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ABSTRACT

The increase of supercomputer capacities is currently opening the road of complex geometry to Large
Eddy Simulations. This modeling approach allows to take into account directly the largest scales of the
flows and gives information not accessible so far with the usual Reynolds-Averaged-Navier-Stokes mod-
eling based on the temporal averaging. Although accurate models have been developed in an academic
framework with good results, their extension to complex geometries in particular to Internal Combustion
(IC) engines remains an open question. This is notably the case for the Dynamic Smagorinsky model since
the complexity of the flows involved in such configurations (combustion, spray atomization, multiphase
flows, wall interaction...) prevents the use of averaging over homogeneous directions, leading to the ne-
cessity to clip negative values of the subgrid-scale (SGS) viscosity and to an overestimation of the global
dissipation. Moreover, the lack of experimental data where complex effects such as unsteadiness, vortex
convection and vortex wall-interaction are present, restricts the assessment of SGS viscosity models to
academic test cases such as Homogeneous Isotropic Turbulence and Turbulent Channel. The objectives
of this thesis were then three fold: to construct an experimental database relevant to the aforementioned
phenomena usually encountered in IC engines flows, to assess the performances of existing SGS models
and to develop a new SGS model that better reproduces those effects without ad hoc procedure.
The database corresponds to an unsteady hot impinging jet in turbulent cross flow with a strong inter-
action between the induced vortex ring and the impingement surface. Different optical diagnostics such
as PIV (particle Image Velocimetry for velocity measurements), LIF (Laser Induced Fluorescence for
gas temperature measurements) and LIPT (Laser Induced Phosphorescence Thermography for surface
temperature measurements) were used for generating a complete database. Concerning, the SGS model
referred to as the ”SIGMA” model (σ-model), it was designed to automatically vanish in different canon-
ical laminar flows (pure shear, pure rotation, isotropic expansion and contraction, stagnation points ...)
for which no SGS activity is expected. LES simulations of the experimental set-up lead to an accurate
estimation of the propagation velocity of the vortex along the wall and thus heat transfer at the solid
boundary. Finally, a discussion about a procedure for the dynamical evaluation of the model constant
is presented which is another step for completely extending the model to more complex cases and for
reducing the gap between academic and industrial-like LES simulations.
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INTRODUCTION

Context of the thesis

The environmental concern is imposing severe constraints to the transport industry. In terms of local
pollutant emission this concern has led to the definition of more and more stringent environmental norms
for the regulation of carbon monoxide, nitrogen oxide, particles matter and unburned hydrocarbons: for
instance from 1992 (Euro I) to 2009 (Euro V), the permitted CO level has decreased by 83% for diesel
engines (passenger cars). Moreover, the future restrictions (Euro VI in 2014) should reduce the NOx levels
by up to 55%. More recently, the global warming concern has led to more constraints on the green house
gases emission of vehicles so that it is becoming the major concern taken into account in the development
of new technologies.

In order to respond to these challenges, several paths are actually considered, the main being:

1. Using electric or hybrid vehicles: full electric cars provide the advantage of reducing to negligible
levels the local pollutants and green house gases emissions, but the question of life cycle emission
is still raised when considering the energy generation; hybrid vehicles take advantage of improved
energy management since they allow for instance energy recovery during braking or engine stop at
idle, or even a more efficient use of the IC engine.

2. Alternative fuel such as biofuels have gained a growing scientific attention thanks to their good field
to wheel balance. Also they raise interest in the context of fuel price increase and risk of shortage
of conventional fuels. However they also raise questions regarding the definition/evaluation of their
total pollutant emission and also world food, deforestation, water consumption ...etc

3. The improvement of combustion efficiency remains a key lever in the race for reducing green gas
emission levels. Indeed it has a positive effect on all sides and although engine technologies have
been continuously improved in the last decades, the progress of technology enables more gain to be
expected in the future. Current research in this field focuses on clean combustion modes and high
efficient technologies such as downsizing, combined with systemic optimization of the engine and
the after treatment system (particle filters and catalytic converters).

In all cases, the optimization of combustion efficiency appears to be a key lever since combustion remains
one of the most interesting energy converter for the transport application. This can only be achieved by
a thorough understanding of the phenomena that control the combustion in order to provide pertinent
guidelines for the design of efficient engine technologies. This understanding can be provided by advanced
experimental and numerical tools. These advanced tools are both required since they give complementary
information on the processes involved. Indeed, advanced experimental tools provide in-situ information
but are limited by implementation issues, while numerical tools can provide extensive information but
require to be validated against experimental data to ensure that the provided results are predictive enough
to be representative of the real processes. The context of this thesis work lies in the development of such
predictive numerical tools for efficient engine design.
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CONTENTS

Objectives of the thesis

Computational Fluid Dynamics (CFD) tools used for engine development mainly rely on three different
methods: Reynolds-Averaged-Navier-Stokes (RANS), Large Eddy Simulation (LES) and Direct Numeri-
cal Simulation (DNS). They are ranked here in terms of increasing complexity, predictive capability but
also computational cost. For this last reason, RANS have been extensively used in engine development,
even though it is limited in terms of precision and predictive capability. While DNS is still not affordable
in terms of computational costs, thanks to the increase of computers/super computers capacities, LES is
becoming an affordable tool for engine design and is rising more and more interest for its predictive capa-
bilities. Recent applications show that LES can provide very detailed and precise information on the flow
and combustion processes inside the engine. It has the advantage of providing a precise characterization
of the bigger scales of the flow that control most of the dynamics. Modeling of the behavior of the small
scales is still required but their characteristics are usually assumed to be universal and less dependent on
the geometry.

This modeling process requires a theoretical knowledge of the phenomena of interest as well as validation
against experimental data. In terms of turbulence predictions, probably one of the main parameter influ-
encing combustion in IC engines, validations of LES models are generally performed on simple academics
cases. Indeed, most of the LES turbulence models are validated on Homogeneous Isotropic Turbulence
and Turbulence Channel. This latter case is used for testing the properties of the model in wall-bounded
flows. Those cases are certainly important for the assessment of the basics properties of the models but
are not always relevant in the case of complex geometries such as the ones encountered in IC engines.

Figure 1: Artistic image of an IC engine combustion chamber. It illustrates the complexity of the flows :
sprays atomization, multi-phases flows, combustions, wall-bounded flows

The processes involved in IC engines are very complex as illustrated in Fig. 1; they involve multiphase
flows, turbulent flows, combustion processes, wall-bounded flows. Therefore, generating a database that
account for all the physical phenomena involved would be a very difficult task. In addition, the presence
of solid boundaries is a main issue for LES. Near a solid boundary, the hypothesis of the isotropy of
the small scales under which LES models are developed is no longer valid. Moreover, combustion is also
strongly quenched near solid boundary and the boundary layers existing in the combustion chamber are
not systematically well established as it is the case in the Turbulent Channel cases used for validation.
These considerations show that the use of LES for predictive engine simulations require a specific develop-
ment work in order to improve the models performance in such complex geometries. Also, the validation
of these improved models requires the design of specific experiments that are simple enough to allow
detailed validation but are also representative enough to catch the most important processes that are
occurring in the combustion chamber.
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The improvement of LES models in complex geometries and the design of specific validation experiments
for these models are the global objectives of this PhD work. When considering aerothermal effects, flows
in IC engines can be simplified to the following processes: hot vortices formations during combustion, con-
vections in a turbulent environment of those vortices enhanced by piston movements and intake/exhaust
valves flows, and finally impingement of the vortices with the combustion chamber walls. Designing a ded-
icated experiment taking into account the main feature of these processes will therefore be the objective
of the PhD work. This experiment should provide the condition for accurate and detailed experimental
measurements as well as good conditions for reliable LES simulations, in terms of mesh size for instance.
The choice of the experimental techniques for the measurement of the parameters of interest (velocity,
temperature) is also a key issue. Optical diagnostics techniques are the most appropriate since they pro-
vide accurate and non intrusive measurements of several parameters.

The objectives of this PhD work is therefore to develop a dedicated experimental set up reproducing the
complexity of the flows in IC engines and to generate a reliable database with advanced optical diagnostic
methods. This database should lead to the assessment of existing LES models and to the improvement of
new models with better performances in complex geometries. The experimental set-up is designed as the
best compromise between the requirements of fast and accurate LES simulations and detailed and accurate
measurements. This experiment should take into consideration the vortices-wall interaction in a turbulent
environment. More generally, it should mimic the vortices formation, convection and impingement inside
the combustion chamber in a turbulent environment.

Organization of the manuscript

The manuscript is organized as follows:

• In Chapter 1, the governing equations and the LES formalism is introduced.

• In Chapter 2, the experimental set-up and the optical diagnostics (Particle Image Velocimetry,
Laser Induced Fluorescence and Laser Induced Phosphorescence Thermography) used are presented.

• In Chapter 3, the academic test cases used for preliminary tests and the implementation performed
in the main solver used during this thesis are presented. The σ-model is also introduced with a
procedure for dynamically evaluating the model constant.

• In Chapter 4, LES simulations of the experimental set-up are compared with experimental results.
Sensitivity tests are performed for identifying the key parameters that can impact the quality of
the LES simulations.

• Finally, some proposals on improvement strategy of the model and the experimental set-up are
suggested.



Chapter 1

Governing Equations and Literature
survey

It must be admitted that the principal result of fifty years of turbulence research is the recognition of the
profound difficulties of the subject.

S.A. Orszag (1970)1

1Taken from the book Turbulence: An Introduction for Scientists and Engineer of P.A. Davidson. (Oxford University
Press 2004)
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1.1. GOVERNING EQUATIONS AND SIMPLIFYING ASSUMPTIONS

1.1 Governing Equations and Simplifying assumptions

In this section, the governing equations and the simplifying assumptions on which the work performed
in this thesis is based on are presented. The Einsteins’s rule of summation is used over repeated indices
except for the index k refers to the kth species. Summation for species will be explicitly represented with
the

∑
symbol.

The set of conservation equations describing the evolution of a compressible flow with chemical reactions
of thermodynamically active scalars are well known and available in different books [115, 154]. These are
the continuity equations Eq.(1.1), mass species conservation Eq.(1.2), momentum conservation Eq.(1.3),
total non-chemical energy conservation Eq.(1.4) and perfect gas equation of state Eq.(1.5) expressed as
follows:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (1.1)

∂ρYk
∂t

+
∂(ρ(ui + Vk,i)Yk

∂xi
=Wk (1.2)

where Vk,i is the diffusive velocity of species k in the ith-direction.

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= −∂p

xi
+
∂τij
∂xj

+ Si (1.3)

∂(ρet)

∂t
+
∂(ρetui)

∂xi
= − ∂qi

∂xi
+
∂(τijui)

∂xj
− ∂(pui)

∂xi
+Qrad +Q+ uiSi (1.4)

p

ρ
= rT (1.5)

where Wk is the mass production or consumption of the species k governed by the different chemical
reactions, Qrad is the radiative source term, Si is the momentum source term acting in the ith-direction
and Q is the energy source term. τij is the viscous stress tensor expressed as follows:

τij = 2µ

(
Sij −

1

3
δijSll

)
with Sij =

1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(1.6)

In what follows, some simplifying hypothesis are presented. They are actually the one considered in the
main solver AVBP [1] used during this thesis. As it is shared by a large community of researchers, most
of these hypothesis are taken from the AVBP HandBook or from similar research projects [5, 21, 104].
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1.1. GOVERNING EQUATIONS AND SIMPLIFYING ASSUMPTIONS

• Simplifying hypothesis

Throughout this thesis work, the following hypothesis are considered:

1. no external forces

2. effects of volume viscosity are null

3. no Dufour effect for the heat flux

4. radiation heat transfer is negligible

5. the gas mixture is supposed to be perfect

6. no chemical reactions

• Thermodynamical parameters:

The reference state is considered at the temperature To = 0 K and the pressure Po = 1 bar. The
sensible enthalpies hTs,k, enstropies sTk and sensible energies eTs,k are constant every 100 K and are
tabulated from 0 to 5000 K. They are respectively defined by Eq.(1.7), Eq.(1.8) and Eq.(1.9):

hTs,k(Ti) =

∫ Ti

To=0K

Cp,kdT =
hT,ms,k (Ti)− hT,ms,k (0)

Wk
, i = 1, 51 (1.7)

sTk (Ti) =
sT,mk (Ti)− sT,mk (T0)

Wk
, i = 1, 51 (1.8)

eTs,k =

∫ Ti

To=0K

Cv,kdT = hTs,k(Ti)− rkTi, i = 1, 51 (1.9)

The superscript ()T stand for the tabulated variable at temperature Ti and the superscript ()m for
the molar variable. hTs,k, sTk and the molar weight Wk are taken from the JANAF [141] tables. Heat
capacities at constant pressure Cp,k and constant volume Cv,k are considered constant between Ti
and Ti+1 = Ti + 100 K and are expressed as follows:

Cp,k =
∂hs,k
∂T

(1.10)

Cv,k =
∂es,k
∂T

(1.11)

The sensible enthalpy of species k is obtained through a linear interpolation based on the temper-
ature.

es,k(T ) = eTs,k + (T − Ti)
eTs,k(Ti+1)− eTs,k(Ti)

Ti+1 − Ti
(1.12)

The sensible energy and sensible enthalpy of the mixing are expressed as follows:

ρes =

N∑

k=1

ρkes,k = ρ

N∑

k=1

Ykes,k (1.13)

ρhs =
N∑

k=1

ρkhs,k = ρ

N∑

k=1

Ykhs,k (1.14)
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1.1. GOVERNING EQUATIONS AND SIMPLIFYING ASSUMPTIONS

• Equation of state of the mixing of perfect gases:

The state equation of the mixing of perfect gas is expressed as follows:

P = ρ
R
W
T (1.15)

where W is the molar mass of the mixing expressed following:

1

W
=

N∑

k=1

Yk
Wk

(1.16)

The constant r and the heat capacities Cp and Cv of the mixing are expressed with respect to the
mass fraction of the different species:

r =
R
W

=

N∑

k=1

Yk
Wk
R =

N∑

k=1

Ykrk (1.17)

Cp =

N∑

k=1

YkCp,k (1.18)

Cv =

N∑

k=1

YkCv,k (1.19)

R = 8.3143 J.mol−1.K−1 is the universal perfect gas constant. The polytropic exponant of the
mixing is given by γ = Cp/Cv. The constant of the mixing, the heat capacities and the polytropic
constant depend on the local composition of the mixing given by the molar fraction Yk(x, t). They
can vary in space and also evolve in time:

r = r(x, t), Cp = Cp(x, t), Cv = Cv(x, t) and γ = γ(x, t) (1.20)

The temperature is deduced from the sensible energy using Eq. (1.12) and Eq. (1.13). The sound
speed velocity of the mixing useful for defining the boundary conditions is given by the following
expression:

c2 = γrT (1.21)

• Multi-species molecular diffusion:

When external forces acting on the species are neglected, the exact expression of the diffusion
velocity is reduced to:

Vk,i = −
∑

l

Dkl
∂Xl

∂xi
︸ ︷︷ ︸
mixture effect

−
∑

l

Dkl (Xl − Yl)
1

p

∂p

∂xi
︸ ︷︷ ︸
pressure gradient effect

−
∑

l

DklXl
∂lnT

∂xi
︸ ︷︷ ︸
Soret effect

(1.22)
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1.1. GOVERNING EQUATIONS AND SIMPLIFYING ASSUMPTIONS

where Dkl are the multicomponent diffusion coefficients of the diffusion matrix and Xl the thermal
diffusion ratio of species l. Solving the transport system Eq.(1.22) is an expensive task for CFD
codes and this is why the system is often simplified in practice. First of all, the pressure gradient
effect is neglected because the pressure variations are weak in most practical combustion systems.
The Soret effect is also neglected and the simplification of Eq.(1.22) is achieved by the use of the
Hirschfelder-Curtis approximation [60] with correction velocity. As mentioned by Giovangigli [54]
this is the best possible first-order model for estimating diffusion velocities of a multicomponent
mixture. It consists in replacing the rigorous mixture effect part of the diffusion system by a simpler
one:

V hck,iXk = −Dk
∂Xk

∂xi
(1.23)

where the V hck,i denotes the Hirschfelder and Curtis diffusion velocity, and Dk an equivalent diffusion
coefficient of species k into the rest of the mixture. The latter coefficient is built from the binary
diffusion coefficients Dij which can be assessed from the gas kinetic theory in [54]:

Dk =
1− Yk∑

j 6=kXj/Djk
(1.24)

The mass conservation is ensured by the system of the following two equations:

N∑

k

Yk = 1 (1.25)

N∑

k

YkVk,i = 0 (1.26)

In order to satisfy those two constraints, a correction velocity V cori is added to the Hirschfelder and
Curtis diffusion velocity. V cori is expressed as :

V ci =

N∑

k=1

Dk
Wk

W

∂Xk

∂xi
(1.27)

The diffusion velocities for each species k is then given by the following expression:

Vk,i = V hck,i + V cori (1.28)

The diffusion species flux Jk that accounts for this corrective velocity is defined by the following
expression:

Ji,k = ρYk
(
V hci + V ci

)
= −ρ

(
Dk

Wk

W

∂Xk

∂xi
− YkV ci

)
(1.29)

Combined with the assumption of constant Schmidt numbers, the Hirschfelder and Curtis approx-
imation is very convenient because the equivalent diffusion coefficients can be easily related to the
kinematic viscosity according to: Dk = ν/Sck. The problem is then efficiently closed by imposing
the Schmidt numbers and it is not necessary to compute the Dij coefficients which are complex
functions of the collision integrals and thermodynamics variables. Finally the dynamic viscosity is
modeled by a power law-expression:

µ = µref

(
T

Tref

)c
(1.30)

where typical values are µref = 1.7 × 10−5 Pa.s, Tref = 300 K and c = 0.76.
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1.1. GOVERNING EQUATIONS AND SIMPLIFYING ASSUMPTIONS

• Heat Diffusion term:

The total heat flux is the sum of the conduction heat flux expressed with the Fourier law and the
diffusion heat flux of the species:

qi = −λ ∂T
∂xi
− ρ

N∑

k=1

(
Dk

Wk

W

∂Xk

∂xi
− YkV ci

)
hs,k (1.31)

where λ is the thermal conductivity of the mixing defined by assuming a constant Prandtl number:

λ =
µCp
Pr

(1.32)
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1.2. TURBULENCE MODELING AND LARGE EDDY SIMULATION:

1.2 Turbulence modeling and Large Eddy Simulation:

1.2.1 Turbulence modelling

Turbulence modeling is a very challenging and fascinating issue in an engineering point of view. Specially
because of the complexity of the nature of the turbulence and the wide range of domain that it can affect.
As described in several books available in the literature [7, 27, 117] turbulent flows are characterized
by strong velocity fluctuations both in space and time resulting in a chaotic, diffusive, dissipative and
intermittent flow motion (see Fig.1.1). As a consequence, turbulence can be a desirable phenomena that
can increase performances in some industrial applications such as heat exchanger design, combustion,
mixing process ...etc At the same time, it can alter the performances in other applications such as in pipe
lines by enhancing the pressure loss, in aeroacoustic by altering the combustion stability in turbines for
instance, or in the aeronautic sector. We all have in mind safety advices of the cabin crew during a flight
when going through a turbulent environment.

Figure 1.1: Turbulence created by the eruption of the Mt.Spurr near Anchorage in 1992

In all cases, it is important for engineers to have reliable numerical models able to accurately predict its
effects. A main characteristic of turbulent flows is the well known Reynolds number that expresses the
ratio between the forces of inertia and the molecular viscosity effect:

Re ≈ (U · 4U)

(ν · 42U)
(1.33)

where U is a characteristic velocity, ν the kinematic viscosity of the fluid. First attempt for understanding
the complete dynamics of turbulent flows was provided by Kolmogorov who characterized them through
a given spectrum and the energy cascade2. To this respect the most energetic eddies that provide the
energy to the flow are of size L (integral length) and the smallest eddies where the energy is dissipated by
viscous effects are of size η also known as the Kolmogorov length scale. The ratio of these two parameters
is an indicator of the size of the spectrum or more specifically the number of degrees of freedom of the
flow in one direction. It is approximated as follows:

2The forward energy cascade concept of Kolmorogov only holds for 3D turbulence which is the case throughout our study
and implies the development of turbulence due to the vortex stretching motion. The stretching of the vortex in a plan leads
to fluctuations in the direction perpendicular to that plan. In 2D turbulence, such as in oceanographic and atmospheric
flows, the concept of forward energy cascade is no longer valid. Instead, there is an hypothesis of double cascade process
[76] that consists in a forward enstrophy cascade and in an inverse energy cascade. The enstrophy is driven from the biggest
scales to the smallest ones and the energy injected at a given scale is driven back to bigger scales through an inverse energy
cascade process. More about 2D turbulence can be found in [78, 142]
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L

η
≈ Re3/4 (1.34)

It means that for a 3D turbulent flow, the number of nodes required to fully characterize the flows would
be around Re9/4.
There are actually three main methods for predicting numerically turbulent flows. They can all be defined
by their ability to reproduce the Kolmogorov spectrum:

• Direct Numerical Simulation (DNS):

As its name implies, it consists in completely considering the Kolmogorov spectrum at each time
step. Its application requires very accurate numerical schemes and well defined boundary conditions.
It is sometimes referred to in the literature as a numerical experiment. In this approach, no model
is required since all the scales of the flows are directly resolved meaning that all the Re9/4 degrees
of freedom should be considered in the DNS of a 3D flow. Recalling the order of magnitude of
the integral length L ≈ 2 − 10 mm and the Kolmogorov length η ≈ 10 µm for an IC engine [59],
the number of nodes that would be required to perform a DNS of an IC engines is roughly 1012.
Moreover the ratio of characteristics times also varies as Re3/4 meaning that the Navier-Stokes
equation have to be solved Re3 (1016) times if we want to calculate the evolution of the solution
of volume L3 for a duration equal to the characteristics time of the most energetic scale.(It is
important to emphasize that this consideration does not take into consideration phenomena such as
combustion, fuel atomization that will lead to a refinement of the size of the mesh). Compared to
the current number of nodes used for IC engine simulations, it is obvious that performing DNS of IC
engines is not affordable. Although DNS in complex geometries [100] have been recently performed,
the use of DNS is mostly restricted to fundamental studies in simple configurations that aim at
developping model for alternative methods such as RANS and LES described latter on.

• Reynolds-Averaged Navier-Stokes (RANS):

The equations resolved in RANS simulations are obtained through a statistical averaging of the
Navier-Stokes equations. It is only the spectrum of the mean flow that is partially resolved and
all the turbulent structures are completely modeled. This is achieved by modeling the terms that
appear in the averaged Navier-Stokes equations. The RANS approach allows to use coarse meshes
which lead to fast computation times. It is widely used in the industry and can give very good results
as long as the simulated flows are statistically steady. This method was extended to unsteady flows
through the U-RANS (Unsteady-Reynolds-Averaged Navier-Stokes) modeling method.

• Large Eddy Simulations (LES):

Large Eddy Simulation can be seen as a compromise between the extracted informations and the
computational cost. It consists in spatially filtering the Navier-Stokes equations and to take into
account only the biggest structures of the flows. The latter in most cases3 control the dynamics of
the flows. In LES simulations, the spectrum of turbulence is partially resolved at each time step
under the assumption that the non resolved scales referred to as the Subgrid-Scale terms have an
universal behavior no matter the geometry and the initial conditions. It is generally assumed that
the subgrid scales of the energy spectrum have a dissipative behavior. It means that for a lower
CPU time cost compared with DNS simulations (which is still important compared with RANS),
one has access to more information than in a RANS simulation. Moreover, for a perfect LES, the
increase of the mesh resolution should lead to a DNS simulation which is not the case for RANS.
Coming back to the simulation of the IC engine, one can decide to accelerate the running time by
simulating the flow with a lower spatial resolution while keeping the biggest structures of the flow.
It remains ”only” to well express the non resolved terms presented in the next section.

3The problem is more complex in combustion because chemical reactions take place at very small scales, still the use of
LES for combustion prediction leads generally to better prediction compared to RANS [95].

11



1.2. TURBULENCE MODELING AND LARGE EDDY SIMULATION:

Figure 1.2: Comparison of the three main technique for numerically modeling the turbulence.

Fig. 1.2 summarizes how the three mentioned simulation methods handle the Kolmogorov energy spec-
trum. It confirms the fact that the modeling requirement in RANS simulations are more important
although the scales that they should reproduce strongly depends on the configuration. Concerning the
LES methods, the modeling effort focuses on reproducing the dissipative behavior of the small scales
which can be achieved either numerically or physically.

1.2.2 Large Eddy Simulation formalism:

Length-scale separation on a generic function f in compressible turbulent flows is achieved with the
spatial Favre filtering operation [2, 150] (it allows to avoid unclosed terms in the continuity equation)
that reads :

f̃(x, t) =
1

ρ(x, t)

∫ +∞

−∞
ρ(ζ, t) f(ζ, t) G∆(ζ − x)dζ, (1.35)

where G∆ denotes the filter function and the over bar symbol denotes the non mass weighted filtering
operator:

f(x, t) =

∫ +∞

−∞
f(ζ, t)G∆(ζ − x)dζ, (1.36)

Properties of the filters:

In order to ensure that the filtered Navier-Stokes equations are tractable, the chosen filter G∆ has to
meet the following properties:

• P1 It must conserve constant values, which is equivalent to the normalization condition

∫ +∞

−∞
G∆(ζ)d3ζ = 1; (1.37)

• P2 G∆ has to be linear

f + g = f̄ + ḡ (1.38)
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• P3 It should commute with the derivation in space and time:

∂f

∂t
=
∂f̄

∂t
,

∂f

∂xi
=

∂f̄

∂xi
. (1.39)

This second property which is important to derive LES equations is not always verified specially
on unstructured meshes where a second order commutation error can arise.

The function f can then be decomposed, based on the Favre-filter operator as:

f = f̃ + f ′ (1.40)

where f̃ is the resolved part of f and f ′ is the SGS part.
It is important to emphasize that in contrary to the traditional time averaging the Favre averaging leads
to the following inequalities:

ρ̄
˜̃
f = ρf̃ 6= ρ̄f̃ (1.41)

˜̃
f 6= f and f̃ ′ 6= 0 (1.42)

Finally, it can be verified that the Favre-filter operator does not commute with the derivative:

∂f̃

∂xi
=

∂̃f

∂xi
+

1

ρ̄
f
∂ρ

∂xi
− f̃

ρ̄

∂ρ̄

∂xi
(1.43)

This results is not incompatible with the property P3 because it is not the Favre-filter which is applied
to the Navier-Stokes equation but the non mass weighted filter operator which theoretically verifies the
property P3.

Most common filters:

The most common filters used are:

• Top - Hat filter

G∆(xi − ζi) =

{
1
∆ for |xi − ζi| ≤ ∆

2
0 otherwise

(1.44)

• Gaussian filter

G∆(xi − ζi) =

√
Γ

π∆2
exp

(−Γ|xi − ζi|2
∆2

)
(1.45)

• Cutoff filter

G∆(xi − ζi) =
sin(kc(xi − ζi))
kc(xi − ζi)

(1.46)
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where kc = 2π/∆ is the wavenumber and Γ ≈ 6 a parameter of the Gaussian filter [126].

More about the properties of the different filters can be found in the literature ([117, 126, 148]). It is worth
noting that when dealing with general purpose solvers and complex geometries, the filtered operation is
most of the time implicitly assumed and the filter width is equal to the local mesh size ∆.

Filtered Navier-Stokes equation and SGS terms: (see AVBP Handbook [1] for more details)

The application of the filtering operation to the instantaneous set of compressible Navier-Stokes equations
presented in 1.1 leads to the following equations which contain the SGS quantities that need modeling
[48, 126] :

∂ρ̄Ỹk
∂t

+
∂

∂xi
(ρ̄Ỹkũi) = − ∂

∂xi
(Jk,i + JSGSk,i ) (1.47)

∂ρ̄ũi
∂t

+
∂

∂xj
(ρ̄ũiũj) = − ∂

∂xj
(P̄ δij − τij − τSGSij ) (1.48)

∂ρ̄ẽt
∂t

+
∂

∂xj
(ρ̄ẽtũj) = − ∂

∂xi
(ui(Pδij − τij) + qij + qSGSij ) (1.49)

where Jk,i = ρYkVk,j is the diffusive flux of species k in the jth-direction and the superscript SGS denotes
sub-grid scales contributions which must be modeled. Besides, filtered version of the viscous fluxes must
be assessed from the known, filtered variables.
The diffusive species flux vector is computed from Eq.(1.30):

Jk,i = −ρ
(
Dk

Wk

W

∂Xk

∂xi
− YkV ci

)
(1.50)

≈ −ρ̄
(
D̄k

Wk

W

∂X̃k

∂xi
− ỸkṼ ci

)
, (1.51)

where higher order correlations between the different variables of the expression are assumed negligible.
Similarly, the filtered heat flux is :

qi = −λ ∂T
∂xi

+

N∑

k=1

Jk,ihs,k (1.52)

≈ −λ̄ ∂T̃
∂xi

+

N∑

k=1

Jk,ih̃s,k (1.53)

and the laminar filtered stress tensor τij is given by the following relations:

τij = 2µ(Sij −
1

3
δijSll), (1.54)

≈ 2µ̄(S̃ij −
1

3
δijS̃ll), (1.55)
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and

S̃ij =
1

2
(g̃ij + g̃ji), (1.56)

where g̃ij =
∂ũj
∂xi

is the velocity gradient tensor of the resolved scales.

Finally, for the system to be solved numerically, closures need to be supplied for the remaining SGS
terms:

• the SGS stress tensor

τSGSij = −ρ̄(ũiuj − ũiũj), (1.57)

An eddy viscosity assumption is supposed for modeling the effect of the unresolved scales and the
subgrid-scale stress tensor reads:

τSGSij − 1

3
τSGSkk δij = 2ρνsgsS̃ij (1.58)

where νsgs is the subgrid-scale viscosity.

• the SGS heat flux vector

qSGSi = ρ̄(ũiet − ũiẽt), (1.59)

The SGS heat flux is simplified as follows:

qSGSi = −λSGS ∂T̃
∂xi

+

N∑

k=1

JSGSk,i h̃s,k (1.60)

where λSGS is the subgrid-scale conductivity and JSGSk,i the SGS diffusive species vector. Besides

T̃ is the Favre filtered temperature which satisfies the modified filtered state equation p̄ = ρ̄rT̃
[39, 97].

• the SGS diffusive species vector

JSGSk,i = −ρ̄
(
DSGS
k

Wk

W

∂X̃k

∂xi
− ỸkṼ c,SGSi

)
(1.61)

with

Dt
k =

νSGS

SSGSc,k

(1.62)

where SSGSc,k is the turbulent Schmidt number that will remain constant for all the species during this

study: SSGSc,k = 0.7. In addition, Ṽ c,SGSi is a correction velocity defines in such a way (see Eq.(1.63))

that the SGS diffusion species is coherent with mass conservation which requires
∑
k J

SGS
k,j = 0

Ṽ ci + Ṽ c,SGSi =

N∑

k=1

(
ν̄

Sc,k
+

νsgs
SSGSc,k

)
Wk

W

∂X̃k

∂xi
, (1.63)
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Throughout this thesis, emphasize will be paid only on the SGS viscosity (SGS stress tensor) and the
SGS conductivity (SGS heat flux vector). These two numbers can be linked with the SGS Prandlt number
similarly to the molecular Prandlt number: Prsgs = ρ̄νsgsCp/λsgs. The different techniques for modeling
those two terms are presented in the next section.

Remark: It is important to highlight that the formalism presented here is no the only one for defining
the equations for LES. The one presented here is the most dominant in the literature and is based
on the ”filtering” so that LES evolutions equations are solved for the spatially filtered velocity field.
Alternative formalisms such as the ”self-conditioned fields” [116] approach exist that aim to overcome
some shortcomings of the filtered based formalism.
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1.3 Literature survey

There are three main categories for modeling the subgrid scale stress tensor well summarized by Sagaut
[126] and Pope [117]:

• The functional approach which consists in modeling the effect of the unresolved small scales on the
large scales without lingering over the structure of the tensor itself. It usually consists in introducing
a scalar, the so-called subgrid scale viscosity, in order to reproduce the dissipative character of the
small scales. It is probably the most widespread approach for industrial applications since the early
works of Smagorinsky [135].

• The structural approach which consists in finding the best approximation of the structure of the
SGS tensor using the resolved velocity field. It allows to take into consideration the anisotropy
of the tensor and it also helps to reproduce the backscatter that is the energy transfer from the
small scales to the bigger scales [77, 85, 113]. The most known of those models are probably the
scale similarity model [9] and the Clark model [29]. This approach although suffering from a lack
of dissipation is still of interest as shown by recent works of Park and Mahesh [109].

• As it can be difficult to distinguish physical dissipation to numerical errors in LES [105], there is
a third category for modeling the SGS tensor effect that is the MILES (Monotonically Integrated
LES) or ILES (Implicit LES). It consists as reported by Fernando et al [47] in incorporating effects of
unresolved scales implicitly through a class of nonoscillatory finite-volume numerical fluids solvers.
This class includes methods such as flux-corrected transport, the piece wise parabolic method and
total variation dimishing algorithm. More details about ILES algorithms and results are available
in the literature [15, 55].

We will focus on the models based on the functional approach (developed in the physical space) in
other terms on the SGS viscosity νsgs. Indeed, one can consider that in combustion chambers, the most
dominant effect to be reproduced by the unresolved scales is the dissipative one. The latter is probably
more important than the exact knowledge of the structure of the SGS tensor. Moreover, the structural
method can be seen as an improvement step of any functional models in order to take into account
anisotropy and backscatter. The combination of those two methods leads to mixed models that share the
advantages of the two formulations as shown by recent work of Lodato et al [87]. Concerning the MILES
approach, which is a very interesting and pragmatic alternative, it requires specific algorithms and solver
class which are not compatible with the main solver used during this thesis.

