR-extrusion approximates

true-FTF and that care must be taken in interpreting the results. This is especially

true for thermoacoustic modes where strong flame feedback leads to relatively large

growth rates. To quantify the deviation of FTF-approximation from true-FTF, ei-

ther by extrusion or other better methods mentioned, the authors [229] recommend

determining the so-called region-of-confidence based on the number of available FFR

data-points in the spectrum and acceptable error bound between the two. It, thus,

demarcates a region on the complex-frequency plane around FFR points, and all
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Figure 4.2: a) Lab-scale experimental rig operated at EM2C to determine

the adjacent swirling flame describing function. (b) Typical flame de-

scribing function (FDF). Figure reproduced from [25], originally adapted

from Palies et al. [26].

the eigenmodes falling inside them can be reasoned of being well-predicted.

Flame transfer function (FTFs) can be generalized by parameterizing it with

the amplitude of acoustic perturbations the flame is subjected to as an additional

variable. The family of flame transfer functions thus obtained is the so-called Flame

Describing Function (FDF) that also depends on the oscillation amplitude. In com-

parison to FTF (see Eq. 4.2), the FDF is given as follows, and an example for a

real swirl premixed flame is shown in Fig. 4.2

Q̇′(ω̃, |u′|)
¯̇Q

= F(ω̃, |u′|)
u′

ū
(4.3)

FDF description helps capture the inherent nonlinear nature of the flame response

mainly due to acoustic oscillation amplitude. When coupled with an acoustic

solver, it helps model and predict many nonlinear phenomena observed in thermoa-

coustic combustion instabilities often seen in experiments: limit-cycle amplitudes,

frequency-shift during transient growth of oscillations mode switching, instability

triggering, hysteresis, etc., e.g., see [113, 182, 130, 143, 183]. It should be noted

that this chapter and manuscript mainly deal with the linear FTF form of the flame

response model, and FDF representation in STORM will be part of future work.

It is reiterated that the primary objective of this chapter, which is determining

the time-domain state-space model for a flame given its sampled frequency response

(FFR) data, is covered in the Sec. 4.3 as a continuation of this subsection. However,
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before that, the following sub-section will briefly review the time-domain approaches

for representing flame response as an LTI system.

4.2.2 Time-domain Representation (Impulse Response and State-

Space Model)

4.2.2.1 Impulse Response

In the time-domain, the impulse response function h(t) of an LTI system fully char-

acterizes its dynamics, i.e., knowledge of the impulse response suffices to predict

the output for any input signal as depicted in Fig. 4.1. Impulse-response can be

defined as a system’s response to an ideal impulse, viz., the Dirac-delta function.

The time-domain response r(t) is obtained from input signal s(t) through convolu-

tion integral, as follows, unlike a simple algebraic product in frequency-domain (Eq.

4.1).

r(t) = h(t) ∗ s(t) =

∫ +∞

−∞
h(τ)s(t− τ)dτ (4.4)

The flame transfer function H(s) (in Laplace space), or for stable, steady state

harmonic signals frequency response H(jω) (in Fourier Space), are direct frequency-

domain equivalents of flame impulse response function h(t). They can be converted

into each other by Laplace/Fourier transform (and its inverse). The relation above

is defined in continuous-time sense. However, as detailed by Polifke in [12], when

working with discrete-time signals, it is rather convenient to use z-transform (and its

inverse) to define impulse reponse h as a sequence of coefficients h = (hl) (see Fig.

4.1). The discrete convolution sum relating input (sl) and output (rl) sequences is

then given as follows, where subscript l denotes the time sequence index. For eg.

the input signal s = (sl) = (s[l∆t]) for l = 0, 1...N where ∆t is the time increment.

rl =
+∞∑

k=−∞

hksl−k (4.5)

Regarding the point made earlier for the need of extending the flame frequency-

response (FFR) over entire complex-plane to carry out thermoacoustic stability

analysis: one method suggested by Schmid et al. [229] and also demonstrated by

Tay-Wo-Chong et al. [230], Macquisten et al. [231] was to utilize the flame impulse

response (IR) coefficients hk, by taking its forward z-transform, to obtain Flame

Transfer Function (FTF). Here, the required IR coefficients hk are determined from

an apriori step with inverse z-transform of the FFR data. The resulting FTF can

then be evaluated for arbitrary complex-valued frequencies. See the cited references

for details and [232, 12] for more theoretical background.
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4.2.2.2 About Single- vs. Distributed- time delay in flame dynamics

Time delay plays a crucial role in acoustic flame response and eventually in ther-

moacoustic combustion instabilities. It is typically associated with the convective

transport of flow-flame perturbations, e.g., equivalence-ratio, vorticity waves from

the injector towards the flame, wrinkles along the flame front due to upstream ve-

locity perturbations, etc. - see Ch. 1, Sec. 1.2.1, 1.4.2, for a summary of different

known physical mechanisms governing flame dynamics. Often not one but several

of these physical processes are simultaneously at play, depending on the specificities

of the configuration geometry, flow, and operating conditions. It is reasonable to

expect that each of these processes, interaction mechanisms, will have different char-

acteristic time scales associated with them. Therefore, ascribing a single constant

time delay, as done in simplistic n − τ type models, is inadequate to describe the

flame dynamics of realistic flames.

Flames, when subjected to a perturbation, do not respond instantaneously, but

typically the first response is initiated after a certain dead/propagation time delay,

followed by a dynamic response over a small time interval. In other words, the

flame response is not obtained at one later instant but is distributed over multiple

time instants. This quite naturally give rise to Distributed-time-delay (DTD) flame

response models [22, 179, 178, 233, 176], and the aforementioned behavior can be

clearly observed in an impulse response of a flame. Polifke in [12] provides a keen

review of work on the time-domain approach for describing flame dynamics using

impulse response and DTD empirical models, its range of validity and applicability,

etc. The author also emphasizes that most of the peculiar features of premixed

flames’ frequency response can be explained naturally and in a physically intuitive

manner with the impulse response DTD approach. It is briefly described next, along

with an illustration.

For a simple single-delay n − τ FTF, the impulse response, in discrete-time,

would be given by only one non-zero coefficient hk with one associated time-scale

for the delay. On the classic Bode plot, the frequency response of this FTF is con-

stant gain n and a perfectly linear phase ϕ = ωτ plot against frequency. Polifke

[12] illustrates through a series of contrived examples, by incrementally including

elementary complexities in the discrete impulse response, how all the characteristic

features observed in frequency response (Bode plots) of swirling premixed flames

could be retrieved (see Figs. 3 - 7 in [12]). The accompanying Nyquist plots (a.k.a.

phasor diagrams) provide insight into how this is achieved in terms of constructive

and destructive superpositions of phasors corresponding to each time-scale or coef-

ficient hk. Dual time delays i.e., only two non-zero coefficients hk in the impulse

response (or only two distinct time-delay scales in the distribution) help reproduce

local maxima and minima, excess gain (> 1), and non-linear phase variation in the
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Figure 4.3: a) Example of a discrete-time impulse response h with dis-

tributed delays that gives frequency response characteristics of swirling

premixed flames - seen in adjacent plots. Time delay τ = 3∆t. Times and

frequencies are non-dimensionalized with reference time scale τR, and the

time increment ∆t = 0.1τR. b) Frequency response (F (ω)) representation

on Nyquist plot (phasor diagram) and c) Frequency response Gain and

Phase (Bode plot). (Replicated from [12])

Bode plots. Further, distributed delays with all positive hk coefficients supplement

these features with the low-pass filter behavior. Finally, a distribution with positive

and negative coefficients retrieves all the abovementioned features together. This

last general case- its impulse-response with distributed delays, Nyquist and Bode

plots, are shown in Fig. 4.3.

Preceding discussion leading to Fig. 4.3 makes it evident that the nature of

the flame frequency response (FFR) is closely related to the time-delay distribution

seen in its impulse response. It also suggests that components of the complex-valued

FFR - gain and phase (or the real and imaginary parts) are somehow related. As

will be shown in the upcoming sections of this chapter (Sec. 4.4 to 4.6), it is

indeed true that the real and imaginary parts of the frequency response of an LTI

system are not independent and related to each other by the so-called Kramers-

Krönig dispersion relation [234, 235]. These relations are the theoretical definition

of causality in frequency-domain [236, 237, 238] of the response function of LTI

systems [239, 240, 241]. Most LTI systems of practical interest are expected to

satisfy these conditions.

4.2.2.3 State-Space Models

In the previous two approaches, the flame dynamics is entirely characterized by a

functional form of impulse response h(t) in time-domain or transfer function H(s)

or H(jω) in frequency-domain. Another equivalent time-domain approach for rep-

resenting LTI systems is the state-space method which was introduced in Sec. 2.1.1.
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The state-space model is, however, defined as a dynamical system in terms of state-

variables as a set of linear ordinary different equations ODEs. As discussed earlier

in Sec. 2.1.1, the underlying physics of flame dynamics is quite complicated, and de-

riving models for it from first principles is a challenging task, especially, for flames

of practical interest - turbulent swirling flames. What is typically accessible are

flame frequency response measurements from experiments or high-fidelity simula-

tions. Therefore, a technique is needed for obtaining state-space models for linear

flame dynamics from FFR measurement data. This is the core subject of this chapter

and is discussed in the following section.

4.3 Generating State-Space model from Frequency Re-

sponse

This section will discuss the main objective of generating a state-space model of

flame response from discrete flame frequency response data. The first step to-

wards it is to obtain the frequency response in a functional form from discrete

data samples. Two equivalent techniques3 that are commonly used — Rational

Polynomial Function (Padé approximation) and the Pole-Residue Formulation —

are presented in the following subsection. Specialty to these mathematical rep-

resentations is the ease with which they could be transformed into the time do-

main by inverse Laplace/Fourier transform to obtain impulse response or differ-

ential equations for state-space models. A couple of different algorithms to fit

this function/formulation on the data-set employed in the current work are in-

troduced in the subsequent subsections. Both these approaches have been uti-

lized in CFD/aeroacoustics/thermoacoustics research for deriving TDIBC (Time-

Domain Impedance Boundary Conditions) for compressible LES from frequency-

domain acoustic impedance/reflection-coefficient information [242, 243, 244, 245]

and also for approximating flame frequency response from measurements as well

[246, 163, 179, 186, 202, 88]. Finally, the last subsection will present, of the many

possible ways, the approach for state-space model realization from the rational ap-

proximation that is employed in STORM.

4.3.1 Rational Approximation of Frequency Response

General problem definition of rational approximation:

Given k̄ measurement of the frequency response,

Hk = H(jωk) k = 1, ..., k̄ (4.6)

3Both these techniques are addressed by one general term, Rational Approximation, in this
chapter and elsewhere in the manuscript.
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the idea is to determine a rational function H̃(jωk) that approximates the given

measurements

H̃(jωk) ≃ Hk ∀k = 1, ..., k̄ (4.7)

The two techniques used for obtaining H̃(jωk) are:

1. Rational Polynomial Function (Padé approximation):

One of the most popular ways of approximating transfer function (actually

frequency response to be precise) from frequency response measurement data-

samples is to approximate it as a rational polynomial function, also known as

Padé approximation given as follows. They are universal approximators and

can approximate a wide range of functions with arbitrary accuracy [247, 248].

H̃(jω) =
n(jω)

d(jω)
=

∑n̄
n=0 an(jω)

n

∑n̄
n=0 bn(jω)

n
(4.8)

where an, bn ∈ R are unknown coefficients, and n̄ is the order of the desired

model. In Eq. (4.8), note that the numerator and denominators are polyno-

mials in (jω) with their degrees n̄ taken to be the same as a general case.

2. Pole-Residue Formulation:

An alternative approach to Padé approximation is the so-called pole-residue

construct wherein the frequency response is modeled as a series of partial

fractions as shown in the following general formulation. This approach is also

referred to as Multi-pole expansion.

H̃(i)(jω) = R
(i)
0 +

n̄r∑

n=1

R
(i)
n

jω − p
(i−1)
n

+

n̄r+n̄c∑

n=n̄r+1


 R

(i)
n

jω − p
(i−1)
n

+

(
R

(i)
n

)∗

jω −
(
p
(i−1)
n

)∗




(4.9)

where the first term R
(i)
0 ∈ R is a constant term, the series in the second term

is a real-valued multi-pole expansion for prescribed n̄r number of real poles

pn, and residues Rn and the series in the third term are n̄c complex-conjugate

pairs of poles (and corresponding residues) on the complex plane. Thus the

total order of the model is n̄ = n̄r+2n̄c. The superscript (· )(i) is the iteration

index involved in fitting the above model on the data samples.

Choosing any of the above form, the goal is to fit the model on the discrete

frequency response data samples. In other words, the problem is to determine the

coefficients an and bn in case of Eq. (4.8) or the poles pn and residues Rn for

Eq. (4.9) by minimizing the error L2 norm between the samples Hk and the model

H̃(jωk) given as follows

e2 =
1

k̄

k̄∑

k=1

∣∣∣Hk − H̃ (ωk)
∣∣∣
2

(4.10)
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It is also worth mentioning that the two rational approximations presented above

are mathematically equivalent. In Eq. (4.8), the zeros or roots of the denominator

are also poles of the model H̃(jω). Factorizing the denominator and using partial

fraction decomposition techniques, Eq. (4.8) can be recast into a partial fraction

series similar to Eq. (4.9). In other words, if a rational polynomial fraction is

known, the equivalent pole-residue formulation can be found and vice-versa. This

was demonstrated and explicit relations between coefficients an, bn and poles pn and

residues Rn were rigorously derived by Douasbin (Chapter 8 in [249]) for a generic

model of order n̄.

Minimizing Eq. (4.10) is a nonlinear least-squares problem, due to the unknowns

bn in the denominators for Eq. (4.9). Although nonlinear optimization algorithms

can be applied directly, it is well-known that they can be quite time-consuming and

prone to local minima. The pole-residue formulation relatively leads to much better

numerical conditioning of the optimization problem [248].

The following couple of subsections discuss two different algorithms for fitting

pole-residue form of a model on frequency response data samples, viz. i) Algo1 :

proposed by Douasbin et al. [242, 249] and ii) Algo2 : Vector Fitting algorithm, the

version described by Triverio [248]. The idea is not to present both the methods

rigorously here but to highlight the fundamental algorithmic differences. Complete

details, including implementation pseudo-codes, can be found in the mentioned ref-

erences.

4.3.2 Douasbin et al. Algorithm (Algo1)

Douasbin et al. [242, 249], in their work proposed a methodology for model-

ing Delayed Time Domain Impedance Boundary Conditions (D-TDIBC) for com-

pressible Navier-Stokes LES simulations by extending existing TDIBC techniques

[245, 244, 243]. One of the motivations behind delayed TDIBC technique is the cost-

benefit, as it allows computational domains in LES to be clipped and the boundary

condition be characterized correctly at the new boundary. D-TDIBC, of course,

while retaining the reflection coefficient of the original boundary (before trunca-

tion), imposes a time-delay on top of it. So, if R(jω) is the reflection coefficient in

frequency-domain of the original boundary, D-TDIBC imposes the delayed reflection

coefficient Rτ (jω) = R(jω)e−jωτ , in time-domain. τ is the time delay associated

with acoustic wave propagation over the truncated domain. For example, long ducts

near the inlets/outlets of the geometry could be clipped off for gains in computa-

tional cost/time.

With or without delay, the frequency-domain impedance/reflection coefficient

(Rτ (jω) or R(jω)), ought to be transformed in time-domain for LES, as done for

TDIBC, or into a state-space model for low-order acoustic network solvers such
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as STORM in the current context, or see e.g., [246, 250]. This transformation is

achieved thanks to the rational approximation of impedance/reflection-coefficient

measurements or sampled data from their complex analytical definitions.

Douasbin et al. [242, 249] proposed an algorithm to get a pole-residue ratio-

nal approximation of reflection-coefficient data, and it is briefly described in this

subsection. The modeling of simple ne−jωτ type flame transfer functions, used for

examples presented in previous chapters, was primarily based on this algorithm. In

this chapter, attempts are made to use both this and the Vector Fitting (Sec. 4.3.3)

algorithms for fitting more general realistic flame frequency responses.

The pole-residue model used by authors in [242, 249] is slightly different from that

of Eq. (4.9) since they consider only complex-conjugate pair of poles without real

poles and the constant term. A pair of partial fractions due to complex-conjugate

poles is also referred to as a Pole-Base-Function (PBF). The authors separate real

and imaginary parts of a PBF, plot them, evaluate their mathematical properties

and identify the relations between unknown coefficients, viz., the real and imaginary

parts of conjugate poles and residues. These inter-relations are exploited to obtain

a well-calculated intial guess before for the subsequent step of optimizing them to

minimize the error (cf. Eq. 4.10).

The real part a PBF (say the kth PBF) can typically be observed of being similar

to a asymmetric bell curve with following three properties : i) ω0,k the resonant

frequency, where the real part of the PBF is maximum, ii) h0,k height of the peak at

ω0,k , and iii) right-hand-side half-width ∆ωε, which is defined as, for a given small

percentage ε ∈ [0, 1], the band-width (∆ωε = ω+ − ω0,k) where ω+ is the frequency

where ℜ(PBFk) = εh0,k. These properties due to characteristic shape of the real

part of a PBF are used to identify and derive inter-relations among the unknown

coefficients.

The iterative fitting algorithm starts with the user providing a max number of

PBFs, and convergence criteria (Eq. 4.10). At each iteration, a PBF is added to

the model and is placed at the frequency (ω0,k) where the error between model and

target data is max. h0,k of the added PBF is set equal to this max error, and the

unknown coefficients are determined using the inter-relations. Finally, a nonlinear

least-squares problem is solved to optimize all the coefficients of iteratively added

PBFs, minimizing the error (Eq. 4.10) between model and the target data. If

the convergence criterion is met, the algorithm is terminated. Else, it repeats the

process of adding a PBF at each new iteration until the max number of PBFs

is reached. The PBF placement in the spectrum is based on the real part of the

data/model, and the fitting of the imaginary part is left to the last optimization step

during each iteration. The algorithm’s multi-dimensional nonlinear optimization

in STORM uses the gradient-based Levenberg-Marquardt method available in the

standard MINPACK library.



106 Chapter 4. Modeling of Linear Flame Dynamics in STORM

For lower model orders, i.e., low number of PBFs, the algorithm works quite

efficiently; however, as the order increases, the algorithm struggles a bit, and the

convergence takes considerable time compared to the Vector Fitting algorithm dis-

cussed next. Several examples fitting flame frequency response of realistic burners

using both the algorithms are presented in the following Sec. (4.5).

4.3.3 Vector Fitting (VF) Algorithm (Algo2)

Vector Fitting (VF) is a well-established algorithm for the rational approximation

of frequency-response data, quite influential and prominent in the area of electri-

cal/electronic circuit analysis and signal integrity simulations of scales from long

transmission lines to small integrated-circuit (IC) microchips. VF was originally

conceived and proposed by Gustavsen and Semlyen [247] in 1999. Later many re-

search groups have developed it further into advanced and fully-featured algorithms

- see the review by Triverio [248].

Combustion dynamics community as well has employed VF for approximating

flame frequency responses and acoustic impedances [246, 163, 179, 186, 88, 243, 251,

252] in the context of low-order modeling of aero/thermoacoustics.

VF is inspired from the early works of Levy [253] and Sanathan-Koerner (SK)

[254] long back in 1960s for rational approximation. Their prefered approach was

to iteratively solve the original nonlinear optimization problem in Eq. (4.10) by

linearizing it. At each iteration, the resulting linear least-squares can be solved

efficiently and robustly with QR decomposition. In the Sanathan-Koerner (SK)

method, the error function — rewritten From Eq. (4.8) and Eq. (4.10) — is lin-

earized by replacing
∑n̄

n=0 b
(i)
n (jω)n in denominator with

∑n̄
n=0 b

(i−1)
n (jω)n which

known from previous (i− 1)th iteration.

(
e
(i)
SK

)2
=

1

k̄

k̄∑

k=1

∣∣∣∣∣
Hk
∑n̄

n=0 b
(i)
n (jωk)

n −
∑n̄

n=0 a
(i)
n (jωk)

n

∑n̄
n=0 b

(i−1)
n (jωk)

n

∣∣∣∣∣

2

(4.11)

The SK method for fitting rational polynomial function, in practice, however, is

still prone to numerical issues [248] especially when large model order n̄ is required

and or the data-samples are spread over a wide bandwidth, i.e., are defined for

large frequencies ω. The numerical issues are attributed to: i) presence of high

powers of (jω)n leading to poor conditioning of the least-squares problem, and ii)

the weighting term in the denominator,
∑n̄

n=0 b
(i−1)
n (jω)n, typically exhibit large

variations over the bandwidth of frequency response data samples.

The VF algorithm, contrary to using Padé approximation type formulation as in

SK method (Eq. 4.8), adopts the pole-residue model (Eq. 4.9) that provides much

better numerical conditioning addressing above issues to a large extent by a simple

yet brilliant solution[247, 248].
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The VF algorithm minimizes the following linearized error function that is de-

fined analogously to the SK method’s error function in Eq. (4.11). Note that for

ith iteration, the poles in the denominator are known quantities from the previous

(i− 1)th iteration.

(
e
(i)
V F

)2
=

1

k̄

k̄∑

k=1

∣∣∣Hkw
(i)(jωk)− H̃

(i)(jωk)
∣∣∣
2

(4.12)

where

H̃(i)(jωk) = r
(i)
0 +

n̄∑

n=1

r
(i)
n

jωk − p
(i−1)
n

(4.13)

w(i)(jωk) =

∏n̄
n=1(jωk − p

(i)
n )

∏n̄
n=1(jωk − p

(i−1)
n )

= 1 +
n̄∑

n=1

w
(i)
n

jωk − p
(i−1)
n

(4.14)

The H̃(i)(jω) is the approximated model after ith iteration, and the new term

w(i)(jω), is the so-called weighting function that helps deduce updated set of poles

p
(i)
n from p

(i−1)
n . See [248] for details.

The user has to provide initial set of poles p
(0)
n ∈ C as per the model order

n̄ = n̄r+2n̄c for the fitting process to start (i = 1), and the max number of iterations

(imax) to perform before terminating the process unless convergence criteria is met in

between. The choice of initial poles could be random for most problems of practical

interest, and the algorithm is quite robust and fast to efficiently relocate the poles

on the complex plane to minimize the error between model and data.

Upon convergence, p
(i−1)
n → p

(i)
n , and become poles of the obtained model

H̃(i)(jω). Simultaneously with this, the weighting function w(i) → 1 as appar-

ent from first equality in Eq. (4.14) and the linearized error function (Eq. 4.12)

tends to original error function (Eq. 4.10), as desired.

4.3.4 State-Space Model Realization

Having obtained the model transfer function H̃(jω) by rational approximation from

the frequency response data samples, the ultimate objective to realize a state-space

model is described now. There are many ways of state-space model realization from

the general pole-residue form (Eq. 4.9) as such [248], and a comprehensive review

of different methods is provided in [255]. The one that is employed in STORM is

presented here.

Pole-residue formulation with only complex conjugate pairs of poles (cf. Eq. 4.9)

are considered for rational approximation in STORM, consistent with the one used

by Douasbin et al. [242, 249] for delayed reflection coefficients (Sec. 4.3.2). Further

to reach this specific multipole expansion model, substitute for poles pn = cn + jdn

and residues Rn = αn+jβn, combine the two partial fractions, and set an additional
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term that appears in the numerator of each PBF to zero (βndn+αncn = 0) — called

as phase parameter in [242]. The classical flame transfer function F(jω) , in Eq.

(4.2), is now given by this model H̃(jω) from multipole expansion as follows.

F(jω) ≈ H̃(jω) =

n̄∑

n=1

2αnjω

(jω)2 − 2cnjω + ω2
0,n

(4.15)

where coefficients αn, βn, cn, dn, ω0,n are real-valued parameters , n̄ is the model

order or number of PBFs, and ω0,n is the resonant frequency of pole pn as mentioned

in Douasbin et al. algorithm in Sec. 4.3.2.

Let Q̂ =
∑n̄

1 Q̂n, so that the FTF (Eq. 4.2) can be expressed in terms of the nth

PBF
Q̂n(jω)/Q̄

û(xref , jω)/ū
=

2αnjω

(jω)2 − 2cnjω + ω2
0,n

(4.16)

Introducing an intermediate variable ẑn(jω) on the left-hand side, the above equa-

tion could be re-written as
(
Q̂n(jω)/Q̄

ẑn(jω)

)(
ẑn(jω)

û(xref , jω)/ū

)
= (2αnjω)

(
1

(jω)2 − 2cnjω + ω2
0,n

)
(4.17)

By introducing ẑn(jω), above equation can be split into two sets of equations by

equating the terms in left and right parenthesis respectively from both the sides of

above equation.

Q̂n(jω)/Q̄ = 2αnjωẑn

[
(jω)2 − 2cnjω + ω2

0,n

]
ẑn = û(xref , jω)/ū

(4.18)

The above two sets of equations can be recast into time-domain by taking inverse

Fourier transform, recognizing that the (jω) multiplier in a term converts into a

time derivative in time-domain.

Qn(t)/Q̄ = 2αnżn(t)

d2

dt2
zn(t)− 2cn

d
dtzn(t) + ω2

0,nzn(t) = u(xref , t)/ū

(4.19)

This dynamical second-order system of ODEs can then be represented in state-space

form, assembled together for all the PBFs n = 1 to n̄, by defining the state vector

X = [z1 ż1 · · · zn̄ żn̄]
T .

State-space Dynamics Equation:

d

dt
X = AX+BU
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d

dt




z1

ż1
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zn̄

żn̄



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0 1
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. . .

0 1
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
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z1

ż1
...

zn̄
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
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+




0

1/ū
...

0

1/ū




[
u(xref , t)

]

(4.20)

State-space Output Equation: (Feedthrough matrix D is zero.)

Y = CX

[
Q(t)

]
=
[
0 −2Q̄α1 · · · 0 −2Q̄αn̄

]




z1

ż1
...

zn̄

żn̄




(4.21)

The above equations constitute the state-space model for Flame Transfer Func-

tion (FTF) corresponding to a flame object in a STORM acoustic network. Recall

that a flame element makes two connections with acoustic subdomains. Eq. (4.20)

governs the evolution of these intermediate variables zn(t) as per the acoustic veloc-

ity at reference location in the input vector, and the Eq. (4.21) provides the heat

release rate fluctuations output Q(t). The state variables are abstract and act as

intermediate variables in the calculation of heat release rate, where żn(t) may be

interpreted as the proportion of normalized heat release fluctuating at frequencies

contained in the band of width 2cn centered around ω0,n [157, 197].

4.4 Physical Constraints in Fitting a Model on Frequency

Response Data

It is worth emphasizing that the rational approximation discussed in the previous

section is not a mere mathematical curve-fitting on the data samples. Instead, the

goal is to identify a low-order surrogate model (also called macromodel) representing

the underlying physical system dynamics. The technique fits a model with suitable

structure and parameters onto available data, tapping into its inherent correlation.

It yields a dynamical model that describes the system behavior and is expected to

predict its output reasonably accurately for any given input.

While the fitting accuracy between the macromodel and data is essential, it

is not the most important requirement. Few fundamental properties are critical,

and must be guaranteed for the physical admissibility of such macromodels for LTI

systems, viz., 1) Reality, 2) Causality, 3) Stability and 4) Passivity [239, 248, 255].

Indeed most practical LTI systems, including an isolated (open-loop) flame object
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in a STORM acoustic network, are realizable, intrinsically causal, and stable. It is

then expected that the frequency response samples and the macromodel structure,

by construction, both honor these constraints. As will be shown later, there is a

possibility that if either of them fails to meet any of these conditions (as relevant),

the entire macromodeling process can be compromised.

Triverio et al. [239] provides a detailed review of these physical conditions that

must be respected in generating macromodels for LTI systems. Their mathematical

definitions in time-, Laplace, and Fourier domain are highlighted. Analysis and in-

terpretation of how these properties are closely related are also presented. Although

the explicatory examples are primarily from electronics engineering, the concepts

are generally applicable to all LTI systems.

The motive here is to concisely explain these physical constraints, as a theoret-

ical foundation, before discussing examples of rational approximation of frequency

response of realistic flames, failures in obtaining accurate fits, its causes and impli-

cations — of particular interest will be the causality condition.

1. Reality: The input and output signals of most practical LTI systems are real-

valued quantities. Therefore a macromodel generated from complex frequency-

domain data, when transformed into time-domain either as an impulse re-

sponse or a state-space model, ought to be physical, i.e., it should receive

and yield real quantities. For this, the system response function must satisfy

the following condition in frequency-domain: in case of an acoustic reflection

coefficient, for instance, the following should hold valid [239, 256, 242]

R(−jω) = R∗(jω) (4.22)

where the ∗ indicates the complex conjugate.

The reality constraint is ensured in a pole-residue macromodel H̃(jω) by con-

struction. Its structure is such that it contains only real poles (on real axis),

or if complex poles are necessary, they must be present in complex-conjugate

pairs. See equation (4.9). By taking inverse Fourier transform of Eq. (4.9), one

gets the impulse response h̃(t) of the macromodel - a time-domain equivalent

of the model transfer function H̃(jω), as follows.

h̃(t) = R0 +

n̄r∑

n=1

Rne
pnt +

n̄r+n̄c∑

n=n̄r+1

[
2R′

ne
p′nt cos

(
p′′nt
)
− 2R′′

ne
p′nt sin

(
p′′nt
)]

(4.23)

for t ≥ 0, where p′n = ℜ{pn}, p
′′
n = ℑ{pn}, R

′
n = ℜ{Rn} and R′′

n = ℑ{Rn}.

It can be seen that the time-domain impulse response of the macromodel is

indeed real-valued.
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2. Causality: Causality is often intuitively and qualitatively stated as a physical

property of all LTI systems that an effect seen on the system cannot precede

its cause. For example, if two input signals s1(t) and s2(t), equal up to t = t0,

are applied to a causal system, their respective outputs are expected to be

equal up to t = t0. If this is not the case (see Fig. 4.4), the system is non-

causal because it anticipates the variation in inputs and responds before the

input actually changes.

Figure 4.4: Illustration of a noncausal system response: two inputs s1(t)

and s2(t) are equal upto t = t0, leading to outputs r1(t) and r2(t). Response

r2(t) begins to deviate from r1(t) much earlier than t = t0 when the input

actually changes. Adapted from Triverio et al. [239].

Mathematically, the causality principle is defined with help of impulse reponse

h(t) in time-domain. An LTI system is causal if and only if its impulse reponse

vanishes for t < 0, i.e., system response cannot precede the impulse input at

t = 0,

h(t) = 0, t < 0 (4.24)

The above definition of causality is general and apply to both lumped and

distributed systems [239]. However, for systems responding with finite delay,

it may be better to adopt a more stringent definition especially for the latter

case. It is given as below by explicitly considering the propagation delay

h(t) = 0, t < τ, τ > 0 (4.25)

where τ is the propagation delay, i.e. as mentioned earlier, the duration after

which the first response of the system begins to appear on application of input.

In the current context of generating flame response state-space models, whether

or not the original complex-valued frequency-domain data and the macromodel

respect causality — better interpreted in time-domain — is a vital question
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that arises. Often it is assumed that the flame frequency response data is

causal without any guarantee or verification. However, this may not always

be the case, as will be shown later, and as also discussed with many theo-

retical and real-life examples of electronic circuits modeled as LTI systems in

[239, 240, 257, 258]. Causality [236, 237, 238] imposes strong condition on the

frequency response of an LTI system that is defined by the so-called Kramers-

Krönig (KK) dispersion relations [234, 235, 241] - introduced in the following

Sec. 4.6.

As far as the pole-residue macromodel is concerned (Eq. 4.9), that fits onto

the data, it can be shown that it is sufficient to ensure that the real part of

the poles are negative for the macromodel to be causal.

ℜ{pn} ≤ 0, ∀n. (4.26)

Mathematical proof of the above constraint and theoretical derivation of KK

dispersion relations can be found in, for example, in [239, 255, 241] from recent

literature.

It is possible to imagine that if the above causality constraint is imposed

in the fitting procedure, but the original frequency response data violates

causality for some reason, fitting issues would possibly arise. (How can a

causal macromodel fit onto a data-set that is non-causal?) This aspect is

demonstrated and more discussion follows in the upcoming Sec. 4.5 and Sec.

4.6.

3. Stability: It is quite important and expected that an LTI system’s output

remains finite magnitude as long as the incoming signal is finite over time.

This is referred to as Bounded-Input bounded-output (BIBO) stability. In

time-domain, the BIBO stability is guaranteed when [239]

∫ +∞

−∞
|h(t)|dt < +∞ (4.27)

where h(t) is the impulse response.

In the frequency domain, the usual way to check stability is to analyze the

poles of the system transfer function and check if they all fall on the left-hand

side of the complex plane [205, 239]. Thus the macromodel (4.9) stability

could also be ascertained by enforcing the condition given in Eq. (4.26) during

fitting [239, 248, 242, 249]. This is done by simply inverting the sign of the

real part of the model poles during fitting iterations. If this is not ensured,

any time-domain simulation performed using the macromodel will blow up,

diverging exponentially. For example, verify that the model impulse response,
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Eq. 4.23, is not bounded if p′n = ℜ{pn} > 0). Overall, the condition in Eq.

(4.26) simultaneously enforces causality and stability in the macromodel.

4. Passivity: Passivity is a property that characterizes those physical systems

that are unable to generate energy on their own, simply due to the lack of

energy sources or gain mechanisms inside them [239, 248, 255]. A circuit

made by positive resistors, capacitors, and inductors is an example of a pas-

sive system (always energy dissipative), in contrast to an amplifier circuit. In

thermoacoustics, boundary impedances/reflection coefficients are passive ele-

ments; however, a flame is analogous to an amplifier. An open-loop flame re-

sponse subjected to acoustic perturbations has intrinsic gain mechanisms that

potentially can feed energy into the acoustic field and is thus a non-passive

object.

An acoustic reflection coefficient R(jω) is passive when the following condition

is true [242, 256]

|R(jω)| ≤ 1 (4.28)

Indeed in most cases the magnitude of reflected acoustic waves from a bound-

ary cannot be greater than that of incident waves.

However, regarding flame-response as a non-passive system, the usual in-

put/output quantities of an FTF (velocity and heat-release fluctuations) are

not suitable to assess a flame’s (non-) passivity. They are inconsistent and

do not correspond to (acoustic) energy fluxes, and something more appropri-

ate would be to look at the scattering matrix of the flame or combustor to

verify non-passivity. See the following works from a group of Polifke about

determining flame/combustor scattering matrices [232, 259, 260].

To ascertain that a macromodel H̃(jω) is passive, imposing condition in Eq.

(4.28) on macromodel, though necessary, may not be sufficient in a general

sense. The conditions that must be satisfied and techniques for enforcing

passivity in rational approximation / macromodel require more considerations

and are a bit more involved than above. It will not be discussed here, see

[239, 255] and references therein for more information.

Another vital point to note: passivity, if applicable, is the most stringent of

all the constraints discussed above, i.e., a macromodel, if passive, implies that

it is real, causal, and stable. The converse: i.e., reality, causality, or stability,

if any of these conditions are breached, the macromodel is surely not passive

[239].

In closing, this section highlights that imposing reality, causality, and stabil-

ity constraints in rational approximation algorithms discussed earlier is absolutely

Abhijeet Badhe
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necessary for deriving a reliable state-space model for flame response. It is hence

enforced by default in both the algorithms. A noncausal flame response macromodel

— i.e., presence of even one pole in the right-half of the complex plane and thus

also an unstable model — would be a useless flame model in any STORM network,

particularly for any kind of time-domain simulation subsequently performed. Its

implications on frequency domain linear stability analysis (LSA) may not be that

drastic, and LSA could be carried out with a noncasual model without any problems.

However, the results obtained may be inaccurate or even unphysical depending upon

the degree of causality violation. This point will be investigated in the examples

presented in the following section, and the Sec. 4.6 will also make a brief mention

about ways for verifying causality violation in frequency samples apriori any fitting

attempts.

4.5 Examples of Flame Frequency Response Fitting

This section will employ and evaluate the two algorithms - Algo1: Douasbin et al.

[242, 249] and Algo2: Vector Fitting (VF) [248], by attempting to fit different ac-

tual turbulent swirling flame frequency response data from the literature. Algo1 is

implemented in STORM, while for Algo2, an open-source Matlab implementation

from Triverio [248] was utilized. Initially, only the in-house developed Algo1 was

considered and employed for rational approximation. However, experiencing issues

in fitting led to considering Algo2 and its related literature. It also drew attention

towards the importance of physical constraints discussed in the previous section,

particularly causality, which often is taken for granted.

Example-1: NoiseDyn Burner

This first example considered is a laboratory scale, NoiseDyn [259, 260, 261]

turbulent premixed swirl burner studied by Dupuy et al. [173]. Experimentally

measured discrete frequency, gain, and phase data samples are passed to both the

fitting algorithms.

Figure 4.5, shows the experimental data and the fits obtained from both algo-

rithms. An excellent fit can be observed between the macromodel and FFR data.

The number of PBFs in the macromodel (very low for this particular Example1) and

the final best-case L2 error (Eq. 4.10) achieved are indicated in Fig. 4.5 caption.

Example-2: Palies et al. [20] EM2C Burner

This second example is of another lab-scale premixed swirl burner, a variant

similar to that shown in Fig. 4.2, that was investigated by Palies et al. [20].

The authors had proposed an analytical, linear flame response model based on
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Figure 4.5: Noisedyn Burner experimentally measured frequency re-

sponse macromodel fitting. No. of PBFs = 4, eAlgo1 = 0.041, eAlgo2 = 0.017.

perturbed G-equation for a V-shaped flame, whose parameters were determined

from experiments. Dupuy et al. [173], cited in the previous example, extended this

work and proposed a methodology to determine the same parameters for a similar

analytical model with the help of a few LES non-reacting and reacting simulations.

Significant gains in computational cost were achieved with the approach; compared

to the standard way of computing frequency response by pulsing the flame at discrete

frequencies.

For the sake of testing the fitting algorithms, experimentally measured flame fre-

quency response (FFR) data is fetched by digitizing the plots from [20]. Frequency-

dependent time-delay is computed (τ = ϕ/ω) from the original unwrapped phase

data in the paper. Figure 4.6 depict the fits achieved. Unlike the preceding NoiseDyn

burner example, the target experimental FTF shape is relatively more complicated.

The fits fairly capture the target except for the extremities of the data spectrum.

As expected, the general convergence trend of both the algorithms is that starting

from a low model order, i.e., number of Pole-Base-Functions (PBFs) (n̄ in Eq. 4.9

with nr = 0), the fitting accuracy improves with n̄. Even though the data bandwidth

(0-250 Hz) is similar to Example-1, and more samples are available, the required

model order is higher due to the complexity of the target shape. In this particular

case, the model order could not be increased beyond a point because the number of

unknown macromodel coefficients exceeds the number of data samples available as

the fitting target. Therefore, a larger number of data samples in the spectrum, i.e.,

better frequency resolution, is always helpful in general.
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Figure 4.6: Palies et al. [20] burner experimentally measured frequency

response fitting. Fewer data samples in the target than in Fig. 4.7.

Model number of PBFs = 8. eAlgo1 = 1.32, eAlgo2 = 0.14.
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Figure 4.7: Palies et al. [20] burner experimentally measured frequency

response fitting. More number of data samples in the target than in Fig.

4.6. Model number of PBFs = 15. eAlgo1 = 0.88, eAlgo2 = 0.10.

The fit with Algo2 in Fig. 4.6 is relatively better than Algo1. This could be

attributed to the fact that Algo1 is more constrained than Algo2 due to: firstly,

there is no additional constant term in the model structure as R0 in Eq. (4.9) for
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Algo2. Secondly, Algo1 also sets the term in numerator of PBFs (see Sec. 4.3.2,

called as phase parameter in [242]) to zero.

Another quick test performed is to increase the number of digitized data points

in the target, thus providing a wider margin for raising the model order. Figure 4.7

in this case portray how both models provide good fits in this case.

Example-3: SAFRAN Engine Combustor

For this third example, the flame frequency response of a SAFRAN engine com-

bustor computed by Dupuy (Fig. 4.21 in [215] for p′/p̄ = 2.5% outlet forcing case

(O25) in the plots) with forced LES of one sector is considered. Linear stability anal-

ysis (LSA) of the corresponding annular configuration with STORM was presented

in the previous chapter, though a simple constant n − τ type FTF was employed

there.

300 350 400 450 500 550 600 650 700
0.8

1

1.2

1.4

1.6

1.8
Gain [-]

Data

Fit-VF

300 350 400 450 500 550 600 650 700

Frequency (Hz)

-3

-2.5

-2

-1.5

-1

-0.5
Phase [rad]

Data

Fit-VF
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Figure 4.8: SAFRAN engine flame frequency response fitting. Target

samples are the actual data points determined from forced LES (Fig.

4.21 in [215], case O25 in the plots). Macromodel number of PBFs = 2.

eAlgo1 = 0.72, eAlgo2 = 0.38. Causality constraint is enforced (by default).

Figure 4.8 shows the fits achieved from both the algorithms. First of all, there

are simply too few data points available in the spectrum to fairly characterize the

flame response of this case and or of any realistic flame. This also highlights the

conflicting issue of computational cost and complexities in computing FFR for such

full-scale real systems. Experimentally determining FFR during test campaigns is
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Figure 4.9: SAFRAN engine flame frequency response fitting. Extra

points created in the target data samples by interpolation between the

actual data points determined from LES (see Fig. 4.8). Macromodel

number of PBFs = 5. eAlgo1 = 1.68, eAlgo2 = 0.26. Causality constraint is

enforced (by default).
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Figure 4.10: SAFRAN engine flame frequency response fitting. Target

data samples in this case is exactly same as in Fig. 4.9. Macromodel

number of PBFs = 5. eAlgo1 = 0.09, eAlgo2 = 0.0096. Causality constraint is

not imposed for this instance.
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expensive and nearly impossible for practical reasons.

The poor fit in Fig. 4.8 could be reasoned to the low model order (n̄ = 2) due

to very few samples. A common practice is to carry out interpolation/extrapolation

between known data points in such situations. This, however, is strictly not correct

as the interpolated data points may not be causal. Causality condition implies

some relationship between the real and imaginary parts of the frequency response

function/data (and similarly between gain and phase) of LTI systems which may

not be satisfied by the interpolated data points — see the following Sec. 4.6.

Still ignoring the causality aspect for now and interpolating between LES data

points, Fig. 4.9 show the new target data samples and the fitting results. Yet again,

a gross mismatch between the data and macromodel can be observed, with interpo-

lation not improving the fit quality. This rules out that the poor fit quality in Fig.

4.8 is entirely due to low model order (n̄ = 2). While working with Algo1 initially,

the author spent significant effort figuring out why the fitting was unsuccessful.

Several tests, including interpolating and extrapolating the target points, altering

the macromodel structure, fitting algorithm, etc., were tried but all in vain. Even

Algo2 failed to give acceptable fits in the first attempts. On further investigation,

it eventually turned out that the problem lies not in the macromodel structure or

algorithm per se but the data.

The problem is that the data samples in this Example-3 violate causality, leading

to problems fitting a causal macromodel. An indication of this fact is provided in

Fig. 4.10, where causality constraint is relaxed in both algorithms, resulting in near-

perfect fits. Even the fitting of the few original data samples (without interpolation)

in Fig. 4.8 is successful in this case. Such a noncausal macromodel will have one or

more unstable poles in the right half of the complex plane, rendering it useless for

time-domain simulations. One way to look at this: the impulse response condition

for causality in Eq. (4.25) now no longer holds. In a temporal simulation, the model

would respond beforehand in anticipation of input perturbations, leading the flame

response into an unbounded runaway oscillatory instability.

Implications of causality violation on frequency-domain linear stability analysis

(LSA) are not as stringent as in the time domain. A noncausal macromodel con-

structed, say from a fit such as in Fig. 4.10, can be used to perform LSA without any

difficulty. However, the thermoacoustic modes and their stability predictions would

tend to be inaccurate. It is also physically questionable since the lack of causality

in the samples means phase advance in the derived model flame response; since the

associated time delay is undervalued than its actual value. If the deviation of the

noncausal dataset is significant from the valid causal flame frequency response, the

LSA results would be indeed unreliable.

As mentioned above, if a time-domain simulation is the aim, a non-causal macro-

model is useless as it will lead to a diverging unstable temporal solution. For exam-
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ple, a time-domain simulation of a passive acoustic network (without flames), either

from some initial condition or forced externally from some boundary, will become un-

stable if some boundary impedance is described with a non-causal state-space macro-

model. However, a temporal simulation of a thermoacoustic network in STORM,

say for a limit-cycle calculation, is difficult to perceive with linear FTF since non-

linear effects that depend on oscillation amplitude are not considered. The flame

describing function framework (FDF) is typically employed to perform frequency-

domain nonlinear stability analysis. Therefore, methods for equivalent time-domain

and state-space realization of FDFs will have to be developed in STORM in the

future. Ghirardo et al. [262] have proposed one approach for the same. Their state-

space realization of FDF is based on the so-called Hammerstein models (a nonlinear

dynamical system modeling approach) and the Fourier Bessel series. In the Ham-

merstein approach, the time-domain nonlinear output Q (heat release) for input

u(t) (velocity at reference location) is expressed as a composition of linear L and

nonlinear N operators as Q[u(t)] = L [N [u(t)]]. Corresponding frequency domain

representation is Q(ω,A) = L(ω)N(A), where A is the oscillation amplitude. The

linear operator is considered independent of oscillation amplitude and only depends

on frequency - something quite analogous to a linear FTF. While the nonlinear

operator depends only on the amplitude, basically to model nonlinear saturation,

and is achieved with the help of the Fourier-Bessel series. Here, the authors have

employed the Vector Fitting rational approximation algorithm for fitting the linear

operator on the data.

Pinpointing the root cause of why a frequency response data set could be non-

causal is not straightforward. It is usually due to errors and noise introduced in

experimental measurements, or modeling uncertainties, numerical errors in high

fidelity simulations, and or flawed signal/data processing. The errors and noise

present in the frequency response data samples are very likely to be noncausal func-

tions themselves [248]. Carefully repeating the measurements while keeping all the

known sources of errors to a minimum, unfortunately, is the only recommended

option to rectify the noncausal data set [239, 240, 248].

4.6 Causality in Frequency Response Data

The physical condition of causality, in regards to the response of LTI systems, was

introduced earlier in Sec. 4.4. While well interpreted in the time domain, the concept

imposes strong conditions in the frequency domain. Some theory about causality

[237, 238] is discussed in this section, along with a brief mention of techniques that

could be employed to verify and ascertain causality violation in frequency response

data systematically. For more background, appropriate references are provided.
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4.6.1 Kramers-Krönig Dispersion Relations

Causality condition in the frequency domain, theoretically, is defined by the Kramers-

Krönig (KK) dispersion relations [234, 235, 236]. They relate the real and imaginary

parts of the frequency response function of a causal LTI system, or in other words,

they point out that the real and imaginary parts are not independent. See, for exam-

ple, [239, 241] for the derivation of KK relations. If a causal LTI system frequency

response H(jω), is separated into its ℜ and ℑ parts as H(jω) = U(ω)+jV (ω), then

the KK relations are given as

U(ω) =
1

π
pv

∫ +∞

−∞

V (ω′)

ω − ω′
dω′

V (ω) = −
1

π
pv

∫ +∞

−∞

U (ω′)

ω − ω′
dω′

(4.29)

where pv denotes the Cauchy’s principal value

pv

∫ +∞

−∞
= lim

ε→0+

[∫ ω−ε

−∞
+

∫ +∞

ω+ε

]
(4.30)

KK dispersion relations are the necessary and sufficient conditions for causality,

and thus, in theory, any frequency response data samples that do not satisfy these

are not causal. Mathematically, KK relations are also closely related to the Hilbert

transform [240].

4.6.2 Bode’s Gain-Phase Relation

Bode [263, 225, 224, 241] derived and showed relation between magnitude (gain)

and phase of the frequency response of a causal LTI system, analogous to Kramer-

Krönig’s dispersion relation. However, there is a caveat : Bode’s gain-phase relations

are valid only for special class of LTI systems called as minimum-phase systems

(discussed soon in the following Sec. 4.6.2.1). The theorem then is defined as

follows.

For a stable, causal, minimum-phase system, the phase of a linear frequency

response function ∠H(jω) is uniquely related to the gain |H(jω)| by following re-

lations

∠H(jω) =
1

π

∫ +∞

−∞

(
dM

du

)
W (u)du (4.31)

where ∠H(jω) is in radians and,

M = log magnitude = ln(|H(jω)|)

u = normalized frequency = ln(ω/ω0)
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W (u) = weighting function = ln(coth|u|/2)

The weighting-function W (u), if plotted, can be observed to resemble a broadened

Dirac-delta function centered around ω0
4. Bode’s Eq. (4.31) therefore indicates that

the particular phase value (∠H(jω0)) in the spectrum, due to W (u), depends mostly

on the local slope of the log-magnitude M and weakly on the same at frequencies

in the near vicinity5.

W (u) can be approximated with exact Dirac-delta (impulse function) [241, 225,

224] as

W (u) ≈
π2

2
δ(u) (4.32)

If the slope of log-magnitude (dMdu ≡ m) is constant over a frequency decade (e.g.,

ω = 102 to 103), then the Bode relations in Eq. (4.31) simplify to (for that frequency

decade)

∠H(jω) ≈ m
π

2
(4.33)

The above result, therefore, suggests that the phase lag in the output response

of LTI systems over a frequency-decade will be approximately equal to the slope of

the magnitude curve over that frequency decade times π/2, as long as the slope is

close to constant.

4.6.2.1 Minimum- versus Non-Minimum- Phase Systems

Minimum phase (MP) systems are characterized such that they do not have time-

delay between input-output, and their transfer functions do not have any poles and

zeros in the right half of complex plane [225, 224, 241]. If any of these conditions

is not satisfied, then the system becomes a non-minimum phase (NMP) system.

NMP systems inherently induce an "extra phase lag" in their response. For a

given response magnitude (gain), the phase lag of the MP system could be uniquely

determined from the above Bode relations, but it is not true for NMP systems. The

NMP systems exhibit an excess phase lag than that computed from Bode’s relation.

In this sense, Bode’s relations in Eq. (4.31), for the general case of any LTI system,

yields only the "minimum" phase for a given magnitude.To further elaborate, a few

illustrations drawn from [225]) are discussed next.

It was mentioned above that all systems with time delays are NMP systems. So,

consider a simple delay transfer function H(jω) = e−jωτ , whose gain |H(jω)| = 1

and phase ∠H(jω) = −ωτ is known. Here if the phase lag is computed using gain

4Bode gain-phase plots, conventionally, are graphed on a log-frequency and log-magnitude (or
decibels) scales, as can be found across control theory literature. Accordingly, ω0 is the particular
frequency (ω ≡ ω0) at which Bode’s relation is being probed/evaluated - for the local slope of the
log-magnitude curve and eventually the phase (∠H(jω0)).

5a.k.a the sifting property of Dirac-delta function



4.6. Causality in Frequency Response Data 123

Figure 4.11: Bode plots of non-minimum phase systems that all have

same constant unity frequency response magnitude but different phase

lag. (a) Time-delay: H(jω) = e−jωτ , (b) system with right half-plane

zero H(s) = (a − s)/(a + s) , (c) system with right half-plane pole H(s) =

(s+a)/(s−a). The corresponding minimum phase system has the transfer

function G(s) = 1 in all cases, and the phase curves for that system are

shown as dashed lines. Figure reproduced from [225].

|H(jω)| = 1 and Bode’s relation, the result, however, is zero — this is the phase

lag of a corresponding MP system also having the same unity response magnitude

across the spectrum. (This MP system, in fact, is the same transfer function but

with zero time delay (τ = 0), i.e., H(jω) = 1.) Fig. 4.11(a) shows the Bode plot of

the delay NMP system along with its MP system. (Note that due to log scale for

frequency, the phase is not linear and falls off exponentially in the plot.)

Consider another NMP system with a rational transfer function H(s) = (a −

s)/(a+ s) with a > 0, which has a zero s = a in the right half plane. Its frequency

response gain |H(jω)| = 1, and its phase ∠H(jω) = −2 arctan(ω/a). The related

MP system in this case is again H(s) = 1. Fig. 4.11(b) shows the Bode plot of both

these NMP and MP systems.

Fig. 4.11(c), shows a similar analysis of NMP system H(s) = (s + a)/(s −

a) with a > 0, which has a pole in the right half-plane. Its phase is ∠H(jω) =

−2 arctan(a/ω).

The examples in Fig. 4.11 highlight different NMP systems with the same re-

sponse magnitude but different phase responses; and the fact that for NMP systems,

actual phase lag, unfortunately, cannot be determined by Bode’s relation.

Non-minimum phase systems are common and impose severe limitations on the

design and performance of robust feedback (closed-loop) control systems, as described

in [225, 224, 241]. Systems with time delays are infamous for being difficult to con-

trol. In poles-zeros representation of the LTI system, poles are more fundamental

than zeros and are an intrinsic property of the system dynamics. However, zeros, on
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the other hand, depend on external factors such as the actuation system, sensors,

and measurement details, i.e., basically how inputs and outputs of the system in-

teract with its state variables. Therefore, an NMP system due to a right half plane

zero could be avoided/rectified by redesigning these interfaces/connections, e.g., by

making a better choice of input/output variables, rearranging, adding removing ac-

tuators/sensors in experiments [225, 224, 241]. These concepts become crucial in the

context of active control of thermoacoustic (feedback) systems - see, for example,

the recent series of articles by Chen et al. [264, 265, 266, 267] from the group of

O’Connor at Penn State University.

In the context of causality, note that NMP systems should not be confused with

causality violation: they do not imply causality violation in general. NMP systems,

due to time-delays and or right half-plane zeros, are physically realizable and can be

causal. For instance, consider again the analytical delay response function discussed

earlier H(jω) = e−jωτ . The ℜ{H(jω)} = cos(ωτ) and ℑ{H(jω)} = sin(ωτ) satisfy

Kramer-Krönig dispersion relations, and thus is a valid, causal transfer function.

In conclusion, causality in the frequency response of the system (analytical or

sampled data) can be cross-checked with KK dispersion relations; and Bode’s rela-

tion as well only if the system is warranted of being minimum-phase. Since linear

acoustic flame response and many practical LTI systems usually have finite time

delays, KK dispersion relations are the appropriate choice to ascertain causality in

their frequency response.

4.6.3 Detecting Causality Violation in the Frequency Response

Theory and examples presented over previous sections of this chapter highlighted

how causality violation in the frequency response of the LTI system could lead to

failures in fitting a physically consistent causal pole-residue macromodel on it. As

demonstrated in the example of Fig. 4.10, if relaxing the default causality constraint

in fitting algorithms (Eq. 4.26) eliminates substantial macromodel fitting error

present otherwise, is an indication of possible lack of causality in the frequency

domain data.

Given frequency response analytical model or discrete data of any LTI system,

Kramer-Krönig dispersion relations (Eq. 4.29) can be used, in principle, to verify

and ascertain causality violation in the model/data. However, there are practi-

cal difficulties, especially in the latter case, in numerically evaluating the complex

integrals in KK relations. Significant errors are induced:

• Truncation Errors: due to limited frequency bandwidth over which the dis-

crete data samples are available - a critical issue!

• Discretization Errors: due to the poor spectral resolution of the data.
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Therefore, the above errors must be accounted for and rigorously estimated for

any causality checks to be trustworthy and meaningful.

Triverio et al. [240, 257, 258, 255] proposed two robust methods for verifying

causality in frequency response. (1) First one is a frequency-domain approach [240,

255] where a direct numerical assessment of KK dispersion relation is carried out.

(2) Second is a time-domain approach [257, 258], wherein the (filtered) impulse

response of the system is estimated via filtered Inverse Fourier Transform of the

frequency response. Causality is then verified from a variation of its time-domain

condition (Eq. 4.24), i.e., (filtered) impulse response. These two methods are briefly

and qualitatively described next without venturing into the mathematical details.

1. Direct assessment of Kramers-Krönig Dispersion Relation [240, 255]:

Given the frequency-response function/data, its real part is reconstructed from

the imaginary part (or vice-versa) using KK relations while accounting for

the truncation and discretization errors. For example, the real part of an

entry in the scattering matrix of an actual high-speed electronic circuit is

reconstructed in Fig. 4.12(a), where the blue curve is the actual real part of

the data available. The reconstructed real part is not a curve, but the grey

band, whose thickness denotes bounds of truncation and discretization errors.

If the actual real part does not fall inside this grey band, causality is violated.

As the bandwidth primarily and the spectral resolution of the data improves,

the thickness of the band reduces, and in theory, it should collapse over the

actual data if it is causal.

This frequency-domain method that relies on the so-called generalized Hilbert

transform is not easy to implement in practice and thus led to the development

of the following method that is much easier to implement and physically more

intuitive.

2. Filtered Inverse Fourier Transform [257, 258, 255]: In this time-domain

approach, the fundamental idea is to compute impulse response from the

frequency-response to check causality. However, simply applying the stan-

dard Inverse Fast Fourier Transform (IFFT) to the band-limited frequency re-

sponse does not yield an impulse response that can clearly distinguish causal

and noncausal data. Both typically will have non-zero, similar or comparable,

and diminishing impulse response for t < 0 (c.f Eq. 4.24) again due to the

truncation and discretization errors mentioned above (see e.g. Fig. 1 in [257]).