1.3.1 SGS viscosity models:

All the models that are presented here were developed in an incompressible framework. But they can be
extended to compressible4 flows under the assumption of low Mach number [42, 130]. In what follows,

the initial filter used for incompressible flow (̄) is replaced by the favre filter (̃). The following literature
survey if of course not an exhaustive one. It intends to give a broad idea of the methodology for modeling
the SGS viscosity and the major obstacles for their applications in complex geometries.

Static models:

Static models are model defined with a fix constant. As the value of the constant may vary depending
on the configuration, the values of the constant given in what follows are the most used in the literature.

4The models can be extended without the necessity to take into account the trace part of the SGS stress tensor as
proposed for example by Speziale et al. [138] or Zang et al. [158]. Indeed, for incompressible flows this term is included in
the pressure but for compressible flows, it should also be modeled except for low Mach number flows for which its impact
is negligible.
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1. Smagorinsky model [135]

The Smagorinsky model was initially developed for weather forecast simulations purposes. It cor-
responds to the strain rate and is expressed as follows :

νsgs = (Cs∆)2Ds(ũ) (1.64)

where Cs = 0.18 is the model constant ∆ the length scale and Ds the time scale. The Smagorinsky
model has the advantage that it can be very easily implemented and it is not very demanding in
terms of computational time costs. It is also widely used for industrial applications because of its
robustness. However, it leads to large over prediction of the SGS viscosity for shear flows and it is
not appropriate when dealing with wall bounded flows or transient flows.

2. Structure function model [94]
This model is based on the transposition in the physical space of the model of Métais and Lesieur
[94] developed in the spectral space. The viscosity in the spectral space is expressed as follows:

νsgs =
2

3
C
−3/2
k [

Ē(k, t)

kc
]1/2 (1.65)

where Ck = 1.4 is the Kolmogorov constant and kc the cutt-off wavelength.
The transposition to the physical space is achieved via a structure function. The SGS viscosity is
then expressed as:

νsgs(x,∆, t) = 0.105C
−3/2
k ∆x[F2(x,∆, t)] (1.66)

The main drawback of this model is that as long as there is no energy at the cutoff wavelength
(in case of laminar flows for example) the spectral viscosity is zero. However, the physical viscosity
is not zero because the structure function is based on gradient of the mean flow that are not
necessarily zero in laminar/transient situation. This can lead to the same problem observed with
the Smagorinsky model. More advanced structure functions [33] were developed to overcome those
drawbacks but are still difficult to apply in complex configurations.

3. SGS kinetic equation based model

This model is based on the use of the information contained directly in the unresolved scales. It
consists in solving a modeled equation for the SGS kinetic energy. The SGS viscosity is expressed
as :

νsgs = Ckeq∆

√
k̃sgs (1.67)

where Ckeq ≈ 0.1 and k̃sgs is the SGS kinetic energy.
The advantage of this model is that it is not based on the velocity gradient tensor and can well
predict strongly turbulent flows for which velocity gradients are not necessarily very high. However,
the choice of the different constants for the SGS kinetic equation can be discussed.

4. Sagaut and Ta Phuoc Loc model [125]
The originality of this model is that it combines the information of the resolved and unresolved
scales. Indeed, this model allows to take into consideration interaction between those two scales. It
contains an additional parameter α to be properly estimated. The SGS viscosity is expressed as :

νsgs = Cm|S̃|α(k̃sgs)
1−α
2 ∆1+α (1.68)
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Advanced static models

We refer to as ”Advanced static models” models with a constant parameter, which have the in-
trinsically properties through their timescale to vanish in different laminar configurations. This is
generally achieved by using invariant of the gradient velocity tensor gij . The advantage of such
models for simulating complex configurations (more precisely IC engines in our case) is that the a
priori knowledge of the geometry is not necessary since they automatically identify near wall region
and then switch off.

5. WALE model [106]

The main objective of the WALE model was to correctly reproduce the correct near wall behavior y3

[26] (where the y− axis is the direction perpendicular to the solid boundary) of the SGS viscosity
without any additional procedure. This model was the first able to meet this property which is
important in case of wall bounded flows because it switches off the model in case of pure shear and
allows a realistic transition from laminar to turbulent flow. The resulting SGS viscosity is expressed
as follows:

νsgs = (Cw∆)2Dw(ũ) (1.69)

where Cw = 0.5 is the model constant.

Dw(u) =
(S̃dijS̃

d
ij)

3/2

(S̃ijS̃ij)5/2 + (S̃dijS̃
d
ij)

5/4
(1.70)

and S̃dij is the symmetric part of the square of the velocity gradient tensor.

6. Vreman model [149]

This model presents similar advantages as the WALE model but with a different asymptotic behavior
y1. It is also well suitable for wall bounded and shear flows since it was specially design to vanish
in those configurations. The SGS viscosity is expressed as :

νsgs = (Cv∆)2Dv(ũ) (1.71)

where Cv = 0.264 is the model constant.

Dv(ũ) =

√
Bβ

αklαkl
(1.72)

and

Bβ = β11β22 − β12β12 + β11β33 + β13β13 + β22β33 + β23β23

βij =
∑3
m=1 αmiαmj

αij =
∂ũj
∂xi

(1.73)

Despite the interesting properties of the Vreman and the WALE model, they both share the same
drawbacks. Indeed recent studies [18, 40] showed that the WALE model produces viscosity in case
of pure rotation thus potentially alter the prediction of vortex motion. It is also the case for the
Vreman model. This issue is discussed in the chapter 3 of this manuscript.
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Improvement methods:

The development of a SGS model can be divided in two steps: the choice of the time scale and the
improvement method in order to compensate some drawbacks of the time scale. The choice of the im-
provement method is of course as important as the development of the time scale and the resulting model
is an entirely new SGS viscosity/tensor. Again the list presented here is not an exhaustive list of the
procedures for improving the prediction of eddy-viscosity type models.

1. Damping functions [35]

The damping function was initially introduced by Deardoff in order to overcome the main drawback
of the Smagorinsky model in Turbulent Channel. Indeed, a simple diminution of the Smagorinsky
constant is not enough in case of wall-bounded flows and it is then necessary when getting close to
the solid boundary to damp the viscosity. The resulting SGS viscosity is then expressed as follows:

νsgs = (Cs∆)2f (y+)Ds(ũ) (1.74)

where f (y+) is the Van-Driest function:

f (y+) = 1− exp(−y+/A+) (1.75)

with A+ = 25

The main inconvenient of the Van-Driest function is that it requires the explicit knowledge of y+

which is straightforward in turbulent channel but a difficult task in an industrial configuration.
Alternative damping function like the function proposed by Yoshizawa et al [156] are now available
to overcome this issue.

2. Germano-identity and Dynamic Smagorinsky model [52]

Among the different improvement methods, the Germano-identity is probably the most popular.
Although the hypothesis of local equilibrium on which it is based can be discussed [32], it has the
advantage to overcome almost all the drawbacks of the Smagorinsky model: value of the constant,
overestimation of the viscosity for non-turbulent flows, near wall damping. The Germano-identity
leads to the development of the dynamic Smagorinsky model that has the originality to have a
constant that varies both in space and time. The construction of this model consists in using two

filters: the initial filter (̃) (filter width ∆) and the test filter (̂) (filter width ∆̂). When applying
those filters to the NS equations there are two SGS tensors that appear (τij and Tij) and which are
linked by the Germano-identity as follows:

T sgsij − τ̂sgsij = Lij (1.76)

where Lij is the Leonard term:

Lij = ̂̃uiũj − ̂̃uî̃uj (1.77)

The same viscosity is used for modeling the two SGS tensors and are rewritten following:

τsgsij = 2C2
sγij (1.78)

and
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T sgsij = 2C2
sβij (1.79)

the Germano-identity becomes:

2C2
sβij − 2̂C2

sγij = Lij (1.80)

at this stage, it is assumed that the constant does not vary over a distance equal to the test filter

meaning that 2̂C2
sγij = 2C2

s γ̂ij . Equation 1.80 becomes:

2C2
sMij = Lij (1.81)

with

Mij = βij − α̂ij (1.82)

Using the least mean square method [84] the final constant of the dynamic constant is expressed as
follows:

C2
s = −1

2

LijMij

MijMij
(1.83)

The problem with the dynamic Smagorinsky is the stabilization of the value of the constant Cs.
Negative values that were considered as ”backscatter” prediction can strongly disturb the simu-
lation. The most popular technique is to average the constant over homogeneous directions when
they exist. The constant is then expressed as follows:

C2
s = −1

2

< LijMij >h
< MijMij >h

(1.84)

where < >h stands for an ensemble average over the homogeneous directions. For example, plans
parallel to the wall in a turbulent channel.
Because in most industrial applications it is not easy to identify such homogeneous directions,
different more advanced stabilization methods were developped such as the localization methods
[53], the lagrangian methods [93] or more recently a method that allows to reduce the error on the
dynamic constant [89]. Still, the common practice is to apply the least mean square method over a
small volume surrounding the node of interest and to simply set the negative values of the constant
to zero (which is the clipping) leading to:

C2
s = max

[
0,−1

2

< LijMij >loc
< MijMij >loc

]
(1.85)

where < >loc stands for an average over a small volume surrounding the node of the current grid
point.
The dynamic procedure has always been considered as a standard procedure to improve the pre-
diction of a model. Analytical and numerical results performed in this thesis will show that it can
not be successfully applied to all models.

3. Mixed models

Mixed models inspired by the Bardina studies [9, 10] come from the decomposition of the SGS
tensor:

τij = ρ̄(ũiuj − ũiũj) = Lij + Cij +Rij︸ ︷︷ ︸
Leonard decomposition

= Lij + Cij +Rij︸ ︷︷ ︸
modified Leonard decomposition

(1.86)
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In the Leonard decomposition the velocity uj = ũj + u′j is introduced only in the first term of the
SGS tensor :

Lij = ρ̄( ˜̃uiũj − ũiũj) (1.87)

Cij = ρ̄( ˜̃uiu′j + ũ′iũj) (1.88)

Rij = ρ̄ũ′iu
′
j (1.89)

In the modified Leonard decomposition the velocity is introduced in the two terms of the SGS
tensor:

Lij = ρ̄( ˜̃uiũj − ˜̃ui ˜̃uj) (1.90)

Cij = ρ̄( ˜̃uiu′j + ũ′iũj − ˜̃uiũ′j − ˜̃uj ũ′i) (1.91)

Rij = ρ̄(ũ′iu
′
j − ũ′iũ′j) (1.92)

The modified decomposition is interesting because each terms respect the fundamental property of
the Galilean invariance and can be modeled separately. Studies of Germano [51] and Speziale [137]
have demonstrated the importance of this property and in [107] a more extensive review is done
about the invariant modeling in LES of turbulence.

The similarity mixed model is obtained by neglecting Cij and the second term in Rij . The SGS
stress tensor is then modeled as:

τsgsij ' ρ̄ũ′iu′j + Lij (1.93)

The first term in Eq.(1.93) is modeled with the SGS viscosity. The final expression of the SGS stress
tensor is as follows:

τsgsij = −2ρ̄νsgsSij + ρ̄( ˜̃uiũj − ˜̃ui ˜̃uj) (1.94)

where νsgs can be either a dynamic model [150, 159] or a static model [87].
Mixed models are very interesting alternative for simulating flows for which the shortcoming of
eddy-viscosity models can have an impact.

4. Variational Multi-Scale methods and filtered models

VMS methods can be considered as an entirely different formulation of LES. It is sometimes referred
to in the literature as VMS-LES. However we made the choice to include this formulation as an
improvement methods for existing models. In contrary to the classical LES formulation where the
SGS tensor acts on the entire resolved velocity field, the VMS method as describe by Hughes et al
[61] consists in an a priori separation of scales. It leads to the resolution of two distinct equations:
one for the bigger scales u which do not require any closure and the second for the small-scales us

which require a model. The main advantage of the VMS formulation is that the SGS viscosity is
a function of the small-scales us which do not exist in laminar flows. Resulting VMS models are
then very interesting since they switch on only when the flow is turbulent. More information about
VMS methods can be found in the literature [11, 62, 75].
Similar to the VMS approach, another type of improvement strategy also exists that consist in a
posteriori filtering (with a high-pass filter) [128] the resolved velocity field u and then to express the
SGS viscosity as a function of the filtered velocity. The resulting viscosity is also inactive in case of
laminar flows. This property was for example use to overcome the drawback of the WALE model
in case of pure rotation [18] while preserving its properties to vanish near walls with the proper
asymptotic behavior.
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5. Global dynamic method for the constant

The development of advanced time scales (Vreman and WALE) already mentioned above now gives
the possibility to evaluate globally rather than locally the coefficient. Indeed, because they meet
several local properties, it remains only necessary to evaluate the proper global dissipation. Two
global dynamic methods [108, 157] were recently developed and the most efficient according to the
study of Lee et al. [81] and easy to implement consists in performing a volume weighted averaging of
local values that are obtained through the Germano identity. The resulting coefficient homogeneous
in space is then expressed as:

C2
g = −1

2

< LijMij >v
< MijMij >v

(1.95)

where < >v stands for the volume weighted averaging performed over the entire geometry.
The global dynamic procedure presents the advantage that it does not require any homogeneous
directions and the issue of negative constant is avoided. Because the dynamic procedure is used
only for estimating the overall dissipation, the time scale should be reliable enough to vanish in
laminar regions. This is not the case for the Smagorinsky model and neither the two cited advanced
models vanish in case of pure rotation.

1.3.2 SGS heat flux:

Similar to the SGS tensor, the SGS heat flux can be modeled using a functional or structural method.
First attempts of structural modeling of the SGS heat flux were performed by Calmet [23]. A large review
of the structural models (based on the gradient diffusion hypothesis) was recently performed by Wang et
al.[151].
As for the SGS tensor, we have chosen a functional method for modeling the SGS heat flux. It consists to
introduce a SGS conductivity λsgs that will reproduce the heat transfer induced by the unresolved small
scales. The SGS heat flux is then expressed as follows:

qsgsj = −λsgs ∂T̃
∂xj

(1.96)

Two main formulations are available for modeling the SGS conductivity:

1. SGS conductivity based on a constant SGS Prandtl number

The advantage of this hypothesis is that it is very simple to implement. The SGS conductivity is
expressed as follows:

λsgs =
ρ̄Cp
Prsgs

νsgs (1.97)

It remains only necessary to set the value of the SGS Prandtl number. The SGS conductivity shares
the same properties and also the drawbacks of the SGS conductivity. But the main problem of such
a formulation is near solid boundaries. Indeed, when getting close to walls, the turbulent Prandtl
should increase in order to damp the SGS heat flux [68, 69]. Moreover, as for the constant of the SGS
viscosity model the SGS Prandt number may vary with the turbulence intensity, mesh resolution
and also numerical scheme used.

2. SGS conductivity inspired from the dynamic Smagorinsky model

We can suppose that for non wall-resolved simulation and RANS approaches the hypothesis of
a constant turbulent Prandtl number completely makes sense. But in an LES point of view for
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which spatial variations are expected it is necessary to account for those variations through the
SGS conductivity. One of the best way to achieve that is to use the Germano-identity as done by
Moin et al [97] for computing the dynamic Prandtl number. In order to avoid numerical issues, we
will directly compute the SGS conductivity. In fact, from Eq. 1.97 the SGS conductivity can be
expressed as :

λsgs = ρ̄Cp (Cλ∆)2Ds(u) (1.98)

where Ds(u) is the Smagorinsky time scale and Cλ an unknown constant that will be computed
dynamically.

The procedure is similar as for the dynamic Smagorinsky model. The energy equation is filtered
using two filters of size ∆ and ∆̂. They are two terms that appear: qsgs and Qsgs . The Germano-
identity gives the following relationship between the two terms:

Hj = Qsgsj − q̂sgsj = Cp(
̂̄ρũj T̃ − (1/ ˆ̄ρ)̂̄ρũj ̂̄ρT̃ ) (1.99)

The same conductivity model is used for modeling the two SGS Heat flux tensors following:

qsgsj = C2
λγ
′

j (1.100)

and

Qsgsj = C2
λβ
′

j (1.101)

assuming that the constant does not vary over a distance equal to the test filter Eq.(1.99) reads:

C2
λNj = Hj (1.102)

where
Nj = β

′

j − γ̂
′
j (1.103)

using the least square method of Lilly [84] the final expression of the SGS dynamic conductivity
constant reads:

C2
λ =

HjNj
NjNj

(1.104)

As in the case of the dynamic Smagorinsky constant, it is recommended to stabilize this expression
by averaging the constant over homogeneous directions. For reasons already mentioned this is not
possible in IC engines.

C2
λ = max

[
0,
< HjNj >loc
< NjNj >loc

]
(1.105)

We have decided to stabilize with a local averaging over the cells surrounding (<>loc) the current
node and to clip the negative remaining value of the constant (Eq. 1.105). One could wonder why
we do not recommend the clipping of the SGS viscosity while we still use the same procedure for
the conductivity. Since it is the velocity that convect the temperature, clipping the SGS viscosity
may have a larger impact on the flow while the effect of clipping the SGS conductivity is expected
to be minor. Moreover, compared to the constant SGS Prandtl number actually used in the AVBP
solver [1], this formulation will allow to take into account regions where the SGS heat flux should
vanish. This is a first step before further improvements.
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Chapter 2

Experimental set-up and
Diagnostics:

The target applications of the models that are developed in the framework of this thesis are Internal
Combustion (IC) engines. Academic cases are of course used in a first step to make sure that the models
respect the properties that will be enumerated latter on in the third chapter of this manuscript. But in
order to make sure that those models would be reliable and predictable enough in complex configurations,
it is necessary to compare their predictions against experimental data that are somehow representative of
the physics (combustion is considered in this study as an aerothermal effect without species modification)
taking place. To this respect, an experiment that consists in a pulsed hot jet that impinges with a cold
surface in presence of a cross flow (at ambient temperature) was designed. This experiment was specially
set-up for comparison with Large Eddy Simulation results: simple enough to enable accurate model
validation, fully controlled boundary conditions (the cross flow profile and injector velocity profile are
well-defined) and representative enough to take into account the most important physical phenomena
occurring in combustion chambers: unsteadiness and interaction among hot vortices and a developed
boundary layer near solid boundaries. Moreover advanced non intrusive optical diagnostics (Particle Image
Velocimetry, Laser Induced Fluorescence, Laser Induced Phosphorescence Thermography) are applied in
order to extract relevant data such as velocity field, temperature field and wall temperature. Those data
will be of particular interest for the assessment of the robustness and predictability of the different models.
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Figure 2.1: Schematic description of the experimental set-up of the hot impinging pulsed jet in presence
of a cross flow.

2.1 Experimental set-up

The flow pattern inside a combustion chamber is the result of a combination of interaction between various
sources: flow induced by the movement of intakes/exhausts valves, movement of the piston, vaporization
of the fuel after injection, wall interaction and of course dilatation of gas after the combustion. Although
the recent progress made in the field of optical diagnostics development make it now possible to have a
deeper understanding of those combined phenomena through optical IC engines, it is still a challenge today
to provide complete validation data in the engine environment. In addition, performing full validation
computation in the engine environment is also a major challenge specially in term of computational time
cost. The alternative chosen in this work is to reproduce the different cited phenomena in a more simple
configuration, simple enough to allow good quality computation and experimental measurements, but
complex enough to catch the main important features and therefore provide a good validation platform.
A configuration consisting of cycles of interaction between hot irregular vortices and their impingement
with solid boundaries in a turbulent and unsteady environment was therefore chosen for this purpose.
These guidelines led to the experimental set-up shown in Fig. 2.1 that takes into account the constraints
discussed in the next section.

2.1.1 Design guidelines:

The target objective is to reproduce numerically the experimental set-up along with the requirement to
provide adequate conditions to the application of optical diagnostics techniques for the data acquisition
leaded to some guidelines regarding the characteristics of the experiment. The guidelines listed in what
follows are actually the best compromises between the constraints imposed by the modeling issues and
those imposed by the application of the measurement techniques:

• Dimensions and unsteadiness: Since flows in combustion chambers are highly unsteady, it is
important that the models developed account for fast temporal variation (typically of the order of
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100µs). At the same time, a good spatial resolution is required within the computational domain.
These requirements have been taken into account for the design of the experiment, in particular for
the selection of the injector technology as discussed here. Concerning the computational domain, the
first parameter that was set was the height of the computational domain H (the distance between
the injector exit and the impinging surface) with respect to the injector diameter D. Based on a

Figure 2.2: Hoerbiger GV 50 injector.

recent study [86] where similar turbulent impinging jets were simulated, it was decided to keep a
constant and refined resolution in the streamwise and spanwise direction corresponding to 5H. The
volume where the mesh is refined corresponds to Vmesh = 25H3. Let us consider H = βD and N
the number of nodes per diameter, the total number of nodes is given by the following expression:

Totalnode ≈ 25β3N3 (2.1)

It is considered here that N = 30 is the minimal number of nodes required to correctly describe
the velocity profile in the injector exit. Varying β from 2 to 3 would increase the total number of
nodes from 5.4 million nodes to more than 18 million nodes only considering the volume of interest
around the injector. This result shows that it is necessary to limit the parameter β to a maximum
of 2, in order to keep a good resolution and to limit the total number of nodes to a reasonable level
considering computational cost. This distance also allows the formation of the vortex ring which
is one of the important feature of the experiment. However, this dimension is also constrained by
optical diagnostic issues. Indeed, in order to avoid using specific optical elements, the visualization
domain is limited to a minimum dimensions of the order of 1 to 2 cm. Selecting a channel height
of 2 cm means that the injector diameter is about 1 cm since the simulation constraints impose
β = 2. As a result, the requirements for the injector exit are that the injector diameter is 1 cm
and that its temporal response is of the order of 100µs. This shows that typical injector technology
used in engine is not adequate since while the typical time response is fast enough, the nozzle
hole diameter is much too small (typically lower than 1mm). This would require a visualization
domain of the order of 2 mm considering simulation constraints, which is not practical for optical
diagnostic application, or a very important number of node which is not practical for simulation
when considering computational time. For these reasons, an Hoerbiger GV 50 injector was selected
(see Fig. 2.2). It is characterized by a fast response time (100µs) and a large flow area (effective flow
area diameter of 1cm, exit diameter of 3 cm). A convergent was used to reduce the exit diameter to
the same value than the effective area, D = 1cm. This convergent was designed to allow a uniform
velocity profile at the injector exit. Its geometry is described in more details later in the manuscript.

• Low Mach Number flows: The models developed in the framework of this thesis are done under
the important assumption that only low Mach number flows are considered. It typically means
M < 0.2. Although flows close to the intake and exhaust valves can be at a sonic state, velocities
inside combustion chambers are in general small compared to the sound velocity. The maximal
temperature (Tmax = 393 K) that the injector can handle leads to a threshold for the velocity
around 80− 95 m/s. The velocity amplitude is controlled by the pressure in the tank (see Fig. 2.1)
that is fixed after preliminaries PIV measurements at Ptank = 200 mbar (Due to pressure losses
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in the pipes between the tank and the injector, the Bernoulli equation did not lead to the correct
value of the pressure that corresponds to the target velocity magnitude at the injector exit). For
security purposes, the injected gas is nitrogen. It is a neutral gas which will not interact with the
particles and fluorescent tracer molecules that will be used for optical diagnostics purposes.

• Cross Flow: The presence of the cross flow was necessary to recreate a turbulent environment and
the development of a cold boundary layer near walls. It is generated by a fan situated downstream
of the experimental set-up. The velocity of the cross flow was monitored with a hot wire and tuned
in order to have a deviation of the jet of around 1 cm at the impinging location. This was done
qualitatively by visualization at different cross flow rate using Schlieren visualization technique. The
turbulent intensity of the cross flow was generated by a grid situated at 10 cm of the centre of the
jet. The size of the mesh of the grid was based on works of [7]. Before generating the turbulence, it
was necessary to have a flat velocity profile and laminar flow at the entrance of the channel. This was
achieved with a combination of a convergent and an honeycomb. The role of the honeycomb is to
brake the biggest turbulent structures and laminarize the cross flow before imposing the turbulence
with the grid. The shape of the convergent is based on work of [13, 17, 92]. The main difficulty was
to avoid any separation of the boundary layer. Detailed on the shape of the convergent, the size of
the honeycomb and the grid size are given in the next section.

• Optical accessibility: Wide optical accesses were provided by UV quality (Excimer 248 nm) large
quartz window in order to optimize the application of advanced optical diagnostics. The advantage of
those techniques is that there are non intrusive. The flow is not disturbed during the measurements
and the extracted data are more reliable. The final experimental set-up is equipped with 4 wide
optical access, two on the sides parallel to the cross flow, one perpendicular to the cross flow and
another one on the top.

• Wall temperature measurement: Since the injector can not support a gas heated at more than
Tmax = 400 K, it was necessary to identify an appropriate material for the impinging surface that
could lead to a measurable increase of the wall temperature. The choice was based on a simple 0D
model based on the thermal effusivity of two bodies in contact. Indeed, assuming the perfect case
of contact between the nitrogen coming from the injector at Tmax and the impinging surface, the
instantaneous temperature (TI) at the interface is given by the following expression:

TI =
(ENTN + EwTw)

(EN + Ew)
(2.2)

where EN , Ew are respectively the nitrogen and wall thermal effusivity and TN , Tw are respectively
the initial nitrogen and wall temperature.

Table 2.1: Temperature increase for different materials

Material ρ (Kg/m3) Cp (KJ/Kg/K) λ (W/m/K) Effusivity (J.K−1m−2.s−1/2) ∆T (K)

nitrogen 0.96 1.012 0.025 0.16 —
Aluminium 2700 0.897 200 695.97 0.02

Copper 8920 0.385 380 1142.36 0.01
Zinc 7135 0.387 1.16 56.60 0.19

Plexiglas 1190 1.47 0.19 18.23 0.58
Balsa 160 2.9 0.055 5.05 2.05

WDS Ultra 2.14 1.05 0.019 2.14 4.65
WDS High 2.34 1.05 0.021 2.35 4.27

Table 2.1 summarizes the different predicted contact temperatures for different materials. We can
observe that for aluminum, the temperature increase is not measurable with the technique available.
The choice of the material was an important issue for performing wall temperature measurement.
Finally the WDS Ultra was chosen because it is a very good thermal insulator material with a low
effusivity and that should theoretically leads to a temperature drop of 4 K during the jet impact
which was considered to be measurable.
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2.1.2 Experimental set-up description:

The experimental set-up is made of four main parts: the admission part, the jet-interaction part, the gas
supply part and the extraction part.

Admission part

The admission part situated upstream of the set-up allows to generate a smooth cross flow characterized
by a flat velocity profile and a specific turbulent intensity. The cross flow is useful to reproduce the
boundary layer interaction with the jet and also clean the jet-interaction part from the seeding particles.
This part is composed of: a convergent for accelerating the flow and generating a flat velocity profile, a
Honeycomb (the only constraint on the honeycomb design is the length which should be at least eight
time bigger than the size of a single cell [12, 91]) for breaking the large turbulent structures thus smooth-
ing the cross flow and finally a grid for imposing the turbulent intensity.

Figure 2.3: Convergent shape: Hi/2 is the inlet half height , Ho/2 is the outlet half height, L is the
contraction length, X is the horizontal coordinate

The shape of the convergent was designed to avoid boundary layer separation as recommended in previous
studies [13, 17, 92]. The main parameters for defining the shape of the convergent are:

• contraction ratio C = inlet-area/outlet-area

• height ratio εH = inlet-height/outlet-height

• shape parameter θ which is set to 0.4

Table 2.2: Parameters of the convergent

Inlet-height Outlet-height Contraction length Contraction ratio Height-ratio

200 mm 20 mm 200 mm 10 10

The half-height as indicated in Fig. 2.3 of the convergent is given by the following expression:
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The grid for imposing the turbulence is characterized by a solidity coefficient of the biggest holes. The di-
ameter of the holes decreases from the top to the bottom. The diameter of the biggest holes is Dbig

grid = 0.8
mm and the distance between two holes is around dholes = 0.2 mm. The diameter of the smallest holes
is Dsmall

grid = 0.5 mm. (see Fig. 2.4).

Figure 2.4: Schematic representation of the grid

The solidity factor [7] is defined as follows:

ψ =
surface− blocked− by − the− grid

initial − surface (2.5)

The solidity factor reads:

ψ ≈
((Dbig

grid/2 + dholes)
2 − (Dbig

grid/2)2)

(Dbig
grid/2 + dholes)2

≈ 0.5 (2.6)

The grid Mesh size can be approximated to M ≈ Dbig
grid + dholes ≈ 1mm. The position of the injector

center was set to 100M in order to have a developed turbulence during the injection. This distance is
largely higher than the recommended distance 20M in [7].

Jet-interaction part

This part corresponds to the zone where the interaction between the jet, the cross flow and the wall takes
place. It is a rectangular shape volume. The injector is situated at the center on the top of this part at
100 mm of the grid. This is considered to be a reasonable distance to have a fully developed turbulence
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under the injector. The dimensions in the spanwise direction is set to 400 mm (200 mm from the jet
center to the edges in each direction). This correspond to 20 D and should allow to avoid any lateral wall
effects on the expansion of the vortices after the impingement.

Gas supply part

The Jet supplier part is equipped with a seeding system and the nitrogen source. There is also a heating
system to obtain a hot jet. In order to have regular injections of gas during the experiments, a buffer
volume (Tank) was mounted between the nitrogen source and the injector. The volume of the tank (20L)
is sufficiently large compared to a single injection to prevent any impact of the injection on pressure
variations from the source of nitrogen and vice versa. Fig. 2.5 shows the different components of the gas
supply part.

Figure 2.5: Some components of the jet supplier part.

Extraction part

The extraction part is equipped with a fan for generating the cross flow. The intensity of the cross flow
can be changed and is measured with a hot wire. The hot-wire gives of course only a local information of
the velocity but it allows to make sure that the experiments are performed under the same conditions.

The final experiment set-up is shown in Fig. 2.6.
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Figure 2.6: Experimental set-up
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2.2 Velocity measurements: Particle Image Velocimetry

Along with LDV (Laser Doppler Velocimetry) and PDV (Planar Doppler Velocimetry), PIV is one the
most popular non intrusive and particle based technique for velocity measurements. It is widely used in
the automotive industry for geometry design or understanding the aerodynamics (swirl/tumble) effects
taking place in IC engines for instance.
The PIV was used for two purposes with two different seeding set up. When the seeding was performed
in the injected gas it was used for the following objectives:

• To understand the dynamic of the injector and to characterize the flow rate of the injector. The
latter will be an important inlet condition for the numerical simulation of the set-up.

• The second objective was to set the pressure in the tank in order to limit the Mach number below
0.2 (which corresponds to V ≈ 80 − 90 m/s). The injector was supplied by a pressurized tank
(full of nitrogen) whose pressure determines the amplitude velocity of the jet. As emphasized in
the literature review, the extension of the SGS models is mostly developed in an incompressible
framework, and its extension to compressible flows is possible under the assumption of low Mach
number.

Finally, when the seeding was performed upstream of the cross flow (before the convergent) PIV was used
to measure the velocity field during jet injection and interaction with the wall. The obtained data will
be used in chapter 4 to evaluate the different SGS models.

2.2.1 Principle of PIV:

The PIV principle can be found in several books [4, 119] and it is based on the measurement of the
displacements of the tracer particles seeded in a flow in a fixed time interval. It is performed by creating
two successive narrow light sheets in the region of interest. Two successive Mie scattering images of
particles are recorded. The instantaneous velocity of a fluid is determined by the displacements of particles
in the images by a specific processing based on cross correlation estimation knowing the delay between
the two images.

2.2.2 Experimental set-up:

The experimental set-up for the PIV measurements is represented in Fig. 2.7
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Figure 2.7: Schematic description of the PIV set-up for a plane in the X direction: M stands for mirror,
SL the spherical lens and CL the cylindrical lens.

Laser sheet: The laser sheet is generated by a Nd:YAG-laser (Spectra Physics reference: PIV400) working
at its second harmonic 532 nm. The time duration between two consecutive pulses is 2 µs. The frequency
of the laser is 10 Hz but an external synchronizer was used in order to set the recording frequency to 1
Hz that corresponds to the frequency of the injector. The laser sheet was generated by a combination
of a divergent cylindrical lens of 40 mm focal length and a convergent spherical lens of 1000 mm focal
length. Different mirrors reflecting at 532 nm were used to orientate the laser depending of the position
of the plane. The width of the laser sheet was about 1.5 mm and the height 40 mm.

Seeding system: The flow was seeded with liquid particles of Sebacat oil of size less than 5 µm. For the
jet characterization the flow going to the injector was seeded and for the interaction between the jet and
the cross-flow study only the cross flow was seeded. Preliminaries analysis confirmed the low value of the
Stokes1 number of the particle insuring that they are controlled only by the aerodynamics effects.

Signal collection and post-processing: The Mie scattering signal originating from the particles was
collected with a CCD camera of 2048x2048 pixels2 resolution equipped with a lens with the following
characteristics: f = 105 mm and f] = 2.8. The processing of the data was performed with Insight 3G
software. Each pair of images was processed using cross correlation based on Fast Fourier Transformation
FFT. The size of the interrogation windows varied from 16x16 pixels2 to 64x64 pixels2 depending on
the velocity of the flow. A local post-processing procedure based on the comparison of the velocity
magnitude of the pixel of interest and the median value of the surrounding pixels was used to remove the
non physical too high local velocity. No replacements of the removed velocity was applied. More details
about the processing techniques can be found in [119].

1St =
ρpd

2

18µgτ

where ρp is the particle density of the particles, d the diameter of the particle, µg the dynamic viscosity of the ambient gas
and τ the characteristic time.
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2.2.3 Results and analysis:

Pressure operation point and Flow rate of the injector

After several tests, it was found that in order to limit the mach number below 0.2, the tank pressure had
to be set at P = 200 mbar. This is showed by the maximum velocity in Fig. 2.8 to 2.9 which is around
90 m/s. This pressure was kept constant during all the measurement campaign.

Figure 2.8: Velocity vector field of the jet without
impinging surface at time t = 0.8ms

Figure 2.9: Velocity vector field of the jet without
impinging surface at time t = 1.0ms

PIV results without the impingement surface show that the behavior of the injector can be separated in
two distinct phases :

1. Unsteady phase: which corresponds to the early injection times from T = 0.0 ms to T = 2.8 ms
(see Fig. 2.8 to 2.14). This phase is characterized by a strong variation of the velocity and the
formation of a ring vortex.