Therefore, to alleviate the impact of missing out-of-band data, the frequency-

response H(jω) is filtered with a minimum-phase filter F (jω) — say a low-

pass filter, assuming that data is available on the lower end of the spectrum.

The filtered frequency response HF (jω) = F (jω)H(jω) is then inverse Fourier
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Figure 4.12: Causality check for the frequency-response data. (a) Direct

evaluation of Kramer-Krönig dispersion relation. The actual real part of

the samples (solid blue line) and its reconstruction assuming causality

(grey band). Since the two curves are not compatible below 10 GHz,

causality violations are present. (b) For the same example, filtered im-

pulse response hF (t) obtained from the frequency data samples. Dashed

lines are the truncation error bounds. Since the hF (t) curve cross the

bounds, causality is violated. Figure adapted from [257].

transformed to get filtered impulse response hF (t). Here, the minimum-phase

attribute of the filter is critical since it does not alter the causal/noncausal

nature of the original data. For example, the general category of filters based

on window functions that are widely used in practice are not minimum-phase.

Recommended options are Chebyshev and Butterworth low-pass filters.

The low-pass filter applied in the frequency domain eventually helps control

the truncation error in the computed impulse response. It also facilitates easy

determination of a quantitative upper bound of the induced truncation error

E - see [258] for details. Consequently, the new adapted impulse response

condition condition, in comparison to the original theoretical definition (Eq.

4.24), is now given as

|hF (t)| ≤ E for t < 0 (4.34)

In Fig. 4.12(b), the blue line is the filtered impulse response computed as per

the process summarized above for the same example in Fig. 4.12(a). The two

dashed lines show the bounds of truncation error. The frequency-response

data under scrutiny can be concluded of violating causality (starting from

t = −22.5ps)) as it fails to satisfy the condition of Eq. (4.34). Note that

if the data were causal, it still would have had a non-zero filtered impulse

response for t < 0 but bounded within the two dashed lines. Even though

the time scale and magnitude of violation may seem negligible, it actually

makes the extraction of an accurate macromodel, particularly for temporal

simulation/analysis, impossible. Generating a macromodel using the Vector

Fitting algorithm for this particular example could not bring the fitting error
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lower than 73% because the data violates causality. It was mentioned in [257]

how adding an artificial delay of 22.5ps into the data nullifies the causality

violation bringing the fitting error down substantially to 5.5%.

From the two approaches discussed above, the second time-domain approach is

not only easier to implement but also provides information in a more physically

intuitive manner for diagnosing causality violation6. It also yields information of

the time-extent of violation — something that is difficult to estimate in frequency-

domain. Therefore, in conclusion, the methodology described should be employed

for certifying flame frequency response data for causality so that it is physically

consistent for subsequent low-order thermoacoustic analysis.

4.7 Conclusions and Perspectives

The capability of STORM to represent complex, practical configurations as a flexi-

ble, modular thermoacoustic network was demonstrated in previous chapters, thanks

to the OC-frame modal expansion, surface spectral connections, and state-space

methodology. All kinds of network objects in STORM are represented as state-

space sub-models in the network, including flames.

The rational approximation techniques (Padé approximation or Pole-Residue

(Multi-pole) expansion) are an indispensable way to generate a time-domain state-

space model from frequency response data samples; not only for linear flame re-

sponse (FTFs), but also generic frequency-dependent acoustic impedances Z(jω).

The frequency-domain discrete data could be from experimental measurements or

high-order simulations such as LES and even sampled from a closed-form analytical

model.

Two different algorithms, Algo1 (from Douasbin et al. [242]) and Algo2 (Vector-

Fitting [248]) from the literature were reviewed and employed for fitting a Pole-

Residue macromodel onto sampled flame frequency response data actual turbulent

swirl burners from literature.

The constraints of reality, causality, stability, and passivity that must be re-

spected in the rational approximation/fitting process for generating physically con-

sistent macromodels were discussed. The author hopes to have convincingly high-

lighted that causality is one of the most critical of them in the context of flame

frequency responses. The most restrictive passivity condition, while may be rel-

evant for acoustic reflection coefficients (or impedances), it is not applicable for

FTFs.

The concept of causality is well comprehended in the time domain. However, in

the frequency domain, it implies that the real and imaginary parts of the frequency

6The method is not available in STORM yet. It will be implemented in near future.
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response function/data are not independent but related through the Kramers-Krönig

(KK) dispersion relations. Theory about KK relations and other related concepts of

Bode’s relations, minimum/non-minimum phase systems was briefly reviewed from

the literature.

Causality in frequency response data samples is often taken for granted. Oc-

casional failure to get a good rational approximation fit might indicate possible

causality violation in the frequency response data samples. This was demonstrated

for the third example of the engine combustor, where the data is probably not

causal. This is also suggested by the perfect fit obtained after relaxing the causality

constraint in the algorithm. The root cause for why the data is not causal is un-

known. The engine combustor is undoubtedly an extremely complex configuration

to perform forced LES for flame response characterization. One or more factors

could potentially be responsible, for instance, spatio-temporal under-resolution of

the signals, high noise-to-signal ratio, the choice of reference location used for com-

puting flame response, etc. More investigation is necessary, and the configuration

should be reviewed again.

A practical and robust technique from the literature for rigorously character-

izing causality violations in data samples was briefly discussed. Implementing it

in STORM will be helpful in the future, as a rational approximation will be fre-

quently utilized for generating state-space models. Nevertheless, the data’s highly

truncated bandwidth and frequency resolution can be a crucial hindrance in such

causality assessment.

Ideally, good spectral resolution and a broad bandwidth are desired in the fre-

quency response data samples as they aid the algorithms by providing enough scope

to increase the macromodel order (number of Pole-base-functions (PBFs)), if nec-

essary, to achieve accurate fits. However, these requirements are an issue when the

frequency response data from expensive high-fidelity LES simulations. It was the

case for the third engine combustor example, for which only a countable few fre-

quency response data points were available in the spectrum. Indeed, this suggests

the need for continued effort in analytical/theoretical modeling of flame response in

the vein of the work carried out by Dupuy et al. [173, 215]. Also, perhaps adopting

the more efficient approach of broadband white noise forcing [232, 12], instead of the

classical harmonic forcing repeated at distinct frequencies, is an alternative worth

considering for identifying flame response in LES.

Not imposing the causality constraint in the fitting algorithm will yield an accu-

rate fit on non-causal data. The resulting non-causal state-space macromodel could

also be used without difficulty in linear stability analysis, but depending upon the

degree of causality violation, the results will be inaccurate and even unphysical. On

the other hand, if a time-domain simulation is the aim, a non-causal macromodel

is useless as it will lead to a diverging unstable temporal solution. As discussed
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earlier in Sec. 4.5, to perform nonlinear stability analysis in the frequency-domain

or time-domain simulations of thermoacoustic networks in STORM, more work is

required to develop capabilities for state-space realizations of FDFs or other kinds

of nonlinear flame response models.
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Acoustic feedback from the exit nozzle or downstream turbine stages to the con-

vected combustor entropy wave was mentioned as one of the potential combustion in-

stability driving mechanisms earlier in Ch. 1, Sec. 1.2.1. Fig. 5.1 depicts a schematic

elaborating this mechanism that gives rise to the so-called low-frequency mixed

entropy-acoustic combustion instabilities. Its modeling in the low-order STORM’s

state-space network framework is the subject of this chapter. The physical mod-

eling, in principle, closely follows the methodology developed in the previous work

at CERFACS by Motheau et al. [45, 46, 268], who formulated this special Delayed

Entropy-Coupled Acoustic Boundary Condition (DECBC) in FEM Helmholtz solver

AVSP [127] to predict these mixed instabilities.
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(b)

(a)

Figure 5.1: Schematic of flow perturbations in a gas turbine combustor.

The acoustic (direct) and entropy (indirect) components of combustion

noise. Both influence the combustor stability, where the latter is the

entropy-acoustic feedback mechanism. Figure reproduced from [47].

5.1 About Entropy-Acoustic Feedback Mechanism

Unsteady heat release of a turbulent flame acts as a source of acoustic waves which

propagate at sound speed through the combustor, are partially reflected back to

the flame, perturbing it and closing the feedback loop — this is the classical ther-

moacoustic mechanism described earlier in Ch. 1, Fig. 1.5, and which was also

implied in the several examples presented in this manuscript. Part of the acous-

tic waves that are transmitted further downstream constitute the direct combus-

tion noise of the engine. In the primary reaction zone near the flame, the en-

tropy waves and large-scale vorticity waves are also generated. The former is

nothing but large pockets of considerable temperature (a.k.a hot spots) and or

gas mixture inhomogeneities. These waves of entropy and vorticity perturbations

are convected by the mean bulk flow from the combustor to the nozzle/turbine

stages; and when accelerated, they produce sound (basically due to volume con-

traction of fluid regions of variable gas densities and other flow non-uniformities)

[44, 269, 270, 271, 272, 273, 274, 275, 276, 119, 120]. Part of this entropy noise prop-

agating downstream contribute as the indirect component of the combustion noise

[10, 47, 277, 278, 279], while the part propagating upstream influence flame/flow in

the combustor and can form a closed-loop giving rise to a low-frequency instability

[45, 46, 273, 280].
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(a)

(b)

(c)

Figure 5.2: (a) Velocity, (b) Temperature and (c) Pressure fluctuating

fields obtained from 3D Dynamic Mode Decomposition (DMD) of LES

of a real gas turbine engine combustor terminated with a nozzle. Depicts

a low-frequency mixed entropy-acoustic instability. Left to Right: insta-

bility cycle phases 0, π/2, π and 3π/2 respectively. (Reproduced from

Motheau et al. [46]).
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For example, Fig. 5.2 shows a low-frequency, self-sustained, high-amplitude os-

cillation in an actual SAFRAN aeronautical engine combustor terminated with a

nozzle - taken from computations performed by Motheau et al. [46]. The oscillation

is depicted as the corresponding 3D DMD mode (Dynamic Mode Decomposition)

obtained from LES solution time snap-shots. The frequency of this mode (≈ 320Hz),

which was also observed in the engine test campaign, is significantly lower than the

first acoustic eigenmode of the combustor (≈ 750 − 800Hz). The frequency thus

suggests that it is not a pure thermoacoustic mode. Over an instability cycle, the

fluctuating temperature field in Fig. 5.2 reveals how a large hot spot is convected

downstream into the nozzle, confirming the above-discussed mechanism of mixed

entropy-acoustic instability. The entropy-acoustic feedback from the nozzle forms a

closed-loop with the flame and flow in the combustor, wherein hot/cold spots are

cyclically created — here in this example, predominantly due to interaction between

the primary reaction zone of the combustor and strong transverse dilution jets. Note

the substantially high amplitude of convected temperature fluctuations (± 500K)

and pressure oscillation (± 100kPa) inside the combustor, suggesting that model-

ing and predicting such mixed instabilities is equally critical as the thermoacoustic

modes.

5.2 Zero-Mach-number Assumption and Physical Mod-

eling Strategy

For analysis of combustion instabilities, besides high-order methods such as LES,

Linearized Euler Equations (LEE) is one of the suitable reduced-order modeling ap-

proaches for acoustics as discussed in Ch. 1, Sec. 1.4.1. LEE are also omnipresent

in the aeroacoustics and combustion-noise research. It constitutes a suitable frame-

work for modeling convected waves of entropy, vorticity fluctuations, in addition to

the propagation of acoustic waves. Linearizing the mass, momentum, and energy (in

entropy) Euler equations, the complete set of LEE for fluctuating quantities ρ′, p′,u′

and s′ around mean values denoted with subscript ( )0 are given as follows [112]:

LEE under non-zero Mach number (M 6= 0) mean flow:

∂ρ′

∂t
+ u′ · ∇ρ0 + ρ0∇ · u

′ + u0 · ∇ρ
′ + ρ′∇ · u0 = 0, (5.1)

ρ0
∂u′

∂t
+∇p′ + ρ0u

′ · ∇u0 + ρ0u0 · ∇u
′ + ρ′u0 · ∇u0 = 0, (5.2)

∂s′

∂t
+ u′ · ∇s0 + u0 · ∇s

′ =
rq′

p0
−
rq0
p20
p′, (5.3)
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and the accompanying linearized ideal gas state and entropy relations are

p′

p0
−
ρ′

ρ0
−
T ′

T0
= 0 and

s′

cv
=
p′

p0
− γ

ρ′

ρ0
(5.4)

where cp and cv are specific heat capacity at constant pressure and volume respec-

tively, γ = cp/cv, gas constant r = cp − cv and q′ is the unsteady heat release

fluctuation per unit volume. Its straigforward to transform above set of equations

into frequency-domain, assuming harmonic oscillations as g′(x, t) = ĝ(x)ejωt, which

can then solved to for eigenmodes and their stability.

The inhomogenuous Wave/Helmholtz equation can be derived from above LEE

equations by invoking the zero-Mach-number mean flow assumption, i.e., u0 = 0.

LEE under zero-Mach-number (M = 0) mean flow:

∂ρ′

∂t
+ u′ · ∇ρ0 + ρ0∇ · u

′ = 0 (5.5)

ρ0
∂u′

∂t
+∇p′ = 0 (5.6)

∂s′

∂t
+ u′ · ∇s0 =

rq′

p0
(5.7)

Taking the time derivative of Eq. (5.5), adding the divergence of Eq. (5.6) di-

vided by ρ0, and using Eqs. (5.4), (5.7) to eliminate ρ′ yield the following: Wave

equation for the pressure fluctuations p′ discussed earlier in Ch.1, and its frequency-

domain counterpart the Helmholtz Equation. (Both are repeated below for easy

reference.)

Wave Equation:

∇ ·

(
1

ρ0
~∇p′
)
−

1

γp0

∂2p′

∂t2
= −

γ − 1

γp0

∂q′

∂t
(5.8)

Helmholtz Equation:

∇ ·

(
1

ρ0
~∇p̂

)
+

ω2

γp0
p̂ = −jω

γ − 1

γp0
q̂ (5.9)

Fig. 5.3(a) depicts the SAFRAN engine combustor terminated with a nozzle

that was analyzed by Motheau et al. [46, 45, 268] for predicting mixed entropy-

acoustic instabilities. Overlaid on it are mean-flow Mach number isolines. Directly

solving LEE (M 6= 0) on this configuration is a viable option for computing these

instabilities; however, the interest in the previous work [46, 45, 268] was to develop

capabilities to predict them with the relatively low-cost option of Helmholtz solver

AVSP [127].
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Figure 5.3: (a) SAFRAN Engine (combustor + exit-nozzle) geometry

used to investigate mixed entropy-acoustic instabilities with LES, as in

Fig. 5.2. Overlaid are the iso-contour lines of the mean-flow Mach num-

ber inside the domain. (b) An overview of the reduced-order modeling

strategy and challenges owing to the zero-Mach-number (M=0) assump-

tion, leading to the DECBC method. Adapted from [268].
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Considering the mean flow Mach number values in the whole computational

domain in Fig. 5.3(a), solving Wave/Helmholtz equation on it would not be a correct

approach. Nicoud and Wieczorek [112] had investigated the effect of mean flow on

thermoacoustic modes for simple academic 1D cases. They have demonstrated that

if not in the very-low Mach number regimes (less than 0.1), the results of Helmholtz

Eq. (M = 0) can significantly deviate from the reference LEE (M 6= 0) solution.

Motheau et al. [45] proposed a simple yet effective methodology to account for

mean flow effects in the zero-Mach Helmholtz solvers. Exploiting the fact that the

mean flow Mach number is substantial only in the constricted downstream nozzle

(Fig. 5.3), the computational domain is truncated by clipping off the high-speed

element (nozzle) from the combustor. The combustor with a very low Mach number

mean-flow is then resolved with the zero-Mach Helmholtz solver. The non-zero Mach

number effects originally present (mainly due to the nozzle) are indirectly and partly

modeled by impedance matching, i.e., by imposing the equivalent acoustic impedance

(Z) of the nozzle on Helmholtz domain boundary as noted in Fig. 5.3(b). Of course,

in this case, the acoustic impedance of the nozzle needs to be known a priori; which

can be determined from analytical solutions [44, 119, 274], or numerically by solving

LEE [281, 120] for the nozzle and or turbine stator/rotor cascade.

However, there are two fundamental issues in the above strategy for modeling

mixed entropy-acoustic instabilities and the subsequent derivation of the DECBC.

These are highlighted in Fig. 5.3(b) and are discussed over the following two sub-

sections.

5.2.1 Acoustic Energy Flux Mismatch in Impedance Matching

In the impedance matching technique, one fundamental problem is the that of acous-

tic energy flux (F) mismatch/error at the boundary of the computational domain.

As shown in Fig. 5.4, at the (M = 0/M 6= 0) interface between M = 0 computa-

tional and the M 6= 0 external (modelled) domains, |FM 6=0 − FM=0| 6= 0. There

always exists this discrepancy in acoustic energy flux crossing the boundary due to

absent mean flow, and the magnitude of error clearly depends on the mean-flow

Mach number at the interface.

Motheau et al. [45] carried out asymptotic analysis of acoustic energy conserva-

tion over a domain under M 6= 0, and in the limit of M = 0, to estimate the flux

error

∆F = |FM 6=0 − FM=0| (5.10)

To this purpose, the authors employ following two linearized fluctuating variables:

(i) Total Enthalpy (J = cpT + u2/2) and mass flow rate (m = ρu) as below (in

spatial 1D):
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Figure 5.4: Acoustic energy flux mismatch (error) in the impedance

matching technique due to the zero-Mach-number mean flow assump-

tion in the computational domain (see also Fig. 5.3). Recommended

model is Eq. (5.18) as discussed in Sec. (5.2.1). Adapted from [45].

J ′ =
p′

ρ0
+ u0u

′ (5.11)

m′ = ρ0u
′ +

u0
c20
p′ (5.12)

It is elucidated in [45] that while fluctuating pressure p′ and velocity u′ are a natural

choice of acoustic variables under (M = 0) conditions, J ′ and m′ as state variables,

are more appropriate under M 6= 0 conditions. The reasoning given is that (J ′, m′)

themselves are independent of the flow when placed in a wave equation, contrary to

the (p′, u′) which are locally dependent on the flow velocity [282]. The former set of

variables are also commonly used in aeroacoustic/combustion-noise studies. Under

M 6= 0 conditions, the acoustic energy flux is given as FM 6=0 =
∫ T
0 J ′m′dt; and it

reduces to the analogous equation FM=0 =
∫ T
0 p′u′dt under M = 0 condition.

It should, however, be noted that these two sets of independent variables are

strictly equivalent and one may write LEE/Wave/Helmholtz equations and also

impedances/reflection-coefficients with any set. A reduced (non-dimensional) impedance,

Z, and reflection coefficient, R, may be defined for each set of variables as follows:

Zp,u =
p′

ρ0c0u′
and Rp,u =

A−

A+
(5.13)

ZJ,m =
ρ0J

′

c0m′
and RJ,m =

A−(1−M)

A+(1 +M)
(5.14)
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whereA+, A− are the forward and backward propagating acoustic waves in the (M =

0) computational domain, adjacent to the boundary. The inter-relation between Zp,u

and ZJ,m can be derived from Eqs. (5.11)-(5.14) as:

Zj,m =
Zp,u +M

MZp,u + 1
(5.15)

Zp,u =
M − ZJ,m
MZJ,m − 1

(5.16)

The values of the impedances and reflection coefficients for some canonical boundary

conditions are enlisted in the Tab. 5.1.

BCs Zp,u Rp,u ZJ,m RJ,m

p̂ = 0 0 −1 M −1−M
1+M

û = 0 ∞ 1 1
M

1−M
1+M

Ĵ = 0 −M −1+M
1−M 0 −1

m̂ = 0 − 1
M

1+M
1−M ∞ 1

Table 5.1: Impedances and reflection coefficients for canonical boundary

conditions (BCs): constant pressure (p̂ = 0), constant velocity (û = 0),

fixed mass flow rate (m̂ = 0) and fixed total-enthalpy (Ĵ = 0).

Therefore, in the context of acoustic energy flux error in impedance matching

(Fig. 5.4), to keep the error ∆F to a minimum, the first and foremost requirement

is that the mean flow Mach number at the boundary should be very low. The choice

of the location of the boundary where the external high-speed element’s impedance

is imposed is thus crucial in accounting for the mean flow effects in the Helmholtz

domain. Secondly, there are two possibilities in prescribing the boundary impedance

of the Helmholtz (M = 0) domain (ZM=0
p,u ) as follows:

(Impedance Matching Model options)

ZM=0
p,u = ZM 6=0

p,u (5.17)

or,

ZM=0
p,u = ZM 6=0

J,m (5.18)

where ZM 6=0
p,u and ZM 6=0

J,m are equivalent impedances of the external LEE domain,

defined in terms of fluctuating variables (p′, u′) and (J ′,m′), respectively. Although

equivalent, ZM 6=0
p,u and ZM 6=0

J,m impedance have numerically different values for LEE

(M 6= 0) domain by defintion from Eqs. (5.13) and (5.14). Both the above options
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can be used, however the model in Eq. (5.18) is better. This claim is based on the

theoretical asymptotic analysis of Motheau et al. [45], which shows that the acoustic

energy flux mismatch (error) for Eq. (5.18) model is

∆F = |FM 6=0 − FM=0| ∼ O
(
M2
)

(5.19)

smaller compared to model given by Eq. (5.17), for which

∆F = |FM 6=0 − FM=0| ∼ O (M) (5.20)

where, M is the local mean flow Mach number at the interface (see Fig. 5.4).

Thus modes computed with model Eq. (5.18) are expected to be more accurate in

capturing mean-flow effects.

The impedance matching technique described in this subsection is only part

of the solution for modeling mixed entropy-acoustic instabilities. It is enough to

account for the mean flow effects in the case of pure acoustic or thermoacoustic

problems, where the imposed impedance (Eq. 5.17 or 5.18) on the boundary implies

or represents only pure acoustic response (or impedance) of the external high-speed

element. For predicting mixed entropy-acoustic instabilities, the modeling of entropy

fluctuations and its coupling with the acoustic field in the M = 0 computational

domain is nowhere considered yet. This is the second hurdle in derivation of DECBC

[45, 46], as indicated in Fig. 5.3(b), and is described next.

5.2.2 Entropy Waves Modeling in the Helmholtz Domain

FEM Helmholtz solvers, e.g., AVSP [127] at CERFACS, that essentially solve Eq.

(5.9) for pressure p̂, do not have fluctuating entropy ŝ variable in the solution. How-

ever, physically for reacting flows, the thermodynamic conditions are non-isentropic

due to unsteady heat release, causing entropy (or enthalpy, or temperature) to fluc-

tuate in addition to pressure p̂ and velocity û. For example, the generation of

entropy perturbation can be confirmed from LEE under the zero-Mach assumption

Eqs. (5.5)-(5.7). Note the last entropy equation, where unsteady heat release q′

source term forces entropy fluctuations. Compared with the LEE entropy equation

under M 6= 0 condition (Eq. 5.3), another critical issue becomes evident: the en-

tropy disturbances generated in the primary reaction zone of the combustor near the

flame are not convected by the mean flow because of zero-Mach assumption. There-

fore, in a way, the entropy fluctuations and entropy-acoustic coupling is neglected in

the Helmholtz solver; and only flame-acoustic coupling due to unsteady heat release

is taken into account.

Besides the mixed instabilities that are in focus in this chapter, entropy fluctu-

ations are also quite relevant to instabilities due to standard thermoacoustic mech-

anism, as briefly noted in the following couple of points:
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• Disturbance Energy Balance: In thermoacoustic analysis, acoustic energy bal-

ance is commonly carried out to corroborate whether or not a given system is

stable. From such balance, stability criterion (e.g., classical Rayleigh criterion

and its extensions - see Ch. 7 in [13]) are also derived. If the integral evolution

of acoustic energy inside the system and its flux across the boundaries result

in a net energy accumulation, the system becomes unstable. The classical

acoustic energy is defined only by fluctuating p′ and u′ variables. However, for

the reacting flows, the argument made above applies here again that an addi-

tional fluctuating thermodynamic variable (say entropy) must be considered

in defining a proper disturbance/fluctuating energy. Building upon the early

theoretical works of Chu [283], Myers [284], Nicoud and Poinsot [14] later

demonstrated how entropy changes must be factored in for a more physically

consistent definition of fluctuating energy. It also leads to a different stability

criterion than the classical Rayleigh correlation Eq. (1.1) stating that temper-

ature and heat release fluctuations must be in phase for the flame-acoustics

coupling to cause instability. See more pertinent work in regards to distur-

bance energy from Brear et al. [285], George and Sujith [286, 287] and Magri

et al. [15].

• Production of Entropy Fluctuations near Flame: The following couple of clas-

sical paradoxes in thermoacoustic modeling are discussed in literature when

jump conditions are derived for acoustic waves propagating through a flat,

infinitesimally thin flame, assumed at rest in a 1D duct, under zero and non-

zero Mach number mean flow: (1) Dowling [270, 140], Nicoud et al. [112, 127]

discuss that the linearized thermoacoustic relations (Eq. 5.3) indicate that

in general unsteady heat-release of any active flame (Q′ 6= 0) should cause

entropy fluctuations. However, Strobio-Chen et al. [138] raise a physical argu-

ment that how can a perfectly-premixed flame, under the assumptions of com-

plete combustion, adiabaticity, etc. can produce non-negligible temperature

inhomogeneities (i.e., entropy waves) downstream of the flame. (2) Bauerheim

et al. [137], for a passive flame (Q′ = 0), conclude from their analysis with a

somewhat counter-intuitive outcome that volume-flow-rate conservation (con-

tinuity of v′ = u′A ) must be used for perturbations at zero-Mach-number

(M = 0) while mass conservation (continuity of m′ = ρ0u
′A+ ρ′u0A) at non-

zero Mach numbers (M 6= 0). This result is again closely related to generation

of entropy disturbances near the flame and singularity associated with it.

Strobio-Chen et al. [138] in their 1D theoretical study, also link the generation

of entropy disturbances to the following two aspects. (i)Movement of the

flame discontinuity, relaxing the hypothesis that the flame is at rest, and

(ii) entropy perturbations present upstream of the flame (equivalence-ratio
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waves), if any. The paper demonstrates how the above paradoxes could be

satisfactorily explained when it is taken into account that a thin flat flame

front, in a kinematic balance with the approach flow, will change not only its

heat release rate but also its position in response to velocity perturbations.

Returning to the DECBC modeling, because zero-Mach Helmholtz / network

solvers do not solve or account for the entropy perturbations, the variable ŝ is

not available, and they are neither able to advect entropy disturbances generated

at the flame. Therefore, the entire entropy-acoustic coupling mechanism needs to

be modeled. It is achieved in a way analogous to the low-order flame-acoustic

coupling model, i.e., with the help of transfer functions. This concept was adopted

by Motheau et al. [45, 46] and is utilized here for STORM as well.

Figure 5.5: Schematic representation of the transfer functions that mod-

els the generation of entropy fluctuations at the flame, and their convec-

tion to the combustor exit boundary condition.

To elaborate the idea further refer to Fig. 5.5. Assuming that the entropy fluc-

tuations leaving the combustor (or entering the nozzle) at x = L have first been

generated in the flame region before being convected by the mean flow, one obtains:

ŝ2(L) = Gc e
−jωτc ŝ2 (xf ) (5.21)

The above equation models the convection of entropy perturbations generated at

flame to the end of the combustor with a transfer function, where τc is the propa-

gation time-scale and Gc is the gain, whose value typically should be smaller than

unity denoting the dissipation and dispersion of entropy waves.

The entropy-acoustic coupling is the DECBC methodology is realized in two steps:

1. Production of model entropy fluctuations at the flame region is tied with some

acoustic variable available in the Helmholtz/network solver. As indicated in

the Fig. 5.5, ŝ2(xf ), is modeled with another transfer function with acoustic

velocity û1(xref ) at some reference location upstream of the flame.

ŝ2 (xf ) = Gus e
−jωτus û1 (xref) (5.22)
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where Gus and τus are the gain and the time delay of the transfer function for

the entropy generation due to an acoustic perturbation at a reference location

xref .

2. The acoustic feedback from the downstream nozzle to the combustor (the

computational domain), due to indirect entropy noise, is what remains to

be modeled to complete the entropy-acoustic coupling. It is done through

the impedance matching process discussed in the previous section and Figs.

5.3, 5.4. Note here that the imposed equivalent impedance should represent

the acoustic response of the high-speed downstream element to both incident

acoustic and convected entropy waves. Thus it is important to ensure that

entropy waves are considered in the a priori step of determining the impedance

of the downstream element.

Lastly, a remark that the following additional sources of indirect noise, their

interaction with combustor acoustics, and their influence on combustion stability

are not considered in the current study:

• Vorticity Waves: Vorticity fluctuations, ς ′, is defined as the curl of the fluc-

tuating velocity vector field, ς ′ = ~∇× ~u′. The advected vorticity disturbances

on acceleration through the nozzle or turbine-rotor stages generate indirect

vorticity noise [272, 273, 274, 120]. Since only a theoretical 1D test case

with planar fluctuating variables has been employed to validate the DECBC

methodology in this chapter, vorticity waves are not applicable. However,

in the case of multi-dimensional cases, they could be accounted for through

transfer functions, just like entropy waves.

• Compositional inhomogeneities: Magri et al. [275, 288, 289] report that local

gas mixture inhomogeneities entering into a nozzle too can act as a source of

indirect noise.

In summary, due to the inherent zero-Mach number assumption in Helmholtz

/ network solvers, the modeling of entropy-acoustic feedback and resulting mixed

instabilities with the DECBC method thus reduces to (a) prescribing the above

Entropy Transfer Functions (ETFs) for production, propagation of entropy waves

to the combustor exit, and (b) matching the impedance of the downstream nozzle on

the boundary. Following Sec. 5.3 will implement the DECBC in the STORM’s state-

space network framework and for an analytically tractable 1D test case. For simple

cases and under important assumptions, ETFs could be determined analytically.

But for more realistic complex cases, e.g., the real engine combustor analysed by

Motheau et al. [46] in Fig. 5.2, determining the ETF models is still a challenge, and

for now rely on high-order methods such as LES [46] or experimental measurements

[280, 276, 289], just like flame transfer functions (FTFs).
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5.3 State-Space Model of 1D-DECBC Network Element

This section aims to implement the DECBC methodology in STORM and derive a

state-space (SS) model for it as a network element.

5.3.1 1D Test-Case for Validation

Figure 5.6 shows the simple 1D test case, taken from Motheau et al. [45], that is

used for validation of the DECBC formulation. It is a simple 1D duct terminated

with a compact, supersonic choked nozzle. The duct has an infinitely thin passive

flame (Q′ = 0) at xf . Homogeneous mean cold/hot gas conditions are presumed on

the two sides of the flame. Entropy perturbations are absent upstream of the flame,

and those generated at the flame, are convected towards the nozzle as indicated in

Fig. 5.6.

Figure 5.6: 1D test configuration from [45] for validating the DECBC

methodology in STORM.

The modeling strategy employed is as discussed in previous Sec. 5.2: the geom-

etry is truncated by removing the high-speed nozzle, and its equivalent impedance

is applied at the boundary of the computational domain as highlighted in Fig. 5.6.

The zero-Mach-number mean flow assumption prevails in the computational domain

since it is intended to be solved with a STORM network. Production and propaga-

tion of the entropy waves are modeled with entropy transfer functions as detailed

in the upcoming Sec. 5.3.2.

Unlike the wave-based (Riemann Invariants) approach for the spatial description

of the acoustics adopted by Motheau et al. [45] for the 1D problem (see Fig. 5.6),

the acoustic network modeling in STORM is based on generalized modal expansions

and the state-space methods.
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1D (Ω1)
Frame: CC-CO

1D (Ω2)
Frame: CC-OO

1D-1D DECBC 

(ΩZ)

Subdomain

Domain-Domain 

connection element

1D-1D

1D-1D

Domain-Impedance 

element connections

Figure 5.7: STORM network representation of the 1D test config in

Fig. 5.6. The DECBC (impedance) element connects with both the

1D subdomains. It models the entropy transfer function (ETF) and the

nozzle impedance to be imposed back onto the Ω2 (combustor) boundary.

In STORM, the network representation of the 1D configuration will be as shown in

Fig. 5.7, where the two 1D duct elements represent the cold and hot parts of the

computational domain coupled with a 1D1D connection element. A few important

points worth noting in building the STORM network:

• Inlet BC is m̂1 = 0 as shown in Fig. 5.6, i.e., a constant mass-flow-rate

without fluctuations is imposed on the left end of Ω1 subdomain. Refering to

canonical impedances in Tab. 5.1, ZM 6=0
J,m = ∞ in this case. Therefore, using

the impedance matching model in Eq. (5.18), ZM=0
pu =∞ impedance value is

imposed on the inlet, which is same as û = 0.

• Appropriate over-complete (OC) frames are mandatory in the 1D ducts as

highlighted in Fig. 5.7 to avoid the acoustic variables from being a priori

constrained at the junction between 1D subdomains and the outlet of duct

Ω2. E.g., the frame CC-CO (Closed-Closed and Closed-Open) of subdomain

Ω1 is made of two orthogonal basis families: CC that verifies u′ = 0 on both

ends of Ω1; and CO that verifies u′ = 0 and p′ = 0 on the left and right ends

of Ω1 respectively. Thus CC-CO frame a priori imposes u′ = 0 on the inlet.

• The DECBC network element (ΩZ) in Fig. 5.7 is meant to indirectly model

the production of entropy fluctuations at the flame as per acoustic perturba-

tions at an upstream reference point in Ω1, and its propagation to the outlet of

Ω2. In addition to this entropy transfer function (ETF), the ΩZ element will

also model the nozzle impedance and accordingly determine and fix the acous-

tic variables at the combustor exit. Thus the objective now is to derive an

appropriate state-space (SS) model for this DECBC element that will connect
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with SS models of acoustic subdomains Ω1 and Ω2 both. It is expected that

resolving the whole network in Fig. 5.7 will model the entropy-acoustic feed-

back mechanism and help predict the low-frequency mixed entropy-acoustic

mode.

5.3.2 Entropy Transfer Function (ETF) and Nozzle Impedance

As mentioned above, one task of the DECBC network element is to model the

entropy transfer functions (ETFs). The production of entropy perturbations at the

passive (Q̂ = 0), flat, infinitely thin flame, in the limit of low Mach (M → 0)

mean flow (and noting that the product u2ŝ remains finite, even when u2 → 0), was

proposed in theoretical work of Dowling [270] as:

ŝ2(xf , ω) =
−c2p(T02 − T01)(γ − 1)

u2c22

ρ1
ρ2

û1(xf , ω) (5.23)

where T0,i = Ti +
1

2cp
u2i is the mean stagnation temperature. Subscripts 1 and 2

denote mean quantities in upstream (cold) and downstream (hot) parts of the duct

and other notations have their usual meaning. (̂ ) denote frequency-domain quan-

tities assuming harmonic oscillations with following Fourier convention f ′(x, t) =

ℜ{f̂(x, ω)ejωt}. This entropy production model was utilized by Motheau et al. [45]

and is used in the current study as well. Therefore, comparing Eq. (5.23) with

entropy production transfer function Eq. (5.22) implies that

Gus =
−c2p(T02 − T01)(γ − 1)

u2c22

ρ1
ρ2

and τus = 0 (5.24)

Here τus = 0 because the flame (passive) was modeled as infinitely thin discontinuity,

and the reference location was taken exactly at the flame location (xref = xf )

[270, 45]. However, in the case of the STORM network in Fig. 5.7, the reference

location is taken in Ω1 subdomain slightly upstream of the junction that represents

the thin passive flame discontinuity.

Propagation of entropy waves and thus the entropy fluctuations at the outlet

x = L (or nozzle entrance), can be related to û1(xref , ω) from Eqs. (5.21) and

(5.22) as:

ŝ2(L, ω) = GusGc e
−jω(τc) û1 (xf , ω) (5.25)

where propagation gain and delay are given as:

Gc = 1 and τc =
L− xf
u2

(5.26)

Note that in reality, the propagating entropy waves undergo some dissipation and

dispersion due to diffusion, turbulent mixing, etc. [290, 291, 292]. These effects could

be accounted for by employing more sophisticated transfer functions like distributed
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time-delay (DTD) models discussed in the context of FTFs in Ch. 4. However,

dissipation and dispersion effects were neglected in [45] and so is the case in this

first study with STORM.

The second task of the DECBC network element is to impose nozzle impedance.

The impedance of a compact supersonic choked nozzle to incident acoustic and

entropy waves was derived by Marble and Candel [44], inter-relating the fluctuating

pressure (p̂), acoustic velocity û and entropy (ŝ) at the combustor exit x = L (or

nozzle entrance). It essentially represents the boundary condition that is required

to be imposed with ŝ(L, ω) given from the above ETF.
(
γ − 1

2

)
M2

p̂2(L, ω)

γp2
=
û2(L, ω)

c2
−

1

2
M2

ŝ2(L, ω)

cp
(5.27)

On inserting ETF Eq. (5.25), the above equation is re-written as:

p̂2(L, ω) = A0û2(L, ω) +A1û(xf , ω) e
−jωτc (5.28)

where the coefficients are,

A0 =

(
2γ

γ − 1

)
p2

M2c2

A1 =
−γp2

(γ − 1)cp
GusGc =

ρ1cp (T02 − T01)

M2c2

(5.29)

Eq. (5.28), when enforced in the zero-Mach-number STORM network (by DECBC

element), now analogously inter-relates the acoustic pressure p̂ and velocity û at

x = L with acoustic velocity û(xf ) thereby modeling and accounting the entropy-

acoustic-feedback mechanism.

5.3.3 State-Space Model Realizations (SS-R1 and SS-R2)

This section will finally derive the state-space (SS) model of the DECBC element

in STORM network Fig. 5.7 that basically enforces the nozzle impedance condition

in Eq. (5.28). Two different but mathematically equivalent SS realizations (SS-R1

and SS-R2) are considered and detailed in the next subsections.

The SS model formulation is largely based on that of 1D-1D connection element

(Ωsc) that was detailed in Ch. 2, Sec. 2.2.3 so as to derive a dynamical equation

(ODE) that could be transformed into state-space. The technique employs a rather

global treatment utilizing volume-averaged LEE in a thin, acoustically compact

control volume enclosing the junction — here, the boundary interface between Ω2

outlet and (modeled) nozzle (Ω3) as shown in Fig. 5.8. The ΩZ domain of length

Lb represents the boundary DECBC element in the network. Similar to Ωsc of the

1D-1D connector, the local resolution of acoustics in the ΩZ domain is not necessary.
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Ω2 Ω3

ΩZ

Lb

Figure 5.8: A infinitesimally thin (Lb → 0) control volume ΩZ enclosing

the interface between the combustor (Ω2) and nozzle (Ω3). The ΩZ domain

is used to derive the state-space model of the DECBC network element

highlighted in Fig. 5.7.

The two volume-averaged mass and momentum LEE governed the dynamics of

acoustic pressure (p̄(t)) and velocity (ū(t)) respectively in Ωsc, where (̄ ) denote vol.

avg. quantities. They enforced the coupling condition and helped set appropriate

values of acoustic variables at the junction. However, in the current case of ΩZ , only

one mass volume-averaged LEE equation is utilized that describes the dynamics of

p̄(t); and instead of LEE momentum equation, the nozzle impedance condition given

by Eq. (5.28) is used. From Eq. (2.21) in Sec. 2.2.3 the volume-averaged LEE mass

equation is rewritten for ΩZ as

d

dt
p̄ΩZ

(t) =
ρ0c

2
0

Lb
uΩ2(t) +

ρ0c
2
0

Lb
uΩ3(t) (5.30)

where, uΩ2 and uΩ3 are the normal acoustic velocity imposed by subdomains Ω2

and Ω3 respectively on the interfaces with domain ΩZ . Also ρ0 and c0 are mean

quantities in domain ΩZ that are taken equal to that in Ω2, i.e., ρ2 and c2.

Going into the frequency-space by taking Fourier transform of the above equa-

tion; and using the fact that in the limit Lb → 0, ûΩ3(ω) → −ûΩ2(ω), and by sub-

stituting for ûΩ3(ω) from the impedance condition Eq. (5.28) the following equation

is obtained

jω ˆ̄p(ω) =
ρ0c

2
0

Lb
ûΩ2(L, ω)−

ρ0c
2
0

Lb

1

A0
p̂Ω2(L, ω) +

ρ0c
2
0

Lb

A1

A0
ûΩ1 (xf , ω) e

−jωτc (5.31)

Now that the impedance condition Eq. (5.28) is embedded into the LEE equation

governing p̂(ω) in ΩZ , it must be taken back into the time-domain for state-space

representation of the DECBC element. For this purpose, the nonlinear delay term
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e−jωτc is an issue. Therefore, it is approximated with the following Multi-pole ex-

pansion (or rational approximation), similar to how FTFs were modeled in previous

chapters.

e−jωτc =

NPBFs∑

k=1

2akjω

(jω)2 − 2ckjω + ω2
0,k

(5.32)

Each term in the above equation is called a Pole-Base-Function (PBF). The coef-

ficient’s ak, ck, ω0,k are determined from the fitting algorithm developed by Douasbin

et al. [242] (see previous Ch. 4).

5.3.3.1 SS Model Realization-1 (SS-R1)

Eq. (5.31) can be decomposed into NPBFs number of equations, such that

ˆ̄p(ω) =

NPBFs∑

k=1

ˆ̄pk(ω) (5.33)

and along with Eq. (5.32) it yields

jω ˆ̄pk(ω) =
ρ0c

2
0

LbNPBFs
ûΩ2(L, ω)−

ρ0c
2
0

LbNPBFs

1

A0
p̂Ω2(L, ω)+

ρ0c
2
0

Lb

A1

A0
ûΩ1 (xf , ω)

[
2akjω

(jω)2 − 2ckjω + ω2
0,k

]
(5.34)

Note that the subscript ’k’ is not used for ûΩ2(L, ω) and p̂Ω2(L, ω), but rather their

constant coefficients are divided with NPBFs. This simple manipulation provides an

important simplification later on for the state-space (SS) representation. Due to this,

more specifically, the components of the input vector of the SS dynamics equation

of the ΩZ domain (or the DECBC network element) will be consistent with the

components of the SS output vector of the acoustic subdomain Ω2 it connects with.

The SS output equation of Ω2 simply cannot output ûΩ2,k(L, ω) and p̂Ω2,k(L, ω),

where k = 1 to NPBFs.

Equation (5.34), expressed in frequency-domain, needs to be taken back into

physical space i.e. time-domain before it could be converted into state-space equa-

tions. For doing so, all the terms in Eq. (5.34) are taken to the LHS expect the kth

PBF. The coefficient of the PBF is also moved to the LHS in the denominator so

as to give a fraction of the form N(ω)/D(ω). Next an intermediate variable ẑk(ω)

is introduced on the LHS as follows, where k = 1 to NPBFs

(
N(ω)

ẑk(ω)

)(
ẑk(ω)

D(ω)

)
= (2akjω)

(
1

(jω)2 − 2ckjω + ω2
0,k

)
(5.35)
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where,

N(ω) = jω ˆ̄pk(ω)−
ρ0c

2
0

LbNPBFs
ûΩ2(L, ω) +

ρ0c
2
0

LbNPBFs

1

A0
p̂Ω2(L, ω) (5.36)

and

D(ω) =
ρ0c

2
0

Lb

A1

A0
ûΩ1 (xf , ω) (5.37)

By introducing ẑk(ω), above Eq. (5.35) is split into two sets of equations by equating

the terms in left and right parenthesis respectively from both the sides. The two

sets of equations are then recast into the time-domain by taking inverse Fourier

transform to obtain a system of coupled differential equations (ODEs) (the first

two equations in the following group). A third ODE is appended to the group,

which is nothing but the definition of kth component of the acoustic potential, ϕ̄Ωz

k ,

corresponding to p̄Ωz

k .

d

dt
żk(t) = 2ckżk(t)− ω

2
0,kzk(t) +

ρ0c
2
0

Lb

A1

A0
uΩ1 (xf , t)

d

dt
p̄ΩZ

k (t) = 2akżk(t) +
ρ0c

2
0

LbNPBFs
uΩ2(L, t)−

ρ0c
2
0

LbNPBFs

1

A0
pΩ2 (L, t)

d

dt
ϕ̄ΩZ

k (t) =
−1

ρ0
p̄ΩZ

k (t)

(5.38)

The intermediate variable zk(t) is abstract, and ascribing any tangible physical

meaning to it may not be possible. The first equation in the above group governs

the dynamics of the variable żk(t) under the influence of input - the acoustic velocity

at the reference location in subdomain Ω1. The other equation governs p̄k(t) in ΩZ

under the influence of velocity and pressure at the exit of the subdomain Ω2. In

addition, it is also coupled to the first equation through the 2akżk(t) term.

The kth block of the state-space (SS) dynamics equation of the DECBC element

can then be finally written from Eq. (5.38) as follows, where k = 1 to NPBFs:
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d

dt




zk(t)

żk(t)

p̄k(t)

ϕ̄k(t)




︸ ︷︷ ︸
X

Ωz
k

(t)

=




0 1 0 0

−ω2
0,k 2ck 0 0

0 2ak 0 0

0 0 −1/ρ0 0




︸ ︷︷ ︸
A

Ωz
k




zk(t)

żk(t)

p̄k(t)

ϕ̄k(t)


+




0 0 0 0
ρ0c20
Lb

A1
A0

0 0 0

0 0
ρ0c20

LbNPBFs

−ρ0c20
A0LbNPBFs

0 0 0 0




︸ ︷︷ ︸
B

Ωz
k




uΩ1 (xf , t)

pΩ1 (xf , t)

uΩ2 (L, t)

pΩ2(L, t)




︸ ︷︷ ︸
U

Ωz
k

(t)

(5.39)

Assembling all the above blocks together for k = 1 to NPBFs, yields as below the

full state-space dynamics equation of the DECBC element:

d

dt




X1

X2

...

XNPBFs




︸ ︷︷ ︸
XΩz (t)

=




A1

A2

. . .

ANPBFs




︸ ︷︷ ︸
AΩz




X1

X2

...

XNPBFs



+




B1

B2

...

BNPBFs




︸ ︷︷ ︸
BΩz




uΩ1 (xf , t)

pΩ1 (xf , t)

uΩ2 (L, t)

pΩ2 (L, t)




︸ ︷︷ ︸
UΩz (t)

(5.40)

The model representation of the DECBC element is completed with the following

state-space output equation:

[
uΩz(t)

ϕΩz(t)

]

︸ ︷︷ ︸
YΩz (t)

=
[
C1 C2 · · · CNPBFs

]

︸ ︷︷ ︸
CΩz




X1

X2

...

XNPBFs




︸ ︷︷ ︸
XΩz (t)

(5.41)

where,

Ck =

[
0 0 0 0

0 0 0 1

]
(5.42)

and uΩz(t) and ϕΩz(t) in the SS output vector is nothing but the volume-averaged

acoustic velocity ū(t) and potential ϕ̄(t) in ΩZ meant to go to the acoustic sub-

domain Ω2. The output is consistent with the SS input vector of Ω2 that indeed
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expects velocity and potential in it (see the SS dynamics equation of a general acous-

tic subdomain in Ch.2 Eq. 2.17). However, note that the output of velocity uΩz(t)

is nullified (due to first row of matrix C), and only ϕΩz(t) is imposed back at the

end of Ω2. This is further elaborated as follows:

• Firstly, ū(t) is neither available nor can be computed directly from the state-

vector - see Eq. (5.39). Recall that for ΩZ domain, only volume-averaged LEE

mass Eq. (5.30) was solved governing the dynamics for p̄(t).

• Thus effectively, the SS dynamics equation of DECBC element (Eq. 5.40) takes

acoustic velocity and pressure from the end of Ω2 in its input vector along with

the velocity from reference location in Ω1. It then determines the appropriate

pressure p̄(t) in ΩZ as per the nozzle impedance condition (Eq. 5.28). Only

this pressure is then imposed back onto the end of Ω2, not directly, but as

corresponding acoustic potential (ϕ̄ =
∑
ϕ̄k), while the prevailing acoustic

velocity at the end of Ω2 remains unmodified.

This completes the first state-space realization (SS-R1) of the DECBC model.

5.3.3.2 SS Model Realization-2 (SS-R2)

The previous SS-R1 model of the DECBC element was the model developed initially.

On testing it, some numerical issues were encountered, particularly with correctly

predicting the low-frequency mixed entropy-acoustic mode of interest. The problems

are discussed in the upcoming results in Sec. 5.5. After some struggle with SS-R1,

another equivalent state-space formulation was deduced, and it apparently worked

as expected. Recall that state-space realizations are not unique. This second SS-R2

realization is described in this section.

The first DECBC model (SS-R1) was derived from the dynamical coupled sys-

tem of ODEs in Eq. (5.38). Note the choice of state-variables in state-space (SS)

dynamics equation Eq. (5.39). It is comprised of these components p̄k(t), ϕ̄k(t) for

k = 1 to NPBFs.

The second DECBC model (SS-R2) is also derived from the ODEs in Eq. (5.38)

after slightly modifying the second (and thus the third) equation in the group, such

that, the state-vector now contains only p̄(t) and ϕ̄(t). Since p̄(t) =
∑
p̄k(t), all the

components are combined and the second ODE from Eq. (5.38) can be re-written

for p̄(t) as below.

d

dt
p̄ΩZ (t) =

NPBFs∑

k=1

2akżk(t) +
ρ0c

2
0

Lb
uΩ2(L, t)−

ρ0c
2
0

Lb

1

A0
pΩ2 (L, t) (5.43)

The first ODE in Eq. (5.38) remains unchanged and the acoustic potential ϕ̄(t)

can similarly defined from p̄(t). So finally from this new system of ODEs, the second
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(SS-R2) DECBC model is given as follows:

SS Dynamics Equation:

d

dt




z1(t)

ż1(t)
...

zk(t)

żk(t)

p̄(t)

ϕ̄(t)




︸ ︷︷ ︸
XΩz (t)

=




0 1

−ω2
0,1 2c1

. . .

0 1

−ω2
0,NPBFs

2cNPBFs

0 2a1 . . . 0 2aNPBFs
0 0

0 0 . . . 0 0 −1/ρ0 0




︸ ︷︷ ︸
AΩz




z1(t)

ż1(t)
...

zk(t)

żk(t)

p̄(t)

ϕ̄(t)




+




0 0
ρ0c20
Lb

A1
A0

0
...

...

0 0
ρ0c20
Lb

A1
A0

0
ρ0c20
Lb

−ρ0c20
A0Lb

0 0




︸ ︷︷ ︸
BΩz




uΩ1 (xf , t)

pΩ1 (xf , t)

uΩ2 (L, t)

pΩ2 (L, t)




︸ ︷︷ ︸
UΩz (t)

(5.44)

SS Output Equation:

[
uΩz(t)

ϕΩz(t)

]

︸ ︷︷ ︸
YΩz (t)

=

[
0 0 . . . 0 0 0 0

0 0 . . . 0 0 0 1

]

︸ ︷︷ ︸
CΩz




z1(t)

ż1(t)
...

zk(t)

żk(t)

p̄(t)

ϕ̄(t)




︸ ︷︷ ︸
XΩz (t)

(5.45)

This completes the state-space (SS) model derivation of DECBC network element.

Two realizations (SS-R1 and SS-R2) have been described in this section.
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5.4 State-Space Model of real-valued 1D Acoustic Impedance

Before presenting the results of 1D DECBC test case (Fig. 5.7) in subsequent Sec.

5.5, this section derives a state-space (SS) model of a simple, real-valued, pure

acoustic impedance. It is used later for cross-verification of some results in the

following Sec. 5.5.1.

The steps are analogous to the derivation of the DECBC SS model detailed in

the previous section. Starting with the volume-averaged mass LEE equation (Eq.

5.30), the equation is transformed into frequency-space, the ûΩ3(ω) is replaced from

impedance relation Z = p̂(ω)
ρ0c0û(ω)

, where Z is real and constant. The equation is

transformed back into the time domain. The resulting ODE governing p̄(t) in ΩZ

can be directly written in a state-space form. This equation is accompanied by

acoustic potential ϕ̄(t) definition.

SS Dynamics Equation:

d

dt

[
p̄(t)

ϕ̄(t)

]

︸ ︷︷ ︸
XΩz (t)

=

[
0 0

−1/ρ0 0

]

︸ ︷︷ ︸
AΩz

[
p̄(t)

ϕ̄(t)

]
+

[
ρ0c20
Lb

−c0
ZLb

0 0

]

︸ ︷︷ ︸
BΩz

[
uΩ2(L, t)

pΩ2(L, t)

]

︸ ︷︷ ︸
UΩz (t)

(5.46)

SS Output Equation:

[
uΩZ (t)

ϕΩZ (t)

]

︸ ︷︷ ︸
YΩz (t)

=

[
0 0

0 1

]

︸ ︷︷ ︸
CΩz

[
p̄(t)

ϕ̄(t)

]

︸ ︷︷ ︸
XΩz (t)

(5.47)

5.5 Results and Validation

This section will discuss the results of the 1D STORM test network (Fig. 5.7) using

state-space DECBC element developed. The aim is to predict the low-frequency

mixed entropy-acoustic mode and evaluate the influence of entropy-acoustic feedback

on the thermoacoustic modes. The effect of the mean-flow Mach number, due to the

DECBC submodel combined with an otherwise zero-Mach-number acoustic network,

will also be assessed.

Both state-space (SS) DECBC formulations in STORM (SS-R1 and SS-R2) will

examined in subsequent Sec. 5.5.2 and 5.5.3 respectively. The STORM results

are validated with reference, 1D wave-based (Riemann invariants), quasi-analytical

solutions of the configuration (Fig. 5.6) as detailed in Motheau et al. [45]. Following

two reference methods are considered:
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1. LEE: Solves the frequency-domain 1D linearized Euler equations wherein the

mean-flow Mach number in the computational domain is non-zero. The nozzle

impedance Eq. (5.27) (with both acoustic and entropic response) is applied

at the combustor exit. This method inherently contains the mean-flow effects.

2. Helm+DECBC: Solves 1D Helmholtz equation, where zero-Mach-number

assumption applies. The entropy-acoustic feedback mechanism is modeled

with the DECBC approach.

The geometrical and thermodynamic parameters used for solving the 1D config-

uration in Fig. 5.6 are given in Tab. 5.2 below. Different inlet mean flow Mach num-

bers (M1) that are considered are tabulated in Tab. 5.3 alongwith required DECBC

submodel input parameters - specifically the entropy transfer function (ETF) gain

and propagation delays. As was mentioned earlier, the ETFs, in STORM are mod-

eled via rational approximation (Eq. 5.32). The fitting is carried out for a frequency

bandwidth of 0−450Hz and thus only eigenmodes falling under the cut-off frequency

of 450 Hz are expected to be correctly predicted. Note that as the mean-flow Mach

number increases, the advection time of entropy waves τc reduces, and so does the

corresponding number of Pole-Base-Functions (PBFs) required to fit the ETF as

listed in the last column. Indeed, the number of PBFs modifies the sizes of state-

space matrices of the DECBC submodel (cf. Eqs. 5.40 and 5.44), and eventually

the global state-space model of the network (Fig. 5.7) after assembling all the sub-

models together by Redheffer star product (see Eq. 2.7, from Ch. 2, Sec. 2.1.1).

T1 [K] p1 [Pa] T2 [K] γ r [SI] L [m] xf [m] xth [m] δf [m]

300 101325 1200 1.4 287 1 0.75 1.0087 0.005

Table 5.2: Thermodynamic and geometrical parameters for which the

configuration in Fig. 5.6 is solved.

M1 M2 Gus τus [ms] Gc τc [ms] NPBFs

0.00625 0.0125 −347.2 0 1 28.78 30

0.0125 0.025 −173.6 0 1 14.4 25

0.025 0.05 −86.8 0 1 7.18 20

0.05 0.10 −43.4 0 1 3.56 12

Table 5.3: DECBC model parameters for which the configuration in Fig.

5.6 is solved. M1,M2 are the mean flow Mach number upstream and

downstream of the passive flame in subdomain Ω1. Last column indicates

the number of PBFs in rational approximation of the ETF (Eq. 5.32).
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5.5.1 Test1: Applying Nozzle Impedance without Entropy-Acoustic

Feedback

Here, the motivation is to conduct a quick and straightforward test to cross-check the

1D-DECBC SS formulation when the entropy waves are absent. The idea is to verify

a hypothetical situation that when there are no entropy fluctuations propagated to

the combustor exit or that they are almost entirely dissipated, will, in that case,

the DECBC element correctly apply the pure acoustic impedance of the nozzle or

not. For this purpose, the pure acoustic impedance of the nozzle is applied in a

separate network problem with the help impedance element derived earlier in Sec.

5.4. Consistent results are expected from both approaches.

Returning to the Marble and Candel [44] relation (Eq. 5.27) and the impedance

condition (Eq. 5.28) derived from it after including the entropy transfer function

(ETF). Now, suppose entropy perturbations are nullified by setting entropy transfer

function (ETF) gain Gc = 0, then from Eq. (5.28). In that case, the A0 coefficient

gives the relation between acoustic pressure and velocity that should be verified at

the combustor exit, i.e., the pure acoustic impedance of the nozzle. On dividing A0

with ρ2c2 the non-dimensional impedance Znozz is obtained as

Znozz =
p̂(L, ω)

ρ2c2û(L, ω)
=

A0

ρ2c2
=

2

(γ − 1)M2
(5.48)

where, ρ2, c2 are mean density, sound speed in subdomain Ω2, and M2 is the mean

flow Mach number. Note that the compact nozzle acoustic impedance above is

real-valued and constant (independent of frequency ω).