2. Steady phase: which corresponds to the times from T = 3.0 ms to T = 10 ms. During this
phase the velocity varies slightly around 20 m/s and 25 m/s. One can also observe the formation
of vortices but of small intensities compared with that of the unsteady phase.

This results also indicate that the unsteady phase with the biggest vortex will be very important for the
heat transfer during the impingement. We can also forecast that the steady phase will be more easily
influenced by the cross flow than the unsteady phase since the velocity in the second phase is not very
high.
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Figure 2.10: Velocity vector field of the jet without
impinging surface at time t = 1.4ms

Figure 2.11: Velocity vector field of the jet without
impinging surface at time t = 1.8ms

Figure 2.12: Velocity vector field of the jet without
impinging surface at time t = 2.0ms

Figure 2.13: Velocity vector field of the jet without
impinging surface at time t = 2.4ms
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Figure 2.14: Velocity vector field of the jet without
impinging surface at time t = 2.8ms

Figure 2.15: Velocity vector field of the jet without
impinging surface at time t = 3.4ms

Figure 2.16: Velocity vector field of the jet without
impinging surface at time t = 3.8ms

Figure 2.17: Velocity vector field of the jet without
impinging surface at time t = 4.0ms
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Figure 2.18: Velocity vector field of the jet without
impinging surface at time t = 5.0ms

Figure 2.19: Velocity vector field of the jet without
impinging surface at time t = 6.0ms

Figure 2.20: Calibration curves Figure 2.21: Normalized calibration curve

The flow rate was estimated from the PIV measurement assuming that the flow is axy-symetric and that
the velocity profile is uniform (this was confirmed by the measurement). A constant value corresponding
to the velocity measured along the injector axis at 1mm from the exit was multiplied by the exit section.
Fig 2.22 shows the corresponding flow rate on which we can distinguish the two operating phases of the
injector (unsteady and steady).
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Figure 2.22: Flow rate of the injector

Helmholtz resonator

Fig. 2.22 shows that the steady phase of the injector is governed by oscillations at a specific frequency
fH = 1000 Hz. This is actually due to the strong shape variation at the exit of the injector. As explained
in the experimental set-up section, a convergent is fixed at the exit of the injector to reduce the injection
diameter from 30 mm to 10 mm as shown in Fig. 2.24. As a consequence, the convergent acts like an
Helmholtz resonator well described by Poinsot and Veynante [115].

Figure 2.23: Schematic description of an Helmholtz resonator as described by Poinsot and Veynante [115]

The frequency induces by such variation of volume (see Fig. 2.23) can be expressed as follows:

fH =
co
2π

√
S2

a2V1
(2.7)

It is necessary to accurately characterize this frequency in order to provide a full description of the
boundary condition for the computation. This requirement is important since the computational domain
will not include the whole injection system. Indeed, it was decided for computation time issues to limit
the computational domain to the top of the convergent. This decision was reinforced by the fact that
the exact geometry of the injector was not known. It is therefore important to provide a good estimation
of the height and thus the volume. Simulations will start from the top of the convergent and it will be
important to determine accurately the height and thus the volume V1 of the resonator in order to have
the same frequency during the simulation. Indeed, the geometry of the injector is quite complex and the
real size of the convergent will not necessarily leads to the expected frequency. Modifications will be made
as follows:
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∆V =
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− 1
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) (2.8)

where fnum is the frequency obtained in the simulation when the convergent has exactly the same size as
in the experiment. ∆V corresponds to the increase or reduction of the volume of the convergent in order
to reach the target observed frequency fH .

Figure 2.24: Experimental set-up with a zoom in on the convergent that acts as a Helmholtz resonator

2.3 Schlieren visualization for Cross flow rate estimation

The objective of the Schlieren technique was to tune the cross flow rate in order to provide a deviation
of about one diameter (1D) at the impinging location. The 1D deviation was chosen as a reasonable
distance for deviating the jet. Although numerous studies on deviation of jet in cross flow are available
in the literature [28, 45, 64, 90, 110, 120], we have chosen to use the Schlieren visualization for two main
reasons: first most of the studies are based on steady jet which is not the case in this work, second the
implementation of the Schlieren technique is relatively fast and easy, so that decisive information can be
obtained rapidly. Indeed, it is widely used in IC engines for densities variations observations and sprays
investigations [102, 112].

2.3.1 Principle of the Schlieren visualization:

Schlieren visualization is based on the deviation of light by refractive index gradients. The index gradient
can be due to temperature gradients, strong velocity gradients (in case of high Mach number flows for
instance) or concentration gradients. The index gradients are directly related to flow density gradient.
The deflected light is compared to undeflected light on a viewing screen. The undisturbed light is partially
blocked by a filter as it will be seen on the experimental set-up. The light that is deflected away from the
filter is a representation of the phenomena that leaded to the density gradients. In our case, this light
represents the temperature gradients between the jet and the cross flow.
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2.3.2 Experimental set-up:

The experimental set-up for the Schlieren visualization is represented in Fig. 2.25.

Figure 2.25: Schematic description of the Schlieren set-up: M stands for mirror, SL the spherical lens and
CL the cylindrical lens.

Laser illuminator: The laser illumination is generated by a helium-neon laser (HeNe laser) with a red
emission at 632 nm combined with a beam expander (to increase the size of the beam), one divergent
cylindrical lens of focal length 50.8 mm, 2 convergent lenses of focal length 600 mm.

Signal collection: The non deflected light (where there is no temperature gradients) was filtered with
a small spherical ball of tin and the deflected light was recorded with a high speed Photron camera
(reference FASTCAM-SA1) equipped with a lens with the following characteristics: f = 105 mm and
f] = 2.8.

2.3.3 Results: Tuning of the cross flow velocity

Four configurations corresponding to the flow rate given by the hot wire were investigated. For each flow
rate, Schlieren visualization were performed in order to visualize the deviation of the jet. It is worth
noting that the indicated flow rate does not correspond to the real flow rate in the measuring section
part of the experimental set-up. Indeed, some differences may exist due to the pressure losses between
the measurement point and the measuring section. Moreover the flow rate is deduced from a single point
measurement of the velocity while the velocity profile in the pipe is not known and is probably not ho-
mogeneous. Only the PIV measurements without injection with the same cross flow intensity will give
more quantitative information about the effective flow rate (velocity profile) inside the modeling part of
the set-up. This is provided in the final chapter of this report in which comparisons between experimen-
tal data and simulations are performed. Although the hot wire is not used here to provide quantitative
information on the effective flow rate, as shown in this section it provides a relative indication useful for
the tuning of the experiment and also useful to make sure that the experimental conditions are the same
throughout all the measurement campain.
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Case A: Measured flow rate with the hot wire 31 m3/h

Figure 2.26: Case A: Jet in cross flow visualization from 0 to 3 ms.

Figure 2.27: Case A: Jet in cross flow visualization from 4 to 7 ms.
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Figure 2.28: Case A: Jet in cross flow visualization from 8 to 11 ms.

Fig 2.26, 2.27, 2.28 show that the cross flow is very low and has almost no impact on the jet.

Case B: Measured flow rate with the hot wire 66 m3/h

Figure 2.29: Case B: Jet in cross flow visualization from 0 to 3 ms.
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Figure 2.30: Case B: Jet in cross flow visualization from 4 to 7 ms.

Figure 2.31: Case B: Jet in cross flow visualization from 8 to 11 ms.

Fig 2.29, 2.30, 2.31 show that a slight deviation of the jet can be observed after the impingement but
still the deviation is around 0.5D which is still lower than the desired deviation of the jet.

Case C: Measured flow rate with the hot wire 96 m3/h
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Figure 2.32: Case C: Jet in cross flow visualization from 0 to 3 ms.

Figure 2.33: Case C: Jet in cross flow visualization from 4 to 7 ms.
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Figure 2.34: Case C: Jet in cross flow visualization from 8 to 11 ms.

For this cross flow intensity, Fig 2.32, 2.33, 2.34 show that the target deviation is achieved. Indeed, the
stabilization of the jet correspond to a deviation of about 1D at the impingement surface.

Case D: Measured flow rate with the hot wire 122 m3/h

Figure 2.35: Case D: Jet in cross flow visualization from 0 to 3 ms.
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Figure 2.36: Case D: Jet in cross flow visualization from 4 to 7 ms.

Figure 2.37: Case D: Jet in cross flow visualization from 8 to 11 ms.

Fig 2.32, 2.33, 2.34 show that the cross flow intensity is very high and the deviation is too large. For the
late time observation, the jet does not seem to reach the solid surface.

Finally, the cross flow rate indicated by the hot wire which corresponds to one diameter deviation is
roughly 96 m3/s. As already, explained this does not correspond to the flow rate in the measuring section
but allows to make sure that all the experiment are performed under the same conditions regarding the
cross flow intensity.
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2.4 Gas temperature measurement: Laser Induced Fluorescence
and the adiabatic-mixing model

Laser Induced Fluorescence was chosen as the measurement technique for gas temperature and mixing.
Laser induced fluorescence is mainly proportional to the fluorescent tracer concentration in the flow,
but depending on the tracer characteristics it is also affected by temperature gradients, allowing for
temperature measurements, as well as oxygen concentration gradients when the tracer is affected by
oxygen quenching. More details about the photophysical processes and the characteristics of the commonly
used fluorescent tracers can be found in [132]. Because nitrogen had to be used in the injector supply
system for security reasons (mainly to avoid inflammable mixture when fluorescent tracer are added to
the bath gas), heterogeneities in oxygen concentration were expected in the jet. As a result, fluorescence
quenching was expected in the experiment depending on the fluorescent tracer properties. This feature
had to be taken into account when selecting the fluorescent tracer, as well as sensitivity of the fluorescence
tracer to temperature in the temperature range of the experiments. Considering these issues, the following
tracers were selected:

• Toluene: It has the advantage to have a good sensitivity to temperature variations so that with
an appropriate calibration of the ratio of the fluorescence intensity recorded simultaneously at two
spectra bands the temperature can be deduced [74] with good accuracy. However, the fluorescence
signal is strongly quenched in presence of oxygen thus limiting the two color LIF-toluene to the
oxygen free portion of the jet (the portion close to the injector exit).

• Diacetyl: Unlike Toluene, the Diacetyl is only weakly affected by temperature variations (for the
temperature range investigated in our study) nor by oxygen variations. It is an interesting tracer for
mixing characterization and can directly give the mass fraction of the injected nitrogen. However,
it can not be used for temperature measurement. More about diacetyl tracer can be found in [56]

The idea behind the choice of those two tracers is to take advantage of their complementary properties and
the adiabatic-mixing model. The adiabatic-mixing model temperature estimation is a data post-processing
technique based on the thermodynamical equilibrium between two or more fluids. In an adiabatic mixing
process, knowing the mass fraction between two gases the equilibrium temperature depends only on the
initial temperatures. In other terms, by measuring the inlet temperature of the jet at the convergent exit
(where the flow is homogeneous and does not contain oxygen) using toluene and measuring the mass
fraction of the nitrogen using diacetyl (where the flow is heterogeneous), the temperature of the whole
domain can be deduced.

2.4.1 Principle of the adiabatic mixing model

This technique was already successfully used in IC engines for temperature measurements knowing the
fuel air ratio [41, 43]. The model is actually based on the conservation of energy among the two gases.
In [43] for example, the objective was to obtain the temperature after the injection of cold fuel in an hot
in-cylinder air environment. The equilibrium temperature is derived from the following expression:

∫ Ta,i

Tmix

cp,adT =
F

A

[∫ Tint

Tfl,i

cp,fldT + hν,Tint +

∫ Tmix

Tint

cp,fvdT

]
(2.9)

where Ta,i is the air initial temperature, Tfl,i is the initial fuel temperature, Tmix the final temperature
of the mixing air-fuel, Tint the temperature at which the fuel vaporizes from the liquid to the gas state,
F the fuel mass fraction, A the air mass fraction, cp,a the heat capacity of the air at constant pressure,
cp,fv and cp,fl respectively the heat capacity at constant pressure of the fuel at the vapor and liquid state
and hν,Tint the latent heat of vaporization of the fuel.
The term on the left expresses the decrease of the thermal energy of the air, the first term in the bracket
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on the right expresses the increase of the energy of the fuel at the liquid state, the second term (also in
the bracket on the right) the energy required to vaporize the fuel from liquid phase to gaseous phase and
the last term (in the bracket on the right) the increase of energy of fuel once at the gaseous phase. F

A is
the mass fuel air ratio. Finally Eq. 2.9 clearly states the energy balance between the two fluids.
In the case of our experiment, the problem is simpler because the two fluids are in the gaseous phase.
In fact, the energy provided by the hot injected nitrogen is decreased by the ambient air cross flow. The
final temperature is then deduced from the following expression:

N

∫ Tn,i

Tmix

cp,ndT = (1−N)

∫ Tmix

Ta,i

cp,adT (2.10)

All the terms of expression 2.10 are known except the nitrogen mass fraction N and the initial jet
temperature Tn,i. The injector is heated at 120K (see Fig. 2.1) but we can not assume that the injected
gas is also at that temperature because of the complex configuration of the injector and the convergent
at the exit.

Shortcomings of the adiabatic-mixing model: It is worth noting that the adiabatic mixing model
as it will be used here has some limitations. Specially near the impingement wall the system is no longer
adiabatic. Moreover, we also assume that the diffusivity of the diacetyl in the air is identical to the
diffusivitiy of nitrogen so that the mass fraction given by the LIF measurements corresponds to the mass
fraction of the nitrogen.

2.4.2 Jet inlet temperature measurements: LIF Toluene

While single color toluene LIF can be used to measure temperature when the tracer concentration is
homogeneous ([36, 140]), this technique can not be used in stratified flows. In such case, 2 line toluene LIF
is recommended for determining the inlet jet temperature, since the local tracer concentration cancels out
when performing the ratio of the two recorded signals. Moreover, the gas composition at the convergent
exit can be considered oxygen-free (only nitrogen) so that the toluene signal will not suffer from oxygen
quenching [74] as it would be the case in the remaining part of the jet.
Two-color LIF toluene was initially introduced by Luong etal. [88] and more recently studied by Tea etal.
[144] for IC engines application. It relies on the temperature-dependence of the emission fluorescence
spectrum which is red-shifted with increasing temperature as shown in Fig. 2.38.

Figure 2.38: Red shift of the emissions spectrum with increasing temperature [88]
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The technique consists in measuring the fluorescence signal in two distinct spectral bands. The ratio of
the two signals is directly proportional to the temperature. Indeed the fluorescence signal Sfl is directly
proportional to the toluene number density ntot, the absorption cross section σabs and the fluorescence
quantum yield Φfl :

Sfl(T, x, y) = ntot(T, x, y)σabs(T )Φfl(T ) (2.11)

where T is the local temperature and (x, y) the spatial coordinates. The ratio of the fluorescence signal
detected in two different spectral bands is given by the following equation:

S
′blue′

fl

S
′red′
fl

=
η
′blue′Elaser(x, y)ntot(x, y)σabs(T (x, y))Φ

′blue′

fl (T (x, y))

η′red′Elaser(x, y)ntot(x, y)σabs(T (x, y))Φ
′red′
fl (T (x, y))

= f(T (x, y)) (2.12)

Eq. 2.12 shows that with an appropriate calibration of the fluorescence characteristics for two spectral
bands, the temperature can be afterward predicted. Two pass-band filters centered at 320 nm and 280 nm
are used during our experiment. As reported in [88] and [144] the two-color LIF toluene has numerous ad-
vantages. Indeed, both spatial laser intensity and tracers density variations cancel out with this technique.
Moreover the use of a single-wavelength excitation (248 nm for our experiment) also significantly reduce
the experimental cost and complexity of the set-up and therefore enable to optimize the measurement
accuracy.

Linearity check:

An important step in LIF measurement is to make sure that the fluorescence occurs in the linear regime.
Indeed, the 2 line toluene LIF technique relies on photophysical processes occurring in that particular
regime in which the fluorescence intensity is directly proportional to the laser intensity. In the saturated
regime the photophysical processes are very different and the strategy used to measure temperature is
no longer applicable. The linearity test consists in verifying that the fluorescence intensity is directly
proportional to laser fluence. Since saturation occurs more rapidly at lower temperature the linearity test
is realized at lowest temperature (ambient) of the experimental range. The corresponding set-up is shown
in Fig. 2.56.

• Set-up:
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Figure 2.39: Schematic description of the 2 line toluene LIF set-up for the linearity study : M stands for
mirror, SL the spherical lens, CL the cylindrical lens, BS the beam splitter and BP the band pass filter

Laser sheet: The laser sheet is generated by a KrF Excimer Laser (Coherent Physics) with a signal
at 248 nm. The power intensity of the laser was controlled using a power reducer and measured
with a powermeter. Additional beam splitters were used to reduce the intensity of the laser.
Seeding system and signal collection The flow was seeded with toluene by bubbling the toluene
flow. The signal was recorded with an intensified CCD camera. A Band Pass filter centered at
280 nm was fixed on the camera. Images were post-processed with an In-House software developed
at IFPEN (VIM and additional Matlab routines).

• Results:

Figure 2.40: Linearity test curve.

The post-processing of images was performed just at the exit of the injector where the seeding
is expected to be homogeneous. We can see in Fig. 2.40 that the linear regime is obtained for
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power density below 11 mJ. Above that value there is a saturation phase where the LIF-Toluene
measurement technique can not be applied. The vertical bars represent the standard deviation on
the signal for the 50 recorded images. The horizontal bars correspond to the standard deviation on
the measured laser intensity. Because the fluorescence signal is directly proportional to the laser
intensity in the linear regime, we have decided to perform the rest of our measurements at the 8 mJ
intensity. This ensure that the fluorescence is excited in the linear regime while optimizing signal
to noise ratio.

Calibration phase:

As mentioned above the 2 line toluene LIF technique requires a calibration curve that corresponds to
the ratio of the signal for two distinct filters band. The normalized calibration curve (see Fig. 2.71) used
corresponds to the work of Tea etal.. It correspond to the ratio of the fluorescence signal obtained with
the band pass filter centered at 280 nm (BP 280) and 320 nm (BP 320). Each point of the curve is
obtained from a given spectrum of the toluene at the corresponding temperature. A complete description
of the procedure of the calibration phase can be found in [144].

Figure 2.41: Normalized calibration curves of the Fluorescence signal ratio: BP 280 / BP 320

The corresponding calibration function is expressed as followed:

(
S280

S320

)

n

= 0.359 exp(0.0035 T ) (2.13)

The equation was slightly modified in order to retrieve the ambient temperature of the experimental
room which is approximately 293 K and not 300 K as it was the case during the calibration.

Temperature measurement procedure:

In order to obtain a reliable estimation of the temperature at the jet exit, we have decided to characterize
the heating system of the experimental set-up. This can be simplified as shown in Fig. 2.42
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Figure 2.42: Simplified description of the heating system of the jet.

The objective is to characterize the correlation between the set temperature and the inlet temperature
measured using the LIF-toluene technique. Four different temperatures measured with the thermocou-
ple placed upstream of the injector were investigated. The corresponding fluorescence signal is always
normalized by the fluorescence signal at ambient temperature Ta.

• Set-up: The experimental set-up is similar to the one used for the linearity study with an additional
intensified CCD camera for performing the ratio of the fluorescence signals.

Figure 2.43: Schematic description of the LIF set-up for the inlet jet temperature measurement : M stands
for mirror, SL the spherical lens, CL the cylindrical lens, BS the beam splitter and BP the band pass
filter.

• Results:
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Figure 2.44: Single image of the jet showing the measurement area and the quenching effect on the
fluorescent signal (strongly quenched in the vortices).

According to Eq. 2.13, the temperature is given by the following expression:

T =
1

0.0035
ln

(
1

0.359

(
S280

S320

)

n

)
(2.14)

Although Eq. 2.14 is quite simple, its application with the experimental data is complex and requires

a well defined procedure. The ratio
(
S280

S320

)
should be rewritten following:

S280

S320
=
S280
X

S320
Y

(2.15)

where X and Y stand respectively for camera X and Y. It means that a correction should be applied
to account for the differences between the two cameras. Indeed, cameras are not perfectly identical
and generally give different results with the same filters. A calibration is therefore required. It is
then necessary to respect the following steps to take into account these requirements:

1. Step 1: Simultaneous acquisition: Camera X + PB 280 and Camera Y + PB 280

Figure 2.45: Comparison of the fluorescence signal obtained with camera X with the Band Pass filter 280
and camera Y with the Band Pass filter 280 at temperature 390 K.
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This first step is important for quantifying the difference between the two cameras used. As it
can be seen in Fig 2.45 the fluorescence signal obtained with the camera X is higher than the
fluorescence signal obtained with camera Y although the same filters are used.

2. Step 2: Simultaneous acquisition: Camera X + PB 320 and Camera Y + PB 320

Figure 2.46: Comparison of the fluorescence signal obtained with camera X with an identical Band Pass
filter 320 and camera Y with the Band Pass filter 320 at temperature 390 K.

The second step can be considered as a validation stage for the first step. Indeed, although
the two cameras are not identical, one should make sure that this difference does not depend
on the observation band (in a more rigorous analysis even the filter are not identical but the
difference can be neglected). In other terms the ratio of the fluorescence signal of the two
cameras obtained at the second step should be similar to the ratio obtained at the first step.

3. Step 3: Simultaneous acquisition: Camera X + PB 280 and Camera Y + PB 320

Figure 2.47: Comparison of the fluorescence signal obtained with camera X with the Band Pass filter 280
and camera Y with the Band Pass filter 320 at temperature 390 K.

If the two cameras were perfectly identical, it would have been possible to deduce at this single
step the final temperature from the ratio of the two fluorescence signal. Obviously it is no the
case and the ratio obtained here need to be corrected by the ratio obtained in the two previous
steps.

4. Step 4: Simultaneous acquisition: Camera X + PB 320 and Camera Y + PB 280
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Figure 2.48: Comparison of the fluorescence signal obtained with camera X with the Band Pass filter 320
and camera Y with the Band Pass filter 280 at temperature 390 K.

Similarly to the second step, this stage helps to validate the corresponding temperature ob-
tained at the third step. It will help to give a first estimation of the accuracy of the measure-
ments.

Another important step during the post-processing, is the image registrations. It consists in making
sure that the image recorded from one camera X corresponds spatially to the image of camera Y.
It is based on error minimization. More details about the registration procedure can be found in
[144]. We recall here that the LIF technique is applied only on a small surface close to the injector
where quenching effects are avoided and not on the entire image (see Fig. 2.44).
Because of the heterogeneity of the fluorescence signal recorded from the two cameras as it can
be seen in Fig. 2.45 to Fig. 2.48, one should wonder if the temperature is homogeneous at the jet
exit. According to Eq. 2.11 the heterogeneity on a single image can be due to the tracer density
heterogeneity. The advantage of using two cameras (and recording simultaneously two images) is
that if the heterogeneity is due to tracer heterogeneity then this will be observed on the fluorescence
profiles given by the two cameras identically (the density does not depends on the observed spectra
bands). But if it is due to the temperature then the signal profile will be different from one camera
to the other because it varies depending on the observation spectra bands.
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Figure 2.49: Fluorescence Profile recorded with the two cameras at Y= from the jet exit at the different
steps (from step1 t o step 4) and at room temperature.
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Figure 2.50: Fluorescence Profile recorded with the two cameras at Y= from the jet exit at the different
steps (from step1 t o step 4) and at temperature T = 390 K.

We can see in Fig. 2.50 to 2.52 that the fluorescence profile follows exactly the same trends on the
image recorded from the two cameras specially when different filters are used. This confirms the
hypothesis that the temperature is homogeneous at the jet exit but the toluene seeding is not. The
different figures also emphasized the intrinsic differences between the two camera and the necessity
of step 1 and step 2.

Fig. confirms the homogeneity of the temperature on the surface considered. The ratio of the signals
of the two camera on a profile inside the surface shows that the ratio is constant (constant for two
similar band pass filter and also for two different band pass filter) on the jet exit. The corresponding
temperature is T = 445 K.
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Figure 2.51: Fluorescence Profile recorded with the two cameras at Y= from the jet exit at the different
steps (from step1 t o step 4) and at temperature T = 445 K.

The heterogeneity of the fluorescence signal in average (the profile presented are extracted from the
average of 50 individuals snapshots) is less pronounced at ambient temperature as shown in Fig.
2.50. This result indicates that the density heterogeneity are very probably due to some condensation
issue of the toluene inside the injector when the nitrogen is heated.
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Figure 2.52: Fluorescence Profile recorded with the two cameras at Y= from the jet exit at the different
steps (from step1 t o step 4) and at temperature T = 585 K.

Fig. 2.53 confirms the homogeneity of the temperature on the surface considered. The ratio of the signals
of the two cameras on a profile inside the surface shows that the ratio is constant (constant for two similar
band pass filters and also for two different band pass filters) on the jet exit from pixel position 425 to
525. The corresponding temperature is T = 445 K.

Figure 2.53: Ratio of the fluorescence signal on a profile inside the measurement surface for the step 2
and step 4 at temperature T = 445 K.
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Finally two series (S1 and S2) of measurements were performed at four different temperatures 295 K,
390 K, 445 K and 585 K. For each measurement, the temperature was deduced using the two methods
(M1 and M2) described above. As a result for each measurements, two ratios/temperatures S1M2 and
S1M2 (or S2M1 and S2M2) are determined. Results of the ratios and the temperatures are respectively
presented in Fig. 2.54 and Fig. 2.55.

Figure 2.54: Corrected ratio for the two series of measurements obtained with LIF toluene at fours
different temperatures.

Figure 2.55: Measured temperature for the two series of measurements obtained with LIF toluene at fours
different temperatures.

The two series show similar trend for both the ratio and the injector outlet-jet temperature. Concerning
the jet temperature we can see that there is a difference between the measured temperature with the
thermocouple and the temperature given by the LIF technique. It can be explained by the heat loss inside
the system injector + convergent and also by the fact that the temperature given by the thermocouple
is a global temperature influenced by the local Mach number (the section where the thermocouple is
situated is very small compared with the outlet section). There are also some differences between the
measured temperature due to the initial ratio which is not strictly the same for all the measurements and
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also some measurements error due to the averaging and the background.
Finally, the two values that largely deviate from the rest of the data were not considered and a simple
averaging of the data was done to obtain a law that expresses the inlet jet temperature Tin as a function
of the thermocouple temperature TTc as follows :

Tin = −1.08 10−3T 2
Tc + 1.32 TTc ± 5 (2.16)

2.4.3 Mass fraction measurement: LIF Diacetyl

Knowing the inlet temperature of the nitrogen jet, the remaining unknown variable is the mass fraction. It
will be obtained by fluorescence excitation of the diacetyl tracer. However, it was important to verify the
hypothesis under which this tracer was used. This hypothesis already mentioned in the introduction is that
the fluorescence intensity is not affected by temperature variations in the range investigated. Moreover,
unlike the 2 line toluene LIF, LIF-measurements with diacetyl are proportional to laser intensity profile.
Meaning that a knowledge of the laser profile is mandatory to perform laser corrections if necessary.

Temperature variations test:

This test consisted in changing the inlet temperature of the jet and in comparing the fluorescence signal
at two different sections. Three imposed temperatures (temperature measured with the thermocouple:
Tc) were investigated: 278 K, 369 K and 415 K. They corresponds respectively to an inlet temperature
of the jet according to Eq. (2.16) of : 283.5 K, 340 K, 362 K.

Experimental set-up

Figure 2.56: Schematic description of the LIF (with diacetyl) set-up for the linearity study: M stands for
mirror, SL the spherical lens, CL the cylindrical lens and HP the High pass filter at 370 nm

Laser sheet: The laser sheet is generated by a NdYAG laser working at 355 nm. The laser plane was
generated by a combination of a divergent cylindrical lens of 40 mm focal length and a convergent spherical
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lens of 1000 mm focal length. Different mirrors reflecting at 355 nm were used to orientate the laser sheet.
The width of the laser sheet was about 1.5 mm and the height 40 mm.
Seeding system and signal collection The flow was seeded with diacetyl by bubbling the nitrogen
flow in a small tank containing a diacetyl solution. The signal was recorded with an intensified CCD
camera. A High Pass filter centered at 370 nm was placed on the camera. Images were post-processed
with an In-House software developed at IFPEN.

Measurements were performed without the impinging surface at the same injection time for the three
temperatures. As it can be seen in Fig. 2.57 to Fig. 2.59 the fluorescence signal does not really vary
significantly when varying the temperature. One can note that the penetration length of the jet slightly
increases when the jet get hotter.

Figure 2.57: Fluorescence signal of diacetyl for the
free jet at temperature T = 298 K

Figure 2.58: Fluorescence signal of diacetyl for the
free jet at temperature T = 369 K

Figure 2.59: Fluorescence signal of diacetyl for the free jet at temperature T = 415 K

Fluorescence profiles on two different locations (vertical pixel location 200 and 400) show that the fluores-
cence signal is not sensitive to temperature variations (see Fig. 2.60 and Fig. 2.61 ). This result shows that
diacetyl fluorescence can be used with temperature correction to measure the mass fraction of nitrogen.
We can also note that the signal is relatively homogeneous for all temperature conditions showing that
the diacetyl tracer is homogeneously distributed in the nitrogen flow and therefore diacetyl LIF can be
used for nitrogen mass fraction measurements.
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Figure 2.60: Comparison of diacetyl fluorescence sig-
nal for three different temperature at vertical loca-
tion 200 pixels

Figure 2.61: Comparison of diacetyl fluorescence sig-
nal for three different temperature at vertical loca-
tion 400 pixels

Laser profile characterization:

The laser profile was characterize with a procedure that consists in injecting the nitrogen/diacetyl mixture
with the injector inside a cylinder whose height corresponds to the height of the measurements section 20
mm. The signal was recorded after several injections considering that the mixing is homogeneous inside
the cylinder. Fig. 2.62 shows the corresponding acquisition averaged over 50 individuals snapshots.

Figure 2.62: Laser plane for LIF diacetyl measurments.

The vertical profile of the laser is shown in Fig. 2.63. As it can be seen, variations in laser intensity are
below 10%. No correction were therefore applied to the LIF signal since this value was considered to be
below the measurement uncertainty.
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Figure 2.63: Profile of the laser plane at the horizontal location 400

Mass fraction measurements:

The experimental set-up is similar to the one used for the temperature variations tests. Measurements are
performed with the cross flow and of course the impingement surface. The entire images are normalized
by the diacetyl signal at the jet exit at early injection t = 0.8 ms in order to obtain the mass fraction Fig.
2.64 shows an example of a post-processed sample of images averaged over 50 snapshots at time t = 1.2
ms.

Figure 2.64: Mass fraction of diacetyl at time t = 1.2 ms.

We can see that, near the injector the mass fraction is approximately one and in the core of the vortices
the mass fraction decreases because of the mixing with the cross flow. The latter should induce a decrease
of the temperature of the jet. The final temperature field is obtained by using Eq. 2.10 knowing the inlet
jet temperature. Results are compared in the chapter 4 with numerical results.
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2.5 Wall temperature measurement: Laser Induced Phospho-
rescence Thermography:

The main issue for temperature measurement was to find a reliable technique that can be used for mea-
suring a low temperature increase (around 4 K for a theoretical impinging temperature of 100 K) with a
very fast response time (the interaction between the jet and the impinging surface lasts less than 10 ms)
particularly on the specific material that the impinging surface is made of.
The first option was to used fast thermocouples such as those manufactured by nanmac (www.nanmac.com).
They have the interesting property to give a very fast response time of the order of magnitude of the
microsecond. But after several tests performed by the company, it was not possible to built sufficiently
thin thermocouple probes that could be inserted in the impinging surface. This was mainly due to the
friable structure of the selected material.
It was then decided, as second option, to use a recently developed technique that consists in depositing a
small layer of phosphor on the measuring surface and in inducing a phosphorescence signal with a laser.
The collected phosphorescence signal decay depends on the temperature of the surface. This technique
is known in the literature as the LIPT which stands for Laser Induced Phosphorescence Thermography.
Although the technique is intrusive because the temperature is measured not on the surface directly but
on the phosphor layer, it has the advantage to have a very fast response time (the phosphorescence decay
rate can be less than the microsecond). In order to avoid measurement bias due to the thickness of the
phosphor layer, the application of the layer is well controlled so that the thickness is small as it can be
seen in Fig. 2.65 and Fig. 2.66.

Figure 2.65: Thickness of the phosphor deposit Figure 2.66: Top view of the phosphor deposit

2.5.1 Principle of the LIPT

LIP technique has became over the last past years a very reliable technique [3, 46, 66, 124, 145] since it
allows a local and temporal tracking of surface temperature. It consists in inducing a phosphorescence
signal after a laser excitation as shown in Fig 2.67.
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Figure 2.67: Principle of the LIP

The lifetime or the time duration of the phosphorescence intensity (when it decreases to 1/e of the initial
intensity see Eq.2.17) depends on the temperature and hence with an appropriate calibration of the
phosphor the temperature can be deduced.

I = I0exp

(
− t
τ

)
+B (2.17)

where I is the phosphorescence intensity at the initial time, B the baseline and τ the life time that
depends on the temperature.

Another interesting advantage of the LIPT technique is that it covers a very wide range of temperature
from very low temperature up to 2000 K or 3000 K. Fig 2.68 shows some calibration curves for different
phosphors confirming the potential of this technique.

Figure 2.68: Calibration curves for different phosphor (Alison and Gillies [3])

It is worth nothing that the calibration function is strongly coupled with the collection filter band. Because
of the large emission spectrum of a given phosphor different calibration curves can be obtained from the
same excitation wavelength as shown in Fig. 2.69.
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Figure 2.69: On the left hand side Emission spectrum for La2O2 : Eu and on the right hand side two
calibration curves corresponding to two different collections bands ([66]).

2.5.2 Experimental set-up:

The experimental set-up for the LIPT measurements is represented in Fig. 2.70.