Therefore now, the network in Fig. 5.7 is solved with DECBC (SS-R1) element

with ETF gain Gc = 0. The same problem is solved with the DECBC replaced with

the acoustic impedance element from Sec. 5.4 imposing the above Znozz acoustic

impedance. Fig. 5.9 highlights that consistent results are obtained from both ap-

proaches. Eigen-frequencies of the first three eigenmodes are listed, whose negative

growth rates indicate damping induced by the resistive acoustic impedance of the

nozzle. Mode shapes are observed to be correct (not shown here).

STORM network 

with Acoustic 

Impedance element

STORM network with 

DECBC element

(ETF nullified, Gc = 0) 

Mode 1 :  (179 - 0.21j)  Hz

Mode 2 :  (377 - 0.12j)  Hz

Mode 3 :  (587 - 0.0088j) Hz

Consistent Results

Figure 5.9: Acoustic Eigenmodes of the network in Fig. 5.7 without

entropy-acoustic feedback.



5.5. Results and Validation 157

5.5.2 Test2: 1D-DECBC Results with SS-R1

Results of the network (Fig. 5.7) resolution with DECBC SS-R1 model, with entropy

transfer function (ETF) applied, are presented in this subsection. Very low inlet

Mach number, M1 = 0.00625 is considered and thus corresponding ETF parameters

mentioned in Tab. 5.3 are administered.

Computed eigenmodes are listed in Tab. 5.4 for varying OC-frame sizes in the

1D acoustic subdomains Ω1 and Ω2 of the network. NΩ1 = NΩ2 = N .
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Figure 5.10: Mode 1 shape from Tab. 5.4 with SS-R1 DECBC model.
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Figure 5.11: Mode 2 shape from Tab. 5.4 with SS-R1 DECBC model.
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STORM+DECBC (Ref:) Helm+DECBC

N = 12 N = 18 N = 36

Mode 1 17 + 0.7j 19− 4.0j 19 + 8.0j 17 + 0.7j

Mode 2 181 + 8.9j 181 + 9.0j 181 + 8.7j 181 + 8.6j

Mode 3 386 + 7.9j 386 + 8.0j 386 + 7.9j 386 + 7.9j

Table 5.4: Eigenmodes with SS-R1 DECBC model for varying frame size

N of the 1D acoustic subdomains (Fig. 5.7).

Mode 1 is the low-frequency, mixed, entropy-acoustic mode that was not cap-

tured when ETF was not modeled in the previous Sec. 5.5.1, Fig. 5.9. Interestingly,

note that the first two acoustic modes that were stable in that case are now desta-

bilized due to entropy-acoustic feedback.

However, a numerical issue can be observed from Tab. 5.4. All the modes are

expected to converge with increasing OC-frame size N, and acoustic Mode 2 and

3 indeed do. However, the entropy mode shows this strange sensitivity to N. The

growth rate keeps changing drastically in magnitude and sign with increasing N;

and only for certain specific frame sizes the entropic mode was predicted correctly,

for instance, N = 12.

Figures 5.10 and 5.11 depict Mode1 and Mode2 shapes respectively for different

N along with the reference Helm+DECBC analytical solution. Note that the mode

shapes are plotted in terms of magnitude and phase of fluctuating total enthalpy

(J) and mass-flow-rate (m). Again, while the acoustic mode shapes are accurate,

the problem is evident with the entropic mode, particularly in the mass-flow-rate

mode shape. As mentioned above, for the particular N = 12 case, note that the

mode shapes are in excellent agreement with the reference solution.

It is suspected that the erratic behavior of the entropy mode could be due to

some unwanted interaction with spurious components/modes present in the matrix

Af — the global state-space (SS) dynamics matrix resulting after assembling all the

SS submodels. Recall from Sec. 2.4 and Fig. 2.12 the various numerical treatments

carried out to deal with spurious/unphysical components arising due over-complete

nature of OC-frames used for modal expansion of the acoustic subdomains. In

the current case, there is no active flame, therefore, Af = Aa. After identifying

the spurious components with the energy criterion, the solver goes to the step of

artificial damping of these spurious components (see Fig. 2.12 in Ch. 2). In this

treatment, briefly, the Aa matrix is taken into its spectral space with the help of

eigenvalue decomposition, and the a priori flagged spurious modes are artificially

damped by setting their growth rates to some arbitrarily chosen large negative rate,

D in (1/s). See Sec. 3.5 in C. Laurent thesis [197] for exact implementation details.
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Figure 5.12: Entropy mode with DECBC SS-R1 model for different ar-

tificial damping rate of spurious modes.
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Figure 5.13: Acoustic mode with DECBC SS-R1 model for different ar-

tificial damping rate of spurious modes.

The default value set for this numerical parameter is D = −105 (1/s). From several

tests performed in the past, this value worked well for almost all problems. Also, in

general, the results were robust to variations ofD by a couple of orders of magnitude.

An indication of the guess that entropy mode is affected by spurious components

is given from the following result. For fixed OC-frame size N = 50, the artificial

damping rate D is varied. Similar results are obtained yet again. The entropy

mode’s eigenfrequency and mode shape tend to change drastically with D (Fig.
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5.12), however, the result of acoustic modes remain robust (Fig. 5.13).

Several additional tests were performed to determine the root cause of partly

correct/incorrect results with SS-R1 and possible ways to rectify the issue. For

example:

1. Treating the DECBC network element as active, analogous to a flame element,

wherein they go through this additional decoupling (from spurious modes)

process discussed in Sec. 2.4.

2. Splitting the DECBC element into two state-space blocks, where one models

the entropy transfer function (ETF), and the other imposes the pure acoustic

part of the nozzle impedance condition (Eq. 5.28). (Just another way of

implementing the DECBC methodology). Furthermore, the option of treating

the ETF block as passive or active (see Sec. 2.4) was also looked at.

The above tests are not detailed further because none of them gave satisfactory

results. Overall the results were similar, where the entropy mode continued to be

evasive.

Later, the alternate DECBC SS-R2 formulation (Sec. 5.3.3.2) was conceived and

tested. This formulation gives good results, as presented in the next subsection.
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Figure 5.14: Entropy mode (17 + 0.7j) Hz shape with DECBC SS-R2

model. (Corresponds to the same problem in Fig. 5.10 that was solved

with DECBC SS-R1 model.)

5.5.3 Test3: 1D-DECBC Results with SS-R2

The results obtained with DECBC SS-R2 formulation are discussed here. In this

case, both entropy and acoustic modes are correctly and consistently predicted in
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comparison to reference solution. They are observed to be robust against both,

increasing OC-frame sizes of the subdomain and varying artificial damping rate of

the spurious modes. For example, the problematic entropy mode obtained with

SS-R2 DECBC model for varying OC-frame sizes is shown in Fig. 5.14.

5.5.3.1 Effect of mean-flow Mach number

All the previous results discussed were for very low inlet mean Mach number M1 =

0.00625. Therefore, the next set of results would assess the solutions for increasing

mean-flow Mach numbers, modeled indirectly and partly by DECBC approach in

otherwise zero-Mach-number (M = 0) STORM network. This subsection will also

make use of the LEE reference quasi-analytical solutions [45] (along with Helm +

DECBC) for verifying the effect of Mach number. The 1D network configuration

(Fig. 5.7) is thus solved for the inlet Mach numbers listed in Tab. 5.3 with DECBC

SS-R2 model.

Figure 5.15: First three eigenmodes computed for different inlet mean-

flow Mach numbers (M1) with DECBC SS-R2 model.

Eigen-frequency results are presented in Fig. 5.15 for various inlet Mach numbers

M1. The upper left graph show the frequency of the first three eigenmodes, while

the other three subplots indicate their respective growth rates.
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Figure 5.16: First mode shape for M1 = 0.025 from Fig. 5.15.
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Figure 5.17: Second mode shape for M1 = 0.025 from Fig. 5.15.
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Figure 5.18: First mode shape for M1 = 0.05 from Fig. 5.15.
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Since the first low-frequency mode is coupled with convected entropy waves,

its frequency in Fig. 5.15 shows a direct correlation and scales according to the

mean-flow Mach number (M1). The second and third mode are mostly of acoustic

origin. Their frequency is only slightly modified due to mean-flow effects and also

entropy-acoustic feedback, but they do not show a clear trend against increasing

Mach number. M1 = 0.05, the first and second modes tend to merge into one mode.

Such behavior has also been observed in previous works by Dowling and Stow [140],

and Goh and Morgans [292].

The first three modes, all of them are unstable and their growth rate are further

increasing with Mach number. For M1 > 0.025, unlike frequency, growth rates

from STORM, Helm+DECBC methods (with M = 0 assumption) start to devi-

ate from reference LEE (M 6= 0) as expected at higher Mach numbers. However,

the eigenmodes (frequency, growth-rate, mode shape) between (STORM+DECBC)

and reference zero-Mach (Helm+DECBC) agree well. See the mode shapes in Figs.

(5.14), (5.16)-(5.18). The latter three figures also correspond to mode1 and mode2

at M1 = 0.025 merging into one mode for M1 = 0.05. At M1 = 0.05, the deviation

of zero-Mach methods from LEE seems to become evident. It can be anticipated,

that at M1 values beyond the range considered in Fig. 5.15, the discrepancy in

results is likely to become significant. This is the inherent limitation of the DECBC

methodology. In fact, it stems from the impedance matching approach that indi-

rectly, and only partly, models the mean-flow effect — recall that the Mach number

in the computational domain requires to stay in the very-low regime.

5.5.3.2 SS-R1 vs. SS-R2: Non-normality assessment of eigenvalues and

eigenvectors of global dynamics matrix Af

This subsection attempts to diagnose the cause for partially correct/incorrect results

observed with the SS-R1 DECBC submodel discussed above (compared to SS-R2)

by analyzing the global dynamics matrix Af . Note that state-space dynamics ma-

trix AΩz of the DECBC submodel SS-R1 is of size [4NPBFs × 4NPBFs] and SS-R2

[(2NPBFs + 2)× (2NPBFs + 2)]. Thus, after assembling all the submodels, the Af

matrix will be larger in the case of SS-R1; for all other parameters taken identical.

Whatever the difference in the global state-space model that is influencing the en-

tropy mode for SS-R1 is contained inside the Af matrix. Therefore analyzing this

matrix should give some information regarding the observed issue.

Specifically, a simple assessment of the non-normal character of the matrix Af ,

particularly the condition number of eigenvalues and eigenvectors, is carried out. It

was suspected that maybe SS-R1 causes Af to be more non-normal than SS-R1.

Eigenvalue (Modal) analysis is ubiquitous and a powerful tool in physical sci-

ences (various applications), engineering, and fundamental/applied mathematics. It
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works well when the matrices/linear-operators governing the system are normal (or

near-normal), i.e., they have a complete set of orthogonal eigenvectors. However,

as highlighted by Trefethen and Embree [293], a certain class of problems where

systems are governed by non-normal matrices/linear-operators could exhibit un-

expected behaviors. The authors highlight that conclusions based on eigenvalues

alone could be misleading for non-normal matrices / linear operators. See the in-

troductory chapters in [293] for further elaboration on implications of non-normal

problems in, e.g., resonance, transient and or asymptotic dynamics, convergence,

stability, iterative mathematical algorithms/schemes, etc. Sujith et al. [91] provide

a comprehensive and insightful review of non-normal and nonlinear effects specific

to thermoacoustic combustion instabilities.

A given matrix A ∈ Cn×n, is normal if it has a complete set of orthogonal eigen-

vectors, that is, if it is unitarily diagonalizable: A = UΛU∗. Here, U is unitary,

and Λ is the diagonal matrix of eigenvalues. An equivalent characterization is that

A is normal if it commutes with its adjoint: AA∗ = A∗A. Note that in our case,

all state-space matrices of sub-models, and thus Af are real-valued. However, the

eigenvalues and eigenvectors of Af , of course, can be complex-valued. However, for

the discussion of non-normality in this subsection, the subsequent definitions are

general and valid for complex matrices.

Now supposing a given matrix A is diagonalizable but not necessarily normal,

and let V ∈ Cn×n denote its matrix of eigenvectors of A such that: AV = VΛ or

A = VΛV−1. One common scalar measure of the non-normality of a given matrix

is the condition number of is its eigenbasis matrix V. For 2-norm of matrices, the

condition number is then defined as [293]:

C(V) = ||V||2 ||V
−1||2 =

smax(V)

smin(V)
(5.49)

where, smax(V) and smin(V) are the maximum and minimum singular values of

V. In general, C(V) may be any number in the range 1 ≤ C(V) < ∞ , and the

value C(V) = 1 when the given matrix A is exactly normal. The other extreme

C(V) =∞ denotes a A as non-diagonalizable or defective matrix.

However, the condition number of matrix V only provides an upper bound of the

condition numbers of the individual eigenvalues of A (according to Bauer-Fike theo-

rem) [293]. There are several eigenvalues of Af , many of them spurious/unphysical.

Therefore as suggested in [293], a better and more descriptive scalar measure is to

verify the condition numbers of individual eigenvalues and eigenvectors.

For defining condition number of eigenvalues, the most simple case of a given

matrix A whose eigenvalues λ1, λ2 · · ·λn are distinct (i.e., simple eigenvalues) is

considered. This assumption implies the existence of a full set of left and right
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eigenvectors as follows:

u∗
jA = λju

∗
j , Avj = λjvj (5.50)

for j = 1, 2, · · · , n. From principles of perturbation theory (see Chapter 52, in [293])

the condition number definition of an eigenvalue λj can be defined as:

C (λj) =
‖uj‖ ‖vj‖∣∣∣u∗

jvj

∣∣∣
(5.51)

Cauchy-Schwarz inequality
∣∣∣u∗
jvj

∣∣∣ ≤ ‖uj‖ ‖vj‖ tells that C(λj) ≥ 1. Therefore

when C(λj) = 1 when the left u∗
j and right eigenvectors are same or colinear and

the λj is a normal eigenvalue.

Previous subsections described how the results with SS-R1 DECBC formulation,

particularly the entropy mode, showed sensitivity to the frame size N of the sub-

domains and the artificial damping rate parameter D (for spurious modes). Since

artificial damping treatment alters the Af matrix entries, the idea here is to check

the eigenvalue condition numbers of individual entropy and acoustic modes before

and after the treatment for given frame sizes. The motivation for this assessment is

described in the following two points:

• SS-R1 case: Irrespective of frame size, in general, the complex frequency

and mode shape of entropy (17 Hz) and acoustic modes are both observed

to be not accurate before artificial damping. It is only after applying the

artificial damping treatment that the acoustic eigenmode result is correct, but

entropy mode remains an issue. An exception to this general observation is

the N = 12 case — for this frame size, both the entropy/acoustic modes are

correct before/after artificial damping.

• SS-R2 case: For this formulation, irrespective of frame size, the eigenmodes

are observed to be correct before/after artificial damping. In other words, the

physical modes are robust to any favorable/unfavorable influence of artificial

damping treatment and the value of D itself.

Next, in Tab. 5.5, the reciprocal of eigenvalue condition numbers (RCONDE)

of entropy mode (∼17 Hz) and first acoustic mode (∼181 Hz) are computed (be-

fore/after) artificial damping treatment. While RCONDE is a measure of non-

normality of the specific eigenvalue, from the perturbation theory point of view, it

also represents the sensitivity of eigenvalues to "small" matrix perturbations.

Similarly, corresponding reciprocal condition number (or sensitivity) of right-

eigenvector vj (RCONDV) are computed and listed in Tab. 5.6. It is interesting
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RCONDE

Frame Size (N) Eigenmode SS-R1 SS-R2

N = 12
Mode1 ∼17 Hz (6.38E-11 / 1.16E-07) (3.42E-04 / 3.10E-02)

Mode2 ∼181 Hz (8.57E-10 / 2.02E-06) (5.44E-05 / 4.60E-03)

N = 36
Mode1 ∼17 Hz (7.28E-13 / 7.10E-10) (2.20E-04 / 6.70E-03)

Mode2 ∼181 Hz (1.24E-11 / 1.40E-08) (4.96E-05 / 1.80E-03)

Table 5.5: Reciprocal condition number (or sensitivity) of eigenvalues,

RCONDE, of global dynamics matrix Af (before / after) the numerical

treatment of artificial damping of spurious modes.

RCONDV

Frame Size (N) Eigenmode SS-R1 SS-R2

N = 12
Mode1 ∼17 Hz (7.13E-09 / 1.92E-05) (3.38E-02 / 3.88)

Mode2 ∼181 Hz (1.84E-07 / 7.36E-04) (1.81E-02 / 8.90E-01)

N = 36
Mode1 ∼17 Hz (1.30E-10 / 1.90E-07) (6.95E-03 / 4.21E-01)

Mode2 ∼181 Hz (3.14E-09 / 2.21E-06) (1.54E-02 / 3.44E-01)

Table 5.6: Reciprocal condition number (or sensitivity) of right-

eigenvectors, RCONDV, of global dynamics matrix Af (before / after)

the numerical treatment of artificial damping of spurious modes.

to look at RCONDV as well because the OC-frame modal expansion coefficients 1of

all the acoustic subdomains are contained inside the eigenvector. The final global

system mode shape is obtained by reconstructing its part in each subdomain from

their respective OC-frame and coefficients. Therefore, the RCONDV number, in

a way, is a scalar measure of ill-conditioning of these coefficients depending upon

factors such as: state-space formulation SS-R1 or SS-R2, OC-frame-size N, mode

type (acoustic or mixed entropic-acoustic), artificial damping treatment; and might

throw some light on the strange mode-shapes observed in Figs. 5.10, 5.12.

1Γ̇n(t),Γn(t) respectively in pressure and velocity modal expansion on OC-frame - see Eqs. 2.8,
2.9 from Ch. 2. Recall that the global state-space dynamics equation is defined in physical space
(or time-domain): Ẋ = A

f
X, where X is the state-vector containing (Γ̇n(t),Γ(t)) coefficients. In

frequency-domain, when eigenvalues and eigenvectors of A
f are determined, a eigenvector then

contains frequency-domain counterparts of the modal expansion coefficients (γn(ω), γn(ω)/jω) for
pressure and velocity expansions respectively. The pressure mode in a subdomain then would
reconstructed as p̂(~x, ω) =

∑
n
γn(ω)φn(~x), where φn(~x) is the OC-frame of the subdomain. See

Sec. 3.2 of C. Laurent thesis [197] for frequency-domain equivalent or predecessor of ODE (Eq.
2.14) governing these coefficients.
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Following inferences can be drawn from both the RCOND numbers in the above

tables:

• Overall, comparing SS-R1 to SS-R2, it is quite clear that SS-R1 formula-

tion leads to significantly ill-conditioned eigenvalues and eigenvectors. This

probably is not good news considering that from two equivalent state-space

representations (for a given problem), one can be significantly ill-conditioned

than the other. If it is due to choice and number of the state variables, then

obviously, minimal state-space realizations should be sought.

• Artificial damping treatment improves the conditioning of eigenvalues and

vectors for this problem. It may explain the observed improvement in the

accuracy of SS-R1 results post-treatment (as discussed in the bullet points

above). However, it needs to be seen from other problems if such better

conditioning is always attained.

• Comparing exceptional N=12 case to N=36 for SS-R1: The correct entropic

mode1 observed for N=12 could be linked to both better ( / after) RCOND

values (about two orders of magnitude) than N=36. Nevertheless, note that

this is the case for acoustic mode2 as well. Also, both RCOND values of mode2

are more or less comparable to mode1; and are not significantly different for

mode2 to be always predicted correctly. Hence, concluding that the issue with

entropy mode1 predictions is entirely due to poor conditioning may not be

justified.

In summary, the above scalar metrics (condition numbers) of eigenvalues and

eigenvectors investigated provide some insights but do not clearly distinguish or

help reason the strange results from one DECBC state-space compared to another

equivalent submodel. A more systematic and comprehensive matrix analysis could

help figure out the root cause of the problem with the SS-R1 formulation. Also,

one clear difference is the choice and number of state variables. Maybe surveying

the state-space theory from controls and dynamical systems literature to investigate

whether or not the choice of state variables and their number (from multiple equiv-

alent possibilities) should affect results shall be interesting and useful. The question

that needs to be addressed is whether a minimal state-space realization is always

necessary.

5.6 Conclusions and Perspectives

The chapter recalled and briefly described the entropy-acoustic feedback mechanism

arising from indirect entropy combustion noise generated from the acceleration of
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convected entropy perturbation waves (hot-spots) through nozzle or turbine stages

downstream of the combustor. The acoustic waves generated can form a closed-

loop feedback cycle with flow/flame in the combustor leading to self-sustained low-

frequency mixed entropy-acoustic instabilities.

STORM low-order network tool inherently involves zero-Mach-number mean

flow assumption just like FEM Helmholtz solvers in the description of the acoustics.

Consequently, neither the mean flow effects are modeled, nor the convected entropy

waves are present (contrary to what would have been in a domain whose acoustics

is described with Linearized-Euler-Equations (LEE)).

A physical modeling strategy to indirectly account for mean-flow effects, the en-

tropy waves, and entropy-acoustic coupling was proposed and employed by Motheau

et al. [45, 46] in the context of Helmholtz solvers. The idea was to truncate the

domain by removing the high-mean-speed downstream element (nozzle) and match-

ing its equivalent impedance on the boundary of the low-mean-speed computational

domain approximated as a zero-Mach domain. At the same time, the production of

entropy fluctuations, its propagation by convection, and coupling with the acoustic

field are realized with the help of entropy-transfer-functions (ETF). Together this

methodology yields a special type of acoustic boundary condition Delayed Entropy-

coupled Boundary Condition (DECBC). When applied, DECBC helps predict the

low-frequency mixed stable/unstable modes and the influence of entropy-acoustic

feedback on classic thermoacoustic modes.

This chapter implemented the DECBC methodology in the STORM’s modal-

expansion, state-space (SS) network framework. A state-space submodel for DECBC

representing an impedance network element was developed that modeled the entire

entropy-acoustic feedback mechanism. A simple analytically tractable 1D test case

from [45] was tested with STORM. Results were validated with analytical solution

from two reference methods: LEE (M 6= 0) and Helmholtz equation (M = 0) along

with DECBC (Helm+DECBC).

Two slightly different but equivalent state-space realizations of DECBC (SS-R1

and SS-R2) were detailed and discussed. The SS-R1 formulation gave only partially

correct results. The standard thermoacoustic modes (frequency, growth rates, and

mode shapes) were correctly predicted, but not the low-frequency mixed entropy-

acoustic mode was in general. On the other hand, the SS-R2 DECBC formulation

yielded expected results. A basic numerical analysis/assessment of condition num-

bers of the eigenvalues and eigenvectors of the global state-space dynamics matrix

Af shed some light on the strange results observed with SS-R1. Since state-space

models for a given problem need not be unique, another question that surfaces from

the results observed is whether seeking a minimal state-space realization is always

necessary. This aspect needs further investigation and should be noted in future

modeling efforts.
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Part-2 of the manuscript begins with this chapter introducing two-phase spray

combustion physics and the modeling challenges it poses. The specific models em-

ployed for the simulations performed in this work are presented.

6.1 Physical Processes in Spray Combustion

Modeling and simulation of two-phase reacting flow present a challenging multi-

physics, multi-scale problem on top of already complex enough turbulent flow. Ex-

cellent and seminal literature, particularly on the subject of spray combustion mod-

eling is available: Sirignano [59, 295], Lefebvre et al. [58, 2], Aggarwal [296, 297],

Jenny et al. [298], Masri [299], in addition to other references cited in the chapter.

A few selected research entries reviewing/developing the modeling and simulation

of turbulent multi-phase flows more generally with or without reactions that are

worth mentioning: Crowe et al. [300], Fox [301], Gorokhovski and Herrmann [302],

Subramaniam [303], Desjardins, Le Chenadec, Pitsch and others [304, 305, 306, 307,

308, 309].
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Figure 6.1: An overview of physical processes in spray combustion. Fig-

ure reproduced from [294]

This section aims to give a brief introduction and phenomenological description

of several physical processes involved in spray combustion accompanied by a repre-

sentative schematic in Fig. 6.1. More in-depth background on the physics, details

of relevant theories, a survey of modeling state-of-the-art, AVBP code implemen-

tations, etc., can be found in the latest Ph.D. theses at CERFACS (cited below)

dedicated to the specific aspects of spray combustion as listed below.

• Injection: Many gas turbine combustors employ air-blast pressure-swirled at-

omizers that inject liquid fuel under high-pressure as a swirling hollow cone

spray [2, 58]. The FIM-UR approach [310], detailed in the following Sec.

6.2.2, will explain a methodology that models the injection of liquid fuel in

the computational domain.

(CERFACS theses: Senoner J. M. (2010) [311], Sanjosé (2009) [312])

• Liquid-Wall Interaction: As soon as the liquid is injected into a strongly

swirling airflow under pressure, the atomization process is initiated. To make

it compact and to enhance the quality of atomization and subsequent fuel-air

mixing, the aero-engine air-blast injectors typically consist of a pre-filming

surface as depicted in Fig. 6.1. The liquid fuel impinges on this surface and,

depending upon the wall temperature, liquid-jet speed, and direction, leads

to the following phenomena: (i) Filming: Majority of the liquid sticks, ac-

cumulating on the surface as a thin film, and moves along it with the bulk

flow. (ii) Splash: A larger droplet bounces back from the surface but is also



6.1. Physical Processes in Spray Combustion 171

split into several smaller droplets. (iii) Rebound: The droplets bounce back

without disintegrating.

Modeling of this complex liquid-wall interaction, particularly the filming on

the wall and its dynamic behavior in response to acoustic oscillations, is at the

core of thermoacoustic instability prediction as demonstrated by Lo Schiavo

et al. [60] and reviewed in the following chapter. Sec. 6.2.3 will explain a

model that tackles the formation of a film on a wall.

(CERFACS theses: Chaussonnet G. (2014) [294], Lafrate M. N., (2016) [313])

• Atomization: On the prefilmer edge (or the injector lip), the liquid fragments

undergo primary/edge atomization [314]. The high strain between the in-

jected liquid/gas interface cause Kelvin-Helmholtz, Rayleigh-Taylor type of

hydrodynamic instabilities, leading to liquid breakup into smaller pockets. In

secondary atomization, the fuel pockets/ligaments further break down into

a cloud of fine droplets due to aerodynamic forces. Breakup continues until

counter-balanced by surface tension that upholds the droplets from further

disintegration sustaining its shape and surface.

(CERFACS theses: Carmona J. (2021) [315], Chaussonnet G. (2014) [294])

Figure 6.2: Laser-sheet image of particles in homogenous turbulence il-

lustrating inertial clustering. From [316].

• Dispersion: The liquid fuel atomization into fine droplets (the dispersed phase)

occurs while being simultaneously transported by the bulk turbulent gaseous

flow (carrier phase). Thus, turbulence-spray interaction is an essential physical

phenomenon that must be modeled. It is achieved with the Euler-Lagrange

LES (EL-LES) method (a.k.a. Discrete Particle Simulation: LES-DPS) in
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the current work. Here, the Lagrangian droplets/particles are tracked and

coupled with the resolved Eulerian gaseous flow field for which they act as

point sources. Upcoming Sec. 6.2.1 will detail the Euler-Lagrange formalism.

Depending upon the droplet inertia (mass and size) and turbulence scales,

preferential segregation/inertial clustering of particles is usually observed as

illustrated in the experimental image in Fig. 6.2. Most droplets tend to

concentrate in the shear layers between eddies (or regions of low vorticity

and high strain). A consequence of this is the heterogeneous distribution

of fuel as it approaches the flame’s preheating zone and starts to vaporize

simultaneously.

(CERFACS thesis: Senoner J. M. (2010) [311], Jaegle F. (2009) [317])

• Evaporation and Thermo-chemistry: All fuel droplets are vaporized before

they can undergo combustion. This is true either when the bulk of the fuel is

vaporized upstream of the reaction zone, forming a vapor cloud reaching the

reaction zone while mixing with the air (partially premixed), or even when

it is at the level of individual droplet burning via diffusion (non-premixed).

In addition to the droplet size distribution and density in the flow (e.g.,

dilute/very-dilute regimes - Fig. 6.1), the evaporation process is further com-

plicated by the thermo-chemistry of fuel. Kerosene, a heavy hydrocarbon fuel,

comprises several components of considerably varying volatility, i.e., vaporiza-

tion time scales. Therefore, developing multi-component evaporation models

and reduced, computationally efficient, yet reliable surrogate chemical kinetic

mechanisms is essential: for accurate combustion simulations, predictions of

pollutant emissions, transient simulations of ignition, extinction, etc.

(CERFACS theses: Sierra Sànchez P. (2012) [318], Shastry V. (2022) [319],

Cazeres Q. (2021) [320].)