Figure 2.70: Experimental Set-up for the LIPT measurements

Laser beam: The laser signal was generated by a 1064 nm Nd:YAG-laser working at its third harmonic
(355 nm). A combination of mirrors reflecting at the wavelength 355 nm were used to direct the beam to
the phosphor layer.
Signal collection: La2O2Eu phosphor was chosen since it shows an interesting time decay dependency
at low temperature. The temporal phosphorescence signal was recorded with Photo Multiplier Tubes
(Hamamatsu type PMT, reference: H9306) along with a fast response oscilloscope (Textronix type os-
cilloscope). A pass-band filter centered at 532 nm was mounted on the PMT in order to restrict the
collection to this spectral band.
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2.5.3 Results and analysis:

The most critical step in LIPT technique measurement is the post-processing of the exponential curve
(see Eq. 2.17) which leads to the determination of the lifetime. The principle consists in fitting the curve
with an exponential fit with a minimization constraint (the best fit can correspond for example to the
curve with the lowest error using a mean least square method). The problem that arises (according to
the IFPEN experience ) with this technique is that the exponential fit depends strongly of the initial
intensity I0 specially at low temperature. Indeed, a wrong estimation of the initial pic can lead to a bad
prediction of the lifetime. Moreover the initial intensity can be affected by interferences that occur instant
after laser excitation. In addition, large intensity variations occur in very short-time scales in these first
instants and the PMT bandwidth might not be appropriate for such fast variations.
One of the method used at IFPEN to avoid this problem is to fit the curve with a bi-exponential fit
instead of a single exponential. The phosphorescence signal is then expressed as follows:

I = I1exp

(
− t

τ1

)
+ I2exp

(
− t

τ2

)
+B (2.18)

where τ1 is the shortest time that corresponds to the time duration close to the peak and τ2 the longest
time which is more reliable and more representative of the decay induced by the laser excitation. In
what follows, the lifetime corresponds to τ2 and each lifetime corresponds to an averaging over 100 single
acquisitions.

Calibration:

The calibration of the phosphor was performed using a constant-temperature oil bath. A phosphor layer
is deposited on a pastil which is then introduced inside the bath. The temperature of such a constant-
temperature bath can be accurately controlled and allowed a fine calibration of the phosphor. The tem-
perature is then increased by increments of 0.2 Kelvin and the associated lifetime is recorded.
Because the day to day variations of the ambient temperature in the cell, hence of the initial wall tem-
perature at injection time, can be higher than the wall temperature variations during injection, it has
been decided to analyze only the normalized calibration curve to limit the study to relative temperature
variations. The calibration curves obtained are shown in Fig. 2.71 and 2.72.

Figure 2.71: Calibration curves Figure 2.72: Normalized calibration curve

The calibration curve shows a linear dependency between the temperature (for the range investigated)
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and the lifetime. The corresponding linear fit equation is expressed as:

τnorm = −2.32 10−2 T + 1.4 (2.19)

Because we deal with a normalized curve, the most important parameter is the slope of this curve.
Indeed knowing the slope, the room temperature and the normalized lifetime (with respect to the room
temperature lifetime) can give the corresponding temperature increase.

Results:

The measurement point is situated just below the injector in order to optimize the temperature increase. If
the center of the injector is considered as the origin, the measurement point is at the following coordinates:
X = 0, Y = −2D and Z = 0.
Two series of measurements were performed. The objective of the first one was to estimate the precision of
the measurement technique in the presence of the turbulent non isothermal cross flow below the injector.
Although the cross flow was initially isothermal just after the turbulent grid, it is heated by the hot
wall on the top of the measurement section. The measurement of this preliminary tests consisted in
determining the variations on the temperature (deduced from the decay time) induced by the turbulent
cross flow without injection and at ambient temperature. Results showed a variation of the temperature
of 0.2 K which can be considered as the precision of the technique in our configuration.

Figure 2.73: Normalized decay time Figure 2.74: Mean temperature increasing

The second serie was the measurement of temperature increase during injection. The results are shown in
Fig. 2.73 and Fig. 2.74. They show that the maximum temperature increase is around 1K which is lower
than the theoretical expected increase. Several reasons can explain this difference. First the theoretical
estimation is based on simplifying assumptions, and also the injected temperature is not 100 K as used in
the theoretical analysis but 70 K ( ±5 K) as shown during the determination of the inlet jet temperature
with the LIF technique. As it will be seen in the analysis of the PIV results the increase occurs after the
impingement and during the interaction between the jet and the solid boundary. After 2.5 ms the jet is
deviated and the temperature progressively decrease to the ambient temperature. Since the magnitude
of the temperature increase (1K) is not significant compared to the temperature gradient in the flow this
result shows that the bottom wall temperature has no little influence on the flow motion.
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Chapter 3

Numerical models development:
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3.1 Academic tests cases

The main issue of SGS models for IC engines applications are their ability to predict free flows, wall-
bounded flows and anisothermal flows at low Mach number. The first step in this thesis was to study
separately those flows features in the following tests cases: Homogeneous Isotropic Turbulence and Tur-
bulent Channels (isothermal or anisothermal).

3.1.1 Homogeneous Isotropic Turbulence (HIT)

The HIT is a very interesting and well used test case for assessing performances of models for various
applications with turbulence interaction: Shock-turbulence interaction [38, 50, 83], Scalar mixing [44,
8], Combustion [14, 30], multiphase flows [79, 136, 152]. Concerning the development of SGS models,
experimental HIT are standard cases for evaluating model’s constants [6, 106, 109, 133]. There are two
main experimental HIT databases: Comte-Bellot and Corsin (CBC) [31] experiment and Kang et al. [65]
experiment. The later is an improvement of the CBC database with a larger inertial range. Before going
further to the details of the two HIT characteristics, basic notions that can be found in the literature
[7, 27, 127] are first recalled as well as the different steps for implementing and performing an HIT.

• Characteristic lengths of an HIT 1

The Homogeneous Isotropic Turbulence is at first sight the most simple configuration for studying
turbulence phenomena because the statistics can be easily obtained. It can be re-defined as a
flow in which the velocity gradient are only time dependent (homogeneity condition) and whose
statistics are identical in all points and are invariant versus symmetry, translation and rotation
(isotropy condition). An interesting function for describing the statistics in turbulence is the spatial
correlation function:

Rij(x, r, t) =< u
′

i(x, t)u
′

j(x + r, t) >= Rij(r, t) (3.1)

where the symbol <> represents the ensemble average. In the case of an homogeneous turbulence
Rij(r, t) = Rji(−r, t) and Rii(r, t) = Rii(−r, t). The correlation function allows to define an impor-
tant characteristic length of turbulence that is the integral length scale in the ith-direction:

Linm =

∫ ∞

0

Rnm(x)dx (3.2)

One may distinguish the longitudinal integral length L1 = L
(1)
11 = L

(1)
22 = L

(1)
33 and the transversal

integral length L2 = L
(2)
11 . For an HIT, L1 = 2L2. The integral length can be directly associated to

the length of the biggest eddies of the flows that carry the energy. Along with the integral length,
another interesting length for describing the different scales of the turbulence is the Taylor’s micro
scale λ. It can be obtained by a Taylor expansion series of the cross correlation as follows:

R11(r, 0, 0) = 1− r2

λ2
1

+ O(r3) (3.3)

where λ1 is the Taylor micro-scale in the longitudinal direction. Indeed as for the integral length,
there is the longitudinal and transversal Taylor micro-scale and in the case of an HIT λ1 =

√
2λ2.

In contrary to the integral length, the Taylor micro-scale can not be directly linked to the size of
eddies but it can be defined as the scale under which the viscous effect control the flow dynamic. The

1More details in this part can be found in [7, 127]

74



3.1. ACADEMIC TESTS CASES

two experimental databases that are going to be used, based their Reynolds number on this scale
because it is a good indicator of the size of the inertial range. The final length for fully describing
an HIT is of course the Kolmogorov length scale η.

Figure 3.1: Schematic description of scales for an HIT.

The figure 3.1 summarizes the dynamic of an HIT. It represents both the kinetic energy spectrum
and the viscous spectrum (normalized by the viscosity of the fluid) with respect to the wavenumber.
The energy spectrum reaches its peak for eddies that roughly correspond to the integral length.
As for the viscous spectrum the peak is obtained for eddies of size close to the Taylor micro-scale.
Both spectra completely vanish at the Kolmogorov scale.

• Numerical experiment of HIT

The difficulty when dealing with HIT with a spacial solver is to generate a velocity field u in
the physical base (e1, e2, e3) starting from a given energy spectrum E(k) and the spectral base
(ek1, ek2, ek3). The computation is usually initialized in a cubic box of size LB .

The initialization starts first with the mass conservation equation rewritten in the spectral space
as follows:

k.u(k) = 0 (3.4)

(3.5)

The easiest way to satisfy this condition is to define an intermediate spectral base (eint
k1 , e

int
k2 , e

int
k3 )

so that :

eint
k3 =

k

k
(3.6)

and the velocity vector can be rewritten with the intermediate coordinates as follows:

u = a(k)eint
k1 + b(k)eint

k2 (3.7)

with the additional condition for the kinetic energy:

1

2

∫
(a.a∗ + b.b∗)ds(k) = E(k) (3.8)
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where a(k)∗ are b(k)∗ are respectively the conjugates of a(k) and b(k). Eq. (3.8) can be expressed
as :

(a.a∗ + b.b∗) =
E(k)

2πk2
(3.9)

the expression of the intermediate velocity in the (eint
k1 , e

int
k2 , e

int
k3 ) basis is then given by the following

expression:

a(k) =

√
E(k)

2πk2
cos(θ)exp(jθ1) (3.10)

b(k) =

√
E(k)

2πk2
cos(θ)exp(jθ2) (3.11)

θ and θi are random number that define the phase of the vector u. The last step consists in finding
the corresponding velocity component in the physical space that corresponds to the intermediate
calculated intermediate velocity component. This is achieved with a simple transformation that
leads to the following coordinates ui:

u1 =
a(k)k2k + b(k)k1k3

k
√

(k2
1 + k2

2)
(3.12)

(3.13)

u2 =
b(k)k2k3 − a(k)k1k

k
√

(k2
1 + k2

2)
(3.14)

(3.15)

u3 =
b(k)

√
(k2

1 + k2
2)

k
(3.16)

More about the initialization of an HIT can be found in work of Rogallo [122] and Boughanem and
Trouve [16]. The figure 3.2 summarizes the initialization procedure of an HIT.

Figure 3.2: Numerical initialisation of an HIT.

• The test case

The two experiments of CBC and Kang et al. are quite similar. The main difference is in the method
for generating the turbulence that leads to a higher Reynolds number in the case of the Kang et al.
experiment. The latter was actually designed specially to improve the CBC database. In both cases,
the HIT is generated via a continuous flow passing through grid of mesh size M and a convergent
to ensure the isotropy. In a reference frame moving with the average flow velocity, the problem can
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be defined as a freely decaying isotropic turbulence. It is modeled by considering the fluid inside
a cubic box with periodic boundary conditions and size L3

B . The computation is initialized with a
synthetic turbulent field whose energy spectrum is the experimental one at the first time. Without
SGS model, the effect of small scales is not modeled and the laminar viscosity of the fluid can not
dissipate the energy provided by the bigger scales. The LES computation will then stop due to the
accumulation of energy at high wavenumber. With the appropriate SGS model and the appropriate
value of the constant, it should properly reproduce the experiment. The objective of the test case
is then:

1. To compare the experimental spectra with the one obtained in LES

2. To compare the decay of the kinetic energy with respect to the time

3. In the case of dynamic models whose constants vary in the time, to compare the converged
values of the dynamic constant of the model is compared to the ”a priori” imposed value of
the constant.

The simulation are performed with different mesh resolutions for testing the robustness of the
models. Table 3.1 summarizes the characteristics of the two experiments.

Table 3.1: Characteristics of the HIT experimental database.

Parameter Comte-Bellot and Corsin [31] Kang et al. [65]

Mesh size M(m) 0.0508 0.152

Convective velocity U0(m/s) 10 11.2

Taylor based Reynolds number 71.6 716

Non dimensional time t∗ = U0t/M spectra
for which the spectra are available 42, 98, 171 20, 30, 40, 48

3.1.2 Turbulent channel:

The Turbulent Channel test case has became over the past years an absolute must and an interesting
test case for assessing SGS models capability near solid boundaries. More generally, it is a simple but
quite reliable test case used in CFD for multiple flow applications such as wall functions development
[21, 49, 96], heat transfer studies [67, 153], passive scalar mixing [24, 70], flame quenching near walls
[20, 82].

It consists in the simulation of a flow between two parallel walls with periodic boundary conditions in
the streamwise and spanwise directions as shown in Fig 3.3. A source term is added to the Navier-Stokes
equation in the streamwise direction to keep a permanent flow rate in the channel. In the case of the
anisothermal channel, another source term is added in the energy equation. Throughout the thesis, the
isothermal case corresponds to the configuration in which the temperature of the walls is at the same
temperature as the flow inside the channel. In the anisothermal case, the wall temperature is lower than
the temperature at the center of the channel.

The characteristic number of this configuration is the friction Reynolds Reτ defined as follows:

Reτ =
uτh

νw
(3.17)
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Figure 3.3: Periodic channel.

where h is the channel half height, νw is the kinematic viscosity of the fluid and uτ =
√

τw
ρw

the friction

velocity. The normalized wall distance parameter that defines the quality of the mesh resolution of the
computation reads:

y+ =
yuτ
νw

(3.18)

When dealing with non circular tube there is a parameter referred to the hydraulic diameter Dh that is
somehow the corresponding diameter for a round tube. It is expressed as :

Dh =
4 Cross sectional area

wetted perimeter
(3.19)

It is usually associated to the bulk2 Reynolds number:

Reb,Dh =
ρbubDh

νb
(3.20)

The database used for validation corresponds to the DNS of Moser et al. [99] that correspond to the
friction Reynolds numbers Reτ = 395 and Reτ = 590.

The wall stress is linked with the center-line channel velocity by the Dean [34] expression modified in
[71]:

τw = 3.02× 10−3ρwU
2
c (3.21)

This is an interesting relation that allows to impose the appropriate source term for the target friction
Reynolds number. The source term in the ith-direction is then expressed as :

2The corresponding ”bulk” density, velocity and temperature respectively are expressed as follows:

ρb = 1
h

∫ h
0 ρ̄dy

ub =
∫ h
0 ρ̄ūdy∫ h
0 ρ̄dy

and Tb =
∫ h
0 ρ̄ūT̄ dy∫ h
0 ρ̄ūdy
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Dx =
Starget − 1

V

∫ ∫ ∫
Ω
ρuxdv

τrelax
(3.22)

with Starget = ρUc and τrelax = 1
5
h
uτ

.

The corresponding friction coefficient reads:

Cf =
τw

1
2ρrefU

2
ref

(3.23)

”ref” stands for the chosen reference values that correspond to the channel center line values throughout
this work.

In analogy to the friction velocity uτ , a so-called friction temperature is introduced for anisothermal
configuration:

Tτ =
qw

ρcpuτ
(3.24)

this leads to the non-dimensional temperature:

T+ =
Tw − T̄
Tτ

(3.25)

The characteristics number for describing anisothermal flows is the Nusselt number expressed as :

Nu =
qw

λref
Tw−Tref

h

(3.26)

It represents the ratio between the heat flux at the wall and the conduction heat flux evaluated with
reference diffusion λref .

A source term is also introduced in the energy equation to keep a continuous ratio between temperature
in the center of the channel and temperature imposed at the walls during the computation. It is expressed
as follows:

Qx = ρbCv,mean
Ttarget − 1

V

∫ ∫ ∫
Ω
ρωTdv

τrelax
(3.27)

where Cv,mean is the mean volume average of Cv in the channel.
Additional interesting correlations are available in the literature ([111, 129, 134, 143] for Cf and Nu
depending on the flows conditions.

A particular attention was paid on the statistic convergence during the LES simulations of the turbulent
channel case. The size of the channel for the entire simulation are chosen to meet the requirement of the
minimum channel advised by Kim and Moin [71] and all the statistics are accumulated over at least 10
diffusion times after the convergence is established. The chosen dimensions proved to be sufficient to well
recover first order statistics [22]. In addition, the total shear stress in the channel was evaluated to make
sure that the balance among the resolved shear stress, the viscous shear stress, the SGS shear stress is
respected. The similar analysis was also performed to the total heat flux.
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3.2 Numerical implementation in AVBP:

This section is devoted to the description of the main solver used during this thesis: AVBP [1]. Particular
emphasis is paid to the data structure, the implementation of the SGS models (time scale calculation and
volume filter size definition) and the modification performed. The test filter useful for dynamic models
implementation and the associated test volume filter are also presented. Additional solvers that were used
to highlight the robustness of the models developed are also shortly described.

3.2.1 AVBP solver:

The AVBP solver is a property of CERFACS and IFPEn [1]. It was originally created by the Oxford
University Computing Laboratory (OUCL) and CERFACS in 1993. The solver relies on the Cell-Vertex
(CV) links with the Finite-Volume (FV) and Finite-Element (FE) methods. More details about those
formulations can be found in works of [121, 123]. The two main characteristics and advantages of this
software is the possibility to deal with non-structured/hybrid meshes and the possibility to run on heavy
parallel platforms through the MPL library. This allows to study both academic configurations [146, 114]
and industrial configurations with interesting results [101, 131, 139]. In what follows, some notions on
the CV formulation (taken from the AVBP handbook [1]) are recalled: definitions of normal, calculations
of residuals and gradients at nodes. They are indeed important for understanding the modification intro-
duced concerning the implementation of SGS models in the solver and also for presenting the test filter
used for the dynamic models.

Metrics, Principles of the Cell-Vertex formulation and gradients calculations

For sake of simplicity, the differential formulations of the Navier-Stokes equations can be written in the
following compact form:

∂w

∂t
+∇ · F = s, (3.28)

where w = (ρ, ρv, ρE)T ∈ Rm is the vector of conserved variables (m is the numbers of variables),
F = (f ,g,h)T is the corresponding flux tensor and s ∈ Rm is the source term. The fluxes can be divided
into an inviscid, convective part Fi and a viscous part Fv and expressed:

F = Fi(w) + Fv (w,∇w) (3.29)

• Normal definition

Because the data structure, metrics are cell-based, normals are defined at the cell vertices. To
simplify coding and be able to write general formulation for divergence or gradient operators,
whatever the considered element is, normals are built using the following way:

1. Outward pointing face normals nf are first calculated. They are weighted with the face area.
One should note that generally, the four vertices of a quadrangular face do not belong to the
same plane. The face is therefore divided into four triangles (along diagonals) and nf is defined
as the average of the four normals Fig 3.4.

This way to calculate face normals enables to preserve a solution linearity (which is equivalent
to a second-order accuracy for steady state on sufficiently smooth meshes).
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Figure 3.4: Face normal calculation for a quad, which vertices are not the same plane.

Figure 3.5: Node normal for a quad

2. Normal nk associated with vertex k of a given cell C is a linear combination of face normals
of the adjacent faces:

nk =
∑
− d

nfv
nf (3.30)

d is the umber of dimensions. nk is weighted by an area. Fig 3.5 gives an example for a
non-regular quad.

Eventually, to ensure consistency the following relation must be verified:

∑
nk = 0 (3.31)

Figure 3.6: Node normal for a triangle

• Cell-Vertex methods

The CV method was first introduced by Ni [103] and later modified by Hall [57]. Different studies
have been done to assess the precision of this methods in the past years [25, 98, 118, 123]. It has
been developed by the OUCL team and shown to be an interesting alternative to the more classical
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Cell-Centre (CC) FV method. On a FV point of view, the CV method consists in applying conser-
vation relations to the grid cells, while solution is stored at the grid nodes.

The first step of the CV method is to ”gather” the conservative variables to the cell using the CV
connectivity and then calculate the cell residual, which corresponds to the flux divergence of Eq.
3.28 and is defined for cell C:

rC =
1

|C|

∫

C

∇ · Fhdv (3.32)

where |C| is the cell surface or volume depending of the dimension and Fh is the numerical approx-
imation of the Fluxes F. Using the Green-Gauss theorem it gives:

rC =
1

|C|

∮

∂C

Fh · ndv (3.33)

The discretization of (3.33) uses trapezoidal rule to integrate the fluxes along the edges of C, which
is equivalent to consider that the fluxes linearly vary along the edges. Thanks to node normal
definition (3.30), whatever the consider is, we have:

rC =
1

d|C|
∑

k∈C
Fk · nk (3.34)

Figure 3.7: Control volume associated with j.

The linearity of the divergence operator is preserved if the volume |C| is defined as followed:

|C| = − 1

d2

∑

k∈C
xk · nk (3.35)

with ∇ · x = d.

Once the cell residual is defined, information has to be sent to the mesh nodes to obtain as many
equations as there are degrees of freedom and update the solution vector. The nodal residual rj is
defined as a volume-weighted average of the residuals of the cells adjacent to j:

rj =
1

|Cj |
∑

C∈Dj,C
Dj,CrC |C| (3.36)

and
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Cj =
∑

C∈Dj

|C |
nC
v

(3.37)

is the measure of the control volume Cj associated with j and merely corresponds to the median
dual cell ( see Fig 3.37). Conservation is ensured if :

∑

C∈Dj

Dk,C = I (3.38)

Dk,C is the distribution matrix which allows to define the different schemes.

Finally, the semi-discrete approximation of the integral form of (3.28) is:

duj
dt

= −rj (3.39)

Figure 3.8: Hybrid mesh : (1) Element (coloured in pink) contribution to the vertices and (2) Cell
contribution scattering.

Fig 3.8 well summarizes the cell-vertex procedure.

• Gradient computations

Since most of the SGS viscosity models’s time scale are based on the gradient velocity tensor it
is important to recall how it is evaluated on a CV solver. Similar to the residual computations
procedure, the gradients ~∇w are first calculated at cells and then distributed to the nodes. The
cell-based gradient is defined so as to be transparent to linear solution variations:

(
∂w

∂x
)C =

1

|C|

∫ ∫

C

w · ndS (3.40)

which leads to the approximation:

∇wC =
1

|C|
∑

k∈C
wk · nk (3.41)

A nodal approximation of the gradient is then obtained using of a volume-weighted average of the
cell-based gradients:

∇wj =
1

|Cj |
∑

C∈j
∇wC |C| (3.42)
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Numerical schemes

Different numerical schemes are available in AVBP but we will focus here on the description of the two
numerical schemes that were used. More details about the other numerical schemes implemented in AVBP
can be found in the Larmarque’s thesis [80].

• GRK: It is a centered Galerkin finite element method which is 4th order accurate in space with a 3rd

order Runge-Kutta temporal integration. It presents the advantage to have a very low numerical
dissipation which is very important to assess the performances of SGS models. It was used to
perform all the academics cases: HIT and Turbulent Channel.

• Lax-Wendroff: It is finite volume numerical scheme that is second order accurate in space with a
single time step integration. It has the advantage to be less CPU demanding than the GRK scheme.
It was used for running the more complex cases : Impinging Jet and some industrial applications.

3.2.2 Implementation of SGS models in AVBP:

The CV formulation presented in the previous section imposed some cautions when calculating/defining
variables. A variable can either be calculated directly at the nodes or first at the cells and then ”scatter”
at the nodes. Two control volumes are also available: the cell control volume and the node control
volume. Recalling the expression of the SGS viscosity νsgs = C2

m ∆2 Dm(u), the CV formulation rises
some questions regarding the implementation of SGS viscosity models : choice of the filter width and
calculation of the time scale. As for the dynamic models, the definition of the test filter width and
the explicit filter is also important. A wrong definition of those parameters can lead to an over/under
estimation of the SGS viscosity regardless of the accuracy of the model used.

Time scale calculation: Dm(u)

Let us consider for example the Smagorinsky time scale Dm(u) =
√

2SijSij . With Sij the strain rate of
the velocity gradient tensor. We will simplified the problem to a 1D configuration with regular mesh of
same size as shown in Fig 3.9 (not physically possible for the SGS viscosity of course).

Figure 3.9: 1D Mesh.

The node 2 is shared by two cells I and II. According to relation 3.37 the volume of the cell is equal to
the volume of the node.

The term SijSijnode can be evaluated in two ways

1. At nodes knowing Sij at nodes
From relation 3.42

Sijnode =
|C|
|Cnode |

(SijI + SijII) (3.43)

then

(SijSij)node =
|C|2
|Cnode |2

(SijI + SijII)
2 = (SijI + SijII)

2 (3.44)
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2. At cells and then scatter the results to nodes

(SijSij)node =
|C|
|Cnode |

((SijSij)I + (SijSij)II) = ((SijSij)I + (SijSij)II) (3.45)

From Eq. 3.44 and 3.45, we can see that in the CV formulation the procedure to estimate the time scale
of the SGS viscosity can lead to different results. In order to chose the most appropriate formulation,
the HIT of CBC was selected as a test case. Simulations were performed with the Smagorinsky model
(Cs = 0.18) on a 643 hexahedral type mesh.

Figure 3.10: Resolved kinetic energy decay Figure 3.11: Time evolution of the energy spectra.

Fig. 3.10 shows that the best agreement with the experimental energy decay is obtained with the evalu-
ation of the time scale at the cell level. The calculation at the node, leads to an underestimation of the
resolved kinetic energy decay which is due to the accumulation of the energy at high wave number as
shown in Fig. 3.11. The time evolution of the energy spectra is well predicted only when the time scale
is evaluated at the cell level. It is worth noting that the accumulation of the energy leads after a longer
time of simulation to the stop of the simulation. The effect of the unresolved small scales is not correctly
reproduced and the viscosity of the fluid can not dissipate the energy accumulated at high wavenumbers.
It emphasizes the importance of a correct implementation of the SGS viscosity in the particular case of
solvers based on a CV formulation.

Choice of the length scale (initial filter width): ∆

At a first sight, the choice of the initial filter width can be considered as a simple task. Since the residuals
and gradients are evaluated at the cell level, a natural choice would be to choose the cell volume as the
initial filter width ∆ = |C|1/3. However, this choice leads to a high dependency of the SGS viscosity to
the type of the mesh (underestimation on tetrahedral meshes, large discontinuity of the SGS viscosity at
interfaces on hybrid meshes ...).
One could consider that the SGS viscosity should depend on both the initial conditions and the mesh
resolution but not on the cell/element types. When analyzing the expression of the SGS viscosity, the
model time scale Dm(u) is invariant by definition and the model constant as well. The problem observe
when using the volume of the cell as length scale can be explained by considering two HIT simulations
(the CBC HIT for example with the static Smagorinsky model. The time scale is of course calculated at
the cell level) on a cube of Volume L3 with N3 nodes. The first simulation is performed on hexahedral
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mesh (SH) and the second one with tetrahedral mesh (ST). Since the initial conditions and the mesh
resolution are identical, results should be similar. But this is not the case because the SGS viscosity for
the tetrahedral case is systematically lower than the one of the hexahedral mesh when the length scale
is based on cells volume. Fig. 3.12 shows a comparison of the resolved kinetic energy decay for cases SH
and ST with the length scale either based on the node volume or on the cell volume.

Figure 3.12: Resolved kinetic energy decay for different length scale and mesh type

We can see that the energy is overestimated in the case ST-cell because of the underestimation of the
SGS viscosity. This is confirmed in Fig. 3.13 which shows that the SGS viscosity in the case ST-cell can
be even 4 times smaller than the SGS viscosity when considering the node volume.

Figure 3.13: Comparison of the CBC simulations between ST with the length scale based on the node
volume: dotted line and ST with the length scale based on the cell volume: dotted dashed line

This is not the case for the SH simulations. Indeed, according to Eq. 3.37, the node and the cell volume
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are identical on a regular mesh and the simulations of the CBC as well (see Fig. 3.14). Results might be
different for an irregular mesh configuration.

Figure 3.14: Comparison of the CBC simulations between SH with the length scale based on the node
volume: thick line and ST with the length scale based on the cell volume: dashed line

A simple way to overcome the mesh type dependency is to define ∆ so as to be invariant with respect to
the cell/element type. The appropriate choice is the node volume. The latter is directly correlated with
the number of nodes and the volume of the geometry and thus less dependent on the type of cells. For
the two cases ST and SH the node volume is indeed the same. Fig. 3.12 shows that the SGS viscosity
predicted in the cases ST-node and SH-node are quite similar. The resolved kinetic energy decay is also
well retrieved with the two meshes. Some little differences appear because of the gradient calculation that
is more accurate (also more CPU expensive) on tetrahedral compare to hexahedral.
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Figure 3.15: Comparison of the CBC simulations between ST with the length scale based on the node
volume: dotted dashed line and SH with the length scale based on the node volume: thick line

Explicit filter and test filter width for dynamic models:

Dynamics model require the use of an additional filter known as the test filter. In contrary to the initial
filter, the test filter need to be specified. In AVBP, the test filter is defined in two simple steps:

1. An averaging is performed at the cell :

wC =
∑

k∈C

1

nk
wk (3.46)

where nk is the number of vertices of the cell.

2. The final filtered quantity ŵj is the volume weighted average of the cell that share the same node
j:

ŵj =

∑
C∈j wC |C|∑
C∈j |C|

(3.47)

The corresponding test filter width at the node j is equal to the sum of the volume cells that share
the node j.

∆̂j =


∑

C∈j
|C|




1/3

(3.48)

This definition of the test filter and the test filter width allows to deal easily with hybrid meshes
and complex geometries.
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3.2.3 Others Solvers:

One of the difficulties when developing models is to assess if the model is solver independent. The influence
of the numerics in LES is known to be sometimes predominant. As described in the previous section, the
main solver AVBP (referred to as solver A) used during this thesis is a general purpose solver. This solver
was then used for simulating academic test cases for which very specialized solvers exist. The different
collaborations established during the thesis allowed us to test the performances of the developed models
with other interesting solvers and to confirm the trends observe with AVBP. Here a short description of
those solvers:

• Solver B :
is a finite difference code dedicated to the computation of turbulent channels and developed at the
Center for turbulence Research. It is based on a kinetic energy conserving, 4th order scheme in space
as proposed by Morinshi et al ref. A 3rd order Runge-Kutta scheme is used for the time integration,
except for the diffusion terms in the direction normal to the wall that are integrated thanks to an
Cranck-Nickolson scheme. the divergence-free condition is met by a projection scheme. It was used
specially to compute a periodic turbulent channel with the dynamic Smagorinsky model as reference
model. Note that in contrary to the implementation used in solver A, the dynamic procedure is not
applied locally in this case. Instead the Smagorinsky constant is averaged over plans parallel to the
walls as followed:

The presented results were performed by Sanjeeb Bose from Stanford University.

• Solver C:
is a dealiased spectral code developed at Seoul National University. It is based on a 2nd order semi-
implicit scheme for time integration: diffusion terms are treated implicitly using the Crank-Nicolson
method, and a 3rd order Runge-Kutta scheme is applied to convection terms. The decaying isotropic
turbulence from the Comte-Bellot & Corsin experiment ref and Kang et al was performed with this
solver. The divergence-free initial field for each experiment was generated using an appropriate
re-scaling method.

The presented results were performed by Jungil Lee from Seoul National University.

• Solver D:
is a pseudo-spectral code developed at the LEGI lab in Grenoble, France. With this tool, the
viscous terms are treated exactly using a 2nd order explicit Runge-Kutta time-advancement. A
classical two-third rule is used for dealiasing the non-linear convection term. This tool was used to
compute periodic plane jet. Several SGS formulations were considered, including the local dynamic
Smagorinsky model with clipping and a planewise dynamic Smagorinsky model as it is done in
solver B.

The presented results were performed by Guillaume Balarac from LEGI laboratory in Grenoble.
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3.3 An advanced static model: The Sigma model

The literature review performed early during this thesis has highlighted a certain numbers of drawbacks
that most of the statics models (more specifically their time scale) share. During years, after the develop-
ment of the Smagorinsky [135] model, the main issues to overcome was the over-dissipation of this model
in shear regions. The Turbulent Channel was probably the best test case to show up this problem. Dif-
ferent methodologies already mentioned in the Introduction part such as damping function [35], dynamic
procedure [52], Variational Multi Scale approaches were then developed to turn off the Smagorinsky time
scale close to solid boundaries. It is only recently that new operators (referred to as advanced model
throughout this thesis): WALE [106] and Vreman’s [149] models were developed to naturally vanish in
shear regions without any additional procedure. This breakthrough in SGS models was accomplished
by using new tensors (different from the strain rate tensor used by Smagorinsky) and was a promising
method to extend the use of SGS models to complex applications. However, because most of the efforts
was devoted to vanish in shear region, little attention was paid to other canonical flows/simple laminar
situations for which no SGS activity is expected neither. This was confirmed by works of Bricteux [18]
on rotating flows (more precisely vortices) that showed that the WALE model does not vanish for pure
rotating flows. This problem also hold for the Vreman model. The option chosen by Bricteux [18] was to
develop a VMS WALE model that is a very interesting model that vanishes both for rotating flows with
an appropriate behavior near solid boundaries. This works has also open a new question : Is it possible to
develop a new time scale that vanishes for both shear and rotating flows ? More generally can one built
a SGS time scale that vanishes for any 2D flows and other well known laminar situations such as pure
dilatation and at stagnation point ? The latter question is the purpose of this chapter presented through
an article published during the course of this study in the Physics of Fluids journal.
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Abstract

An eddy-viscosity based, subgrid-scale model for Large Eddy Simulations is derived from the

analysis of the singular values of the resolved velocity gradient tensor. The proposed σ-model

has by construction the property to automatically vanish as soon as the resolved field is either

two-dimensional or two-component, including the pure shear and solid rotation cases. In addition,

the model generates no subgrid-scale viscosity when the resolved scales are in pure axisymmetric

or isotropic contraction/expansion. At last, it is shown analytically that it has the appropriate

cubic behavior in the vicinity of solid boundaries without requiring any ad-hoc treatment. Results

for two classical test cases (decaying isotropic turbulence and periodic channel flow) obtained from

three different solvers with a variety of numerics (finite elements, finite differences or spectral

methods) are presented to illustrate the potential of this model. The results obtained with the

proposed model are systematically equivalent or slightly better than the results from the Dynamic

Smagorinsky model. Still, the σ-model has a low computational cost, is easy to implement and

does not require any homogeneous direction in space or time. It is thus anticipated that it has a

high potential for the computation of non-homogeneous, wall-bounded flows.