• Spray Combustion: The above points suggest a complex and strongly cou-

pled spray, turbulence, and chemistry interaction. Governed by droplet size

distribution, density, time scales of evaporation, mixing, chemistry, and the

distance to the reaction zone, different types of combustion regimes are possi-

ble, as described below and indicated in Fig. 6.3 [61, 321, 322]:

(i) Prevaporized Regime 1 : In this case, the droplets evaporate completely

before the vapor-air mixture reaches the reaction zone. The resulting flame

acts as a gaseous flame and is uncorrelated to the liquid phase.

(ii) Homogeneous Regime 2: This case is observed when the pre-vaporizing

levels are not high as in the previous case, the liquid concentration is dense,

then a thick reaction zone is observed (Fig. 6.3). Most droplets evaporate and
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Figure 6.3: Two-phase combustion regimes. Adapted from [324]. See also

Reveillon and Vervisch [67] for other ways on defining spray combustion

regimes.

provide fuel vapor before and or inside the flame zone to sustain the gaseous

reactions.

(iii) Heterogenous Regime 3: Is characterized by a strong interaction between

the liquid spray and flame. The flame is located in between the spray. Many

fuel droplets cross the flame front and burn in groups (clusters) of droplets

with a flame envelope around them or even as individual droplets.

Complete pre-vaporization and perfect premixing, though desired, is rarely

achieved in reality. Due to the fuel-air mixture stratification, combustion

occurs in a partially-premixed regime. Lean/rich, premixed/diffusion regions

co-exist locally in the reaction zone of the combustion chamber. Identification

of these regimes is critical for high-fidelity modeling and simulation of spray

flames that exhibit such complex structure - further discussion in following

Sec. 6.2.7 on combustion modeling.

(CERFACS theses: Paulhiac D. (2015) [323], Rochette B. (2019) [324].)

• Flame Ignition and Stabilization: Besides thermoacoustic oscillations, un-

steady combustion behavior of flame blowout, flashback, and ignition are se-

rious operational hazards [1, 7, 325]. Indeed if a combustor is extinguished,

fast ignition, light-around, and stabilization of the flames in a multi-burner

annular combustor is a critical design requirement for aero-engines. Devel-
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oping capabilities of two-phase combustion LES to simulate these transient

behaviors are therefore essential.

(CERFACS theses: Collin-Bastiani F. (2019) [326], Rochette B. (2019) [324])

6.2 Spray Combustion LES: Models and Governing Equa-

tions

This section will detail the specific models employed in the current work, highlight-

ing the inherent assumptions, hypotheses, and known limitations. Combustion LES

of gaseous fuel is relatively mature whether it is premixed/non-premixed/partially-

premixed. From tackling turbulence-chemistry interaction, prediction of pollu-

tant emissions to simulations of unsteady phenomena such as instabilities, ignition,

blowout, and is well documented - see [13, 108, 115, 327, 114, 11, 328] and refer-

ences therein. The modeling of multi-species, reacting, gaseous carrier phase is only

briefly mentioned to keep this presentation concise. At the same time, the emphasis

is put on summarizing the two-phase coupling/interaction models in the following

subsections.

6.2.1 Euler-Lagrange LES Formalism

LES of the SICCA-spray burner configuration is performed using the AVBP code,

which has been under continuous development at CERFACS1 for over two decades

now. It is a massively parallel code and solves the three-dimensional filtered, fully

compressible, reacting multi-species Navier-Stokes equations on unstructured/hybrid

grids.

6.2.1.1 Eulerian Gas-Phase

The gas-phase flow and turbulence modeling is based on Large-Eddy-Simulation

technique [13, 115, 329, 330], where the main idea is to resolve the large scale

eddies in the flow which contain most of the energy, while the very small scales

are represented by subgrid-scale (SGS) model. The conservation equations of mass

(along with multi-species transport equations), momementum and energy [13] are

spatially filtered - an operation that is directly related to the mesh resolution. As the

density is variable in reacting flow, to avoid additional terms, mass-weighted Favre-

filtered quantities are introduced as g̃ = ρg/ρ̄, where ρ̄ is the resolved (filtered)

density. For any physical quantity g (density, velocity components, scalars etc.), the

Favre- filtered component g̃ is resolved in the numerical simulation while the subgrid

scales g′ = g − g̃ are modeled.

1AVBP website: www.cerfacs.fr/avbp7x

www.cerfacs.fr/avbp7x
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The core difficulty arising in LES is that the spatial filtering of the equations

leads to unresolved subgrid-scale (SGS) terms such as the Reynolds stresses, the

turbulent diffusion of species, and energy. These terms need to be modeled as

detailed in [13] by employing a subgrid-scale (SGS) model for closure of Reynolds

stresses by introducing turbulent kinematic viscosity νt. The latter two unresolved

turbulent (SGS) species and heat fluxes are closed by invoking gradient transport

assumption, where turbulent Schmidt Sct and Prandtl Prt number are introduced,

respectively. These dimensionless numbers correlate turbulent (SGS) species and

thermal diffusivity to turbulent momentum diffusion given by νt. In this work, the

νt is determined by employing the SGS model proposed by Nicoud et al. [331].

In summary, for the Eulerian gas phase, AVBP solves the set of compressible,

Navier-Stokes filtered equations as follows [13, 60]:

• Mass:
D

Dt
(ρ̄) = 0 (6.1)

• Species:
D

Dt

(
ρ̄Ỹk

)
= −∇ ·

(
jk + j

sgs
k

)
+ ṠYk , k = 1, NS (6.2)

• Momentum:
D

Dt
(ρ̄ũ) = −∇ ·

(
p̄I−T−T

sgs)
+ ¯̇SM (6.3)

• Energy:
D

Dt
(ρ̄E) = −∇ ·

(
u · p̄I−T+ q+ qsgs

)
+ ṠE (6.4)

where, D
Dt = ∂

∂t + ũ · ∇ is the total derivative, E is the total energy (internal

+ kinetic), I is identity matrix, ṠYk ,
¯̇SM , ṠE are source-terms appearing due to

coupling with liquid-phase Lagrangian particles (discussed in next Sec. 6.2.1.2). T̄

is the filtered (or resolved) stress tensor, j̄k is the species mass-diffusion flux, while

q̄ denotes the energy fluxes due to differential diffusion of species and temperature.

The unresolved turbulent (SGS) terms are closed as:

T
sgs

= ρ̄(ũ : u− ũ : ũ) ≃ 2ρ̄νt

(
S̃−

1

3
tr(S̃)I

)
(6.5)

j
sgs
k = ρ̄

(
Ỹku− Ỹkũ

)
≃ 2ρ̄

(
Dt
Wk

W
∇X̃k − ỸkV

c

)
(6.6)

qsgs = ρ̄(Ẽu− Ẽũ) ≃ −λt∇T̃ +

Ns∑

k=1

j
sgs
k h̃s,k (6.7)

Turbulent Schmidt Sct and Prandtl Prt numbers are imposed to be 0.6. Dt and

λt in above relations then come from Sct and Prt definitions as: Dt = νt/Sct and

λt = ρ̄νtc̄p/Prt.



176 Chapter 6. Euler-Lagrange (EL) LES Modeling of Spray Flames

6.2.1.2 Lagrangian Liquid-Phase

The previous subsection described the LES equations of multi-species reactive gaseous

flow - the carrier phase. When a liquid phase is introduced in the form of a spray,

additional equations that track its evolution are presented here.

The fuel spray is modeled as a cloud of discrete, rigid, tiny (less than Kol-

mogorov’s length scale) Lagrangian droplets/particles - the dispersed phase, that

are transported by the carrier phase. The evolution of the position, velocity, and

temperature of droplets is tracked through a two-way coupling between the dispersed

and carrier phase. The droplets act as spatial point sources that appear in the gas

LES species, momentum, and energy equations above (detailed in the following Sec.

6.2.1.3). On the other hand, it is presumed that only drag force is exerted by the

gas on the particles that is responsible for their motion [311]. Thus, the basic set

of equations governing the evolution of Lagrangian particles are given as follows

[311, 60]:
d

dt
xp = up (6.8)

d

dt
(mpup) = Fp (6.9)

d

dt
mp = ṁp (6.10)

d(mphs,p)

dt
= Φ̇p (6.11)

where, xp, up is the particle’s position and velocity in the computational domain.

Fp is the drag force on the particle (presented in following Sec. 6.2.4). mp is the

mass of the particle, that evolves in Eq. (6.10) only due to evaporation, and other

effects such as inter-particle collisions, splitting/coalescence of droplets [300] are

neglected [311, 60]. Φ̇p is the total heat transfer from the gas to the particle, part of

which increases the liquid particle’s sensible enthalpy (or temperature Tp in other

words) and part of it overcomes latent heat of vaporization (Lv) for phase change.

Evaporation process and model discussed in following Sec. 6.2.5.

6.2.1.3 Coupling between gas and liquid phase

In the two-way coupling between Eulerian and Lagrangian phases, the coupling from

liquid to gas is achieved through the source terms in mass, momentum, and energy

Eqs. (6.2)-(6.4) above. There can be multiple Lagrangian particles inside a cell of

a computational grid. Each of these point sources is individually accounted for by

distributing their contribution to the nearest Eulerian nodes after assigning proper

weight, as shown in Fig. 6.4.

For a particle inside a cell with Nv vertices, the projection weights for each

vertex, represented by ψp,vk , are inversely proportional to the distance dk from the



6.2. Spray Combustion LES: Models and Governing Equations 177

droplet as depicted in Fig. 6.4, and is given as:

ψp,vk =
1/dk∑k=1
Nv

1/dk
(6.12)

Figure 6.4: Projection of source terms from a Lagrangian particle inside

a cell to nearest Eulerian grid vertices [324].

For p = 1, Np particles inside a cell of volume ∆V , the species, momentum and

energy source terms in the gas-phase at each vertex is then obtained by weighted

contribution from each particle:

ṠYF = −
1

∆V

Np∑

p=1

ψp (ṁp) (6.13)

ṠM = −
1

∆V

Np∑

p=1

ψp (ṁpup + Fp) (6.14)

ṠE = −
1

∆V

Np∑

p=1

ψp

(
Φ̇p − ṁphs.F (Tp) +

1

2
ṁpu

2
p + fp · up

)
(6.15)

The source terms in above equations are obtained from macro-scopic models

detailed in following subsections: drag force on the particle Fp in Sec. 6.2.4 and ṁp

and Φ̇p from the evaporation model in Sec. 6.2.5.

6.2.2 FIM-UR Injection Model

Resolving fuel atomization explicitly in highly parallel LES is quite complex from

modeling, implementation standpoint; is computationally expensive, and is a topic

of active research and development in general. For instance, see these recent works

by: CERFACS (Carmona et al. [332, 315], Chaussonnet et al. [314, 333]), CORIA
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(Janodet et al. [334], Mukundan et al. [335], Palanti et al. [336], Ahmed et al.

[337], Anez et al. [338]), Kurose group (Wen et al. [339, 340], Pillai et al. [63]), and

Shinjo et al. [341].

In the current work, in line with Lo Schiavo et al. [60, 201], the atomization

process is not resolved explicitly but a semi-empirical injection model FIM-UR [310]

(Fuel Injection Method by Upstream Reconstruction) for pressure-swirled atomizer is

used. It is applied as a Lagrangian liquid-phase boundary condition on the atomizer

orifice surface of the injector. The working principle of the methodology is briefly

described (qualitatively) here in this subsection. Complete details can be found in

Sanjosé et al. [310].

Figure 6.5: The FIM-UR methodology schematic for pressure-swirled

atomizers. The model directly injects the Lagrangian fuel particles

with prescribed spray properties from the orifice boundary. Adapted

from[310].

Fig. 6.5 highlights a part of the pressure-swirl atomizer geometry, particularly

its discharge orifice and the liquid injection, undergoing atomization and forming

a spray. The grey shaded area is the swirling liquid around an air core inside the

atomizer and denotes the hollow-cone spray formed downstream. The spray formed

at the exit of the atomizer is supposed to be axisymmetric around the (Ox) axis. A

local cylindrical coordinate system (r, θ, x) is considered here. The discharge orifice

at x = x0 is the injection plane and the computational boundary.

The half-spray angle θS is defined as the angle between the main spray direction,

along (Ox′) axis, and the symmetry axis (Ox). The radial position along the main

spray direction at the abscissa x is written as RS(x) = R0
S + (x− x0)tan(θS) where

R0
S is the mean radial position of the cylindrical liquid film at x = x0 plane. En-

trainment of the air in the hollow-cone spray causes the liquid-volume fraction αl to

evolve along the spray direction, and it is assumed to be in the form of a Gaussian

distribution around (Ox′) axis as indicated.

In the Euler-Lagrange (EL) formalism, the FIM-UR model directly injects La-
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grangian droplets into the computational domain, considering that the liquid is

already atomized and the spray is fully developed and is in the dilute regime (Fig.

6.1). A single mean droplet diameter of the spray dp (for mono-disperse sprays)

or a statistical droplet size distribution in form probability density function (pdf)

(for polydisperse spray), with a characteristic, mean dmp and Sauter-Mean-Diameter

(SMD) dSMD
p , is prescribed in the model. This droplet size distribution, in a resul-

tant spray for a given atomizer/injector design, can be determined based on some

available specific, non-general, empirical correlations [58, 2], or is also commonly

characterized through experimental measurements at some far-downstream loca-

tion. It is then shifted and imposed at the orifice boundary in the simulations -

hence the term upstream reconstruction in the FIM-UR nomenclature. The natu-

ral evolution of the liquid phase, from the liquid breakup, formation of droplets,

inter-droplet collisions, coalescence, etc., to a fully atomized spray, all of these phys-

ical processes in the immediate downstream vicinity of the atomizer/injector are

not explicitly resolved. In other words, the size of the droplets does not change in

the simulation downstream from the injection boundary before the preheating and

vaporization process kicks in.

The FIM-UR model [310] determines and sets the velocity of Lagrangian particles

(up) injected at the orifice boundary based on the following input parameters:

1. Liquid fuel mass flow rate, ṁl

2. Atomizer (geometry) orifice radius, R0.

3. Droplet size distribution (PDF), f(dp)

4. Half-spray angle (or half-cone injection angle), θS

6.2.3 Liquid-Wall Interaction Model (Slip vs. Film Treatment)

As discussed earlier and indicated in Fig . 6.1, many injectors have this prefilming

surface on which the liquid fuel jet from the atomizer impinges and forms a thin

film. Even in the SICCA-spray injector simulated in the current work, the liquid fuel

films on the conical injector surface as shown in Fig. 7.3 in the following Chapter

7. This subsection will present the model treating interaction between Lagrangian

droplets injected by FIM-UR and the injector wall. Two approaches, SLIP and

FILM treatments were tested in the work of Lo Schiavo et al. [60]; and the latter

FILM treatment was found crucial in the triggering and predicting self-sustained

thermoacoustic oscillation in SICCA-spray burner simulations. More discussion to

follow in subsequent Chapter 7. Here, the distinctions are drawn between the two

modeling approaches.

SLIP Treatment: As indicated in Fig. 6.6(a), the normal component of the ve-

locity is set to zero as soon as the droplet reaches the wall, and owing to its inertia,
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Figure 6.6: Lagrangian droplets and wall interaction treatments: (a)

SLIP: Particles impinging on the walls slip along the wall at their initial

speed (tangential component). (b) FILM: Particles accumulate on the

wall to form a film. Film height hf and speed ~uf as per the FILM model

developed by Chaussonnet et al. [294, 314]. Figure reproduced from [60].

the droplet slips along the wall at its actual tangential speed.

FILM Treatment:

Chaussonnet et al. [294, 314] developed the FILM model in the context of

prefilming airblast edge atomization and implemented it in AVBP Euler-Lagrangian

framework - see (Ch.3, 6 in [294]) for complete details).

Physically, the film motion/dynamics is primarily driven by shear stresses ex-

erted by the external gaseous flow on the liquid film. Physical equations governing

a thin liquid-phase film on a wall were derived from the general incompressible

Navier-Stokes (NS) equation in 2D inspired from classical Saint-Venant’s [342] anal-

ysis (also described by Thual [343]). Fundamental assumptions applicable here are:

(a) incompressibility of the fluid, (b) negligible longitudinal gradients (tangential to

the wall, along x-direction) compared to normal y-direction, (c) homogeneous ex-

terior/ambient pressure Pext. (d) steady-state assumption is invoked that considers

the film flow as uniform along the x-direction with temporal derivative vanishing.

This implies that the thin film flow adapts instantaneously to external gas flow or

wall-geometry changes. Thus the set of incompressible 2D NS equations under the

above assumptions governing the liquid film is given as follows:

dv

dy
= 0

v
du

dy
= −

1

ρ

∂p

∂x
+ ν

d2u

dy2
+ g sin γ

∂p

∂y
= 0

(6.16)

Mass continuity (first row in Eq. 6.16) states that the wall-normal velocity is con-

stant over the film thickness. As non-porous walls impose that v is zero at the wall
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surface, this leads to:

v = 0 (6.17)

Third row in Eq. (6.16) implies that pressure varies only along x-direction. Finally,

the film motion is described by the longitudinal momentum equation (second row

in Eq. 6.16), which now becomes:

ν
d2u

dy2
=

1

ρ

dp

dx
− g sin γ (6.18)

A bulk velocity of the film can be eventually calculated by integrating above differ-

ential momentum equation along wall-normal y-direction over film thickness (hf ),

and applying boundary conditions u(0) = 0 and µ
∂u(hf )
∂y = τfg, where τfg is the

shear stress at film/gas interface yields following equation for film velocity u(y):

u(y) =

[(
dp

dx
− ρg sin γ

)(y
2
− h
)
+ τfg

]
y

µ
(6.19)

Neglecting the internal velocity variations in the thin film, the above equation is

averaged along the thickness hf to yield a average film velocity (ūf ):

ūf =
1

h

∫ h

0
u(y)dy = τfg ·

h

2µ
+

(
ρg sin γ −

dp

dx

)
·
h2

3µ
(6.20)

In the context of numerical implementation in AVBP, the liquid-phase and liq-

uid/gas interface is not resolved explicitly but is instead represented by discrete,

dispersed Lagrangian particles - see Fig. 6.7. Two important quantities that still

need closure or need to be modeled are: (i) τfg the shear stress and (ii) estimation

of film height, hf .

For (i), since the film is considered thin, a simple first approximation that is

used is to use wall shear stress (τw) for τfg. τw is calculated from the gas-phase LES

solver (either directly if the simulation is wall-resolved or through the law-of-the-wall

technique). A one-way coupling hypothesis is made here, wherein reverse momentum

coupling from liquid-film to gas is not considered. With this approximation, the

above physical model for averaged film velocity Eq. (6.20), in terms of τw is then

given as [294]:

ūf =
h

2µ
· τw +

h2

3µ
·

(
ρg sin γ −

dp

dx

)
(6.21)

The estimation of (ii) film height (hf ), is summarized in a representative scheme

depicted in Fig. 6.7, wherein local film height is estimated at each boundary node,

based on the in-cell liquid(particles) volume. However, many more practical imple-

mentation subtleties need to be accounted for than what is illustrated in Fig. 6.7 -

see [294] for complete details. A direct consequence of film velocity averaging along

wall-normal discussed above, and the numerical method of estimating hf is: the
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Figure 6.7: Illustration of film thickness/height (hf) estimation in AVBP.

a) Only film particles are accounted for the film liquid volume. b) Film

liquid volume calculated in a) is equally distributed to surface nodes. c)

Film volume at surface node (calculated in b)) is divided by the nodal

wall surface. d) Resulting film thickness value is attributed to the surface

node. Figure reproduced from Chaussonnet [294].

velocity of all the particles present locally in a boundary cell is then set to ūf from

Eq. (6.21), based on local film height and τw.

Also note that from Eq. (6.21), when pressure-gradient and gravity effects two

terms are negligible or ignored, the film velocity is governed by (or scales with) the

shear stress. From a systematic order-of-magnitude analysis [294], to first-order, a

characteristic film velocity-scale (Uf,0) can be defined as:

Uf,0 ∼
h0τw,0
µ0

(6.22)

In summary, the FILM treatment causes the Lagrangian particles accumulated

in a thin layer (film) on a wall to move at a locally averaged speed equal to the

film’s speed that depends on the wall shear stress and local liquid volume (or film

height, in other words).s

6.2.4 Droplet Drag Model

Considering that the liquid droplets are transported by drag force exerted by the

gas phase, this subsection will determine this drag force ~FD (= Fp) in the above

equations. The effect of heterogeneous evaporation around the droplet surface on

drag forces is neglected. The force ~FD is determined based on the relative velocity
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between gas and the particle as:

~FD =
1

2
ρgCDA ‖~ug − ~up‖ (~ug − ~up) (6.23)

where ρg is the gas density, ~ug and ~up are gas and particle velocity at the particle

position, respectively. A is the projected surface area in the direction of the relative

velocity vector. The term CD represents the drag coefficient that needs to be mod-

eled. CD is a complex function of flow parameters like particle Reynolds number

(Rep), turbulence levels, the orientation of the particle, etc., and is determined from

empirical correlation given by Schiller and Nauman [344, 300] as follows:

CD =
24

Rep

[
1 + 0.15Rep

0.687
]

Rep =
ρgdp ‖~ug − ~up‖

µg

(6.24)

where dp is the particle diameter and µg is the dynamic viscosity of the gas.

6.2.5 Droplet Evaporation Model

Abramzon and Sirignano [345, 59] (AS) droplet evaporation model is utilized in this

work. It is based on the vaporization model initially proposed by Spalding [346, 59]

for a droplet in a quiescent/stagnant medium. Abramzon and Sirignano extended

it for droplets having a relative motion with respect to the carrier gas phase. So,

this subsection will begin with a brief description of the Spalding model followed by

the AS model. Only key equations are given in the following; detailed theory and

derivation of the model is not repeated here and can be found in the cited references.

6.2.5.1 Spalding Evaporation Model

As shown in Fig. 6.8, a single-component pure fuel droplet is considered, and the gas

phase is assumed to behave as an ideal gas. A spherically symmetric gas film exists

around the liquid droplet and far-field, which is a mixture of fuel vapor and carrier

gas. Heat transfer from the gas-film Qg to the liquid particle surface causes the

heating up of droplet (increase in its sensible enthalpy) and eventually vaporization

at the gas/liquid interface. This creation of fuel vapor ṁF induces a radial flow

(Stefan’s convection [59]) in the gas film in addition to molecular (Fick’s) diffusion.

Since droplet absorbs heat and emanates fuel vapor, the fuel vapor mass fraction

YF decreases, and the temperature increases asymptotically from the (liquid/gas)

interface to the far-field in the gas film. Therefore from a modeling point of view,

the two physical quantities of interest that must be determined/quantified is the

rate at which fuel is vaporized ṁF that in turn depends on the rate at which heat



184 Chapter 6. Euler-Lagrange (EL) LES Modeling of Spray Flames

Qg
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Figure 6.8: Single droplet vaporization

is absorbed by the droplet Qg. Both these operations are coupled. Spalding derived

analytical expressions for them based on mass and energy conservation between

liquid and gas phases, as described next.

Assuming there is no relative motion between liquid particle and gas phase (i.e.,

particle Reynolds number Rep = 0) and the temperature inside the particle is uni-

form. Then the temporal evolution of the particle mass ṁp, (or equivalently its

radius rp), and temperature Tp is given by mass and energy conservation on the

liquid side as:
d

dt
mp =

d

dt

(
4

3
ρlπr

3
p

)
= −ṁF (6.25)

and,

mpcp,l
dTp
dt

= QL (6.26)

where, ρl, cp,l are the liquid density and specific heat capacity. ṁF is the rate of

fuel evaporation, and QL is the part of the heat from the gas film that increases the

droplet’s temperature (sensible enthalpy). Thus,

Qg = QL + ṁFLv (6.27)

where, Lv is the latent heat of vaporization of the fuel.

Similarly, in the gas phase (or the gas film), conservation of mass, fuel-vapor

mass-fraction, and energy (enthalpy) are applied considering a spherical coordinate

system [59]. It is assumed that the gas film’s heat and mass transfer processes are in

a quasi-steady state, and the thermophysical properties are constant. The analysis

results in the following differential equation for fuel-vapor mass fraction YF (r) in

the gas film:

4πr2ρgD
dYF (r)

dr
= ṁF (YF (r)− 1) (6.28)

where, ρg is the density in gas-film and D is the mass diffusivity. Integrating the

above equation in the gas film from liquid surface (r = rp) to far-field (r =∞) with
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YF,s and YF,∞ being the fuel-vapor mass fractions at the respective locations. The

following analytical expression for evaporation rate of fuel droplet was derived by

Spalding:

ṁF = 4πρgDrp ln (1 + BM) (6.29)

where BM is Spalding mass transfer number given as:

BM =
YF,∞ − YF,s
YF,s − 1

(6.30)

Assuming phase-change equilibrium at the liquid-gas interface, the fraction of fuel

vapour at the interface (YF,s) is calculated from the fuel vapor pressure (Pv,F ) at

the droplet temperature (Tp); and this vapor pressure is obtained from the Clausius-

Clapeyron relation [59].

The second part of Spalding’s model is to quantify the amount of total heat

absorbed Qg by the droplet from the surrounding gas film to complete the droplet

evaporation model. It controls the temperature of the droplet (Eq. 6.26), that of gas

film Tg, and eventually the vaporization rate ṁF . Conservation of energy (enthalpy)

analysis on the gas-film side yields [59]:

Qg = 4πrpλg
ln (1 + BT)

BT

(T∞ − Tp) (6.31)

where, λg is the heat conductivity in the gas film, and BT is Spalding heat transfer

number. Since the mass transfer and heat-transfer process between liquid/gas is

coupled, it can be shown that BT is related to BM as below [59]:

BT = (1 + BM)β − 1 with β =
Sh Pr

Nu ScF
(6.32)

Nu, Sh, Pr, ScF are Nusselt (ratio of convective to coductive heat transfer rate),

Sherwood (ratio of convective to diffusive mass transfer rate), Prandtl (ratio of mo-

mentum to thermal diffusivity) and Schmidt (ratio of momentum to mass diffusivity)

numbers respectively.

6.2.5.2 Abramzon and Sirignano (AS) Model

Spalding’s model above assumed no relative motion between Lagrangian droplets

and the gas carrier phase. Abramzon and Sirignano extended this model by ac-

counting for the convective effects due to which both the heat and mass transfer

processes are enhanced. However, note that the infinite liquid thermal conductivity

assumption still applies so that the temperature of the droplet on the surface and

in the interior is the same and uniform (Tp). In other words, transient temperature

evolution inside the droplet is not resolved.

The convective effect, i.e., non-zero particle Reynolds number effect, was ac-

counted for by Abramzon and Sirignano [345] (AS) in their model by employing
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the Ranz and Marshall [347] correlations that give modified Sherwood and Nusselt

numbers as follows:
Sh0 = 2 + 0.55Rep

1/2
Sc

1/3

Nu0 = 2 + 0.55Rep
1/2

Pr
1/3

(6.33)

In the AS model [345, 59] an additional correction factor was proposed to account

for the interaction between the convective boundary layer around the droplet and

the Stefan flow, where the latter tends to increase the thickness of mass-transfer

and thermal boundary layer in contrast to that around a non-evaporating particle.

Effectively, the thickening of the boundary layer augments the mass and heat transfer

process between liquid and surrounding gas. The two mass and thermal correction

factors FM and FT are given in terms of the mass and thermal Spalding numbers:

Fx = (1 + Bx)
0.7 ln (1 + Bx)

Bx

(6.34)

where, x = M or T. Furthermore, the above Sh0 and Nu0 numbers are corrected

with these factors as below:

Sh
∗ = 2 +

(Sh0 − 2)

FM
(6.35)

Nu
∗ = 2 +

(Nu0 − 2)

FT
(6.36)

Finally, the fuel evaporation rate ṁF and total heat transfer rate to the droplet

Qg can be expressed in terms of Sh∗ and Nu∗ as:

ṁF = 2πρgDrpSh
∗ ln (1 +BM ) (6.37)

Qg = 2πrpλgNu
∗ (T∞ − Tp)

ln (1 +BT )

BT
(6.38)

This completes the Abramzon-Sirignano evaporation model that is available in the

AVBP code and employed in the current work. Note that, since the rate of change

of droplet mass is converted into gaseous fuel, the source term in Eqs. (6.10),

ṁp = −ṁF . Also the source of conductive heat transfer from gas to liquid fuel in

Eq. (6.11) Φcg ≡ Qg.

6.2.6 Chemical Kinetics Modeling

Chemistry modeling is another challenging and significant aspect in LES of turbulent

reacting flows [348, 349, 350]. Physically, multiple species are consumed and created

(or both in the case of intermediate species as per the reaction pathways from

reactants to products). These reactions occur over a wide range of (chemical) time

scales compared to the (transport/turbulent) flow time scales. As a result, the

chemistry problem becomes mathematically stiff from a modeling point of view
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when individual species have to be tracked. Besides that, the chemistry is coupled

or influenced by other relevant conditions such as flame/wall interaction (heat loss),

spray/flame interaction, dilution effects, etc.