PACS numbers: 47.10.ad, 47.27.ep, 47.27.em, 47.27.N-

∗ Corresponding author. Electronic address: franck.nicoud@univ-montp2.fr

2



I. INTRODUCTION

When dealing with Large Eddy Simulations (LES), the eddy-viscosity assumption is by

far the most used because it reduces the modeling effort considerably. In this view, the

subgrid-scale (SGS) tensor is written as (the implicit summation rule for repeated indices is

used throughout this paper):

τSGS
ij − 1

3
τSGS
kk δij = 2 ρ νSGS

(
S̃ij −

1

3
S̃kkδij

)
, (1)

where S̃ij =
1
2
(g̃ij + g̃ji) and g̃ij = ∂ũi/∂xj are respectively the strain and velocity gradient

tensors of the resolved scales. Note that the low pass filter used to define the resolved scales

from the total field, denoted by f and used to define the mass weighted filter f̃ = ρf/ρ, will

be omitted throughout this paper for simplicity. Equation 1 then reduces to:

τSGS
ij − 1

3
τSGS
kk δij = 2 ρ νSGS

(
Sij −

1

3
Skkδij

)
. (2)

From a simple dimensional analysis, it is natural to model the subgrid-scale viscosity as

νSGS = (Cm∆)2Dm(u), (3)

where Cm is the model constant, ∆ is the subgrid characteristic length scale (in practice the

size of the mesh), and Dm is a differential operator associated with the model, homogeneous

to a frequency and acting on the resolved velocity field u = (ui). The most classical operator

is by far the strain rate; this leads to the Smagorinsky model [1] for which Dm = Ds =
√

2SijSij and Cm = Cs ≈ 0.18. This operator is known for not vanishing in near-wall

regions. In the past, this major drawback motivated the use of damping functions [2],

the development of the dynamic procedure [3] and other improvements such as the shear-

improved Smagorinsky model [4] where the magnitude of the mean shear is assessed and

removed from the local shear. It is actually possible to build invariants which do not have this

drawback. Examples of such operators are used in the WALE (Wall Adapting Local Eddy

viscosity) [5] and Vreman’s models [6]. For these formulations, the differential operators

read respectively:

Dm = Dw =

(
Sd
ijSd

ij

)3/2

(SijSij)
5/2 +

(
Sd
ijSd

ij

)5/4 (4)

and

Dm = Dv =

√
G11G22 −G2

12 +G11G33 −G2
13 +G22G33 −G2

23

gijgij
, (5)
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where Gij = gkigkj and Sd
ij is the traceless symmetric part of the square of the velocity

gradient tensor:

Sd
ij =

1

2

(
g2ij + g2ji

)
− 1

3
g2kkδij , with g2ij = gikgkj.

Note that g is not symmetric so that G (of component gkigkj) and g2 (of component gikgkj)

are two distinct tensors. The interesting common property shared by these two operators

is that they generate zero SGS viscosity in the case of a pure shear. However, they both

do not vanish in the particular case of a solid rotation (see discussion in section IID). The

situation is the opposite for the Smagorinsky model which vanishes for pure rotation but

not for pure shear. Thus, none of these models is satisfying since one could expect that a

proper model generates zero SGS viscosity for both the pure shear and the solid rotation

cases.

Independently on the properties of the underlying differential operator, all the models

based on the eddy-viscosity assumption, Eq. (3), share the drawback that the model con-

stant Cm must be adapted to the mesh refinement so that the proper amount of energy is

drained from the resolved scales. This issue is well addressed by the introduction of the

dynamic procedure [3] that can automatically adapt the model constant. Besides, because

the existing static eddy-viscosity based models miss some desirable properties, many treat-

ments (connected or not to the dynamic procedure) have been proposed over the years in

order to improve their performances : one can cite among many others Porté-Agel et al.

[7] who proposed a double filtering procedure for removing the scale-invariance assumption

usually made for computing the model constant from the dynamic procedure; Hughes et al.

[8] who proposed the Variational Multi-Scale (VMS) methodology where only the smallest

resolved scales are directly affected by the SGS viscosity; Jeanmart and Winckelmans [9]

who proposed a regularized version of the VMS approach for use in the physical space and

Bricteux et al. [10] who subsequently used the WALE operator in order to obtain a Regular-

ized Variational Multiscale model with the proper near-wall behavior (RVM-WALE model);

Shi et al. [11] who added a constraint on the modeled SGS energy flux to better represent

the overall dissipation; Lodato et al. [12] who developed a scale similarity [13] version of the

WALE model, using ideas introduced originally to improve the Smagorisnky model [14].

Following the framework of Lilly [15], the model constant from the dynamic procedure is
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computed resorting to a least squares approach as :

(Cm∆)2 = − LijMij

2MijMij
, (6)

where Lij = ûi uj − ûi ûj is the (modified) Leonard term based on the grid-based filter

(which is omitted for clarity, ui = ũi) and test filter ·̂. In addition, Mij is directly related to

the differential operator of the underlying eddy-viscosity model and reads:

Mij =
∆̂2

∆2
D̂mŜij − D̂m Sij,

where ∆̂ stands for the test filter width. Unfortunately, the original dynamic procedure most

often requires some averaging in order to reduce the constant variability over space and time.

Several improved versions of the dynamic Smagorinsky model were proposed in order to make

it more robust and suitable for complex configurations where no homogeneous directions are

present [16, 17]. Still, a common practice when dealing with complex geometries is to apply

the least mean square formula over a small volume surrounding the current grid point and

to clip the remaining negative values of the dynamically computed constant. This means

replacing Eq. (6) by

(Cm∆)2 = max

[
− 〈LijMij〉loc
2 〈MijMij〉loc

, 0

]
, (7)

where 〈·〉loc stands for an integral taken over a small volume (typically a few grid cells)

surrounding the current grid point. Note that the model constant then depends on both

space and time.

The main motivation of the local dynamic procedure was to adapt the constant to com-

pensate the non-vanishing behavior of the Smagorinsky model in near-wall regions. Recently,

Ghorbaniasl & Lacor [18] proposed to extend the dynamic procedure to the WALE model.

However, Baya Toda et al. [19] reported that the combination of the classical dynamic pro-

cedure with any SGS model that has the proper near-wall cubic behavior leads to a paradox:

the underlying differential operator rapidly goes to zero near solid boundaries, which favors

unstable computations. For the sake of robustness while keeping an adaptation of the model

coefficient to the grid resolution and numerical errors, two concepts of global dynamic pro-

cedure emerged from the properties of the Vreman’s model. The first one is based on the

global equilibrium hypothesis [20] and was proposed by Park et al. [21] and later improved
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by You & Moin [22]. The second one, based on the Germano identity, was also proposed

in [21] and recently proved to be better suited for transient flows [23]. This global dynamic

procedure amounts to change Eq. (6) to:

(Cm∆)2 = − 〈LijMij〉dom
2 〈MijMij〉dom

, (8)

where 〈·〉dom stands for an averaging over the whole computational domain; the model con-

stant is then uniform over space by construction. It has the advantage of producing mostly

positive values for the dynamic constant, thus avoiding the clipping issue. The price to pay

is that the differential operator Dm must behave appropriately in basic flow configurations

because no compensation from the dynamic procedure can be expected (the constant of the

model is uniform over space). For example, such procedure is not expected to provide good

results if applied to the Smagorinsky model since the eddy-viscosity would then not vanish

near solid walls. The differential operators used in the WALE and Vreman models are not

very appropriate either. For example, it can be shown analytically that the latter is linear

with respect to the distance to solid boundaries instead of having a cubic behavior in near-

wall regions. Also, they both produce non zero eddy-viscosity in simple flow configurations

such as solid rotation.

From the previous discussion, Large Eddy Simulations of complex flows would benefit

from the knowledge of a static SGS model with better intrinsic properties than existing

formulations. Such model could be used either directly or as a first step for subsequent

improvements based on the scale similarity concept, the Variational Multi-Scale framework

or a (global) dynamic procedure. The objective of this paper is to propose such a static,

eddy-viscosity model with improved properties. The differential operator which is used to

define this model is described in section II where analytical developments are provided in

order to establish the unique properties met by the proposed static SGS model. Numerical

results for decaying isotropic turbulence and a periodic channel flow are shown in section

III in order to illustrate the potential of the model.

II. A SINGULAR VALUES BASED MODEL

It would be a difficult task to establish a definite list of the desirable properties that an

improved differential operator should meet. One can however draw up a set of properties
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based on basic practical/physical considerations. Similar to the Smagorinsky, WALE and

Vreman’s models, the operator should be defined locally, involving only local gradients of

the resolved velocity field. Such property is useful both in terms of implementation in

general purpose LES solvers and in terms of physical interpretation of the results. Any non-

local effect would most probably require the computation of two-point correlations which

are not easy to compute in complex flows. Moreover, it is desirable that the differential

operator generates only positive values. Although negative values can be justified from a

physical point of view by referring to the backscatter phenomenon, positiveness is required

in this study for stability reasons. This choice was made after the observation that the local

dynamic procedure, which may lead to negative SGS viscosity, Eq. (6), suffers from stability

issues in complex flow configurations where averaging over homogeneous directions is not

an option. Besides, it is commonly accepted that the main objective of any (eddy-viscosity

based) SGS model is to drain the proper overall amount of kinetic energy from the resolved

velocity scales. To this end, a positive eddy-viscosity is most probably appropriate. In what

follows, positiveness and locality will be collectively referred to as Property P0.

Similar to the WALE and Vreman’s models, the differential operator should tend to zero

in near-wall regions in order to mimic the turbulence damping due to the no-slip condition.

It can be shown that the turbulent stress, thus the eddy-viscosity and the differential oper-

ator, should decay as the distance to the solid boundary to the third power [24] [Property

P1]. At the same time, it should vanish in the case of a flow in solid rotation, like the

Smagorinsky model, and in the case of a pure shear, like the WALE and Vreman models.

More generally, the improved differential operator should be zero for any two-dimensional

(2D) and/or two-component (2C) flows, where no subgrid scale activity is expected to occur

[Property P2]. Indeed, although two-dimensional turbulence has been evidenced exper-

imentally and numerically [25], it is a phenomenon of fundamental interest that “might

[...] be viewed as just a toy model” [26]. Given that two- and three-dimensional turbu-

lence are fundamentally different because of the absence of the vortex-stretching term in

the former, it seems appropriate to make sure that any SGS model for three-dimensional

turbulence switches off in the two-dimensional case. The alternative would be to switch to

a SGS model appropriate for two-dimensional turbulence. Still, given the very little prob-

ability that a three-dimensional computation of a two-dimensional turbulent flow remains

two-dimensional without any external action to maintain its two-dimensionality, this choice

7



Property name Short Description

P0 a positive quantity which involves only locally defined velocity gradients

P1 cubic behavior near solid boundaries

P2 zero for any two-component or two-dimensional flows

P3 zero for axisymmetric or isotropic expansion/contraction

TABLE I. Desirable properties for an improved SGS viscosity model. In the case of a static model,

these properties should be met by the differential operator (Dm) the model is based on.

is not made in this paper. Another way to justify property P2 is to argue that 2D or 2C

resolved scales are not compatible with a subgrid-scale activity. Indeed, since the smallest

resolved scales interact with subgrid scales which are presumably random-like and 3D/3C,

they cannot remain 2D or 2C in the long run. The same reasoning leads to the conclusion

that the SGS viscosity should be zero in the case where the resolved scales are either in

pure axisymmetric or isotropic expansion (or contraction) [Property P3]. The former case

corresponds to the situation of a laminar round jet impinging on a solid plate for which tur-

bulent effect should indeed not be present. The latter is representative of the velocity field

near an acoustic monopole or a spherical premixed flame, which again are not phenomena

of turbulent nature. The desirable properties are recalled in Table I. Since they do not

come from any mathematical theory of turbulence or fluid mechanics, we do not claim that

they constitute a set of necessary and sufficient conditions that any SGS model should meet.

Still, they seem desirable from a physical/numerical point of view as discussed above.

A. Meeting Properties P2-P3

Analyzing the spectral content of the velocity gradient tensor proves to be a proper

framework to investigate how these properties can be met by a single differential operator.

For example, the fact that one of the eigenvalues of g is zero would indicate that the flow

is locally either 2D or 2C. Note, however, that the eigenvalues of g can be complex-valued

in number of flow configurations (in the case of a solid rotation, for example). Using these

quantities directly to build the differential operator Dm would thus not be very convenient.

One way to avoid this difficulty is to consider the strain rate tensor instead of g. In this
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case, the three eigenvalues are real-valued, although their sign is not known a priori. This

route was explored recently [27, 28]. In the present study, one relies on the singular values

of g to build an improved differential operator for the SGS eddy viscosity. Specifically, let

us introduce σ1 ≥ σ2 ≥ σ3 ≥ 0, the three singular values of g = (gij). As discussed in the

appendix, these quantities can be computed at moderate computational cost by different

means. By definition, these values are always positive and equal the square root of the

eigenvalues of the matrix G = gtg, where the superscript t denotes matrix transposition

(these eigenvalues are always positive because G is symmetric semi-definite positive). The

smallest singular value, σ3, is null if and only if one row or column of g is zero up to a

rotation of the coordinate system. In other words, σ3 = 0 is a marker for two-dimensional

and/or two-component flows, and any operator proportional to this singular value would

meet property P2. Similarly, the knowledge of the singular values of g helps to detect the

case where the resolved velocity field is in axisymmetric contraction or expansion. Indeed,

an appropriate rotation of the coordinate system then makes the velocity gradient tensor

diagonal:

g = diag (β,−α,−α), (9)

where α is positive for a contraction and negative for an expansion. Depending on the

relative values of the parameters α and β, the singular values of g read either σ1 = |β| >
σ2 = σ3 = |α| or σ3 = |β| < σ1 = σ2 = |α|. In other words, the marker for such flow

situations is either σ2 = σ3 or σ1 = σ2. Thus, any differential operator proportional to

(σ1 − σ2)(σ2 − σ3) would be zero as soon as the resolved velocity field is in axisymmetric

contraction/expansion. The same operator would also be zero for any isotropic configuration

since this situation corresponds to σ1 = σ2 = σ3. At the end, such operator would meet

property P3. Note that the divergence-free assumption was not made to obtain the above

results (β not necessarily equal to 2α).

B. Near wall behavior

From the above analysis, a differential operator proportional to σ3(σ1−σ2)(σ2−σ3) would

meet both properties P2 and P3. It is now time to investigate whether property P1 is also

met. This requires analyzing the asymptotic behavior of the singular values in the vicinity

of a solid boundary. Without loss of generality, one may decide that this boundary is located
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within the (x1, x3)=(x, z) plane; the normal direction to this boundary then coincides with

the x2 = y direction. Using Taylor expansions of the resolved velocity components (recall

ui must be understood as ũi):

u1 = ay +O(y2),

u2 = by2 +O(y3), (10)

u3 = cy +O(y2)

leads to the following expression for the velocity gradient tensor:

g =




axy +O(y2) a +O(y) azy +O(y2)

bxy
2 +O(y3) 2by +O(y2) bzy

2 +O(y3)

cxy +O(y2) c+O(y) czy +O(y2)


 (11)

In these expressions, O(yp) denotes a term of order p which behaves like yp when the distance

to the solid boundary vanishes, y −→ 0. Moreover, subscripts denote partial derivatives (e.g.:

ax = ∂a/∂x). For sake of simplicity, the first order term in the expansion of the wall normal

velocity component has been zeroed. From the continuity equation, the coefficient of the

neglected linear term equals
1

ρ

∂ρ

∂t

∣∣∣∣
y=0

since the no-slip condition imposes ∂u1/∂x = ∂u3/∂z = 0 at y = 0. This writing is thus

strictly valid in the incompressible case and most probably well justified for flows bounded

by walls submitted to stationary isothermal conditions and/or for compressible flows in the

low subsonic regime.

By definition, the singular values of g are the square roots of the eigenvalues of G = gtg.

Denoting by λ1 ≥ λ2 ≥ λ3 ≥ 0 these eigenvalues, they are the roots of the characteristic

polynomial of G:

P (λ) = −λ3 + I1λ
2 − I2λ+ I3, (12)

where the coefficients read:

I1 = tr(G),

I2 =
1

2

(
tr(G)2 − tr(G2)

)
, (13)

I3 = det(G),

10



with tr() and det() denoting the trace and the determinant of a tensor. A classical result

of linear algebra is that the coefficients of Eq. (12) are tensorial invariants (they keep the

same values in every coordinate system). In particular, they can be assessed either in the

(x, y, z) coordinate system where G reads:

G =




(a2x + c2x)y
2 +O(y3) (aax + ccx)y +O(y2) (axaz + cxcz)y

2 +O(y3)

(aax + ccx)y +O(y2) (a2 + c2) +O(y) (aaz + ccz)y +O(y2)

(axaz + cxcz)y
2 +O(y3) (aaz + ccz)y +O(y2) (a2z + c2z)y

2 +O(y3)


 (14)

or in the principal axis where G is simply:.

G =




λ1

λ2

λ3


 (15)

In this latter case, the invariants are given by:

I1 = λ1 + λ2 + λ3,

I2 = λ1λ2 + λ1λ3 + λ2λ3, (16)

I3 = λ1λ2λ3.

Then, using Eq. (13) to calculate the same invariants from Eq. (14) allows obtaining the

following estimates:

λ1 + λ2 + λ3 = O(y0),

λ1λ2 + λ1λ3 + λ2λ3 = O(y2), (17)

λ1λ2λ3 = O(y6).

A rapid examination of Eq. (14) may lead to the erroneous conclusion that the determinant

of G should be of order y4 instead of y6 as reported in Eq. (17). Actually, it can readily be

shown that the y4 and y5 terms in the Taylor expansion of det(G) are exactly zero. Since

G = gtg and det(G) = det(g)× det(g), the 6th order behavior reported in Eq. (17) is also

consistent with the estimate det(g) = O(y3) which comes directly from Eq. (11). With the

convention λ1 ≥ λ2 ≥ λ3, the first equality in Eq. (17) imposes that λ1 = O(y0) and the

second and third rows imply:

λ2 + λ3 + λ2λ3 = O(y2),

λ2λ3 = O(y6). (18)
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Injecting the second row of Eq. (18) into the first implies λ2 + λ3 = O(y2) which imposes

λ2 = O(y2) since λ2 ≥ λ3 by convention. At last, the second row of Eq. (18) then leads to

λ3 = O(y4). Eventually, since the singular values of g are the square roots of the λ’s, one

obtains the following estimates in the near wall region:

σ1 = O(y0),

σ2 = O(y1), (19)

σ3 = O(y2)

C. The σ-model

Eqs. 19 indicate that the product σ3(σ1 − σ2)(σ2 − σ3) selected to meet properties P2

and P3 is of order O(y3) near solid boundaries and thus meets property P1. The derivation

of the differential operator is finished by choosing a scaling factor so that a frequency scale

is obtained. A natural choice is the use of the largest singular value σ1, which is nothing

but the norm of g, and which would not change the asymptotic behavior of the ratio since

of order y0. Finally, the proposed differential operator and related SGS model read

Dσ =
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

,

(20)

νSGS = (Cσ∆)2Dσ

Since the three singular values are ordered such that σ1 ≥ σ2 ≥ σ3 ≥ 0, this model is

positive by construction. Besides, it involves only combinations of the locally defined velocity

gradient tensor and thus meets property P0. It will be referred to as the σ-model in the

remaining of this paper.

D. Discussion

Table II summarizes the properties of different differential operators and associated mod-

els. From Eqs. 5 and 13, one may note that the Vreman’s model is proportional to
√I2.

Recalling that I2, the second invariant of G, is quadratic in y (see Eq. 17), the asymptotic

behavior of the Vreman’s model is linear in y instead of being cubic. Thus, only the WALE

and σ models comply with property P1 (as well as any model based on the corresponding
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differential operator, e.g. the RVM-WALE model of [10]). Note however that the first order

behavior of the Vreman’s model is enough to make it more suitable for wall-bounded flows

than the Smagorinsky model for which the eddy-viscosity does not tend to zero because

Ds = O(y0). Table II also shows that the σ-model meets properties P2-P3, contrary to

the other formulations which all fail at some point. It also shares with the three other

models the property to involve only locally defined velocity gradients and is thus easy to

implement in any general purpose LES solver. For the Smagorinsky model, it is possible

to obtain an asymptotic value of the Cs constant by assuming an isotropic homogeneous

turbulence at infinite Reynolds number and a grid-cutoff lying into the inertial range. Lilly

[29] then found Cs = (2/3CK)
3/4 /π which leads to Cs ≈ 0.165 if assuming the CK ≈ 1.6

for the Kolmogorov constant. Unfortunately, such theoretical analysis cannot be conducted

for the other SGS models and the model constants are usually obtained from numerical

experiments. The value reported for the model constant, Cσ ≈ 1.35, is a rough assessment

generated by equating the averaged SGS dissipation obtained by feeding the Smagorinsky

model and Eq. (20) with a large sample of random velocity gradient tensors. Interestingly,

this crude random procedure used to provide a first assessment of Cσ leads to fair estimates

of the WALE and Vreman’s constants [Cw ≈ 0.57 and Cv ≈ 0.26, to be compared with the

values recommended by Nicoud and Ducros [5] and Vreman [6] and reported in Table II].

Besides, computations of decaying isotropic turbulence confirm this value, as discussed in

section III.

III. NUMERICAL EXPERIMENTS

Two academic configurations were considered in order to test the capability of the pro-

posed SGS model, namely the decaying isotropic turbulence case and the periodic channel

flow. In each case, LES results are compared to either experimental or Direct Numerical

Simulation (DNS) data. For the channel flow case, the σ-model was also benchmarked

against the dynamic Smagorinsky model. At last, in order to make sure that the conclu-

sions drawn in terms of SGS model potential do not depend on a specific numerical method,

different solvers were used during the course of this study. The three solvers considered are

the following:
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Model Smagorinsky WALE Vreman σ-model

[1] [5] [6] Present

Operator
√

2SijSij Eq. (4) Eq. (5) Eq. (20)

Model constant Cs ≈ 0.165 Cw ≈ 0.50 Cv ≈ 0.28 Cσ ≈ 1.35

P0 YES YES YES YES

Asymptotic O(y0) O(y3) O(y) O(y3)

P1 NO YES NO YES

Solid rotation 0 ≈ 0.90 ≈ 0.71 0

Pure shear 1 0 0 0

P2 NO NO NO YES

Axisymmetric ≈ 3.46 ≈ 0.15 ≈ 1.22 0

Isotropic ≈ 2.45 0 1 0

P3 NO NO NO YES

TABLE II. Properties of the SGS models considered. Labels Axisymmetric and Isotropic refer to

axisymmetric and isotropic contraction/expansion respectively. The numerical entries in the P2

and P3 blocks are the values taken by the differential operators when all the velocity derivatives

are zero except: Solid rotation: du1/dx2 = −1 and du2/dx1 = 1; Pure shear: du1/dx2 = 1;

Axisymmetric: du1/dx1 = ±2, du2/dx2 = ∓1, du3/dx3 = ∓1; Isotropic: du1/dx1 = ±1, du2/dx2 =

±1, du3/dx3 = ±1

• Solver A: The general purpose AVBP code developed at CERFACS and IFP Energies

Nouvelles solves the compressible Navier-Stokes equations. It is based on a cell-vertex

formulation and embeds a set of finite element/ finite volume schemes for unstruc-

tured meshes [30, 31]; its efficiency and accuracy have been widely demonstrated for

flow configurations with [32] or without [33] chemical reaction. In the present study a

centered Galerkin finite element method (4th order in space) with a 3rd order Runge-

Kutta temporal integration is retained for the investigation of two configurations: the

decaying isotropic turbulence from the Comte-Bellot & Corrsin[34] (CBC) experiment

and a periodic turbulent channel flow at low subsonic Mach number. These flows

were computed with the Dynamic Smagorinsky model and the present static σ-model.
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The dynamic procedure was applied locally, without averaging over homogeneous di-

rections. Negative values of the dynamically tuned constant were clipped to ensure

stability (see Eq. 7).

• Solver B: a finite difference code dedicated to the computation of turbulent channels

and developed at the Center for Turbulence Research. It is based on a kinetic energy

conserving, 4th order scheme in space as proposed by Morinishi et al. (1998)[35]. A

3rd order Runge-Kutta scheme is used for the time integration, except for the diffusion

terms in the direction normal to the wall that are integrated thanks to an Crank-

Nicholson scheme. The divergence-free condition is met by a projection scheme. It

was used to compute a periodic turbulent channel flow case with both the dynamic

Smagorinsky model and the present static σ-model. Note that contrary to the imple-

mentation used in the general purpose AVBP solver, the dynamic procedure is not

applied locally in this case. Instead, the Smagorinsky constant is computed as

(Cs∆)2 = −
〈LijMij〉plane
2 〈MijMij〉plane

, (21)

where 〈·〉plane stands for an integral taken over homogeneous planes parallel to the

walls of the channel. This avoids clipping while keeping the favorable dependence of

the model constant on the distance to the solid boundaries.

• Solver C: a dealiased spectral code developed at Seoul National University [23]. It

is based on a 2nd order semi-implicit scheme for time integration: diffusion terms are

treated implicitly using the Crank-Nicolson method, and a 3rd order Runge-Kutta

scheme is applied to convection terms. The decaying isotropic turbulence from the

Comte-Bellot & Corrsin [34] and the Kang et al.[36] experiments were computed with

a dynamic version of the σ-model. The Germano-based global dynamic procedure

[21, 23] was used (see Eq. 8), meaning that a single-model constant was computed for

the whole domain at each time step. The divergence-free initial field was generated

using an appropriate re-scaling method [36].

Note that the σ-model was implemented in other solvers [37], including another general

purpose LES solver developed at the CORIA lab (Rouen, France) and a pseudo-spectral

solver developed at the LEGI lab (Grenoble, France). Only results from the three solvers
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Solver A Solver B Solver C

Key reference [30, 31] [35] [23]

Spatial

scheme

- Fourth-order Galerkin

- finite element/finite

volume

- Fourth-order

- kinetic energy

conserving

- finite differences

- Dealiased spectral

Time

integration

- RK - RK

- CN for diffusion

(wall normal)

- RK

- CN for diffusion

Dynamic

procedure

- local averaging

- clipping required

- Eq. (7)

- plane averaging

- clipping optional

- Eq. (21)

- global averaging

- no clipping

- Eq. (8)

TABLE III. Properties of the solvers A, B and C used to compute the academic cases considered.

RK: Third-order Runge-Kutta. CN: Second-order Crank-Nicolson

A-C described above are shown in this paper for sake of simplicity and because the same

trends were observed independently on the numerical tools. The main characteristics of the

solvers used in the following are gathered in Table III.

A. Isotropic decaying turbulence

We first validate the behavior of the σ-model for the simple case of a freely decaying

isotropic homogeneous turbulence. The experiment by Comte-Bellot & Corrsin [34] on

decaying turbulence behind a grid is simulated first, where the mesh size of the grid tur-

bulence is M = 5.08 × 10−2 m and the free-stream velocity is U0 = 10 m/s. The Taylor

micro-scale Reynolds number is Rλ = urmsλ/ν = 71.6 at time tU0/M = 42 and decreases

to 60.6 at tU0/M = 171. In a reference frame moving with the average flow velocity the
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problem can be thought of as freely decaying isotropic turbulence. We model this by con-

sidering the fluid to be inside a cube-shaped box with periodic boundary conditions and

size (11M)3. The flow was first computed with the general purpose code AVBP (Solver A),

where the static σ-model was implemented. Several values of the model constant were tested,

Cσ = 1.3; 1.4; 1.5; 1.6; 1.7, for two grid resolutions, namely 483 and 643. The corresponding

computational mesh size-to-Kolmogorov length scale ratio ∆/η are 40 and 30 respectively.

The computations are initialized with a synthetic turbulent field whose energy spectrum is

the experimental one at reduced time tU0/M = 42. The time evolutions of the resolved

kinetic energy obtained from the 10 simulations (two grid resolutions and 5 constant values)

are shown in Figure 1. For the 643 grid resolution, the best agreement with experimental

data at times tU0/M = 98 and tU0/M = 171 is obtained for Cσ ≈ 1.5 whereas a larger value,

in the range 1.6−1.7 seems more adequate for the 483 case. Note that the dependency of the

model constant on the grid resolution is a common drawback of all static SGS models (and

to a less extend of dynamic models when using very coarse grids) and is not specific to the

σ-model (see Cocle et al. [38] for a detailed discussion on the dependence of several model

constants on ∆/η). Note also that the increase of the model constant with the increase of

the ∆/η ratio is coherent with previous studies [38, 39]. Figure 2 (top plot) shows that the

computed spectra obtained for Cσ = 1.5 and the 643 grid resolution are in fair agreement

with the experimental data. The biggest differences are obtained for the smallest scales;

they are most probably due the large numerical errors that characterize finite volume/finite

element methods for large wave numbers. To confirm this statement, an additional compu-

tation was performed with the spectral Solver C. As shown in Figure 2 (bottom plot), the

agreement with the experimental spectra is now very good even for the smallest resolved

scales, although the grid resolution was even coarser (323, ∆/η ≈ 60). Note that the global

dynamic σ-model was used in this case, as another mean to establish the appropriate Cσ

value. More precisely, the global dynamic procedure based on the Germano identity and

proposed by Park et al.[21] and Lee et al.[23] was used in order to compute the constant

value (homogeneous in space) at each time step. The time evolution of the dynamically

tuned constant is displayed in Figure 3. Because an appropriate re-scaling method [36] was

used to generate the initial velocity field at time tU0/M = 42, there is no strong variations

of the computed constant during the first instants of the simulation. Moreover, the range of

variation of the constant throughout the computation is roughly 1.4-1.7, consistently with
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the value suggested by the computations performed with Solver A (fig. 1). To further sup-

port this result and make sure that the σ-model can handle demanding LES (with larger ∆/η

ratio and Reynolds number), the isotropic decaying turbulence of Kang et al.[36] was also

simulated. In this case, the mesh size of the experimental grid turbulence is M = 0.152 m

and the free-stream velocity is U0 = 11.2 m/s. The Taylor micro-scale Reynolds number is

Rλ = 716 at location x/M = 20 (or time tU0/M = 20) and decreases to 626 at x/M = 48

(or tU0/M = 48). Solver C was used to solve the flow equations in a computational domain

of size (33.7M)3 at grid resolution 1283; this corresponds to a ∆/η ≈ 360. This computation

is thus substantially more challenging than the 323 Comte-Bellot & Corrsin case in terms of

SGS modeling, with a Reynolds number and ∆/η ratio 10 and 6 times larger respectively.

The corresponding time evolution of the dynamically tuned constant is also displayed in

Figure 3; it is found to be smaller in this case, close to 1.35. Given the large values of

the Reynolds number and ∆/η ratio, it is fair to consider this later value as close to the

asymptotic [38] Cσ value to be used for demanding LES (∆/η > 100) of fully turbulent

flows; as a matter of fact, Cσ ≈ 1.35 is also the value obtained from the random procedure

used in section IID (see Table II).

Despite a larger ∆/η ratio, this value is smaller than the range of values obtained from

the Comte-Bellot & Corrsin case at 323 grid resolution (1.4−1.7). Contrary to what may be

erroneously concluded, this behavior is not contradictory with the expected increase [38, 39]

of the model constant for increasing ∆/η. Instead, the observed decrease is most probably

due to small values taken by the L/∆ ratio, where L = k3/2/ǫ is the integral length scale

based on the total turbulent kinetic energy k and its dissipation ǫ. Recall that the constant

of the Smagorinsky model increases strongly with L/∆ when the latter is in the low range,

L/∆ < 10 say [40, 41]; the same trend is expected to hold for any eddy-viscosity based

subgrid-scale model, although the critical value of L/∆ above which the model constant

becomes independent on this ratio may change from one model to the other. Now, given

that L/∆ is only 2.6 for the 323 Comte-Bellot & Corrsin case while it reaches 13.4 for the case

of Kang et al. with 1283 grid resolution, it is expected that the model constant significantly

varies due to L/∆ when going from the Comte-Bellot & Corrsin to the Kang’s case. In other

words, the observed decrease of Cσ most probably results from the ∆/η effect being offset

by the L/∆ influence.

The computed spectra at time tU0/M = 30, 40 and 48 are shown in figure 4 together
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FIG. 1. Time evolutions of the scaled kinetic energy for the freely decaying isotropic turbulence

corresponding to the Comte-Bellot & Corrsin [34] experiment. All computations performed with

the general purpose solver AVBP (Solver A) and the σ-model with Cσ = 1.3 ( ); Cσ = 1.4

( ); Cσ = 1.5 ( ); Cσ = 1.6 ( ); Cσ = 1.7 ( );. Symbols are experimental

measurements corresponding to the three-dimensionless times tU0/M = 42, 98 and 171. Top: 483

grid resolution. Bottom: 643 grid resolution.

with the experimental data [36]. The overall agreement is again quite good for most of the

wavenumbers. The energy rise near the largest wavenumber is a well-known behavior for

approaches where the same eddy-viscosity is applied to the whole range of scales and has

motivated the development of spectral eddy viscosity [42] and multiscale [8, 9] models. From

all the results presented in this section, it is fair to propose 1.3− 1.5 as a reasonable range

of values for the Cσ constant of the σ-model (Eq. 20).
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FIG. 2. Time evolutions of energy spectra for the freely decaying isotropic turbulence corresponding

to the Comte-Bellot & Corrsin [34] experiment. Symbols are experimental measurements corre-

sponding to the three-dimensionless times tU0/M = 42, 98 and 171. Top: Results from the general

purpose solver AVBP (Solver A) with grid resolution 643 and Cσ = 1.5. Bottom: Results from

a spectral method (Solver C) with grid resolution 323 and a global dynamic procedure applied to

the σ-model.

B. Turbulent Channel flow

The performance of the static σ-model for wall-bounded flows was investigated by com-

puting LES of turbulent channel flows at friction Reynolds number Rτ = 395 and 590. As

usual, Rτ = uτh/ν with uτ being the friction velocity, h the channel half-height and ν the

molecular kinematic viscosity. Two different solvers were used for studying the channel flow

configuration, namely solvers A and B (see Table III). For sake of simplicity, only results
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FIG. 3. Time evolution of model constant for the freely decaying isotropic turbulence corresponding

to the Comte-Bellot & Corrsin (CBC) [34] and Kang et al.[36] experiments. The computation is

based on a spectral method (Solver C) and a global dynamic version of the σ-model. Grid resolution

is 323 and 1283 respectively.
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FIG. 4. Time evolutions of energy spectra for the freely decaying isotropic turbulence corresponding

to the Kang et al.[36] experiment. Symbols are experimental measurements corresponding to the

three-dimensionless times tU0/M = 20, 30, 40 and 48. Results are from the spectral Solver C with

grid resolution 1283 and a global dynamic procedure applied to the σ-model.

from Solver A at Rτ = 395 and from Solver B at Rτ = 590 are discussed in the following.

Classical values for the size of the computational domain and the grid resolution have been

used, as reported in Table IV. Note however that the grid resolution is only marginal for

the 590 case, especially in the spanwise direction: ∆z+ ≈ 30 while 20 wall units would

be more appropriate for a fair representation of the near-wall elongated structures with a
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Rτ Solver Lx Ly Lz Nx Ny Nz ∆x+ ∆y+ ∆z+

395 A 3.5 2 1.3 30 138 50 48 1− 17 10

590 B 6.3 2 3.1 64 64 64 58 0.7 − 50 29

TABLE IV. Properties of the channel flow cases. Lx, Ly and Lz stand for the size of the com-

putational domain in the streamwise, normalwise and spanwise directions and are scaled by the

channel half-height h; Nx, Ny and Nz are the corresponding number of grid cells. Grid spacings

are given in classical wall units; the mesh is stretched in the y-direction to increase resolution in

the near wall regions. Rτ stands for the friction Reynolds number based on the friction velocity

and channel half-height.

fourth-order scheme as in Solver B. Additional computations with twice finer spanwise res-

olution (∆z+ ≈ 15) with or without refinement in the streamwise direction were performed.

The corresponding results (not shown) confirm the good behavior of the σ-model which will

be illustrated in the remaining of this section. Besides, in order to properly represent the

steep gradients in the viscous and buffer layers, the mesh is stretched in the wall normal

direction by using either a geometric progression with common ratio close to 1.04 (Solver

A) or an hyperbolic tangent law with stretching parameter close to 2.9 (Solver B). At last,

the ∆2 term in the eddy-viscosity, Eq. (3), was computed as the 2/3-power of the local cell

volume. In all cases, statistics were accumulated over more than 10 diffusion times h/uτ and

their convergence was checked by looking at the symmetry of the profiles over the channel

height. In each case, the results from the σ-model with Cσ = 1.5 were compared with the

(filtered) DNS data from Moser et al.[43]. They were also compared to the results from an

implementation of the dynamic Smagorinsky model, as available in each solver (see Table

III).

All the LES mean velocity profiles are in good agreement with the reference data from

the available DNS, as displayed in Fig. 5. The largest difference is obtained for the Rτ = 395

case computed with solver A and the dynamic Smagorinsky model. This is most probably

due to the fact that the Germano identity is applied locally in this general purpose solver

(see Table III). To ensure numerical stability, it is then necessary to clip the negative values

obtained for the SGS viscosity, using Eq. (7). A closer look at this computation shows that

the clipping process is activated for approximately one-third of the constant computations.
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It is then not surprising that the overall quality of the results degrades, as observed in

Figure 5. On the other hand, when the dynamic procedure is applied planewise, accounting

for the homogeneous directions in the channel flow configuration, the clipping operation is

virtually never activated. Consistently, the results from the dynamic Smagorinsky model

as implemented in the dedicated solver B (Rτ = 590 case) are in very good agreement

with the filtered DNS data. Because the σ-model is positive and has the proper near wall

behavior, it requires no clipping and the corresponding results are good in both cases. This

point is confirmed by Figure 6 which displays the velocity fluctuations. Surprisingly, the

situation is opposite to Figure 5, with the overall agreement being better for the Rτ = 395

case. Some kind of modeling/numerical error compensation might be the reason why the

dynamic Smagorinsky implementation of solver A gives better results in terms of rms than

mean velocity. Interactions between different sources of errors are expected to occur in

LES but are out of the scope of this paper. On the other hand, results from the σ-model

(Rτ = 395) are just as good as for the mean velocity profile. As far as the Rτ = 590 case

is concerned, discrepancies with the filtered DNS data are larger, especially for the rms

velocity in the streamwise direction for which the two models considered give equivalent

results. Note however that the σ-model leads to some improvement in the profiles of the

spanwise and wall normal velocity fluctuations. As expected, a clear improvement was also

observed when using a finer mesh in the spanwise direction (∆z+ ≈ 15 instead of 29 in

Fig. 6). The maximum of streamwise rms velocity in then approx. 2.8 wall units, in better

agreement with the DNS data (the maximum is approx. 3.1 for ∆z+ = 29 against 2.7 for

the filtered DNS, see Fig. 6).

It is often accepted that the asymptotic behavior of the SGS viscosity in near wall regions

is an important factor when dealing with wall resolved LES. Thus, the different computa-

tions were post-processed and the resulting behaviors plotted in Fig. 7. The theoretical

behavior of the σ-model near solid boundaries (νSGS = O(y3)) is well retrieved numerically.

Note that the amount of SGS eddy-viscosity is not negligible in front of the molecular vis-

cosity, at least in the core region. This reflects the fact that the grid resolution is far from

what is required to perform DNSs of the same flows (see Table IV). This is illustrated by the

no-model calculation performed in the Rτ = 590 case (see figure 5) which shows measurable

(although not huge) error compared to the σ-model result (the no-model velocity profile

being roughly 5 % smaller than the filtered DNS profile over most of the channel height).
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FIG. 5. Mean velocity profile from the static σ-model ( ) and the dynamic Smagorinsky model

( ). Symbols correspond to the filtered DNS data [43]. Top: Results from the general purpose

solver AVBP (Solver A) at Rτ = 395. Bottom: Results from the channel code (Solver B) at

Rτ = 590. A no-model simulation ( ) is also shown in this latter case.

Another indication of the effectiveness of the SGS contribution is that the no-model com-

putation proved unstable with Solver A which is not kinetic energy conserving, contrary

to Solver B. Figure 7 also illustrates that the proper asymptotic behavior is obtained with

the dynamic Smagorinsky model only when the plane-wise procedure (Eq. 21) is applied,

as for the case Rτ = 590 and Solver B. Recall that this procedure can be used only for

simple cases with homogeneous directions. Conversely, the asymptotic behavior is built in

the σ-model’s differential operator itself and no specific dynamic procedure/homogeneous

directions is required.
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FIG. 6. Velocity fluctuations (rms) from the static σ-model ( ) and the dynamic Smagorinsky

model ( ). Symbols correspond to the filtered DNS data [43]. Top: Results from the general

purpose solver AVBP (Solver A) at Rτ = 395. Bottom: Results from the channel code (Solver B)

at Rτ = 590.

IV. CONCLUSIONS

A differential operator based on the singular values of the velocity gradient tensor is pro-

posed as a basis for an improved SGS eddy-viscosity model. It is shown that the proposed

static σ-model generates zero eddy-viscosity for any two-dimensional or two-component

flows, as well as for axisymmetric and isotropic compressions/expansions. It also has the

proper cubic behavior in near-wall regions. Implemented in three LES solvers with different

numerics, the model gave promising results for two academic configurations. Owing to its

unique properties, ease of implementation and low computational cost, it is anticipated that
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FIG. 7. Scaled SGS eddy-viscosity from the static σ-model ( ) and the dynamic Smagorinsky

model ( ). The dotted lines correspond to the proper y3 asymptotic behavior. Top: Results

from general purpose solver AVBP (Solver A) at Rτ = 395. Bottom: Results from the channel

code (Solver B) at Rτ = 590.

the σ-model could be useful in the current effort to make LES even more suitable for com-

plex flow configurations. Notably, it is well suited for any global dynamic procedure which

adapts the overall model constant to the grid resolution and numerical errors.
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Appendix: Computation of the singular values of g

For each SGS viscosity assessment, the σ-model requires the computation of the three

singular values of the local velocity gradient tensor. It is important that this computation

is performed both efficiently and accurately. The two following methods were used with

success during the course of this study:

• Method A: The first idea is to rely on optimized routines of linear algebra as available

in scientific libraries as LAPACK. The computation of the σ’s is then done in three

steps:

1. build the matrix G = gtg from the resolved velocity gradient. This 3× 3 matrix

is symmetric semi-definite positive and its eigenvalues are thus always positive,

2. compute the eigenvalues of G, for example by using the SSYEV/DSYEV routines

from LAPACK, and order them so that λ1 ≥ λ2 ≥ λ3 ≥ 0,

3. compute the singular values of g from σ1 =
√
λ1, σ2 =

√
λ2 and σ3 =

√
λ3.

• Method B: This method [44] is self-contained and does not require the use of an

external scientific library. It consists in the following steps:

1. build the matrix G = gtg from the resolved velocity gradient,
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2. compute its invariants as in Eq. (13), namely:

I1 = tr(G),

I2 =
1

2

(
tr(G)2 − tr(G2)

)
,

I3 = det(G),

where the square of G is G2
ij = GikGkj,

3. compute the following angles from the above invariants:

α1 =
I2
1

9
− I2

3
,

α2 =
I3
1

27
− I1I2

6
+

I3

2
,

α3 =
1

3
arccos

α2

α
3/2
1

,

4. compute the singular values as:

σ1 =

(I1

3
+ 2

√
α1 cosα3

)1/2

,

σ2 =

(I1

3
− 2

√
α1 cos

(π
3
+ α3

))1/2

,

σ3 =

(I1

3
− 2

√
α1 cos

(π
3
− α3

))1/2

From the experience gained during this study, the two above methods give virtually

identical results. It is also interested to assess the computational cost related to these

computations. Since the σ-model is proposed as an alternative to perform LES in complex

geometries, Solver A (the general purpose solver, see Table III) was used for this purpose.

Using Method A, the overall computation time required for a 643 decaying turbulence case

with the σ-model was approximately 10 % larger than what is required with the static

Smagorinsky model. Of course, this assessment may depend on the efficiency of the scientific

library available on the target computer. Still, given the number of properties met by the σ-

model compared to the Smagorinsky one, this extra cost is certainly worth being paid. More

interestingly, the extra CPU cost becomes hardly measurable (less than 1 %) when Method

B is used to compute the singular values. This method being moreover self-contained (no

need for specific scientific libraries), it is certainly the best option to compute the required
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singular values.
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3.4. THE GLOBAL DYNAMIC SIGMA MODEL

3.4 The global dynamic Sigma model

The development of the sigma time scale was the first step for investigating a model that could be used
in IC engines. The road investigated by Germano consisted to start from a crude time scale and then
built a dynamic model to meet the local and global requirements of a good SGS model. But the dynamic
Smagorinsky model suffers from the need of homogeneous directions that can not be easily identified
in complex configurations. In this section another option is presented. It consists in using the Sigma
time scale to meet the local properties and then estimate the global dissipation with the constant that
is homogeneous in space but can vary in time. This is done as recommended by Lee et al. [81] using
the Germano-identity. An important modification is introduced to account for the solid boundaries. One
could wonder why the Sigma time scale is not directly combined with the Germano-identity to built a
local dynamic σ-model. It will be showed that the combination of an advanced time scale and the local
dynamic procedure leads to a model that is not an improvement of the static model thus reinforcing the
idea that a global dynamic method should be used for the constant.

3.4.1 Paradox of the local dynamic procedure and advanced time scales:

It might be thought that using time scales that have intrinsic better properties than the Smagorinsky
model (such as the WALE, Vreman and the Sigma time scales) for building a dynamic model would
necessarily lead to a better model than the dynamic Smagorinsky one. But this is not true specially for
wall-bounded flows. Indeed, when looking carefully at Eq.1.84 recalled here:

C2 = −1

2

LijMij

MijMij
(3.49)

one can observe that the drawback of the Smagorinsky time scale (Mij for the Smagorinsky model’s time
scale is constant and non zero near solid boundaries but Lij tends to zero) that is not to vanish in the
shear region is a real advantage for determining its coefficient. In the contrary, a model that has the skill
to vanish near solid boundaries (Mij for advanced model’s time scales tend to zero near solid boundaries
and Lij as well) is now disadvantaged because its coefficient computation is ill-posed. A simple way to
understand this paradox is to consider the following asymptotic behavior for the filtered velocity field ui
using Taylor expansions (assuming that the solid boundary is located within (x,z) where y is the direction
perpendicular to the wall):

u1 = ay +O(y2) (3.50)

u2 = by2 +O(y3) (3.51)

u3 = cy +O(y2) (3.52)

where a, b, c depend on x, z and time. Only the most important components when getting close to solid
boundaries are considered. It means Mij and Lij are simplified to M12 and L12 and are expressed as
followed:

M12 = ∆̃2|D̃(ũ)|S̃12 − ˜∆2|D(u)|S12 (3.53)
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3.4. THE GLOBAL DYNAMIC SIGMA MODEL

L12 = ũ1u2 − ũ1ũ2 (3.54)

From the expression 3.50, 3.51, 3.52, we have:

S12 = a+O(y) (3.55)

u1u2 = acy3 +O(y4) (3.56)

The expression of the time scale depends on the model used. For the smagorinsky time scale:

Dsmag =
√

2a+O(y) (3.57)

and for the σ-model:

Dσ = fy3 +O(y4) (3.58)

With the relation Eq. 3.57, Eq. 3.58, Eq. 3.55 and Eq. 3.56 the terms Lij , M
smag
12 and Mσ

12 have the
following behavior:

Msmag
12 = ∆̃2

√
2a2 − ∆̃2

√
2a2 +O(y) (3.59)

Mσ
12 = ∆̃2fay3 − ∆̃2fay3 +O(y4) (3.60)

L12 = (ãc− ãc̃)y3 +O(y4) (3.61)

Then near the wall, the dynamic constant converges to the following expression for the Smagorinsky
model:

Csmag =
(ãc− ãc̃)y3

∆̃2
√

2a2 − ∆̃2
√

2a2

+O(y4) (3.62)

and for the σ-model:

Cσ =
(ãc− ãc̃)y3

∆̃2fay3 − ∆̃2fay3
+O(y) (3.63)

The latter relation shows that the dynamic constant formally behaves like y0 near the wall. However, the
leading order term in Eq. 3.63 is the ratio of two very small quantities (behaving like y3) whose numerical
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3.4. THE GLOBAL DYNAMIC SIGMA MODEL

assessment strongly depends on the details of the test filter application and stabilization procedure. This
situation is obviously ill-posed numerically and can lead to very large value of the dynamic constant. Fig.
3.16 shows the time evolution of the mean values of the constant and we can see that it converges to a
value that is almost twice larger than the expected constant for this test case. Moreover the maximum
of the constant can reach very large values as shown on Fig. 3.17.

Figure 3.16: Mean value of the local dynamic σ-constant for the channel test case at Reτ = 395

Figure 3.17: Maximum value of the local dynamic Sigma constant for the channel test case at Reτ = 395

Note that the situation is drastically different when the dynamic procedure is applied to the Smagorinsky
model. In this case, the time scale spatial operator behaves like y0 and the denominator also (see Eq.
3.62). A model with a proper asymptotic behavior seems to be more sensitive to the choice of the filters
and the stabilization, specially near the wall. Results obtained showed that in the case of the WALE and
the σ-model (see Fig. 3.18), predictions of their local dynamic extension are worst than the simple static
model. This issue is discussed in an article (see APPENDIX C) available in the V European Conference
on Computational Fluid Dynamics proceeding.
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3.4. THE GLOBAL DYNAMIC SIGMA MODEL

Figure 3.18: Mean velocity obtained with the local dynamic σ-model for the channel test case at Reτ =
395: (thick line) local dynamic σ-model, (symbols) DNS of Moser et al. [99]

3.4.2 The Global dynamic Sigma model:

• Classic Global dynamic procedure
The development of advanced time scales (Vreman and WALE ) already mentioned above gives now
the possibility to evaluate globally rather than locally the coefficient. Indeed, because they meet
several local properties, it remains only necessary to evaluate the proper global dissipation. Two
global dynamic [108, 157] procedures are now available and the most efficient according to the study
of Lee et al. [81] and easy to implement consists in performing a volume weighted averaging of local
values that are obtained through the Germano identity. The resulting coefficient homogeneous in
space is then expressed as:

C2
G = −1

2

< LijM
σ
ij >

< Mσ
ijM

σ
ij >

(3.64)

The superscript ()σ is for emphasizing that the σ-model’s time scale is used in this case. The
signs < > stand for the volume weighted averaging. The Global dynamic procedure was already
introduced during the development of the static σ-model. Results are very interesting in the case of
unbounded flows such as the CBC, the Kang et al HIT and the periodic jet perfomed by G. Balarac
during the CTR summer Program. Surprisingly, when the global dynamic σ-model is applied for
modeling wall-bounded flows such as the turbulent channel, results are not as good as expected.
Fig 3.19 and Fig. 3.20 shows respectively the mean velocity and rms velocity predicted.
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Figure 3.19: Mean Velocity for the channel test case
Reτ = 395: (dashed line) Global σ-model. (thick
line) σ-model, (symbols) DNS of Moser et al. [99]

Figure 3.20: rms Velocity for the channel test case
Reτ = 395: (dashed line) Global σ-model, (thick
line) σ-model, (symbols) DNS of Moser et al. [99]

There is an overestimation of the mean velocity that can be explained by the large value to which
the global constant converged. Fig. 3.21 shows the time evolution of the constant that is greater
than the asymptotic value 1.35.

Figure 3.21: Time evolution of the dynamic global constant for the turbulent channel Reτ = 395

This leads to a higher level of the SGS velocity compared to the static model as showed on Fig.
3.22.
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Figure 3.22: Comparison of the ratio νsgs/ν for the turbulent channel Reτ = 395: (dashed line) Global
σ-model. (thick line) σ-model.

• Modified Global dynamic procedure
The problem that appears when using the classic Global dynamic procedure can be explained by
representing the two terms LijMij and MijMij in the channel. Fig. 3.23 shows the profile of those
two terms in the channel for a Reτ = 395. It is interesting to note that the two terms reach a
pic where their values is higher than the value in the center of the channel increase strongly when
approaching the wall.

Figure 3.23: Profile of LijMij (circles), MijMij (squares) and C =
√

<LijMij>plane
MijMij>plane

(thick line) in the

turbulent channel case at Reτ = 395.

As expected the values of LijMij and MijMij near the wall (where viscous effects dominates) are
much smaller than their values in the center of the channel (where the flow is effectively turbulent).
It turns out that the ratio of these two very small numbers generates a large dynamic constant in
the wall region. As a direct consequence, the volume weighted averaging is biased because of the
large values near the solid boundaries. In this region the flow is dominated by viscous effects and
it is not representative of the turbulent in the channel. We can also see that when one evaluate
”a posteriori” the constant in the channel using the corresponding LijMij and MijMij (with an
averaging over plans parallel to the walls), the values obtained in the center of the channel are more
closed to the expected value 1.5 for the σ-model.

Proposal of solution
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A simple way to overcome the problem mentioned is to damp values close to the wall. In other
terms, restrict the volume average to values that are effectively relevant and representative of the
turbulent intensity. This can be achieved with a sensor that vanishes near walls and that is almost
constant far from the wall. The choice of such a sensor is certainly not unique but in any case the
sensor should be applicable also in all types of configurations from simple channel to very complex
geometries.

Damping sensor
Recalling the asymptotic behavior of the singular values of the velocity gradient tensor: gij : σ1 =
O(y0), σ2 = O(y1), σ3 = O(y2) two damping sensors were tested:

s1 =
σ2

σ1
(3.65)

s2 =

(
σ2

σ1
)3

)
(3.66)

s1 and s2 have respectively the asymptotic behavior O(y1) and O(y3).

Results for the channel flow at: Reτ = 395
The modified global constant C∗G is now expressed as:

C∗2G = −1

2

< LijM
σ
ij >s

< Mσ
ijM

σ
ij >s

(3.67)

where <>s stands for an ensemble averaging procedure 3 weighted by the sensor s1 or s2.

Figure 3.24: Mean Velocity for the channel test case
Reτ = 395: (dashed line) Global σ-model with sensor
s1, (symbols) DNS of Moser et al. [99]

Figure 3.25: Mean Velocity for the channel test case
Reτ = 395: (thick line) Global σ-model with sensor
s2, (symbols) DNS of Moser et al. [99]

Fig. 3.24 and Fig. 3.25 show the mean velocity predicted respectively with the sensor s1 and s2.
Results are presented separately for sake of clarity. There is still a slight overprediction of the mean

3For a scalar φ, we have:

< φ >s=

∫
φ s dv∫
s dv

(3.68)
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velocity when using the s1 sensor. In contrary, results are in better agreement with the DNS when
using s2. Obviously s1 does not damp enough the values close to the wall. Fig. 3.26 shows the
evolution of the two sensors in the channel. The asymptotic behavior of each sensor is correctly
retrieved. But the damping induced by the first sensor is lower than for the second sensor s2. This
is confirmed by the temporal evolution of the constant on Fig. 3.27.

Figure 3.26: Profile of the sensor s1 and s2 in the channel.

Figure 3.27: Time evolution of the global constant predicted with the sensors s1 and s2.

Prediction of the rms velocity shown on Fig. 3.28 are also in good agreement with sensor s2.
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Figure 3.28: rms Velocity for the channel test case Reτ = 395: (thick line) global σ-model with sensor s2,
(symbols) DNS of Moser et al. [99]

Finally, the use of dimensionless damping sensors to improve predictions of the global dynamic procedure
seems to be a promising solution for extending the global dynamic σ-model to wall bounded flows. Indeed,
for non-wall bounded flows the models performed very well on various cases: such as HIT and also periodic
Jet (see APPENDIX B for results concerning the results in the periodic Jet). However the presence of
solid boundaries seems to alter the prediction and it is then necessary to use one of the method (sensor
s2) aforementioned. Still, more test cases need to be performed at different Reynolds numbers and with
other solvers as it was done with the σ-model in order to definitely validate the proposed solution.
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3.5 Extension to the SGS conductivity

The difficulty with the validation of the dynamic SGS conductivity model is the lack of DNS database
on anisothermal (with high temperature ratio between the channel temperature center and the wall tem-
perature) flows at low Mach number. The objective of the simulations which will be presented is to make
sure that the model has been properly implemented in AVBP before using the model for the simulation
of the experimental set-up. After comparing the non dimensional mean velocity and temperature, the
behavior of the dynamic Prandlt number in the channel is analyzed. The reference data for this part is
the wall-resolved LES of Cabrit and Nicoud (see Case C in [22]) for which the channel center is 3 times
hotter than the wall. Characteristics of the mesh used in simulations and during this work are presented
in table. 3.2:

Table 3.2: Characteristics of the LES simulations for the anisothermal case.
Case Lx/h Lz/h Nx Ny Nz ∆+

x ∆+
y ∆+

z Reτ

Present LES simulations 3.5 1.3 44 99 44 82 1-80 30 1000

Cabrit and Nicoud LES simulations 3.5 1.3 44 159 44 82 1-30 30 1000

The ”reference” wall resolved LES of Cabrit and Nicoud were performed with the WALE model and the
SGS turbulent Prandtl number was set to 0.5. In our case the SGS Prandtl number for the constant
case is equal to 0.7. It is important to emphasize that the objective is not to quantitatively validate
the SGS conductivity based with a dynamic constant. Studies [19, 63] have already shown that in a
Turbulent channel this formulation shows only little differences compared to the constant SGS Prandtl
number method. Rather the goal is to establish the proper implementation of the dynmic conductivity
in the AVBP solver [1]. In what follows, comparisons are performed regarding the mean non dimensional
temperature and velocity when changing only the SGS conductivity. All the simulations are performed
with the same initial conditions and are averaged over 12 diffusion times.

Dynamic Smagorinsky model and dynamic SGS conductivity

Two LES simulations were performed both with the dynamic Smagorinsky model concerning the SGS
viscosity and with a constant SGS Prandtl number and a dynamic conductivity SGS model.

Figure 3.29: Mean velocity profile in the anisothermal turbulent channel case: (dash line) dynamic
Smagorinsky model with constant SGS Prandtl, (thick line) dynamic Smagorinsky model with dynamic
SGS Prandtl, (symbols) Cabrit and Nicoud [22] LES.
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Figure 3.30: Mean temperature profile in the anisothermal turbulent channel case: (dash line) dynamic
Smagorinsky model with constant SGS Prandtl, (thick line) dynamic Smagorinsky model with dynamic
SGS Prandtl, (symbols) Cabrit and Nicoud [22] LES

Results of the mean non dimensional velocity in Fig. 3.29 shows little differences between the two for-
mulations of the SGS conductivity specially in the region around y+ = 100. In the two cases predictions
are higher than LES simulations of Cabrit and Nicoud but of the same order of magnitude. Concern-
ing the temperature profiles shown in Fig. 3.30, results are similar except in the channel center where
the formulation with the dynamic Prandtl is slightly higher than the prediction of the constant Prandtl
number.

Global SIGMA model and dynamic SGS conductivity

Similar to the simulations performed in the precedent section, two simulations were performed with the
Global dynamic σ-model with the two formulations of the SGS conductivity.

Figure 3.31: Mean velocity profile in the anisothermal turbulent channel case: (dash line) Global σ-model
with constant SGS Prandtl, (thick line) Global σ-model with dynamic SGS Prandtl, (symbols) Cabrit
and Nicoud [22] LES
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Figure 3.32: Mean temperature profile in the anisothermal turbulent channel case: (dash line) Global
σ-model with constant SGS Prandtl, (thick line) Global σ-model with dynamic SGS Prandtl, (symbols)
Cabrit and Nicoud [22] LES

Results of the mean non dimensional velocity and temperature profile in Fig. 3.31 and Fig. 3.32 are similar
as in the case of the dynamic Smagorinsky model. The differences between the two formulations are not
high and predictions of the LES simulations are also in same order of magnitude as LES simulation of
Cabrit and Nicoud [22].

SGS viscosity and SGS Prandtl number

Comparisons in Fig. 3.33 show that the choice of the formulation of the conductivity has almost no
influence on the SGS viscosity. In Fig. 3.34 the SGS Prandtl number evaluated a posteriori is shown.
Indeed, because it is the SGS conductivity which is explicitly calculated as explained in the literature
review section, the SGS Prandtl number is evaluated a posteriori over planes parallel to the top and
bottom walls of the channel. Results show an expected behavior of the SGS Prandtl number: close to
the wall, viscous effect dominates and the heat transfer is mostly due to the laminar conductivity. In the
channel center where the flow is turbulent, the SGS Prandtl number decreases thus enhancing the SGS
heat flux. The two terms are indeed inversely proportional.
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Figure 3.33: Comparison of the predictions of the SGS viscosity in the anisothermal turbulent channel case:
(dot line) dynamic Smagorinsky model with dynamic SGS Prandtl, (dot dash line) dynamic Smagorinsky
model with constant SGS Prandtl, (dash line) Global σ-model with constant SGS Prandtl, (thick line)
Global σ-model with dynamic SGS Prandtl

Figure 3.34: Comparison of the predictions of the dynamic SGS Prandtl number in the anisothermal
turbulent channel case: (dash line) SGS Prandtl number evaluated from the dynamic Smagorinsky model,
(thick line) SGS Prandtl number evaluated from the Global σ-model
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3.6 An alternative to the clipping of the dynamic Smagorinsky
constant:

We have seen on academic cases specially wall-bounded cases that the use of the local version of the
dynamic Smagorinsky model (with clipping) can lead to an overestimation of the dissipation. However,
this is probably the easiest way to use this model in complex geometries. In what follows, a simple
alternative to the local clipping is presented which is based on a concept of the redistribution of the
global constant of the dynamic Smagorinsky model. The suggested alternative was tested on the turbulent
periodic jet by G. Balarac with solver D and on the Turbulent channel with solver A. In both cases, it
shows better or equivalent results than the local dynamic Smagorinsky model.

Error on the global dissipation

The use of the Germano-identity with Lilly correction [84] aims at minimizing the quantity εijεij , where
εij is expressed as followed:

εij = T sgsij − τ̃ij
sgs − Lij (3.69)

and represents the Germano-identity error which should be zero in the perfect case.
The problem that arises when the minimization is applied locally is that the values of the coefficient can
be negative and they are clipped to avoid any unstable computations. The overall dissipation of the SGS

model < τsgsij S̃ij
sgs

> can be split into two terms :

< τsgsij S̃ij
sgs

> = < τsgsij S̃ij
sgs

>+ + < τsgsij S̃ij
sgs

>− (3.70)

where superscripts ()+ and ()− stand respectively for a quantity evaluated with positive and negative
values of the dynamic constant.

The term < τ sgsij S̃ij
sgs

>+ is of course positive and < τ sgsij S̃ij
sgs

>− is negative. When the model is
applied locally and applied locally, the last term is set to zero and the overdissipation induced by the
SGS model is equal to that term.
It is worth noting that the problem is different when the coefficient is averaged over the homogeneous
directions meaning that the dissipation is also averaged over those directions.

< τsgsij S̃ij
sgs

>=
∑

h

< τsgsij S̃ij
sgs

>h =
∑

h

(
< τsgsij S̃ij

sgs
>+
h + < τsgsij S̃ij

sgs
>−h

)
(3.71)

where the underscript h stands for a homogeneous direction and < τsgsij S̃ij
sgs

>h the SGS dissipation on
h which is expressed as follows:

< τsgsij S̃ij
sgs

>h = C2
h

(
< 2ρ∆2D+

s (u)S̃ij
sgs
S̃ij

sgs
>+
h + < 2ρ∆2D−s (u)S̃ij

sgs
S̃ij

sgs
>−h

)
(3.72)

where C2
h is the constant obtained with the dynamic procedure, D+

s and D−s respectively the Smagorinsky
time scale for positive and negative values of the constant. Because C2

h is rarely negative on an entire plane
(thus no use of clipping) there is almost no over dissipation induced when averaging over homogeneous
directions is used. In addition to the fact that this procedure preserves the correct near wall behavior
of the SGS viscosity, averaging over homogeneous directions do not lead to any increase of the overall
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dissipation.
When using the Smagorinsky time scale, there is no other choices than a local dynamic procedure to
overcome the drawback of the time scale itself. But this should be achieved so as to preserve the overall
dissipation. The alternative suggested here consists in two steps : first calculate globally the model
constant and then redistribute the global constant.

Global dissipation:

The global constant is obtained by assuming that there is a constant CG that should lead to the same
overall SGS dissipation of the Smagorinsky model than the dissipation induced by the local constant Ci:

< τsgsGij S̃ij
sgs

>=< τsgsij S̃ij
sgs

> (3.73)

which leads to the following relationship between CG and Ci:

C2
G < 2ρ∆2Ds(u)S̃ij

sgs
S̃ij

sgs
>=< 2ρC2

i ∆2Ds(u)S̃ij
sgs
S̃ij

sgs
> (3.74)

Eq.( 3.74) can be simplified to:

C2
G ≈< C2

i > (3.75)

Since the Smagorinsky time scale Ds(u) does not meet several properties like vanishing in near wall
region, it is not possible to use the global constant CG uniformely over the flow domain. The latter
should be redistributed to overcome the drawback of the time scale.

Redistribution procedure:

The redistribution should be performed so as to preserve the overall SGS dissipation. Meaning that if we
assume CGi the redistributed local constant the following relation should be satisfied:

< τsgsGiij S̃ij
sgs

>=< τsgsGij S̃ij
sgs

> (3.76)

Let us note Θi the redistribution function:

CGi = ΘiC
G (3.77)

Injecting Eq. (3.77) in Eq. (3.76) leads to the following constraint on the redistribution function:

< Θi >= 1 (3.78)

additionally Θi should be positive to ensure positive eddy-viscosity everywhere (assuming CG > 0). The
following expression was chosen:
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Θi =
|Ci|+ Ci

2

VT
Vn

(3.79)

where VT is the total volume and Vn is the volume.

The final expression of the viscosity is then:

νsgs = (CGΘi)
2∆2Ds(u) (3.80)

Results

Results of the alternative formulation (referred to as RGS which stands for Redistributed Global Smagorin-
sky) are compared with results of the local dynamic Smagorinsky model with clipping on different aca-
demic test cases:

• Turbulent periodic Jet
The potential of the suggested alternative for non wall-bounded flow was investigated in the spectral
solver D by Guillaume Balarac. Results are compared with the dynamic Smagorinsky model with
a constant averaged over homogeneous directions (DSMh). The results from 643 LES are compared
to 2563 DNS data obtained by running the same spectral code.The configuration is close to the one
studied in Da Silva & Pereira [32] except for the jet width-to-initial momentum thickness, which is
20 instead of 35. The computational domain is periodic in the three spatial directions and its size is
four times the initial jet width. The DNS initial field is generated by super-imposing divergence-free
random fluctuations to the mean velocity profile. The LES initial condition is obtained from the
DNS data by spectral interpolation. Because periodic conditions are imposed in both the streamwise
and spanwise directions, the flow is not statistically steady and the jet keeps growing thicker and
thicker as time increases.

Figure 3.35: From left to the right jet at different times: t1 = 5h/U, t2 = 10h/U, t2 = 15h/U and t2 =
20h/U. Top: Passive scalar in the jet. Bottom : Q criterium colored by the axial vorticity.

A passive scalar was introduced into the jet in order to represent the mixing with the environment.
Comparison between the DNS and LES simulations are done at 4 different times: t1 = 5h/U ,
t2 = 10h/U , t2 = 15h/U and t2 = 20h/U where h is the jet half thickness and U is the maximum
mean velocity. Fig. 3.35 shows on the top the evolution of the passive scalar and on the bottom
the Q criterion color by the axial vorticity. The later gives an idea of the turbulent activity. As it
can be seen the four chosen times are well representative of flow states that can be met in a non
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wall-bounded flow. The comparisons are focused on the prediction of the turbulent kinetic energy
predicted by the different SGS models in comparison to the filtered DNS. Only results of the three
last times are presented.