Employing the best available description, i.e., detailed chemical kinetics model,

which typically for hydrocarbon fuels can contain hundreds of species and thousands

of reactions remain prohibitive and unfeasible, and even unnecessary in some situ-

ations [13, 108]. In practice, detailed schemes are used only for canonical problems

such as: (i) 0D reactors for estimating adiabatic flame temperature and ignition de-

lays; (ii)1D laminar flame simulations for determining fundamental properties such

as flame speed, flame-stretch effects; (iii) to analyze pollutant formation reaction

pathways, their concentration profiles and (iv) most essentially to extract, develop,

optimize and validate simplified/reduced surrogate models from them [351, 352] for

LES applications.

Global chemical kinetic schemes that typically have a few species and 2-4 reac-

tion steps have successfully been applied for LES of flame stabilization and dynamics

studies for both gaseous and spray flames [353, 321, 323, 60]. However, if the ob-

jective is predicting pollutant emissions or near-limit phenomena such as ignition

or blow-out transients, or situations where finite-rate chemistry effects are impor-

tant, in that case, high-fidelity LES requires augmented chemical kinetics. This is

where the reduced surrogate mechanisms mentioned above become a valuable tool

[354, 355, 356, 357, 358, 359].

In the current work (and in [60]), fuel is considered to be made of single com-

ponent n-heptane, burning with air under atmospheric conditions. Chemistry is

described with a global two-step mechanism (2S_C7H16_DP) based on a fast ox-

idation reaction, followed by a CO ↔ CO2 equilibrium, and involving six species

(C7H16,O2,CO,H2O,CO2 and N2) [323, 61].

2C7H16 + 15O2 −→ 14CO + 16H2O (R1)

CO + 0.5O2 ←→ CO2 (R2)
(6.39)

Reaction rates for reactions R1 and R2 follow an Arrhenius law [13]:

q1 = A1f1(φ)

(
ρYC7H16

WC7H16

)0.6(ρYO2

WO2

)0.9

exp

(
−Ea,1
RT

)
(6.40)

q2 = A2f2(φ)

[(
ρYCO

WCO

)1.0(ρYO2

WO2

)0.5

−
1

K2

(
ρYCO2

WCO2

)1.0
]
exp

(
−Ea,2
RT

)
(6.41)

The pre-exponential constants Aj and the activation energies Ej are: (A1 = 1.4 ×

1011, A2 = 5.0 × 109, E1 = 2.9 × 104, E2 = 2.1 × 104). K2 is the equilibrium

constant of reaction R2 and φ is the local equivalence ratio. The correction function

f1(φ) and f2(φ) allow to recover the correct flame speed SL(φ) depending upon local
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lean/rich conditions and were caliberated in the work of D. Paulhiac [323, 61]. The

mechanism was also cross-verified in 1D-laminar, LES cases of n-heptane two-phase

flames computed by Rochette [360, 324], and later by Lo Schiavo [60].

6.2.7 Thickened Flame Turbulent Combustion Model (TFLES)

Figure 6.9: Effect of thickening a turbulent flame. Left is the reference

DNS and right is the thickened flame with F=5 showing reduced wrin-

kling [13].

Although LES resolves the majority of spatio-temporal scales of the turbulent

flow, the reaction zone of realistic turbulent flames is still very thin (or order ∼ 0.1

mm) and falls under the subgrid (SGS) scale for practically affordable LES mesh

resolutions. This thin reaction zone is where the majority of the heat release occurs

and results in strong gradients of all physical quantities across it. Therefore, it is

absolutely essential that the turbulence-flame-interaction2 be appropriately modeled

in the LES. The Dynamic Thickened Flame turbulent combustion model (D-TFLES)

[13] helps achieves this with a simple yet brilliant solution. There are several other

combustion modeling approaches developed and available in the literature - see, for

instance, [115, 13, 108, 327, 114] and references therein.

So in the D-TFLES model, the basic idea is to artificially thicken the flame by

a thickening factor F so that the flame can be reasonably resolved on the mesh, as

shown in Fig. 6.9, for example. Due to thickening, however, the interaction between

turbulence and chemistry (or the flame) is altered as thickening reduces the ability

of the vortices to wrinkle the flame front. In order to conserve the flame speed

and not underestimate the reaction rate, the diffusivity, and the reaction rate are

2Turbulence-chemistry-interaction is a fundamental concept extensively researched and ubiqui-
tous in the turbulent combustion theory and modeling literature [13, 361, 362, 114]. Character-
ized through non-dimensional numbers such as Da,Ka correlating flame (chemical) and turbulence
scales, regime diagrams have been drawn. These classify the combustion process in different regimes
where distinct physical effects dominate, such as flame wrinkling, stretching, local-quenching, etc.
Many commonly made modeling assumptions can stand invalid in some regimes, especially near
limit conditions.
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corrected by an efficiency function E . In the dynamic formulation of the thickened

flame model, F is not constant and is driven by a sensor S depending on the local

temperature and mass fractions. This sensor locates the flame zone so as to not

apply the factor F in non-reactive zones. The efficiency function accounts for the

effects of the sub-grid scale wrinkling as a function of the local sub-grid turbulence

velocity and spatial filter size. Complete details on D-TFLES can be found in [13].

In this work, the dynamic efficiency function E proposed by Charlette et al. [363, 13]

has been used.

Takeno Index: The TFLES combustion model and its later variants, including

D-TFLES, were developed for premixed flames. However, spray combustion gives

rise to a complex flame structure where both premixed and diffusion regimes coexist,

as discussed earlier. Technically, in this situation, thickening must be applied only

to the premixed flame front. Therefore the sensor S above is further conditioned

with Takeno Index [364], which helps distinguish premixed/non-premixed reaction

zones so that it selectively applies the thickening only in the premixed reactions

zones. Takeno index is defined as:

TI =
∇YF · ∇YOx
|∇YF | · |∇YOx|

(6.42)

where YF and YOx are mass fractions of fuel and oxidizer, respectively. Thickening

is only applied to regions with TI = +1, signifying a premixed reaction zone. As

for the diffusion regions, the flame driven by transport processes adapts to the

local mesh resolution. See a recent paper from Cuenot et al. [365] for a complete

description of the treatment of non-premixed flames in AVBP, in general.

6.2.7.1 Two-phase Thickened Flame Model for LES (TP-TFLES)

TP-TFLES extends the TFLES combustion model for two-phase spray flames. A

consequence of the flame thickening process is that the characteristic chemical time-

scale is increased by the factor F . Since the evaporation and combustion (reaction

and resulting heat-release) processes are coupled in spray flames, the evaporation

rate also needs to be adapted. In order to compensate for the increased chemical

time, the characteristic evaporation rate is brought down by the same factor F .

Just as the TFLES model conserves the flame speed, the TP-TFLES model analo-

gously preserves the evaporation and chemical time-scales ratio equal to the actual

(non-thickened) flame. This was only a brief qualitative description; for detailed

formulation and validation of the TP-TFLES model, see - Ch. 8 in the thesis of D.

Paulhiac [323].
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6.2.8 Numerical Scheme and Boundary Conditions

The fully compressible, explicit, second-order accurate in space and time Lax-

Wendroff (LW) [366] numerical scheme is used for all the simulations performed

in this thesis. Inlet and outlet flow boundary conditions are treated with Navier-

Stokes Characteristic Boundary Conditions (NSCBC) [367, 13], more precisely, its

newer formulations [368, 369].
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7.1 Introduction

This chapter reports the acoustically forced Euler-Lagrange (EL) LES results of a

turbulent swirling spray flame in the SICCA-spray burner described in the following

Sec. 7.2). The overall modeling framework employed is described in the previous

Ch. 6. As mentioned in the objectives in Ch. 1, Sec. 1.5, this work builds upon,

and complements the work of E. Lo Schiavo et al. [60, 201], who successfully carried

out self-sustained, thermoacoustic instability LES in the same configuration and

accurately predicted the limit-cycle observed in experiments. The author of this

manuscript performed acoustically forced LES, aiming to predict its Flame-Transfer-

Function (FTF).

Some of the key results from the work of E. Lo Schiavo et al. [60, 201] are

summarized in the following sections of this chapter. The forced LES results are
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analyzed in conjunction with these self-sustained instability results, especially using

the insight obtained regarding acoustic and liquid-phase coupling.

When it comes to thermoacoustic instability predictions by LES, one method is

the brute force approach, where the system is fully simulated to see if a so-called

self-excited regime appears. In such an approach, the burner, if unstable, indeed

resonates, exhibiting instabilities with pressure oscillations increasing in amplitude

until they reach a stable limit-cycle for given operating and acoustic boundary con-

ditions. Another commonly adopted method for investigating possible instabilities

is to separate the complex flame dynamics from the combustor acoustics [13] as

discussed in Ch. 1, Sec. 1.4.1 and 1.4.2. Reduced-ordered acoustic tools, such

as Helmholtz solvers [127], network-models [120, 370, 202, 157] are then employed

for a more comprehensive system-level stability analysis. A crucial component of

such investigations is the flame response model that describes the coupling be-

tween the unsteady heat-release and the acoustics, also known as the Flame-Transfer

or Describing Functions (FTF/FDFs), usually expressed in the frequency domain

[13, 127, 25, 12]. In that case, FTF/FDFs are determined either from analytical

expressions, experiments, or LES where acoustic excitation of the flame in a con-

trolled, stable environment allows to measure of the heat release oscillations [25, 12]

for different frequencies and perturbation amplitudes.

Numerical (LES) predictions of self-excited thermoacoustic instabilities in gaseous-

fuel combustors (from lab-scale to complex industrial configurations) are well es-

tablished, e.g., see [109, 46, 167, 11, 12], references therein, and citations in the

following.

The present work particularly addresses this FTF prediction for turbulent swirling

spray flames by employing the classical harmonic forcing at discrete, monotone fre-

quencies. A separate simulation is performed for each frequency in this technique.

Other efficient system identification approaches exist [371, 372, 178, 233, 230, 232,

12] where the flame is pulsed with broadband (white-noise) acoustic signal. The key

advantage of the latter is that a single simulation yields the flame’s impulse response

(or flame transfer function). However, the LES is typically required to be of much

longer duration than in the case of harmonic forcing.

On the other hand, the literature on the LES of combustion dynamics in liquid-

fueled combustors [64, 373, 374, 60, 63, 62, 213] has started to appear only in the

recent years. Indeed, modeling the liquid-phase physical processes such as primary,

secondary, edge atomization, evaporation, liquid-wall interaction, and multi-regime

combustion in two-phase flames is still a great challenge in general, and a topic of

active research [61]. This work is the first attempt at CERFACS to pulse a two-

phase turbulent swirling flame under the EL-LES framework. The objective is to

qualify this EL-LES method for such a system identification problem while assessing

the uncertainties and sensitivity to the two-phase spray combustion models.
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Figure 7.1: (a) Experimental setup of the SICCA-spray rig. The yellow-

shaded region denotes the LES computation domain. (b) Close-up of the

swirling liquid-fuel injector.

7.2 SICCA-spray Burner, Mesh and Numerical Setup

Figure 7.1 shows the SICCA-spray configuration that is simulated. It is a single-

injector burner setup containing a pressure-swirled liquid-fuel atomizer, originally

designed and tested in the thesis of K. Prieur [375] at EM2C laboratory in Paris.

Later this particular injector was also installed in the lab-scale annular MICCA

rig to investigate azimuthal instabilities, and transient phenomena such as ignition

(light-around) and blow-out [104, 103, 376]. Next-generation variants of this injector

have been designed and tested too - see the subsequent thesis of G. Vignat [377] for

a complete survey of these different injectors and their performance evaluation.

This section details the specific numerical setup used for the simulations, includ-

ing the required input parameters of some of the models described in the previous

Chapter 6.

• Geometry: Two different computational domains, varying in the combustion

chamber length (lc) are used to mimic the experimental thermo-acoustically

stable/unstable operating conditions: (i) lc = 165 mm is stable and thus used

for investigating spray flame structure under stable/steady conditions. It is

also acoustically forced to compute the FTF. (ii) lc = 280 mm is unstable, and
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Figure 7.2: Resolution of the unstructured tetrahedral computational

mesh. Colormap denotes the volume (m3) of the mesh elements.

employed for simulating the self-sustained limit cycle. Besides the chamber

length, all other parameters remain the same for the stable/unstable operating

conditions.

• Mesh: Figure 7.2 depicts the computational mesh of the domain. Care has

been taken to refine the injection and reaction zones, where the cell size is as

fine as ∆x = 150 µm. Downstream near the combustor exit, it is coarser and

around ∆x = 200 µm − 300 µm. The mesh size is about 20 M cells. The

mesh was originally developed, optimized, and validated by E. Lo Schiavo [60]

- initially with cold-flow simulations to match the injector pressure-drop ∆p

(across the swirl injector) from the plenum to the chamber (Exp: 3900 Pa,

LES: 4092 Pa, Error: +5%) and swirl number (Exp: 0.55, LES: 0.51, Error:

-7%). Later, it was ensured that the mesh resolution was good enough to

correctly represent the flame for the reacting flow. This can be verified from

the flame-thickening map (Fig. 7.5), where for most of the reaction zone, the

thickening factor F is less than the specified Fmax.

• Fuel/Air conditions: Mass flow rate of air, ṁair = 2.58 g/s. Fuel is liquid

n-heptane, injection mass flow rate: ṁl = 0.144 g/s. This results into an

overall equivalence ratio of 0.85.
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• Chemistry: Global two-step chemistry (2S_C7H16_DP) - see Sec. 6.2.6.

• FIM-UR Injection Model: As described in previous Ch. 6, Sec. 6.2.2, it

requires a total of four following input parameters. Two of them are fixed: ṁl,

and atomizer orifice discharge diameter D0 = 120 µm.

The other two input parameters are the empirical inputs. Firstly, the droplet

size distribution PDF f(dp). Since the atomization process is not explicitly

resolved, it is one of the most important input parameter. This statistical

characterization of the spray is achieved by prescribing a Rosin-Rammler [300]

type of PDF function with mean (dmp = 10 µm) andSauter mean diameter

(SMD)(dSMD
p = 18 µm). An estimate of these mean and SMD diameters is

obtained from experimental measurements at a cross-section plane 2.5 mm

above the chamber backplane at indicated in Fig. 7.3.

Figure 7.3: A downstream location in the combustor where the mean

and SMD statistics of the spray are estimated experimentally. Figure

also highlights the pre-filming on the conical injector wall before the fuel

film undergoes edge-atomization (or equivalently, in LES, the Lagrangian

particles are released from the edge). Adapted from [60].

The other empirical input is the half-spray angle, θ. A nominal value of θ = 45

is set as a baseline value. Due to lack of optical access inside the injector,

it becomes difficult to characterize this value correctly and thus is prone to

uncertainty. The impact of this parameter on self-sustained instability (under

unstable operating conditions) was investigated by Lo Schiavo et al. [201]. A

similar study is also carried out to study the sensitivity of computed FTF in

the current work. More discussion to follow in the upcoming sections.

Also, note that the fuel line is considered stiff since the ∆p = 9 bar is about
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three orders-of-magnitude higher than the measured thermoacoustic pressure

oscillations (p′ ≈ 1 − 2 kPa). So, the liquid fuel mass flow is presumed to be

constant and not modulated due to acoustic oscillations. Besides, variations

in the half-spray angle, if any, are neglected too.

Indeed, as such, the above considerations and assumptions of constant droplet

size distribution, liquid mass flow rate, and spray angle are disputable.

• Boundary Conditions: The inflowing air mass flow rate is prescribed with

a turbulent mean profile, while the ambient pressure is imposed at outlet

boundary condition with the Navier-Stokes Characteristic Boundary Condi-

tion (NSCBC) [367, 13] based formulations. The flame forcing, discussed in

following Sec. 7.4.2, is performed either from the inlet or from the outlet. In

both cases, the acoustic boundary conditions at the inlet (and outlet) were

taken to be almost non-reflecting [369, 378] so that all outgoing waves leave

the domain and no unwanted resonance is established [173].

All walls are no-slip and adiabatic except for combustion chamber walls. For

the vertical quartz tube wall, experimentally measured external (cold side)

temperature profiles were utilized, and based on the quartz wall thickness

(3 mm) and conductivity (λw = 2.17 Wm−1K−1), appropriate thermal resis-

tance is specified (Rw = 1.38e-03 W−1m2K). As a result, the temperature

on the inner (hot-side) wall (computational boundary) is not imposed but

is rather computed by the solver. This resulting temperature profile was in

good agreement with the measured (inner) temperature profile. A constant

temperature of 450 K was imposed for the chamber backplane.

In addition to the above parameters, the remaining simulation setup is as per the

different models described in the previous Chapter 6.

7.3 Self-sustained thermoacoustic instability LES (Sum-

mary of key results)

This section is dedicated to summarizing the key results from the work of the E. Lo

Schiavo et al. [60, 201] who performed the EL-LES of the self-sustained instability

in the SICCA-spray burner. The authors tested the liquid-wall treatments (SLIP

vs. FILM) under both stable and unstable conditions in [60] and pointed out the

importance of the FILM model under unstable (dynamic) conditions. This work is

briefly recapitulated in the following Sec. 7.3.1. In a subsequent study, the impact

of spray injection angle on the instability predictions was examined [201], results of

which are outlined in Sec. 7.3.2.
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7.3.1 Role of the liquid-wall interaction treatment in spray-acoustic-

flame coupling

7.3.1.1 Spray flame under stable condition

The author of this manuscript re-computed the SICCA-spray flame under thermoa-

coustically stable conditions before forcing the flame. Some qualitative results are

briefly presented, which are in line with previous work. A more detailed quantitative

analysis of the spray-flame structure under both SLIP/FILM treatments is available

in [60].

The outcome of the assessment of SLIP vs. FILM treatments under stable

conditions was that there is no significant influence of these models on the flame

shape/structure in general, i.e., consistent results are obtained in both cases [60].

Therefore the newer (reproduced) results reported here are obtained with only one

- the FILM treatment.

Figure 7.4: An illustration of 3D, instantaneous, fuel spray (Lagrangian

particles field) in the combustor issuing from the injector. Colored by

droplet diameter.

Figure 7.4 depicts the dispersed Lagrangian phase (spray droplets) in a 3D view,

where they are colored by droplet diameter. Qualitatively, the size of the droplets in

the combustor is apparently in the range of mean and SMD value of the prescribed

Rosin-Rammler distribution. Few larger droplets do penetrate deeper and reach the

peripheral regions. A very few droplets cross the reaction zone (where most droplets
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are consumed) and travel far downstream.

Figure 7.5: Planar, instantaneous contours of: (a) Flame shape (denoted

by the heat release rate (HRR) contour), (b) The Takeno Index, (c)

Efficieny function (E), and (d) Flame thickening factor (F). The black

contour line indicates 10% of the max HRR.

Figure 7.5(a) shows the instantaneous flame shape. Spray flames are a manifesta-

tion of a coupled interaction between dispersed liquid phase, gaseous flow/turbulence,

evaporation, and chemical processes. As expected and discussed in the previous

chapter, a heterogeneous mixture of fuel and air is expected that leads to a com-

plex, multi-regime flame structure. This fact is evident from the Takeno index in

Fig. 7.5(b). The flame anchoring region presents both premixed (+1) and diffusion

(-1) regimes. However, downstream the premixed regime begins dominating in the

center of the swirled jet due to the fuel vapor being trapped by the central recircula-

tion zone (CRZ). On the peripheral side of the flame, combustion occurs mainly in

a diffusion regime due to larger droplets reaching these areas and lower gas temper-

ature in the outer recirculation zones (ORZ) on account of heat loss across chamber

walls.

As discussed earlier in the Mesh bullet point in Sec. 7.2, Fig. 7.5(d,c) confirms

that the mesh refinement is good enough. Note that the flame thickening and the
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Figure 7.6: (a) Experiment: mean CH* chemiluminescence [103, 375],

(b) LES mean heat release rate, and (c) Mean fuel droplet diameter

distribution, under stable steady operation. Spray injection angle is θ =

45◦. White line is the iso-contour q̇ = 20MW/m3, ∼ 10% of the max heat

release, denoting the mean flame shape.

efficiency function from the turbulent combustion model (Sec. 6.2.7) are applied only

in the premixed regimes, while in the diffusion zones, the flame thickness adapts as

per the mesh resolution. The thickening factor field can be seen to be well below the

max value, indicating the mesh is able to meet the prescribed criterion of minimum

n = 5 points in the flame front without having to thicken the flame excessively. The

efficiency function is pronounced in the local premixed regions where the flame front

undergoes strong wrinkling and roll-up in the turbulent flow, as expected.

Figure 7.6(a,b) compare time-averaged and angle-averaged (azimuthal averaging

about the cylindrical axis of the chamber) with Abel transformed CH* chemilumi-

nescence. Overall a good agreement can be observed. Nevertheless, some mismatch

in the flame-root or anchoring region can be observed where the numerical heat

release is quite strong, contrary to emission in the experiments.

Similarly, adjacent Fig. 7.6(c) depicts contour plot of the mean droplet diameter

distribution in the chamber. Some droplets do cross the flame front and even reach

up to the chamber wall, but it can be argued from Fig. 7.4 that the number density

of those is relatively much low. Note that when large number of droplets cross

the flame, they burn in an isolated droplet combustion regime (see Fig. 6.3 and

discussion there about two-phase spray combustion regimes). A special type of

combustion model [323, 61] is required for such a regime, and this phenomenon is

neglected.
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7.3.1.2 Spray-Flame dynamics under unstable condition

The SLIP and FILM liquid-wall treatments did not matter or affect the flame under

stable conditions. However, its impact under dynamic, thermoacoustically unstable

conditions (lc = 280 mm) was found to be critical as to whether or not the self-

excited instability is triggered and sustained to reach a limit-cycle oscillation [60].

Only LES with the FILM model was able to predict the instability, in contrast to

the SLIP model.

Figure 7.7 shows how pressure fluctuations p′ in the chamber (measured on the

back-plane) and heat-release rate fluctuation q′ grows towards a self-sustained limit

cycle in the case of FILM liquid-wall treatment. While for the SLIP, the heat

release signal looks mostly incoherent, and thus pressure remains un-correlated.

Here in this figure, only the initial growth of the instability is highlighted. On

letting the simulation run for longer, the classical observations of the amplitude of

pressure oscillation growing, overshooting, and then stabilizing at a stable oscillating

limit-cycle amplitude can be observed in the subsequent Fig. 7.8. The limit-cycle

frequency fLES = 500 Hz, and amplitude p′LES = ±2000 Pa retrieved from the LES

are in good agreement with experimentally measured values: fEXP = 530 Hz and

p′EXP = ±1700 Pa [375].

Figure 7.7: Comparison between the FILM and SLIP cases in resonating

conditions. (a) Pressure fluctuation of the combustion chamber back-

plane as obtained for the two modeling approaches and (b) the temporal

evolution of the heat release rate fluctuations. Both quantities are given

as a function of time starting from the same initial flame, and only the

liquid-wall interaction treatment differs. Reproduced from [60].

As for the flame shape, to remove random oscillations due to turbulence and

retrieve only the coherent limit cycle oscillation, LES results are first phase-averaged

over 10 cycles (Fig. 7.9). Note that in the following, the phase Φ ∈ [0, 2π] refers to

the pressure signal oscillation for which Φ = π/2 corresponds to the positive peak

of heat release. Simulation results are finally compared to the experimental CH*
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Figure 7.8: Pressure oscillation, measured at the combustion chamber

backplane, overshooting and then stabilizing into a limit cycle. Right

zoomed image on last few cycles that is in-phase with the global heat-

release verifying the Rayleigh criterion. From [60].

Figure 7.9: Heat release rate phase averaged images in comparison

with the experimental CH* chemiluminescence [375]. LES colormap:

q̇ ∈ [0, 250] MW/m3. Figure taken from [60].

images [375] in Fig. 7.9, and a good agreement of the overall flame shape, its extent,

as well as its anchoring position is evident.

7.3.1.3 Liquid Film Dynamics

Figure 7.10 illustrates the mechanism on how and why the FILM treatment (see Sec.

6.2.3) is successful in predicting the limit-cycle. It correctly models and captures

the essential physical liquid-film and acoustic coupling responsible for the instabil-

ity. Fig. 7.10(b) displays the non-dimensional film thickness fluctuation h′/h̄ as a

function of the local spatial coordinate ξ (Fig. 7.10(a)), and obtained at different

phases of the limit-cycle period. This film height (or accumulation of liquid droplets

in the film) is clearly fluctuating in phase with the acoustic oscillations. As a con-

sequence, the number of particles released and their velocity (which scales with the

film height, see Eq. 6.22) at the injector lip is tuned with the acoustic wave.

Figure 7.10(d) depicts how the equivalence ratio at the flame root also oscillates

almost in phase corresponding to the film height over an instability cycle, modulating

the fuel fed to the flame and thus aiding in sustaining the limit-cycle. In Fig. 7.10(b),
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Figure 7.10: Film dynamics on the conical injector pre-filming surface

over an acoustic cycle: (a) Instantaneous image of the film height hf , and

the local coordinate ξ along the inclined wall. (b) Coherent film height

modulation along ξ. (c) Summary of the liquid-film and acoustic coupling

mechanism. (d) Equivalence ratio oscillation at the flame root z = 2.5 mm

above the back-plane (radial plot along x coordinate).

at Φ = π/2 when the fuel accumulation (film height) is maximum, the equivalence

ratio is also maximum around that phase and vice-versa at Φ = 3π/2.

(Also see Figs. 20, 21 in [60] for the liquid-volume fraction (αl), and droplet

velocity magnitude (|~vp|) contour plots indicating variations in the fuel injection

pattern from the injector lip into the chamber under SLIP and FILM treatments).

7.3.2 Impact of the Injection Angle

Lo Schiavo et al. [201], in a later study, examined the sensitivity of self-excited

instability LES results to the spray injection angle - an empirical user-input in

the FIM-UR model (Sec. 7.2, 6.2.2) that is difficult to characterize and prone to

uncertainties.

To this scope, three values of the half-cone spray angle θ: θ = 35◦ (Case-A),

θ = 45◦ (Case-B) and θ = 60◦ (Case-C) are considered. The intermediate angle,

θ = 45◦, is the baseline case, and was the value also used in the previous work [60]

that was summarized in the preceding subsections.

A direct consequence of a small change in the spray angle (by ±10◦ to 15◦ from

the baseline value) is its effect on the velocity components of droplets set by the
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FIM-UR model. Fig. 7.11, plots the axial (ulz) and azimuthal (ulθ) velocity deter-

mined by the FIM-UR model for given fuel mass-flow-rate and atomizer parameters.

FIM-UR keeps the radial component ulr = 0. The strong impact on velocity com-

ponents individually and in terms of the relative ratio of their magnitudes is quite

evident. Particularly note an almost order of magnitude difference for the azimuthal

component for the range of θ values considered.

Figure 7.11: Variation in the axial and azimuthal velocity components of

the Lagrangian droplets injected by the FIM-UR model with injection

angle. Radial component is zero. (See [310] for details of how droplet

velocity is determined).

Analogous to SLIP vs. FILM, the impact of injection angle on the spray flame

under non-oscillating stable conditions is only minor. However, under unstable op-

erating conditions, the injection angle influences the stability. Compared to baseline

case-B, decreasing the angle to θ = 35◦ actually stabilizes the system, while increas-

ing it to θ = 60◦ sustains the instability with slight modification in the frequency

and amplitude of the limit-cycle.

Another important impact of change in the injection angle (θ) is that it actually

modifies the film dynamics on the conical wall considerably by moving the point of

impingement, as could be imagined from the illustration in Fig. 7.10. In fact, in

the case of the θ = 35◦, it is observed that droplets hardly interact with the wall,

and most droplets directly enter into the chamber. It breaks the synchronization

between acoustics and the liquid film, which could explain the stabilization of the

combustor (for this configuration and operating conditions). On the other hand, for

the θ = 60◦ case, the point where the fuel jet impinges on the injector wall could

be visualized moving upstream (than in Fig. 7.10(b)) as the spray angle widens.

Coherent spatio-temporal oscillation of the film is still observed as it continues to

synchronize with the acoustics. Just that, the phase of oscillating film height (and

thus the phase of release of droplets) at the edge is now different from the baseline
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case. See [201] for more details.

7.4 Forced SICCA-spray Flame LES: Results and Dis-

cussion

This section will discuss the results of forced SICCA-spray flame in an attempt to

predict its FTF. K. Prieur [375] in his thesis at EM2C, experimentally measured the

FDF of this flame and also attempted to compute it back then with AVBP using

Euler-Euler (EE) [379, 312] LES formalism. The FTF computed and reported for a

few discrete forcing frequencies, and amplitudes were not satisfactory in comparison

to experimental values, to say the least. While the phase was more or less predicted

correctly, the gain was largely underpredicted by more than 50%. This was also one

of the motivations to revisit the problem of forcing the spray flame in LES and try

to predict its FTF (here, however, using the Euler-Lagrange (EL) framework).