Figure 3.36: Turbulent planar jet test case at time 10h/U. Resolved turbulent kinetic energy. Circles
represent the filtered DNS. Thick line: RGS and plus symbols DSMh.

Figure 3.37: Turbulent planar jet test case at time 15h/U. Resolved turbulent kinetic energy. Circles
represent the filtered DNS. Thick line: RGS and plus symbols DSMh.

Fig. 3.36 to Fig. 3.38 show that the redistribution of the global constant of the Smgorinsky model
leads to equivalent results than the recommended dynamic Smagorinsky model with homogeneous
directions for unbounded flows.
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Figure 3.38: Turbulent planar jet test case at time 20h/U. Resolved turbulent kinetic energy. Circles
represent the filtered DNS. Thick line: RGS and plus symbols DSMh.

• Turbulent channel
Simulations of the case Reτ = 395 with the modified dynamic Smagorinsky model were performed
and compared with the local dynamic Smagorinsky model with clipping. Fig. 3.39 and Fig. 3.40
show the mean dynamic constant and the viscosity in the channel. The constant of the two models
decreases in the near wall region in oder to damp the Smagorinsky’s time scale but the constant
(and thus the SGS viscosity) of the modified dynamic Smagorinsky model is lower than the constant
of the local dynamic Smagorinsky model.

Figure 3.39: Dynamic constant of the models the
channel test case Reτ = 395: dashed local dynamic
Smagorinsky model. Thick line RGS Symbols DNS
of Moser et al. [99]

Figure 3.40: Ratio νsgs/νlam in the channel test
case Reτ = 395: dashed local dynamic Smagorin-
sky model. Thick line RGS. Symbols DNS of Moser
et al. [99]

Results of the mean and rms velocity in Fig. 3.41 and Fig. 3.42 show that the suggested modification
leads to better results than the local dynamic Smagorinsky model.
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Figure 3.41: Mean Velocity for the channel test
case Reτ = 395: dashed local dynamic Smagorin-
sky model. thick line modified dynamic Smagorinsky
model. Symbols DNS of Moser et al. [99]

Figure 3.42: rms Velocity for the channel test case
Reτ = 395: dashed local dynamic Smagorinsky
model. Thick line RGS. Symbols DNS of Moser et
al. [99]

The results presented concerning the proposed RGS formulation shows that it can be considered as an
alternative to the local dynamic Smagorinsky model with clipping specially for unbounded flows. More
tests should be performed in complex configurations. However, this formulation does not overcome the
issues of the use of the Germano-identity for coarser resolution at the wall. Simulations of the turbulent
channel case were performed with a good resolution and a smooth stretching of the mesh in the wall
normal directions. Meaning that the hypothesis of a small variation of the constant which can then be
taken out of the test filter is still valid. For very coarse meshes this hypothesis is not valid specially near
the wall where the constant should vanish.
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Chapter 4

Experimental and Numerical results:

Once the model developed, the SGS dynamic conductivity implemented in AVBP, the next step was to
assess performances of those models compared with the (local) dynamic Smagorinsky model in a more
realistic configuration. In this chapter, the complete numerical procedure for computing the experiment
test case is presented: geometry, boundary conditions and initial conditions. Preliminary simulations are
performed to assess the impact of the numerical scheme and number of solutions used for the averaging
before comparing predictions from the aforementioned models.
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4.1 Numerical set-up of the JICF:

4.1.1 Geometry and mesh:

The geometry and the mesh were realized by Olivier Cabrit1 who is also acknowledged for his advices
and recommendations during the simulations of the experiments.

Geometry and measurements planes

The experimental set-up was design for LES simulation purposes. The whole experimental set-up was
simulated with three modifications: the injection system is not taken into consideration because the
geometry of the injector was unknown. The geometry starts from the top of the convergent as shown in
Fig. 4.1 and Fig. 4.2.

Figure 4.1: Lateral view of the geometry used for the
simulation of the experimental set-up

Figure 4.2: Front view of the geometry used for the
simulation of the experimental set-up

Figure 4.3: View of the experimental set-up without convergent

1o.cabrit@unimelb.edu.au
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The length of the pipe of the extraction part is limited because the real dimension are too large to be
taken into account. Still, the length in the simulation is long enough to avoid any effects of the boundary
condition on the flow.

Figure 4.4: Lateral view of the PIV planes Figure 4.5: Top view of PIV planes

A simplified view of the measurement section is shown in Fig. 4.4 and 4.5 (there is no scaling on the
figures. They are schematic representations of the position of the PIV planes). One can see the origin
of the set-up situated at the center of the convergent exit. The orientation of the different axis is also
presented. Positions of the different measurements planes for PIV are also shown in Fig. 4.4 and Fig. 4.5.
They are 7 planes: 3 in the X-direction (streamwise direction) at location X = −1D (P1), X = 0D (P2),
X = 1D (P3) and 4 in the Z+-direction (spanwise direction) at the location Z = 0D (P5), Z = 0.7D
(P6), Z = 1.5D (P7) and Z = 5D (P8). The acquisitions were performed at the following time : 0.6
ms, 0.8 ms, 1.0 ms, 1.2 ms, 1.4 ms, 1.6 ms, 1.8 ms, 2.0 ms, 3.0 ms, 4.0 ms, 5.0 ms, 6.0 ms, 7.0 ms.
Only the most relevant planes will be presented in the manuscript. The measurements planes for the LIF
correspond to the 3 first planes in the spanwise direction: P5, P7 and P8.

Mesh parameters

As in most CFD simulations, the resolution of the mesh plays an important role in the results quality,
specially in LES simulations for which the size of the node volumes defines the cutoff length. A particular
attention was paid on the mesh resolution near the wall in order to accurately track near wall effects and
also in the convergent in order to have sufficient nodes resolution over the diameter to well reproduce the
velocity profile at the convergent exit.

Figure 4.6: Mesh refinement of the measurement sec-
tion Figure 4.7: Mesh refinement of the convergent

The mesh size was based on the correlation in turbulent channel based on the maximum cross flow velocity
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around 12 m/s. The cells size under the injector exit was chosen in oder to have a y+ ≈ 4 regarding the
cross flow velocity. It also allows to have at least 30 nodes on the exit diameter of the convergent in order
to well reproduce the velocity profile (see Fig. 4.6 Fig. 4.7). The mesh is uniform around the injector
diameter, in the streamwise direction from X = −2.5D to X = 4.5D and in the spanwise direction from
Z = −2D to Z = 2D. In the rest of the geometry, the cell size is progressively increased as shown in Fig.
4.8 and Fig. 4.9.

Figure 4.8: Progressive increase of the mesh size
Figure 4.9: Lateral view of the mesh used for the
simulation of the experimental set-up

Boundary conditions

Table 4.1: List of the boundary conditions

Patch Boundary conditions

1 INLET RELAX UVW T Y TURB
2 INLET RELAX RHO UVW T Y
3 OUTLET RELAX P 3D
4 WALL LAW COUPLED ADIAB
5 WALL NOSLIP ADIAB
6 WALL NOSLIP ADIAB
7 WALL NOSLIP ADIAB
8 WALL LAW COUPLED ADIAB
9 WALL NOSLIP ADIAB
10 WALL LAW COUPLED ADIAB
11 WALL LAW COUPLED ADIAB
12 WALL NOSLIP ADIAB
13 WALL SLIP RELAX T
14 WALL SLIP RELAX
15 WALL LAW COUPLED ADIAB
16 WALL NOSLIP ISOT

Table 4.1 summarizes the different boundary conditions imposed in the simulation. These conditions were
considered as the most appropriated to fully represent the different physical effects at the boundary2.

2More precisions on the parameters and the boundary patches are given in appendix C
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Figure 4.10: Different patches for the LES simulation of the experimental set-up

Fig. 4.10 shows the surfaces to which the different patches refer to.

4.1.2 The flow rate of the injector:

Helmholtz Resonator

It was found during the characterization of the injector, using PIV measurement that the flow rate of the
injector can be defined in two parts: an unsteady and a steady phase. The steady phase is characterized
by low velocities and is controlled by a frequency fh ≈ 1000 Hz (see Fig. 2.22) induced by the convergent
at injector exit which acts as an Helmholtz resonator. The objective of this section is to make sure that
the frequency observed experimentally is also obtained in the simulations.
The test focuses only on the frequency induced by the shape of the convergent when a continuous signal is
imposed. It consists in imposing at the convergent inlet (top of the convergent) a continuous rectangular
flow rate signal of 1.6 g/s and to measure the signal obtained at the injector exit.

Figure 4.11: Frequency induced by the convergent shape before modification
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It can be seen in Fig. 4.11 that the convergent acts as a Helmholtz resonator also in the LES simulation.
But the frequency 1200 Hz is different from the observed frequency in the experiment 1000 Hz. This is
probably due to the fact the entire injection part is not taken into account in the simulation. In order, to
obtain the same frequency as the one of the experiment, a modification was performed on the convergent
height thanks to Eq. 2.8. The new convergent was then 13.2 mm longer than the one of the experiment.
Fig. 4.12 shows the result of the same rectangular signal test performed with the new convergent. It can
be seen that the experimental frequency is well reproduced with the new convergent. The modification of
the convergent volume ensure to have the same frequency that controls the jet during the steady phase
also in the LES simulations.

Figure 4.12: Frequency induced by the convergent shape after modification

The inlet flow rate

It was decided to reproduce the inlet flow rate by imposing a source term in a small volume inside the
convergent. The inlet flow rate/velocity profile was then modified in order to fit the inlet flow rate of the
experiment. Indeed, the velocity profile shown in Fig. 2.23 was done for understanding the behavior of the
injector but the PIV measurements were performed without the impingement surface and also without
the cross flow.

Figure 4.13: Comparisons of the flow rate obtained from the experiment with cross flow and the LES
simulation performed with the dynamic Smagorinsky model

We can see in Fig.4.13 that the experimental flow rate is well reproduced and that the flow rate obtained
in the simulation (result of the flow rate is similar with the σ-model) is in good agreement with the
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experiments. This is confirmed by the comparison of the velocity profile at different times at the location
Y = −1.5 mm (not shown here).
It is important to emphasize that as the flow rate profile imposed through the source term was defined
in order to have a velocity profile close as possible to the experimental velocity profile specially at the
convergent exit. One can consider that at this location SGS models have almost no impact and a little
error on the flow rate at a section so close to the injector will corrupt the further comparisons between
the experiments and the simulations at others sections far from the injector.

4.1.3 The cross flow

Along with the injection flow rate, the velocity profile of the cross flow is also an important initial condi-
tion that had to be well defined. The main issue for completely reproducing the experimental set-up was
the injection frequency: 1Hz. Indeed, regarding the order of magnitude of the time step in LES simulations
(≈ 10−6 s), it would have been difficult to respect this time duration between two consecutive injections.

The cross flow initial conditions were obtained as follows:

• PIV measurements were performed on the 4 planes: P5, P6, P7 and P8. The streamwise velocity
profile imposed in the simulation at the grid location (X = −10D) corresponds to the mean velocity
profile obtained on the 4 enumerated planes at the section X = −4D (See Fig. 4.14). Fig. 4.15 shows
the imposed mean wall normal velocity which corresponds to the mean wall normal velocity on the
plane P5 at the section X = −4D. The latter strategy was also used for the root mean square
(rms) streamwise and wall normal velocity as shown respectively in Fig. 4.16 and Fig. 4.17. The
synthetic turbulence field was imposed following the procedure available in AVBP [1]. More about
the procedure for imposing a synthetic turbulent flows can be found in [72, 73].

Figure 4.14: Mean streamwise cross flow velocity im-
posed in the simulations

Figure 4.15: Mean wall normal cross flow velocity
imposed in the simulations

Although the grid is homogeneous in the spanwise direction, there are some differences on the veloc-
ity profile on the 4 planes which are not perfectly similar. Note however that the slight differences
observed are still in the measurements uncertainty of the PIV. We can also see that the intensity of
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the mean velocity decreases from the top wall to the bottom.The low level of velocity near the wall
will reduce the impact of the initial conditions on the vortices propagation and will help to assess
performances of the different SGS models in case of wall vortex interaction. Such an assessment has
not been done to our knowledge so far.

Figure 4.16: rms streamwise cross flow velocity im-
posed in the simulations

Figure 4.17: rms wall normal cross flow velocity im-
posed in the simulations

• Once the velocity profile is imposed, simulations are performed without injection in order to have a
fully developed turbulence in the channel. The duration of this phase is approximately 50 ms which
leads to a statistically converged flow under the injector as shown in Fig. 4.18. The difficulty for
simulating the experimental set-up was in reproducing the unsteadiness. It was decided to perform
ensemble average starting with equivalent but uncorrelated cross flow initial conditions. Indeed,
after the first 50 ms, depending of the number of cycles that will be simulated, solutions are stored
every 10 ms. Each of these solutions were the initial conditions for the corresponding injection and
cycle. Fig. 4.19 shows a schematic representation of the procedure used for the LES simulations of
the experimental set-up.
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Figure 4.18: Lateral view (top image) and front view (bottom image) of the cross flow field for the first
cycle.

Figure 4.19: Schematic representation of the numerical procedure for the LES simulation of the experiment
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4.2 Velocity comparisons

Before comparing the predictions of the different models, it was decided to perform some preliminary
tests:

• Statistical convergence of the PIV data: the objective is to make sure that the number of snapshots
is enough to reach statistical convergence.

• Influence of natural convection: this can be due to the gradient density inside the measurement
section. A source term ρg (where g is the gravitational vector and ρ the fluid density) was introduced
in the Navier-Stokes equation but no impact was observed on the results.

• Numerical Scheme: the academic cases were performed with a low dissipative scheme quite accurate
in time which is generally not used for industrial applications. The objective is to evaluate the
influence of using a more simple numerical scheme on the simulations results.

• Number of solutions used for the averaging in LES simulations: due to the computational time
costs, comparisons between the models is performed with an ensemble averaging over 10 solutions
referred to as cycles. The objective was to evaluate how the number of cycles influences the quality
of the results.

For sake of simplicity only results over the median plane P5 are presented when dealing with preliminary
tests. Results from the other planes are of course available and are presented for comparing predictions of
the σ-model and the dynamic Smagorinsky model. Finally, the influence of the dynamic SGS conductivity
is presented.

4.2.1 Statistical convergence of the PIV data

The analysis was performed on a single time at t = 1.4 ms which is one the most challenging instant
because of the impingement of the ring vortex with the bottom wall as shown in Fig. 4.20.

Figure 4.20: PIV results averaged over 400 snapshots at time t = 1.4 ms

Different series of averaging were performed respectively over 100, 200, 300, 400 snapshots. The mean
velocity and the root mean square (rms) velocity were compared at different sections corresponding
roughly (the desired position can not be exactly obtained as in simulation, one has to find the closest
pixel line) to Y = −0.5D, Y = −D, Y = −1.5D and Y = −1.75D.
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Figure 4.21: Mean velocity at position Y = −0.5D
at time t = 1.6 ms on the plane P5

Figure 4.22: rms velocity at position Y = −0.5D at
time t = 1.6 ms on the plane P5

Figure 4.23: Mean velocity at position Y = −D at
time t = 1.6 ms on the plane P5

Figure 4.24: rms velocity at position Y = −D at time
t = 1.6 ms on the plan Z = 0D

We can see in Fig. 4.21 to Fig. 4.24 that close to the convergent region the statistics are steady even for
the rms velocity. We can also see that in this region the flow is mostly controlled by the inlet condition.
The influence of the cross flow starts at Y = −D as shown in Fig. 4.23 and 4.24 for which the velocity is
no longer symmetric.
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Figure 4.25: Mean velocity at position Y = −1.5D
at time t = 1.6 ms on the plane P5

Figure 4.26: rms velocity at position Y = −1.5D at
time t = 1.6 ms on the plane P5

Figure 4.27: Mean velocity at position Y = −1.75D
at time t = 1.6 ms on the plane P5

Figure 4.28: rms velocity at position Y = −1.75D at
time t = 1.6 ms on the plane P5

The same trend as in the convergent is observed in the region close to the wall. Statistic convergence is
reached allowing a reliable comparison with the simulation even very close to the wall. However, in the
core of the vortex during the impingement specially at Y = −1.75D the post-processing did not provide
any valid vectors which leads to a null velocity as shown in Fig. 4.27. Those points will not be considered
during the rest of the comparisons.
Finally, an estimation of the error on the PIV measurements was done as proposed in [58] where half of
the pixel size is used to estimate the velocity measurement uncertainty:

∆PIV =
0.5Pixel

∆t
(4.1)

where ∆t = 2µs is the time delay between the two laser pulses. For the entire comparison of velocity
profiles on the median plane done in what follows Pixel = 1.07 10−5 m, and then ∆PIV ≈ 5 m/s.
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This analysis shows that the number of sample collected for performing the PIV measurements are large
enough to allow quite reliable comparisons except in the center of the vortices (in the very near wall
region) center where unsufficient number of valid vectors were obtained.

4.2.2 Impact of the numerical scheme

As mentioned in the literature review, numerical schemes in LES can have a major impact on the final
solution because of the dissipation they may introduce. It was then decided to perform the academic test
cases : HIT, turbulent channel and periodic jet with very low dissipative schemes. The two first test cases
were performed with AVBP with a Galerkin type scheme (GRK) which is 4th order accurate in space
with 3 Runke-Kutta steps integration. As for the periodic jet, a spectral code was used.
However, in industrial applications, the used of those numerical is most ofen not possible. The Lax-
Wendroff scheme was then used because it is commonly used at IFPEN for complex geometries. It was
then necessary to assess the performances of SGS models in the same framework.

Figure 4.29: Velocity vectors comparison: Influence
of the numerical scheme at time t = 0.6 ms

Figure 4.30: Velocity vectors comparison: Influence
of the numerical scheme at time t = 0.8 ms
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Figure 4.31: Velocity vectors comparison: Influence
of the numerical scheme at time t = 1.2 ms

Figure 4.32: Velocity vectors comparison: Influence
of the numerical scheme at time t = 1.4 ms

Fig 4.29 to Fig 4.38 show comparison between PIV measurements and LES simulations performed with
the two numerical schemes from time 0.6 ms to 7 ms. We can see that both numerical schemes lead
qualitatively to the same predictions. Before the impingement with the bottom wall, the vortex ring is
well predicted. After the impact (at time t = 1.6 ms), the propagation of the vortex on the solid surface
in both cases is not well predicted. Indeed, the propagation velocity is clearly under-predicted even with
the GRK scheme. However, after the complete dissipation of the energy of the vortex, the deviation of
the jet by the cross flow is well predicted. The over-estimation of the velocity on the vortices is slightly
less pronounced with the GRK after the impingement.
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Figure 4.33: Velocity vectors comparison: Influence
of the numerical scheme at time t = 1.6 ms

Figure 4.34: Velocity vectors comparison: Influence
of the numerical scheme at time t = 1.8 ms
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Figure 4.35: Velocity vectors comparison: Influence
of the numerical scheme at time t = 2.0 ms

Figure 4.36: Velocity vectors comparison: Influence
of the numerical scheme at time t = 4.0 ms
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Figure 4.37: Velocity vectors comparison: Influence
of the numerical scheme at time t = 5.0 ms

Figure 4.38: Velocity vectors comparison: Influence
of the numerical scheme at time t = 5.0 ms

Fig. 4.39 to Fig 4.50 show a more precise comparison between the two numerical schemes at different
locations Y = −D and Y = −1.5D. It confirms the good predictions of the two numerical schemes far from
the impingement surface specially at early injection times. Even during the impingement (see Fig. 4.40
and Fig. 4.41), the simulations are in good agreement with the experiment and no noticeable influence of
the numerical scheme is observed. The dynamic of the flow is controlled by the inlet flow rate conditions
in the near convergent region at the early time. Concerning the late injection times (see Fig. 4.43 and
Fig. 4.44), the lack of accumulation over cycles (the numerical results displayed here correspond to one
single injection) can explain the difference between simulations and experiments in the near convergent
region.
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Figure 4.39: Velocity profile comparison: Influence of
the numerical scheme at time t = 0.8 ms

Figure 4.40: Velocity profile comparison: Influence of
the numerical scheme at time t = 1.4 ms

Figure 4.41: Velocity profile comparison: Influence of
the numerical scheme at time t = 1.6 ms

Figure 4.42: Velocity profile comparison: Influence of
the numerical scheme at time t = 2.0 ms
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Figure 4.43: Velocity profile comparison: Influence of
the numerical scheme at time t = 4.0 ms

Figure 4.44: Velocity profile comparison: Influence of
the numerical scheme at time t = 6.0 ms

Concerning the near wall regions at Y = −1.5D, during the impingement the bad predictions of the two
numerical schemes are due to the convection velocity of the vortex ring which is not correctly retrieved in
the simulations. The LW scheme seems to slightly over predict the velocity more than the GRK scheme.
Fig. 4.49 and Fig. 4.50 suggest that at late injection times close to the wall a higher number of cycles
would be necessary to accurately match the experiment results.

Figure 4.45: Velocity profile comparison: Influence of
the numerical scheme at time t = 1.4 ms

Figure 4.46: Velocity profile comparison: Influence of
the numerical scheme at time t = 1.6 ms
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Figure 4.47: Velocity profile comparison: Influence of
the numerical scheme at time t = 1.8 ms

Figure 4.48: Velocity profile comparison: Influence of
the numerical scheme at time t = 2.0 ms

Figure 4.49: Velocity profile comparison: Influence of
the numerical scheme at time t = 4.0 ms

Figure 4.50: Velocity profile comparison: Influence of
the numerical scheme at time t = 6.0 ms

In conclusion, we note that the influence of the numerical scheme is not that important and simple scheme
can be used. Note that this conclusion is not general but holds only for the particular case considered.
Moreover, it should be stressed that the two schemes considered are rather ”LES compatible” since the
corresponding numerical dissipation is quite small (much smaller than the upwind schemes for example).
In what follows, simulations are performed with the Lax-Wendroff scheme which is almost 2.5 times faster
than the Galerkin scheme. The influence of the number of cycles is potentially more preponderant than
the numerical scheme in our configuration. The latter is studied in the next section.
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4.2.3 Impact of the number of cycles used for the averaging

Because turbulent flows are very chaotic in nature, a reliable comparison between LES results and PIV
measurements can theoretically be done only between statistically converged quantity. Unfortunately, the
CPU time required for LES is still an issue and LES results can not be averaged over a large number
of solutions as in the experiments for which 400 individuals snapshots were used. It was then decided
to perform an ensemble average over 10 solutions (10 cycles) and to compare the results with a single
solution (1 cycle) in order to assess the influence of the averaging. Simulations are of course performed
with the same model: the dynamic Smagorinsky model. Comparisons are done on the median plane P5.

Figure 4.51: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 0.6 ms

Figure 4.52: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 0.8 ms
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Figure 4.53: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 1.2 ms

Figure 4.54: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 1.4 ms

Qualitatively, when looking at the velocity vectors we can see that results for one cycle are quite similar
to the results from 10 cycles. There are little differences because: fluctuations are small as the flow is
characterized by a controlled pulse jet and large scales vortices (see Fig. 4.51 and Fig. 4.54). This trend
is confirmed when examining the velocity profiles (Fig. 4.55 to Fig. 4.58). Indeed, in the region near
the convergent both results are similar specially in the core of the jet where the flow is mostly laminar
whereas differences become larger in the near wall region where the turbulent activity is stronger.

165



4.2. VELOCITY COMPARISONS

Figure 4.55: Velocity profile comparison: Influence of
the number of cycles for the averaging at time t = 1.4
ms

Figure 4.56: Velocity profile comparison: Influence of
the number of cycles for the averaging at time t = 1.6
ms

Figure 4.57: Velocity profile comparison: Influence of
the number of cycles for the averaging at time t = 1.8
ms

Figure 4.58: Velocity profile comparison: Influence of
the number of cycles for the averaging at time t = 2.0
ms
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Figure 4.59: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 1.6 ms

Figure 4.60: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 1.8 ms

In areas of weak velocities out of the core jet, the averaging over 10 cycles and even more is necessary
because the fluctuations level is high compared to the mean velocity value. An averaging over more than
10 cycles would have been necessary to have a better match between the experiments and the simulations
specially at the late injection times as shown in Fig. 4.61 and Fig. 4.62.

167



4.2. VELOCITY COMPARISONS

Figure 4.61: Velocity profile comparison: Influence of
the number of cycles for the averaging at time t = 4.0
ms

Figure 4.62: Velocity profile comparison: Influence of
the number of cycles for the averaging at time t = 6.0
ms

Concerning the region close to the wall where the flow is influenced by the presence of the solid boundary,
the large difference between LES simulations and the experiment are mostly due to the bad prediction
of the convection of the vortex ring. This issue is not related to the averaging issue. There are some
improvements with 10 cycles at late injection times but overall, it seems that some errors could not be
decreased by increasing the number of averaging (see Fig. 4.67 and Fig. 4.68).
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Figure 4.63: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 2.0 ms

Figure 4.64: Velocity vectors comparison: Influence
of the number of solutions for the averaging at time
t = 4.0 ms
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Figure 4.65: Velocity profile comparisons: Influence
of the number of cycle for the averaging at time t =
1.4 ms

Figure 4.66: Velocity profile comparisons: Influence
of the number of cycle for the averaging at time t =
1.8 ms

Figure 4.67: Velocity profile comparisons: Influence
of the number of cycle for the averaging at time t =
4.0 ms

Figure 4.68: Velocity profile comparisons: Influence
of the number of cycle for the averaging at time t =
6.0 ms

4.2.4 Impact of the SGS viscosity models

The precedent tests allowed to evaluate how the numerical scheme and the numbers of cycles computed
could impact the quality of the LES simulations. No influence of the buoyancy forces were observed neither
(not shown here). In what follows, the influence of the SGS viscosity model is investigated by comparing
results from the σ-model and the dynamic Smagorinsky model. In both cases, results are averaged over
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10 cycles and performed and with the Lax-Wendroff scheme. The region of interest is divided into two
parts: the near convergent region (NC region) which starts from the convergent exit Y = 0D to Y = 1D
and the near wall region (NW region) starting from Y = 1D to the impingement surface Y = 2D.

Qualitative analysis: Velocity vectors fields

It can be seen in Fig. 4.69 to Fig. 4.71 that in the early injection time predictions from the two models
are quite similar. This is not surprising because in this phase the dynamic of the flow is mostly controlled
by the large dominant structures induced by the inlet flow rate conditions.

Figure 4.69: Velocity vectors comparison: Influence
of the SGS model at time t = 0.6 ms on the plane
P5

Figure 4.70: Velocity vectors comparison: Influence
of the SGS model at time t = 0.8 ms on the plane
P5
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Figure 4.71: Velocity vectors comparison: Influence
of the number of the SGS model at time t = 1.2 ms
on the plane P5

Figure 4.72: Velocity vectors comparison: Influence
of the SGS model at time t = 1.6 ms on the plane
P5

In the second phase (Fig. 4.72 to Fig. 4.75), during the interaction between the vortex ring and the wall,
we can see the first differences between the two SGS models. The convection velocity of the vortex ring
is well predicted by the σ-model but not as well by the dynamic Smagorinsky model. This is especially
true on the upstream side of the impingement point (X < 0).
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Figure 4.73: Velocity vectors comparison: Influence
of the SGS model at time t = 1.8 ms on the plane
P5

Figure 4.74: Velocity vectors comparison: Influence
of the SGS model at time t = 4.0 ms on the plane
P5
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Figure 4.75: Velocity vectors comparison: Influence
of the SGS model at time t = 3.0 ms on the plane
P5

Figure 4.76: Velocity vectors comparison: Influence
of the SGS model at time t = 4.0 ms on the plane
P5

For the late injection times, predictions of the σ-model and the experiment are also in good agreement.
In both cases, the vortices are already out of the visualization section and the deviation of the jet is well
predicted. Concerning the dynamic Smagorinsky model, the vortex on the left hand side is still inside the
visualization section as it can be seen in Fig.4.75 and Fig.4.76.
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Figure 4.77: Velocity vectors comparison: Influence
of the SGS model at time t = 4.0 ms on the plane
P5

Figure 4.78: Velocity vectors comparison: Influence
of the SGS model at time t = 7.0 ms on the plane
P5

The trend observed on the median plane Z = 0 mm is confirmed on the other planes. On the plane X = 0
mm (see Fig. 4.79 to Fig. 4.82) the convection velocity of the vortex ring on the wall is under estimated
by the dynamic Smagorinsky model. In contrary, the σ-model leads to results in good agreement in the
spanwise direction.
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Figure 4.79: Velocity vectors comparison: Influence
of the SGS model at time t = 1.8 ms on the plane
P1

Figure 4.80: Velocity vectors comparison: Influence
of the SGS model at time t = 2.0 ms on the plane
P1

Figure 4.81: Velocity vectors comparison: Influence
of the SGS model at time t = 3.0 ms on the plane
P1

Figure 4.82: Velocity vectors comparison: Influence
of the SGS model at time t = 4.0 ms on the plane
P1
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In order to better understand the difference between the predictions of the two SGS models, the SGS
viscosity field on the plane just above the impingement plate was analyzed. The vertical median plane is
colored by the velocity vector and the horizontal (situated on the first off grid point) plane by the SGS
viscosity. We can see that because the SGS viscosity of the dynamic Smagorinsky model relies explicitly
on the mesh resolution (through the Leonard term and the use of the test filter) its prediction at early
times without the jet gives an estimation of the mesh quality: refined in the measurement section and
coarse far from this section (see Fig. 4.83). Although the two models depend on the initial filter size ∆,
mesh variations affect the dynamic Smagorinsky model more than the σ-model. This is probably because
when the initial filter mesh ∆ is coarse the test filter ∆̂ is even coarser. The evaluation of the useful terms
(Lij and Mij terms) is not accurate specially near the walls where the hypothesis of low variations of the
dynamic constant that can be taken out of the test filter is not true.

Figure 4.83: SGS viscosity comparison at time t = 0.4 ms

We can see that during the impingement the SGS viscosity of the Smagorinsky model (see Fig. 4.84 to
Fig. 4.85 ) increases which leads to a rapid dissipation of the strength of the vortex ring and to a bad
convection of the vortex ring along the wall. Concerning the σ-model the level of SGS viscosity does not
increase during the impingement of the vortex because the model automatically vanishes in the near wall
region and at stagnation point; the strength of the vortex ring is thus not dissipated which leads to a
better convection.
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Figure 4.84: SGS viscosity comparison at time t = 1.2 ms

Figure 4.85: SGS viscosity comparison at time t = 1.6 ms

At later time t = 6.0 ms as shown in Fig. 4.86, the interaction between the jet and the solid boundary is
less important and the deviation of the jet is well predicted also by the dynamic Smagorinsky model.
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Figure 4.86: SGS viscosity comparison at time t = 6.0 ms

The observation from the velocity field are also confirmed by a comparison of the SGS viscosity field on
plane P5.

Figure 4.87: SGS viscosity field on plane P5 at time t = 0.8 ms

At early time (t = 0.8 ms), predictions of the two models are of the same order of magnitude as shown
in Fig. 4.87. SGS viscosity predictions are mostly in the vortices region and at the shear regions between
the injected nitrogen and the air cross flow.
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Figure 4.88: SGS viscosity field on plane P5 at time t = 1.2 ms

During the impingement, differences appear in the region close to the bottom wall where the SGS viscosity
of the dynamic Smagorinsky model strongly increases. This increase leads as already mentioned to a bad
prediction of the propagation velocity of the vortices by the dynamic Smagorinsky model (see Fig. 4.88
and Fig. 4.89). At later injection times, when the influence of the bottom wall on the flow is negligible,
predictions of the two models are again of the same order of magnitude which confirms the similar results
obtained for the velocity field (see Fig. 4.90).

Figure 4.89: SGS viscosity field on plane P5 at time t = 2.0 ms
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Figure 4.90: SGS viscosity field on plane P5 at time t = 6.0 ms

Different reasons can explain the increase of the SGS viscosity predicted by the dynamic Smagorinsky
model in a region where the flow should be dominated by viscous effects:

• The mesh type and the cell-vertex connectivity used in AVBP does not allow to identify homoge-
neous directions. Indeed, there is no possible homogeneous directions since the information on a
single node depends on the values of the cells that share this node. Except in the case of an HIT it
would be a difficult task to identify homogeneous directions.

• The formulation of the dynamic Smagorinsky model is done locally; this leads to a systematic
clipping of the negative values and to an overestimation of the overall viscosity. Those negative
values would have damped the effect of the SGS viscosity. An interesting exercise would have been
to evaluate in a volume close to jet and cross flow interaction part, the percentage of clipping and
compared with the percentage observed in the turbulent channel case which can reach 35%.

• As we have seen in Fig. 4.83 even when there is no jet, the prediction of the SGS dynamic model is
bad in the region where the mesh is coarse meaning that the results quality of this model depends
strongly on the mesh resolution. It would have been necessary to increase the mesh resolution in
the wall interaction region to have a better prediction of the dynamic Smagorinsky model; of course
this would have dramatically increased the computational time cost of the simulation.

Quantitative analysis: Velocity profiles on the plane P5

In the near convergent region at Y = −1D, predictions of the two models are similar as expected. In the
NC region as it was seen in the previous analysis, the inlet flow rate controls the flow dynamics specially
during the early injection times. At later injection times, results of the two models are also similar and
differences are probably due to the number of cycles used.
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Figure 4.91: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 0.8 ms

Figure 4.92: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 1.4 ms

Figure 4.93: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 1.8 ms

Figure 4.94: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 2.0 ms
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Figure 4.95: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 3.0 ms

Figure 4.96: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 4.0 ms

In the near wall region after the impingement of the vortex ring, results from the σ-model are in good
agreement with the experiment as shown in Fig.4.97 to Fig. 4.100. The trend observed on the velocity
field is confirmed on the velocity profiles.

Figure 4.97: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 1.4 ms

Figure 4.98: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 1.6 ms
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Figure 4.99: Velocity profile comparison: Influence of
the SGS viscosity model at time t = 1.8 ms

Figure 4.100: Velocity profile comparison: Influence
of the SGS viscosity model at time t = 2.0 ms

During the late injection times, after the deviation of the jet, predictions of the two models are similar
as seen in Fig.4.101 and Fig.4.102.