7.4.1 Reference Experimental FDF measurements

The only experimental reference available for validating forced Euler-Lagrange LES

of SICCA-spray flame when this work was initiated was the FDF measurements

reported in the thesis of K. Prieur [375]. Recently, new measurements of the FDF

were made as part of the works of Soundararajan et al. [94], Vignat [377], and this

data was made available from the EM2C lab1. This newer data is used for validation

and is briefly described next.

To obtain the FTF/FDF, the experimental rig in Fig. 7.1 is acoustically excited

utilizing two loudspeaker driving units mounted in the plenum [94, 377]. For FDF

measurements, the driver units are operated at six different voltage levels V0,pp (500

mV to 1300 mV in increments of 200 mV), and a linear frequency sweep is per-

formed from 300 Hz to 800 Hz, at each level. It is important to note that, for a

given voltage across the driver loudspeakers, the hot wire probe (HW1) in Fig. 7.1

measures different velocity fluctuations u′/ū levels for different forcing frequencies.

Initial FDF measurements by Prieur [375] was defined with respect to the velocity

perturbations at HW1. Therefore it actually represented the Injector+Flame de-

scribing function (FIF ), i.e., it inherently included the dynamic acoustic response

of the swirl injector. However, in these new measurements [94], the response of the

flame (FF ) was isolated from the swirl injector response (FI). It was achieved with

the help of the burner transfer function (FI) characterized under cold flow condi-

tions by correlating the velocity fluctuations measured at a location (HW2) near the

flame root just above the injector lip with velocity fluctuations registered at HW1

1Courtesy Preethi R. Soundararajan (also ANNULIGhT ESR), G. Vignat, D. Durox, A. Renaud
and S. Candel for useful discussions and sharing SICCA-spray experimental data.
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upstream in the plenum. Subsequently, the injector+flame describing function is

rescaled (or corrected) to obtain the flame only describing function as below. See

[94] for more details on this.

FF = FIF /FI (7.1)

Figure 7.12: The experimental gain and phase plots of the FDF (FF )

defined with respect to the velocity fluctuations at HW2 near the flame

root (Fig. 7.1) for different loudspeaker driving unit voltages. Note that

the phase is unwrapped, and the Fourier convention used is not the same

as in STORM. Data generated as a part of the works [94, 377].

Figure 7.12 shows the extracted gain and phase of the scaled describing function

(FF ) as a function of the excitation frequency and voltages. Note that the HW2

hot-wire is the reference location for FF , and it is 2.5 mm above the backplane and

3 mm away from the central axis (Fig. 7.1).

This exercise of characterizing (FF ) is also supported by the conclusions of Truf-

fin and Poinsot [371] who recommended using a reference location close to the flame

in such system response identification (irrespective of the approach viz., experiments

or LES).

7.4.2 Inlet Forcing vs. Outlet Forcing

Both inlet and outlet forcing were explored to calculate the flame response with LES,

and the equivalence of these two approaches is touched upon here in this subsection.

The flame is acoustically forced by pulsing either the velocity at the inlet boundary

or the outlet pressure at a specific frequency. Its amplitude is adjusted to reach the

desired velocity fluctuation level at the FTF reference location (HW2 for FF in the

current context).

In LES, FTF (FF ) is determined with reference to velocity signal at HW2 loca-

tion, in the presence of flame (hot conditions). In other words, the HW2 location

Abhijeet Badhe
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Method ,

(Forcing)

FF ,

Gain [-]

FF ,

Delay [ms]

FF ,

Phase [rad]

Ref. HW2

u′rms/ū

Ref. HW1

u′rms/ū

LES, (inlet) 0.98 0.64 0.68π 0.13 0.54

LES, (outlet) 1.03 0.69 0.70π 0.13 -

EXP, (inlet) 1.27 0.90 0.96π 0.13 0.40

Table 7.1: FTF (FF ) obtained by forcing the flame in LES from the inlet

and the outlet at 530 Hz, along with available experimental data for

forcing corresponding to (530 Hz , 500 mV).

velocity signal in LES with flame (in hot conditions) is assumed to be equivalent to

the HW2 signal in experiments under cold conditions that helps extract flame only

transfer function FF .

For the analysis, low-amplitude forcing (corresponding to the 500 mV case) at

530 Hz frequency is considered at first. This frequency coincides with the frequency

of the self-sustained limit-cycle observed in the unstable configuration (lc = 280 mm)

both in experiments and LES, as discussed in the previous Sec. 7.3.

In experiments [94] forcing is done only from the inlet side. When the flame

in stable configuration (lc = 165 mm) was forced at this operating point (500 mV,

530 Hz), FIF transfer function is obtained (w.r.t HW1). The velocity fluctuation

levels recorded in the plenum by HW1 u′1,rms/ū1 = 0.40. Now for FI , the burner

is also forced under cold condition and velocity fluctuations recorded at HW2 is of

amplitude u′2,rms/ū2 = 0.13, while maintaining u′1,rms/ū1 = 0.40 at HW1. The last

row of Table. 7.1 gives the scaled flame response finally obtained as per Eq. (7.1).

Mentioned are the gain, phase (and delay) of FF flame transfer function, and the

recorded u′rms/ū amplitudes at HW1 and HW2 (cold) reference locations.

The first row in Table. 7.1 lists the FTF (FF ) obtained from LES by pulsing the

system from inlet boundary. It must be noted that the velocity pulsation amplitude

at the inlet boundary is tuned so as to reach the velocity fluctuation level at the flame

root (HW2 location) equal to that in experiments, i.e., u′2,rms/ū2 = 0.13. Under this

condition, and after ensuring statistical convergence is reached, velocity amplitude

recorded in plenum at HW1 is u′1,rms/ū1 = 0.54, much higher than experimental

value of 0.40 as mentioned in Tab. 7.1. In fact, the experience has been such that

the velocity amplitude at the inlet had to be raised to higher and higher values to

reach desired velocity amplitude at HW2. This indicates a probable non-perfect

representation by the computational model, particularly the acoustics resolution in

plenum and swirler/injector domains. Two points in this regard: (i) The impedance

at the inlet boundary is indeed imprecise, considering the fact that the upstream part
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of the rig is not modeled. The acoustic environment inside the plenum in LES might

not be fully identical to that in the experiment. (ii) This result also suggests that

the discretization level chosen for the swirler vanes could be probably insufficient to

correctly capture the transmission/reflection of acoustic waves through the swirled

injector.

It should, however, be stressed that the above inaccuracies did not influence the

prediction of self-sustained limit-cycle in the work of Lo Schiavo et al. [60, 201, 62];

most likely because it is a decoupled chamber thermoacoustic mode where the flame

couples with the first (quarter-wave) chamber acoustic eigenmode and is weakly

influenced by the plenum acoustics.

The second row in Tab. 7.1 gives the FTF computed via outlet forcing, and the

result is fairly consistent with that from inlet excitation. This outcome is in line

with the results of Gaudron et. al. [380], who experimentally investigated inlet and

outlet forcing for a turbulent swirling gaseous flame. They concluded that the two

approaches are equivalent as long the FTF reference location is close to the flame,

which is indeed true in the current case.

Signal processing for computing the FTF:

As discussed earlier in Ch. 1, Sec. 1.4.2, FTF is defined as:

F (ω) =
Q̇′ (ω) / ¯̇Q

u′/ū
= G (ω) e−jϕ(ω) (7.2)

The FTF above is the ratio of global (volume integrated) heat release and velocity

fluctuation at some reference location, in the frequency domain. Therefore, for both

inlet/outlet forced cases, the FTF is computed by transforming the temporal signals

into frequency-space and taking the ratio of Fourier coefficients of heat release and

velocity signals for the single target frequency - here 530 Hz. In other words, the

FTF computation reduces to the analysis of time discrete signals recovered from

the LES. Due to computational cost, the LES signals typically have very short

durations. Therefore, care has to be taken to ensure the quality of the signals and

their processing:

1. Foremost, by verifying that the initial transients are removed from the signals

used to compute FTF and confirming that statistical convergence is reached.

Besides, the signal length should be such that it contains enough number of

cycles of the target frequency. The longer the signal, the better the quality of

the Fast Fourier Transform (FFT) and subsequent spectral analysis.

2. Instead of using velocity signal at just one probe point in the computational do-

main, multiple acoustically equivalent probes are defined and ensemble-averaged

to get the reference velocity signal. This ensures that the impact of noise or
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turbulent non-coherent fluctuations on acoustic signal and the FTF computa-

tion is minimized. It yields an FTF that is more robust and reliable.

The above fundamental signal processing considerations and more are taken into

account in this study to ensure signal quality, with the help of a dedicated spectral

analysis tool2 developed by the COOP team at CERFACS.

This work considers 8 acoustically equivalent reference probes placed circumfer-

entially (at HW2 location) near the flame root. The following shows the signals

used for computing the FTF for one case (530 Hz, outlet forcing).

Figure 7.13 shows the temporal signal of global heat release (Q′/Q̄) oscillation

and the raw fluctuating velocity signal from probe1 out of 8 equivalent probes men-

tioned above. The velocity signal above the injector lip (or at the flame root) is

noisy owing to high-frequency non-coherent turbulent fluctuations. For the sake of

visualization, overlaid on it is the plot of the same signal after low-pass filtering

around the target frequency of 530 Hz highlighting the coherent acoustic oscillation.

Figure 7.13: Outlet forcing at 530 Hz case from Table 7.1. (a) Global heat

release signal from the LES and, (b) Raw and low-pass-filtered velocity

fluctuation signal from probe-1 for example.

Figure 7.14(a) shows the FFT of the heat release and velocity signals - the

latter being an ensembled-averaged signal over 8 equivalent reference probes. A

clear monotone peak at 530 Hz forcing frequency of normalized Fourier coefficients

magnitude (amplitude) can be observed. The adjacent Fig. 7.14(b) plots the Fourier

coefficients of individual fluctuating velocity signals from 8 reference probes (the

colored dots) along with that of global heat release signal (black square) on a complex

plane. The purple circle and the green line indicate the amplitude and phase of

the Fourier coefficient of the velocity signal averaged over all the probes. Since

all the individual probes fall together near their average value, it highlights their

2SATIS: A tool for Spectral Analysis of Time Signals (https://cerfacs.fr/coop/satis)

https://cerfacs.fr/coop/satis
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Figure 7.14: (a) Fast Fourier Transform (FFT) of the signals in Fig. 7.13

(velocity is ensemble-averaged over 8 equivalent reference probes before

FFT). (b) Fourier coefficients (at 530 Hz) of the heat release and velocity

signals from individual probes on a complex plane.

invariability (or their equivalence). This diagnostic can help identify and remove

"bad" probes (whatsoever the reason) and helps improve the confidence in reference

signals and eventually the computed FTF.

Finally, in closing this subsection, the computed FTF after exciting the flame

at 530 Hz (from inlet and outlet) is compared with the reference experimental FTF

given in Tab. 7.1. While the numerical FTF from inlet/outlet forcing is more or less

consistent, verifying the equivalence between the two approaches when the reference

location is close to the flame [371, 380], the FTF gain and phase (or delay) both are

underpredicted by about 20-30 %. The following subsection will try to investigate

this discrepancy by analyzing the sensitivity of the FTF to spray injection angle

input parameter.

7.4.3 Impact of the Injection angle on FTF

Analyzing the sensitivity of FTF to the injection angle is motivated by previous

work of Lo Schiavo et al. [201] where the impact of the spray injection angle on the

self-sustained LES limit cycle predictions was investigated (briefly discussed in Sec.

7.3.2).

As mentioned earlier, this empirical input of the FIM-UR model [310] is not

easy to characterize and prone to many uncertainties. Correlations exist in the lit-

erature [58], and they could be used to prescribe this angle in FIM-UR; however,

such correlations are not universal. In reality, the fuel spray angle and subsequent
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atomization process strongly depend on (or are sensitive to) many operating condi-

tions. For example, fuel line pressure drop, physical properties of the fuel [381, 382]

and, as recently observed in the SICCA-spray experiments at EM2C lab [377, 213],

also to the interaction of the liquid spray with the surrounding strong swirling flow

causing the explosive breakup of the fuel [377, 213, 383, 384]. Besides, it is also

expected that the spray angle and atomization respond dynamically to acoustic os-

cillations based on these recent works [63, 65, 385]. The spray angle and atomization

hence remain quite susceptible to variations. Therefore, it would be worthwhile to

investigate the influence of this parameter in the current numerical framework.

In a relevant study by Cunha Caldeira Mesquita et al. [386, 387] at EM2C,

the authors demonstrated how the injection angle parameter influenced the spatial

distribution of droplet size statistics (pdf) in the combustor, and the liquid velocity

field in the configuration simulated. The study highlighted how the angle parameter

had to be calibrated for correct reproduction of the numerical spray consistent with

experimental measurements.

Spray injection angles in the range: θ = 35◦, to 60◦ are considered, where the

θ = 45◦ is the baseline case discussed in previous Sec. 7.4.2. For this analysis, flame

transfer functions are computed by adopting outlet-forcing at 530 Hz.

Figure 7.15 plots the variation of computed global FTF gain and delay as a

function of θ. In reference to the baseline case of 45◦, reducing or increasing the

spray angle yields a peculiar opposing trend of the gain and phase. At θ = 35◦,

the FTF gain is reasonably close to the experimental value, while the agreement

between the time-delay (or phase) is the worst. For θ = 60◦, a contrary situation

appears. Although time-delay matches well, the discrepancy in the gain is maxed

for the range of θ values considered.

To further analyze these results, the LES data are post-processed using three-

dimensional Dynamic Mode Decomposition (DMD) [388] to reconstruct the dynam-

ics of the system at the forcing frequency and get a detailed view into the coherent

oscillation patterns of the flame heat release. The DMD is performed using about

280 3D solution snapshots, covering about ≈ 30 acoustic cycles.

For discerning the variations in the local flame response due to different injection

angles, a local FTF is constructed as:

FTFlocal(ω, ~x) =
q̂(ω, ~x)/q̄(~x)

û(ω, xref )/ū(xref )
(7.3)

where (̂ ) and (̄ ) denote the oscillating, frequency-domain DMD variables (mode

shape) and its mean respectively. Local FTF in Eq. 7.3 is correlating the oscillating

heat-release mode q̂(ω, ~x) mode (at 530 Hz forcing frequency) to local fluctuating

velocity û(ω, xref ) at HW2 reference location.

Figure 7.16 shows the field of magnitude and phase of the local FTF defined

above. Considerable differences in the oscillating HR patterns can be observed due

Abhijeet Badhe
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Figure 7.15: Opposing trend of the global FTF Gain and Delay (or phase)

with injection angle in reference to experimental values.

to the variations in the prescribed injection angle. Thanks to this local FTF view, a

possible link between the global FTF trend (Fig. 7.15) and the fuel droplet dynamics

is qualitatively discussed in the following. The arguments presented are supported

by Fig. 7.17 which depict instantaneous fuel liquid volume fraction (αl) contours at

different phases of pressure oscillation (at injector outlet or chamber backplane) for

two extreme injection angles.

In general, the Lagrangian droplets impinging on the conical injector wall lose

their initial momentum due to the film treatment and also couple with the acoustic

oscillations as demonstrated by Lo Schiavo et al. [60, 201] and discussed in previous

Sec. (7.3.1, 7.3.2). Droplets are then released at a slower speed and in modulated

manner into the chamber as per the synchronization between the film and acoustic

waves. It was discussed how injection angle modifies the impingement point on the

conical wall and, in turn, alters the length of the film and its properties (height

and speed). This change in film dynamics directly influences the speed and the

phase at which the droplets are released from the injector lip and, consequently, the

fuel supplied to the flame root. Similar behavior is expected in the current forced

conditions as well.

θ = 35◦ case: In this case, from Figure 7.17 one can observe that the liquid

fuel droplets hardly interact with the wall and are injected almost directly into

the chamber, penetrating deeper due to their high speed. As a result, the liquid
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Figure 7.16: Local FTF gain and phase-delay (Eq. 7.3) and its variation

with spray injection angle. Gain is normalized by its max value. Black

contour line is the 60% of max value thus enclosing region of most intense

heat release fluctuations.

Figure 7.17: Liquid volume fraction αl at three different phases of pres-

sure oscillation for injection angles: θ = 35◦ and θ = 60◦.
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fuel post evaporation and mixing burn largely in the downstream flame tip region:

evident from the intense heat release rate (HRR) fluctuation in that region in Fig.

7.16. Furthermore, the fuel burns rapidly in this region, as indicated by the high-

intensity heat-release perturbations being almost in-phase (Fig. 7.16). Though this

phase value is smaller than the expected global phase delay (Fig. 7.15), it still

results in an overall constructive phase interference of the local flame response, thus

explaining the high global FTF gain than other injection angles.

θ = 60◦ case: For this other extreme case all the fuel droplets (true for θ = 45◦

also) hit the injector wall, and form a film before they are released into the chamber

(see Fig. 7.17). The HRR fluctuations are overall moderate in strength and radially

more spread out than θ = 35◦. Note that the small region of intense perturbations

highlighted in Fig. 7.16, even though closer to the injector, the global FTF time-

delay that is yielded in this case is longer than for θ = 35◦ and in better agreement

with experimental value as noted in Fig. 7.15. The global FTF time-delay computed

in this case is 8.86 ms, which corresponds to a global phase ϕ = 0.94π rad = 170◦

(ϕ = 2πfτ , for f = 530 Hz). It is confirmed from the phase plot in Fig. 7.16 that

the high-intensity region enclosed by the black contour and a significant downstream

part of the flame is indeed oscillating at this phase value, which matches with

measured phase value (0.96π rad for a time-delay of 0.90 ms.) As for the global

gain, in this case, it is the outer branch of the flame and the flame root region,

which are in phase opposition (green color in the phase plot in Fig. 7.16) that

brings down the predicted global gain to a low value.

θ = 45◦ case: From θ = 35◦ to θ = 45◦, the slow, modulated release of droplets

from the injector lip, explains the enhanced intensity of HRR oscillation in the flame

root and increase in global time-delay. In general, for the local flame responses,

intermediate observations can be made in this case compared to previously discussed

(θ = 35◦ and θ = 60◦) cases. Overall, different parts of the high-intensity region

oscillate in distinct phases.

In closing, the above local FTF analysis substantiates the peculiar opposing

trend (Fig. 7.15) of the global FTF determined from the standard signal processing

described earlier. Even if it may not thoroughly and clearly explain the observations,

the analysis does provide some insight into the behavior of the flame response and

its sensitivity to injection angle.

7.4.4 FTF at other frequencies

All the FTF results discussed so far were obtained by forcing the flame at the

frequency of 530 Hz. A couple of other frequencies were checked as well: 360 Hz

and 644 Hz. Similar results are obtained at these frequencies too. Inlet/outlet

forcing yields approximately the same FTF; however, a discrepancy of about 20-30%



214 Chapter 7. Combustion Dynamics in SICCA-spray Burner

(underprediction of both global gain and time-delay) against experimental values

prevails. An analogous study of the sensitivity to injection angle was not performed

at these frequencies.

7.5 Conclusions and Perspectives

Previous numerical work of Lo Schiavo et al. [60, 201] at CERFACS on SICCA-spray

burner revealed that the coupling and synchronization of the liquid film forming on

the conical injector wall with acoustic waves were at the core of triggering and sus-

taining self-excited thermoacoustic limit cycle. It was successfully predicted in the

LES with a good agreement of frequency and amplitude with experiments, thanks

to the FILM model [294] for Lagrangian droplets and boundary wall interaction.

This work simulates the acoustic forcing of the turbulent swirling SICCA-spray

flame using the Euler-Lagrange (EL) LES modeling framework. The objective was

to compute the Flame-Transfer-Function (FTF) and assess the suitability of the EL

approach and other two-phase combustion models for such a system identification

problem.

The FIM-UR liquid fuel injection model [310] employed has a mean spray in-

jection angle as an input parameter. It was discussed that this angle is prone to

several physical uncertainties. The sensitivity of FTF predictions to this parameter

was evaluated. The computed global FTF showed this peculiar opposing trend of

gain and time delay. A DMD-based analysis of local flame response provided some

insight into the observed behavior.

Despite the encouraging results obtained in self-sustained limit-cycle instability

simulations, the forced mode of operation is certainly exhibiting difficulties. FTF

obtained for (baseline) 45◦ injection angle deviates from experimental value by about

20-30%.

Another related point, although not discussed in this chapter but is probably

worth a mention, is that the FTF predictions are even more sensitive to the pre-

scribed droplet size distribution PDF in the FIM-UR model than injection angle. So

much so that it even brings noticeable changes in mean flame under thermoacousti-

cally stable conditions. Similar sensitivity was observed by E. Lo Schiavo [60, 201],

where an unstable simulation was stabilized by somewhat changing the injection

droplet size distribution.

The flame response numerically retrieved remains sensitive in general to the

two-phase combustion modeling. Further investigations and model developments

are required to improve prediction fidelity. In reality, the liquid-phase processes

such as injection, atomization, and evaporation all dynamically respond to pressure

and velocity variations due to dynamic conditions prevailing in the combustor (self-

excited or forced). Therefore, one potential direction for future work could be to
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develop a dynamic injection model that would suitably vary the injection angle or

the droplet size PDF, or both. Another potential option could be, though at a

significantly higher cost, is to use brute force and explicitly resolve the atomization

process.





Chapter 8

Thesis Conclusions and

Perspectives

There are broadly two parts to the Ph.D. work accomplished by the author of this

manuscript. The first major part dealt with development of STORM (State-Space

Reduced-Order-Modeling) - a low-order thermoacoustic network modeling tool un-

der development at CERFACS. The author has been a co-developer of the tool along

with the preceding Ph.D. student Dr. C. Laurent [197, 157, 198]. While the second

minor part reports results from the first assessment at CERFACS of acoustically

forcing Euler-Lagrange (EL) LES of turbulent swirling spray flame.

PART-1: Development of STORM

STORM is a low-order acoustic-network modeling (LOM) tool developed for

studying thermoacoustic combustion instabilities in complex, realistic configura-

tions. It is based on the state-space (SS) framework and generalized modal expan-

sions. This work falls under the work-package WP2: Passive control methods and

tools of the EU ITN ANNULIGhT project, with the relevant objective of improving

existing network models used in the industry.

One of the main goals behind initiating the development of STORM was to make

faster and computationally cheaper thermoacoustic stability analysis of industrially

relevant configurations possible. Most low-order network models available in the

literature involve drastic simplifications to geometry and are limited to 1D wave-

based longitudinal networks and or idealized annulus-like geometries. Real engine

combustors, on the contrary, include intricate geometrical complexities, multiple

cavities, and components such as the chamber, casing, plenum, swirlers, dilution

holes, multiperforated liners, upstream compressor diffuser, and downstream turbine

stages, all of them interacting acoustically and thus playing a role in the stability of

the engine.

The classical modal expansion (Galerkin projection) method, although known for

a while and having the advantage of being capable of handling arbitrarily complex

geometries, has not really been a go-to choice for building full-fledged, extensive

acoustic networks. A core impediment has been the reliance on an orthogonal rigid-

wall (OB) basis. This shortcoming was resolved with the overcomplete (OC) frame
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modal expansion technique proposed in the thesis of C. Laurent [157, 197].

OC-frame modal expansion method, a generalization of the classical approach,

significantly improves the convergence of the modal expansion. It yields the correct

representation of acoustic variables at the interfaces of subdomains in the network,

eliminating issues of Gibbs oscillations/fringes arising while using rigid-wall OB

bases for the subdomains.

The capability of the tool was illustrated through several examples. The most

significant of them was the successful application of STORM to carry out thermoa-

coustic stability analysis of the SAFRAN engine combustor [199]. The substantial

gain in CPU-time requirements (approximately by a factor of 1000) in comparison

to Helmholtz solver AVSP in solving the non-linear eigenvalue problem (NLEVP)

for thermoacoustic modes is worth noting. The network approach’s modularity, flex-

ibility, and low computational cost suggest the feasibility of conducting extensive

parametric studies directly on industry-relevant configurations.

The surface spectral connections methodology developed [198], allows seamless

interconnections between multi-dimensional 3D subdomains over topologically elab-

orate, curved interfaces (thanks to OC-frame method). In addition, it also presents

the opportunity to impose Rayleigh conductivity (or impedance) to model the in-

terface between subdomains as a multi-perforated liner wall (or as a global system

impedance boundary).

The flame transfer functions (FTFs), boundary acoustic impedances (Z), the

conductivity (K) of acoustic liners, and external damping devices such as Helmholtz

resonators all play a critical role in determining the thermoacoustic stability of en-

gines. All of these physical quantities are typically defined in the frequency domain.

However, all the network objects in STORM are represented in the time-domain as

state-space (SS) sub-models.

It was discussed how the rational approximation techniques (Padé approximation

or Pole-Residue (Multi-pole) expansion) are indispensable ways for generating time-

domain state-space models from frequency response data. Few important physical

constraints of reality, BIBO stability, causality, and passivity (if relevant) must be

respected when extracting such data-driven low-order dynamical (SS) models (for

them to be physically consistent). These constraints are usually enforced in well-

established fitting algorithms reviewed from the literature. The algorithms work

perfectly fine; however, occasionally, the process may fail, as shown in the example

in Chapter 4. It turns out that if data violates one of the above physical constraints,

the fitting process fails. Most commonly, it is the causality in frequency response

data that is violated. The concept of causality is well interpreted in the time domain.

However, causality in the frequency domain implies that the real and imaginary parts

of the frequency response function/data are not independent but related through the

Kramers-Krönig (KK) dispersion relations. A robust, practical method for detecting
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any causality violation in data was identified from the literature and described. Its

implementation in STORM is a work-in-progress.

Modal expansion technique in STORM, just like FEM Helmholtz solvers, inher-

ently involves zero-Mach number mean flow assumption. DECBC (Delayed Entropy

Coupled Boundary Condition), a special network impedance element and its state-

space model, was developed within the STORM framework that indirectly models

the mean-flow effects, the convected entropy-waves and helps predict the mixed

entropy-acoustic instability. DECBC was validated for an analytical 1D case and

will be extended to 3D using the surface-spectral-connections methodology in the

near future.

For future work, to improve the tool’s overall robustness and accuracy, the au-

thor believes that it will be worthwhile to investigate and further develop numerical

techniques for mitigating problems arising due to system ill-conditioning and the

spurious components (because of overcomplete nature of frames). Besides that,

one direction that could be undertaken is developing methods and capabilities for

state-space representation of Flame Describing Functions (FDFs) and other types

of non-linear flame response models. This will facilitate non-linear stability analy-

sis, limit-cycle amplitude predictions, and time-domain simulations with STORM.

There is also a potential scope to develop STORM into a comprehensive tool for

thermoacoustic analysis of combustors. For instance, by including adjoint methods

[389] and exploiting the tool for systematic sensitivity analysis and optimization

problems, and Uncertainty Quantification (UQ) [390] studies.

PART-2: Euler-Lagrange (EL) LES of SICCA-spray Flame

Key results from the recent work of a colleague (also an ANNULIGhT ESR) E.

Lo Schiavo et al. [60, 201] were reviewed. It demonstrated the importance of the

FILM liquid-wall interaction model [294] in predicting self-excited thermoacoustic

instability in SICCA-spray burner with Euler-Lagrange (EL) LES. The coupling and

synchronization of the liquid-film forming on the conical injector wall with acoustic

oscillations was fundamental in triggering and sustaining the limit-cycle instability.

Complementing this work, the author of this manuscript performed forced tur-

bulent swirling spray flame simulations. The objective was to compute the Flame-

Transfer-Function (FTF) and assess the suitability of the same EL-LES two-phase

combustion modeling framework for such a system identification problem. The

sensitivity of the results to the FIM-UR model’s injection angle empirical input pa-

rameter was closely analyzed, revealing this peculiar opposing trend of the global

FTF gain and phase( or time delay).

One of the primary outcomes of the study was that the turbulent swirling

SICCA-spray flame is, as such robust to the EL-LES, two-phase combustion mod-

eling parameters under stable operating conditions. However, they exhibit con-
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siderable sensitivity, in general, under dynamic (self-excited instability or acoustic

forcing). Despite the encouraging results obtained in self-sustained limit-cycle insta-

bility simulations, the forced mode of operation is certainly exhibiting difficulties.

FTF obtained for the (baseline) 45-degree injection angle deviates from the experi-

mental value by about 20-25%.

Further investigations and model developments are required to improve predic-

tion fidelity. In reality, the liquid-phase processes such as injection, atomization,

and evaporation all dynamically respond to pressure and velocity variations due to

dynamic conditions prevailing in the combustor (self-excited or forced). Therefore,

one potential direction for future work could be to develop a dynamic injection

model that would suitably vary the injection angle or the droplet size PDF, or both.

Another potential option could be, though at a significantly higher cost, is to use

brute force and explicitly resolve the atomization process.

—————————————————————————————————–
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