Figure 4.101: Velocity profile comparison: Influence
of the SGS viscosity model at time t = 4.0 ms

Figure 4.102: Velocity profile comparison: Influence
of the SGS viscosity model at time t = 6.0 ms

It comes from this analysis that the dynamic Smagorinsky model underpredicts the radial expansion
of the vortex ring on the impingement surface. This is mostly due to the over-prediction of the SGS
viscosity which leads to a rapid dissipation of the strength of the vortex ring. When the vortex impinges
with the bottom wall, there is no increase of the SGS viscosity because it automatically vanishes near
solid boundary and the strength of the vortex ring is preserved so that they can be convected along
the wall. Since the vortex ring is most probably key ingredient in the heat transfer towards the wall,
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the under-prediction of the vortex span would lead to a bad estimation of the heat transfer at the wall
no matter which heat transfer model is used. At the same time, results with the σ-model are in good
agreement with the experiment.

4.2.5 Impact of the dynamic SGS conductivity

In the precedent simulations with the σ-model, the SGS Prandtl number was constant and the SGS
conductivity was given by Eq. (1.97). Additional simulations were performed to analyze the impact of
the SGS conductivity based on the Germano-identity as described in the Chapter I and used in [19, 37, 97].
The differences between the two cases regarding the SGS viscosity/conductivity are summarized in table
4.2:

Table 4.2: Characteristics of the simulations for the study of the impact of the SGS conductivity.

Case SGS viscosity SGS conductivity

σ-model constant SGS Prandtl 10 cycles (Cσ∆)2Dσ(ũ)
ρ̄Cp
Prsgs (Cσ∆)2Dσ(ũ)

σ-model dynamic SGS Prandtl 10 cycles (Cσ∆)2Dσ(ũ) ρ̄Cp (Cλ∆)2Ds(ũ)

where Dσ(ũ) is the σ-model time scale, Ds(ũ) the Smagorinsky model time scale and Cλ the constant of
the SGS conductivity which is evaluated dynamically with the Germano-identity. For sake of simplicity,
the second case is referred to as the dynamic SGS Prandtl/conductivity case.

The comparison of the SGS conductivity fields on plane P5 shows noticeable differences on the predictions
of the two methods. Indeed, for the constant SGS Prandtl number the SGS conductivity is predicted
systematically in turbulent regions no matter the temperature gradient (see Fig. 4.103 to 4.105 ). As for
the dynamic case the SGS conductivity is predicted only in regions where there might be temperature
fluctuations. The magnitude of the turbulence is more important than the magnitude of temperature
fluctuations and it leads to a prediction of the SGS conductivity higher in the case of the constant SGS
Prandtl than in the case of the dynamic SGS Prandtl. But in the two cases, the resulting SGS heat
flux should be negligible in regions where the temperature gradient is low (the SGS heat flux is directly
proportional to the temperature gradient).
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Figure 4.103: SGS conductivity field on plane P5 at time t = 0.8 ms

Figure 4.104: SGS conductivity field on plane P5 at time t = 1.2 ms
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Figure 4.105: SGS conductivity field on plane P5 at time t = 6.0 ms

Another interesting comparison is the prediction of the SGS conductivity model near the wall. Because
the dynamic SGS conductivity case is evaluated in a similar way as the dynamic Smagorinsky model, its
prediction suffers from the same issues.

Figure 4.106: SGS conductivity comparison at time t = 0.8 ms. Vertical plane Velocity field and horizontal
plane SGS conductivity
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Figure 4.107: SGS conductivity comparison at time t = 1.2 ms. Vertical plane Velocity field and horizontal
plane SGS conductivity

Figure 4.108: SGS conductivity comparison at time t = 1.6 ms. Vertical plane Velocity field and horizontal
plane SGS conductivity

During the impingement, the dynamic SGS conductivity increases at the wall (see Fig. 4.106 to Fig.
4.108). Concerning the constant SGS conductivity there is no increase because it is based on the σ-model
time scale. However, comparisons of the velocity field do not exhibit any significant differences between
the two cases as shown in Fig. 4.109 to Fig. 4.112. The over-prediction of the SGS conductivity does not
influence the propagation of the vortices as it was the case for the SGS viscosity.
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Figure 4.109: Velocity vectors comparison: Influence
of the SGS conductivity at time t = 1.0 ms

Figure 4.110: Velocity vectors comparison: Influence
of the SGS conductivity at time t = 1.4 ms
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Figure 4.111: Velocity vectors comparison: Influence
of the SGS conductivity at time t = 1.8 ms

Figure 4.112: Velocity vectors comparison: Influence
of the SGS conductivity at time t = 3.0 ms

Predictions of the vortex ring is well reproduced during the impingement, as expected and the deviation
as well. The influence of the temperature on the velocity field is negligible in this case. This is confirmed
by the velocity profiles (not shown here) at different sections on the median plane which are very similar.
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4.3 Temperature comparison:

Diacetyl LIF experiments were performed to access the temperature field during injection and jet interac-
tion with the wall. The temperature was determined from the application of the adiabatic mixing model
(AMM) on the nitrogen mass fraction information obtained by diactetyl LIF (the complete method is
described in 2.4), taking into account the ambient temperature and the jet temperature at the injector
exit (determined by 2 line toluene LIF) for the boundary conditions of the model.
Before presenting the results, it is necessary to point out particularities of the experimental set-up since
as it will be shown these particularities will have consequences on the analysis of the results. They concern
the cross flow generation and control. The cross flow was generated by a fan mounted downstream of the
visualization section. Two different setups were used during the experiments because the experiment had
to be moved from one test bench to another during the campaign due to a renovation of the building
where the test bench were located. The main difference concern the control of the cross flow:

• In the initial test bench that was used for the PIV measurements, the cross flow was controlled
by the fan speed. The rotation velocity of the fan was varied automatically. Fig. 4.113 shows a
illustration of the set up and of the expected shape of the flow generated in such a configuration.
A relatively flat mean velocity profile was expected, so that in this set up the control of the cross
flow magnitude is not expected to be sensitive to the position of the hot wire.

Figure 4.113: Schematic representation of the position of the hot wire during PIV measurements

• In the second test bench that was used for the toluene and diacetyl LIF experiments, the rotation
velocity of the fan was fixed. The intensity of the cross flow rate was adjusted with an obstruction
placed downstream of the hot wire and upstream of the fan. In this configuration the velocity profile
in the duct is not expected to be uniform as illustrated in Fig. 4.114. As a result the control of the
cross flow magnitude was expected to be more sensitive to the position of the hot wire. For this
reason a great care was taken during the experiment to keep a fixed position of the hot wire in the
duct.
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Figure 4.114: Schematic representation of the position of the hot wire during LIF measurements

Since the experimental set-up was moved from one test bench to the other, preliminaries PIV measure-
ments were carried out in the second test bench in order to characterize the cross flow magnitude and to
set the experimental conditions so that the cross flow magnitude was the same between the two set-ups.
Despite of all these precautions, as it will be shown here, there is a possibility that the cross flow magni-
tude was different between the PIV and LIF measurements because of the high sensitivity of the control
of the cross flow magnitude with respect to the position of the hot wire, and also because a relatively long
time was required to adjust the LIF setup. This long time separated the preliminaries PIV measurements
and the LIF measurements in the second test bench.

Fig. 4.115 to Fig. 4.122 show comparisons of the experimental temperature field with the dynamic
Smagorinsky model and the σ-model.
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Figure 4.115: Temperature comparison: Influence of
the SGS viscosity model at time t = 0.6 ms

Figure 4.116: Temperature comparison: Influence of
the SGS viscosity model at time t = 0.8 ms

Despite of the boundary conditions differences between the LIF measurements and the simulations, the
experimental results are used here to perform initial comparisons, taking into account that the cross flow
magnitude is not comparable. The results show that the temperature is effectively convected by vortices.
The temperature field of the experiment shows a rapid cooling when the jet is penetrating in the cross
flow compared to the simulations. This is very probably due to the mixing with ambient air that is more
important in the experiment due to the cross flow.
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Figure 4.117: Temperature comparison on plane P5:
Influence of the SGS viscosity model at time t = 1.2
ms

Figure 4.118: Temperature comparison on plane P5:
Influence of the SGS viscosity model at time t = 1.4
ms
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Figure 4.119: Temperature comparison on plane P5:
Influence of the SGS viscosity model at time t = 1.6
ms

Figure 4.120: Temperature comparison on plane P5:
Influence of the SGS viscosity model at time t = 2.0
ms

At early injection times, since the injection velocity is high (the effect of the cross flow is relatively less
pronounced), they are little differences between the experiment and the simulations. One can observe
that downstream convection of the vortex is more important (see Fig. 4.116) in the experiment than
in the simulation in particular during the impingement with the bottom wall (see Fig. 4.117). After
the impingement, because the cross flow is lower near the bottom wall, we can see that the vortices
propagation is still badly predicted by the dynamic Smagorinsky model (see Fig. 4.120).
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Figure 4.121: Temperature comparison on plane P5:
Influence of the SGS viscosity model at time t = 4.0
ms

Figure 4.122: Temperature comparison on plane P5:
Influence of the SGS viscosity model at time t = 5.0
ms

At late injection times when the jet velocity is small the influence of the cross flow is very important.
Fig. 4.122 strongly suggests that the cross flow intensity is not the same in the experiment during the
LIF compared to the cross flow during the LIF measurements Temperature profile (not shown here) at
different sections confirmed the trend observed on the temperature field: the temperature in the experi-
ment rapidly decreases due to the mixing with the cross flow that is more important.
Concerning the influence of the conductivity model, no major differences were observed on the tempera-
ture filed as it was the case on the velocity field. It confirms the fact that the low temperature gradients in
the experimental set-up does not allow to highlight the differences between the hypothesis of a constant
Prandtl number and a dynamic conductivity.
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Figure 4.123: Temperature comparison on plane P5:
Influence of the SGS conductivity model at time t =
1.2 ms

Figure 4.124: Temperature comparison on plane P5:
Influence of the SGS conductivity model at time t =
1.4 ms
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Figure 4.125: Temperature comparison on plane P5:
Influence of the SGS conductivity model at time t =
1.6 ms

Figure 4.126: Temperature comparison on plane P5:
Influence of the SGS conductivity model at time t =
2.0 ms

The overestimation of the SGS conductivity on the bottom wall of the dynamic SGS conductivity does
not affect the velocity propagation of the vortices (see Fig. 4.128). It can be seen on the temperature
profiles that they are only little differences between results obtained with the two formulations of the
SGS conductivity (see Fig. 4.127 Fig. 4.128).
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Figure 4.127: Temperature profile on plane P5 at
Y = −10 mm: Influence of the SGS conductivity
model at time t = 1.6 ms

Figure 4.128: Temperature profile on plane P5 at
Y = −15 mm: Influence of the SGS conductivity
model at time t = 1.8 ms

Temperature results show significant differences between the experimental and simulation results. In the
experimental case the jet deviation by the cross flow is much more significant. This result is very probably
due to an increased cross flow magnitude in the experimental conditions. This is further confirmed by
the comparisons of the PIV and LIF measurements. The jet deviation is more pronounced in the LIF
images compared to the PIV, showing that the cross flow magnitude was higher in the LIF measurement
compared to the PIV measurement campaign. These results show that despite of all the precautions
taken to minimize experimental uncertainties when moving from one test bench to the other, the LIF
measurements were not performed under the same cross flow conditions than the PIV measurements.
The consequence is that the LIF measurements can not be used directly to validate the LES simulations
performed under the same conditions than the PIV measurements in particular during the steady phase
of the jet (when the jet is completely deflected).
A possible way to overcome the lack of knowledge of the cross flow intensity in the LIF measurements is
to tune the cross flow intensity in the LES simulations(with the σ-model that gives bets match in term
of velocity filed) in order to have the similar results in term of temperature profile. The tuning of the
cross flow could be performed in such a way that the late time deflection of the jet as observed in the
experiment (Fig. 4.122) is well recovered by the computation, assuming that the shape of the cross-flow
velocity profile remains changed. The latter hypothesis was verified during the characterization of the
cross flow campaign. Of course, this will not validate our temperature measurements but at least will
provide a useful unknown quantity for other researchers interested in the temperature database. Besides,
the experiment/LES comparison during the vortex shedding and impingement would be meaningful since
the tuning is done once the interaction is finished
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Chapter 5

Conclusion and Outworks

5.1 Conclusions

The work presented in this manuscript was motivated by three objectives: the development/improvement
of LES turbulence models, the set-up of a LES-dedicated experimental database and the assessment of
different models on the experimental database. Conclusions are presented with respect to each of these
objectives:

1. Models development:

The σ-model: During the past years, since the Smagorinsky model, the development of static mod-
els focused on vanishing the SGS viscosity model in near wall regions which was its main drawback.
In the frame work of this thesis, this requirements was further extended to other canonical laminar
flows. Indeed, predicting turbulence is a very complex issue but making sure that a turbulence
model vanishes in laminar regions is more accessible and is mandatory to avoid altering the large
resolved scales in LES. In opposite to the dynamic Smagorinsky model, this was achieved without
additional filter. The σ-model is rather based on singular values of the velocity gradient tensor.
The strategy of using information from the velocity gradient tensor ([106, 149]) has proved to be
a good alternative for extending the applications of models to industrial applications no matter
the complexity of the geometry. Results on academic cases and in different solvers showed that the
σ-model gives equivalent or even better results than the dynamic Smagorinsky model.

The global dynamic procedure: The development of the already mentioned advanced models
has leaded to an unexpected paradox. It was considered that the difficulty to have a good local
dynamic Smagorinsky model was because of the drawbacks of the Smagorinsky time scale. It was
found during this thesis that, the problem is getting worse when an advanced time scale model
is used. Indeed, it leads to a ill conditioned constant that highly fluctuates near solid boundaries
where the model time scale vanishes. The alternative to the local formulation was then to calculate
the model globally as suggested in [81]. This was applied to the σ-model. Simulations in different
solvers has proved to lead to good prediction in unbounded flows such as Homogeneous Isotropic
Turbulence and the turbulent periodic jets. However the extension to wall-bounded flows is not
straightforward. The large values of the terms near solid boundaries seems to alter the evaluation
of the global constant which is too high leading to an overestimation of the overall dissipation.
An alternative has been suggested that consists in damping those terms with a sensor based on
a singular value so that they can also be used in complex geometries. The resulting model has
been successfully tested in the turbulent channel but additional tests need to be performed in other
solvers to completely validate this formulation.
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The alternative to the clipped version of the dynamic Smagorinsky model: When used in
complex geometries the dynamic Smagorinsky model is generally applied locally with a stabilization
procedure that consists in performing a volume weighted averaging over the node that surround
the node of interest and to clip if necessary negative values. It was found in the simple turbulent
channel test case that the clipping can reach 35% of the total constant. Meaning that around 4 out
of 10 values of the constant obtained with the Germano-identity are not used. It was also found that
this clipping may lead to an overestimation of the global dissipation since clipped negative values
does not contribute to the overall dissipation. An alternative to this clipping was then proposed
that consists in two steps. The first one is to calculate a global constant that could lead to the same
global dissipation equivalent to the dynamic Smagorinsky model with the local constant. Once
the global constant found, the second step consists in redistributing the global constant on each
node. Results obtained in two solvers show respectively that it leads to equivalent results than the
dynamic Smagorinsky model with averaging over homogeneous directions for unbounded flows (the
test case was the periodic free jet) and to better results than the formulation with the clipping in
wall-bounded flows (the test case was the turbulent channel). Additional tests should be performed
on wall-bounded and other solvers to assess performances of this formulation.

2. The experimental data base: An experimental data base was developed during this thesis. It
was designed so as to be easily reproduced with LES simulations. The boundary and initial con-
ditions were also well characterized. The inlet flow rate, the inlet temperature and the cross flow
were characterized and are available. Optical diagnostics technics such as PIV and LIF were used in
order to measure the velocity and the temperature fields in a non intrusive way. The experimental
set-up reproduced several interesting flow features that can be described in two phases: a first un-
steady phase characterized by the formation of a vortex pair and the impingement with the bottom
surface. The second phase which is more steady is characterized by the deviation of the jet due to
the cross flow velocity. Results of the experimental database are available.

3. LES simulations of the experimental database: The impact of the SGS viscosity model
and the SGS conductivity were assessed on the experimental data base. Preliminary tests were
performed which have shown the low impact of the numerical scheme on the LES simulations of
the experimental set-up.
Concerning the impact of the SGS viscosity model, two models were compared: the local dynamic
Smagorinsky model and the σ-model. The differences between the two models appear during the
interaction of the vortices with the bottom wall. During this phase the propagation velocity of the
vortices is under-predicted by the local dynamic Smagorinsky model. It is due to an overestimation
of the SGS viscosity during impingement leading to a too fast dissipation of vortices. At the same
time, the σ-model which is based on invariants automatically vanishes on the bottom wall and leads
to a good prediction of the propagation velocity. The bad predictions of the dynamic Smagorinsky
model can be explained by different reasons: the model is not applied as recommended with a
stabilization over homogeneous directions, the systematic clipping leads to an over-estimation of
the total SGS dissipation and finally the hypothesis of taking the constant out of the test filter
when using the Germano-identity leads to bad predictions of the constant in coarse meshes and
inhomogeneous flows. We are expecting that conclusions obtained on this experimental data base
will be similar in IC engines where the confinement of the flow enhances the impact of the solid
boundaries and also where the flow is particularly inhomogeneous.
As for the impact of the hypothesis of constant SGS Prandtl number, the low temperature gradient
in the experimental set-up has not allowed to analyze the impact of a SGS dynamic conductivity or
a SGS conductivity deduced from the constant SGS Prandtl number. However comparison of the
formulation of the two conductivities shows that the risk when assuming a constant SGS Prandtl
number is that it predicts a systematic enhancement of the heat flux as long as the flow is turbulent.
The consequence of the latter has not been assessed on the data base because of the low temperature
gradients. At the same time, the SGS dynamic conductivity predicts a heat flux enhancement only
in regions where there is effectively some temperature and velocity fluctuations. However, since
this formulation is derived from the Germano-identity and it is applied similarly to the dynamic
Smagorinsky model, it shares the same drawbacks. During impingement the level of the dynamic
conductivity strongly increases. This can lead to a bad prediction of the heat flux on the solid
boundary.
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5.2 Outworks:

Throughout this thesis work, different tests were performed to validate the model in academic cases and
also in a more complex database. Still they are some aspects discussed below that should be further
tested or investigated:

1. It was decided to restrict the model development to the SGS viscosity. But this formulation implies
an alignment of the SGS tensor and the strain rate tensor. This hypothesis is not always verified
[7, 27, 128]. In addition, only forward energy transfer which is probably the most dominant in
IC engines can be predicted with a SGS viscosity model. It would be interesting to combine the
σ-model and a scale similarity model in order to account for the two mentioned phenomena. This
was proved to improve the prediction of the WALE model in recent works [87].

2. Although the Germano-identity is a very powerful an largely used expression, it was proven to
have some limitations when applied to advanced models. It can not be applied to advanced models
to calculate their constant and when applied to a crude model like the Smagorinsky model, the
hypothesis of taking the constant out of the filter might not hold. This is notably true in coarse
and inhomogeneous flows which are typical in complex geometries.

3. Concerning the SGS conductivity, the hypothesis of constant SGS Prandtl number can lead to some
risks of over-estimation of the heat flux. This enhancement is probably limited when it is used with
a SGS model like the σ-model because it vanishes in different laminar flows. Still, alternative models
based on invariant should be investigated to have models that predicts an heat flux enhancement
only in regions where the temperature and the velocity fluctuate.

4. As for the improvements of the experimental set-up, it would be interesting to develop similar
experiments but with higher temperature gradients between the injected gas and the bottom wall
temperature. A 2D LIPT measurement technique should also be applied on the impingement surface
in order to have a precise estimation of the spatial heat flux induced by the vortices propagation.
This will allow to assess and compare predictions of SGS conductivity and heat fluxes models.
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échelles des écoulements turbulents. Modélisation de sous-maille pour la turbulence en région de
proche paroi. PhD thesis, Institut National des Sciences Appliquées de Rouen, 2008.

[87] G. Lodato, L. Vervisch, and P. Domingo. A compressible wall-adapting similarity mixed model for
large-eddy simulation of the impinging round jet. Phys. Fluids, 21, 2009.

[88] M. Luong, W. Koban, and C. Schulz. Novel strategies for imaging temperature distribution using
toluene lif. J. of Phys., 45:133–139, 2006.

[89] K. Mahesh and N. Park. Reduction of the germano-identity error on the dynamic smagorinsky
model. Phys. Fluids, 21, 2009.

[90] R.J. Margason. Fifty years of jet in crossflow research i. n Computational and Experimental
Assessment of Jets in Crossflow, AGARD-CP-534, Winchester UK, 1993.

[91] R. D. Mehta. Turbulent boundary layer perturbed by a screen. American Institute of Aeronautics
and Astronautics, 23, September, 1985.

[92] R. D. Mehta and P. Bradshaw. Design rules for small low speed wind tunnels. The aeronautical
Journal of the Royal Aeronautical Society, November, 1979.

[93] C. Meneveau, T.S. Lund, P. Moin, and W.H. Cabot. A lagrangian dynamic subgrid-scale model of
turbulence. J. Fluid Mech., 319:233–242, 1996.
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ABSTRACT
Large Eddy Simulations (LES) in complex geometries

require advanced models able to take into account the prop-
erties of the turbulence, variations of the mesh resolution and
the accuracy of numerical schemes. In this study, a recently
developed subgrid scale (SGS) model that takes into account
several properties of the turbulence is used and combined with
a global dynamic procedure suitable for such an advanced
SGS model. A modification is introduced into the global pro-
cedure to account for solid boundaries. Validations are first
performed on academic cases: an homogeneous isotropic tur-
bulence and a turbulent channel. In addition, the potential
of this global dynamic formulation is investigated on a more
complex experimental test case performed at IFPEn. This test
case corresponds to an hot unsteady impinging jet in presence
of a cold cross flow. The resulting model gives fairly good re-
sults on the different configurations and does not require any
homogeneous directions nor clipping.

INTRODUCTION
One way to overcome the drawbacks of the Smagorinsky

(Smagorinsky, 1963) model is to use the Germano-identity
(Germano et al., 1991) with Lilly correction (Lilly, 1992).
The constant of the Smagorinsky model is evaluated dynam-
ically in order to adapt the SGS dissipation to the numerics
(mesh refinement/numerical scheme) and to the flow features.
To avoid local negative values leading to numerical instabil-
ities, the constant is averaged over homogeneous directions.
This procedure was proved to give very good results in sim-
ple configurations like in homogeneous isotropic turbulence
(HIT) or in turbulent channel flows but it is almost impossible
to apply it to complex geometries like piston engines or wind
turbines. The development of more advanced models like the
WALE (Nicoud and Ducros , 1999) and the Vreman (Vreman,
2004) models gives now the possibility to evaluate the model’s

constant globally rather than locally. Because the operators
which they are based on go to zero in multiple cases where the
SGS activity is not expected to be present, it remains to esti-
mate their global dissipation. A recent study (Lee et al., 2010)
showed that the most efficient and easy to implement global
dynamic procedure consists in performing a volume weighted
averaging of local values that are obtained through the Ger-
mano identity. However, this procedure does not take into
account the effect of solid boundaries that can alter the pre-
dictions of the global procedure. The objective of this study
is then to improve the global dynamic procedure in order to
take into account the presence of solid boundaries. The pro-
cedure will be applied to the sigma model: σ -model (Nicoud
et al., 2011, Baya Toda et al., 2010). In addition to have the
proper cubic near wall behavior, it also vanishes for different
type of laminar flows where no SGS activity is expected: 2D
flows and isotropic contraction and expansion. Due to this
properties, the σ -model is more suitable than the WALE and
Vreman models for the global dynamic procedure. One can
also expect that the proposed modification of the global pro-
cedure can be applied to the previously cited models.
The paper is organized as follows: in section 1, the governing
equations and the different SGS models (dynamic/static) are
presented. In section 2, validation tests are performed on the
HIT of Comte-Bellot and Corsin (Comte-Bellot and Corsin,
1971) and on a turbulent channel flow (Moser et al., 1999)
at friction Reynolds number Reτ = 395. The later case illus-
trates that the volume averaging of the global constant is not
appropriate for wall-bounded flows. Better results are then
obtained thanks to improved averaging procedure where the
near wall regions are automatically accounted for. In this
view, the volume averaging is weighted by a dimensionless
sensor which vanishes in regions where shear dominates ro-
tation (Baya Toda et al., 2010). The potential of the global
procedure is further investigated on a more complex case that
consists of an impinging hot jet in a cross flow presented in
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section 3. The experiment is set up at IFP En. Numerical re-
sults are compared with PIV measurements. This section is
followed by a general conclusion.

GOVERNING EQUATION AND SUBGRID-
SCALE MODELS

The filtered compressible Navier-Stokes equations are
solved in this study but their incompressible counterpart are
presented here for simplicity since only low Mach number
flows will be considered:

∂u j

∂x j
= 0 (1)

∂ui

∂ t
+

∂ (uiu j)

∂x j
=− 1

ρ
∂ p
∂xi

+ν
∂ 2ui

∂xi∂x j
+

∂τsgs
i j

∂x j
+Si (2)

the grid based filter is omitted for clarity, ui is the filtered
velocity, t is the time, p the pressure, ρ the density, ν the
kinematic viscosity, Si a source term acting in i-direction and
τsgs

i j the subgrid scale (SGS) tensor expressed as:

τsgs
i j = uiu j −uiu j (3)

Eddy viscosity models will be considered only in this
study to model the SGS tensor which then takes the form:

τsgs
i j − 1

3
τsgs

kk δi j = 2νSGSSi j (4)

where Si j is the strain rate based on the filtered velocity
ui and νSGS the eddy viscosity.

The dynamic Smagorinsky model
The dynamic Smagorinsky model is based on the

Germano-identity and is expressed as:

νSGS = (Cs∆)2 Ds ; Ds =
√

2Si jSi j (5)

The model constant Cs is computed from:

(Cs∆)2 = max

[
−
〈
Li jMi j

〉
loc

2
〈
Mi jMi j

〉
loc
,0

]
(6)

where Li j = ũi u j − ũi ũi is the Leonard term based on the grid
based filter and test filter ·̃. Besides, Mi j is directly related to
the differential of the model:

Mi j =
∆̃2

∆2 D̃sS̃i j − D̃s Si j,

where ∆̃ stands for the test filter width. In addition, 〈·〉loc
stands for an integral taken over a small volume (typically
a few grid cells) surrounding the current grid point and the
model constant depends on both space and time. The local
dynamic Smagorinsky model is referred to as the SMD model
in this paper.

Advanced static model
In the following, ”advanced” models stands for static

SGS models with the desirable property that they produce zero
eddy-viscosity near solid-boundaries. Examples of such mod-
els are the Vreman (Vreman, 2004) and the WALE (Nicoud
and Ducros , 1999) models that respectively vanish with a lin-
ear and cubic behavior in pure shear regions.

As emphasized in the introduction, the chosen advanced
model is the σ -model. It is based on the singular values of
the velocity gradient tensor. It has the interesting properties to
vanish in 2D flows 2D axisymmetric and 3D isotropic expan-
sion/contraction. These are examples of flows where no SGS
activity is expected. In addition, it has the proper y3 asymp-
totic behavior near solid boundaries. The σ -model eddy vis-
cosity is expressed as:

νSGS = (Cσ ∆)2 Dσ ; Dσ =
σ3(σ1−σ2)(σ2−σ3)

σ 2
1

(7)

where σ1 ≥ σ2 ≥ σ3 ≥ 0 are the three singular values of
gi j the velocity gradient tensor. Cσ = 1.5.

Global dynamic procedure
The model eddy viscosity is expressed from Eq.7 and the

model constant CGvol
σ is evaluated from:

(
CGvol

σ ∆
)2

=−

〈
Li jMσ

i j

〉
vol

2
〈

Mσ
i j M

σ
i j

〉
vol

; (8)

Mσ
i j is obtained by replacing Ds by Dσ in the expression

of Mi j. 〈·〉vol stand for a volume averaging over the entire do-
main. The contribution of each cell in the average is weighted
by its volume. The resulting constant is then homogeneous in
space and varies only in time. This model is referred to as the
GSIG model throughout this paper.

Modified global dynamic procedure
The basic idea behind this modification is to remove near

wall regions from the evaluation of the global constant. In-
deed, close to the wall, the terms Li jMi j and Mi jMi j are high
and can be even higher than their values in the center of the
channel. Since only viscous effects are dominant near the
wall, it is then necessary in order to have the appropriate esti-
mation of the mean constant to keep only values that are not
in the near wall region. This consist in weighting each contri-
bution by a sensor that vanishes in those regions. The chosen
sensor in our case is the SVS sensor inspired from the WALE
model but one can suppose that another sensor that vanishes
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in shear region could also be used (for example the dimen-
sionless sigma operator Dσ

σ1
). The SVS is expressed as :

SV S =
(Sd

i jS
d
i j)

3/2

(Sd
i jS

d
i j)

3/2 +(Si jSi j)3
(9)

where Si j
d is the traceless part of the square of the gradient

tensor. It can be easily demonstrated that the SVS takes the
values one and zero respectively for pure rotating flows and
for pure shear flow with a y3 near wall behavior. The global
constant can then be rewritten as followed:

(
CGsvs

σ ∆
)2

=−

〈
Li jMσ

i j

〉
svs

2
〈

Mσ
i j M

σ
i j

〉
svs

(10)

where 〈·〉svs stands for a global averaging where each cell
contribution is weighted by its SVS. The model is referred to
as the GsvsSIG model throughout the paper.

All the results presented in this paper were obtained with
the AVBP code (AVBP, 2011). The academic test cases were
performed with a centered Galerkin finite element method 4th

order in space with a 3rd order Runge-Kutta temporal integra-
tion.

Validation on academic test cases
Simulations of the HIT of CBC are first performed in or-

der to validate the dissipative behavior of the two global mod-
els. This is a standard test case where three spectra at three
different adimensionnal time 42, 98, 171 are known from the
experiment. The objective is to reproduce the proper energy
decay rate (as well as the spectra decay) when starting the
simulation with the spectrum at time t∗ = 42. Fig. 1 shows
that both models correctly reproduce the energy decay. As ex-
pected, for flows without solid boundaries the predictions of
the two global models are similar. This is confirmed by the
time evolution of the two global constant shown on Fig. 2.

In order to assess the performance of the different models
when dealing with solid boundaries, simulation of a turbulent
channel flow are also performed at a friction Reynolds number
equal to Reτ = 395. The reference case is the DNS of Moser
et al. The mesh characteristics were twice larger than the ad-
vised minimum channel (Kim and Moin,1987) dimensions.
The chosen dimensions were proved to be sufficient to well re-
cover first order statistics (Cabrit and Nicoud, 2009). The later
were accumulated over approximately 10 diffusion times. Fig.
3 shows that the results of the modified global dynamic pro-
cedure are in good agreement with the DNS. In contrary, the
mean velocity predicted by the dynamic Smagorinsky model
and the classical global dynamic procedure are overestimated.
This is respectively due to the non averaging over the homoge-
neous direction and to the global volume averaging that is not
appropriate when dealing with wall-bounded flows. The later
overpredicts the constant that leads to an overprediction of the
SGS viscosity as shown on Fig. 4. In contrary, by giving a

Figure 1. Resolved kinetic energy HIT of CBC on 643

nodes. Triangle up GSIG, thick line GsvsSIG and the squares
are the experiment.

Figure 2. Global dynamic constant. Triangle up GSIG and
solid line GsvsSIG.

low weight to pure shear regions that correspond to near wall
regions in the global averaging, the predictions of the model
are improved.

TOWARDS THE APPLICATION ON AN IMPING-
ING HOT JET ON ISOTHERMAL WALL

Accurate results were obtained in standard validation
cases but it is necessary to assess the performance of this pro-
cedure in a more complex configuration that involves different
flow features such as shear flows, rotations, stagnation points
and unsteadiness To this respect, an experiment that consists
in a pulsed hot jet that impinges on a cold surface in presence
of a cross flow (at ambient temperature) was performed. This
experiment was specially design for comparison with LES re-
sults purposes: simple enough to enable accurate model val-
idation, fully controlled boundary conditions (the cross flow
profile and injector profile were well-defined) and represen-
tative enough to take into account the most important physi-
cal phenomena occurring in combustion chambers: transient
interactions between hot vortices and a developed boundary
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Figure 3. Mean velocity. Triangle up GSIG, solid line Gsvs-
SIG, dashed line SMD and the circles are the DNS of Moser
et al.

Figure 4. Global dynamic constant. Dotted line GSIG and
solid line GsvsSIG.

layer. These guidelines led to the experimental set-up shown
on Fig. 6 with the three main following characteristics: 1. The
global dimensions (nozzle hole, channel width) are consistent
with the simulation constraints in order to allow full size com-
putation of the geometry. In particular this led to the selection
of the injector characterized by a large cross flow area together
with a fast response time (of the order of 100 microseconds).
2. The cross flow profile and turbulent characteristics are con-
trolled by the use of inlet convergent and grid. The injector
flow characteristics are also controlled by the use of a specific
convergent profile, while the injection system is designed to
control the upstream pressure. 3. Wide optical access were
provided by UV quality large quartz window in order to opti-
mize the application of advanced optical diagnostics.

Experimental set-up and PIV measurements
The pulsed jet is generated by an electric injector (fast

response time and large flow area Hoerbiger GV50 injector)
and the opening duration is about 10ms. The injection fre-
quency is 1Hz. The injection diameter is d = 1cm. The im-

Figure 5. Flow rate. The plate corresponds to the impinging
surface in presence of the cross flow.

pinging surface is situated at H = 2cm of the jet exit. The
injector is supplied by a tank of volume V = 20l full of ni-
trogen. The nitrogen going to the injector is heated via an
electric heater in order to keep it at the constant temperature.
The nitrogen temperature at the exit of the jet was measured
using a Two-color Toluene-LIF Imaging method (Tea et al.,
2011). The measured temperature at the jet exit is 343K. The
air cross flow in the measuring section in which the mixing
takes place is generated via a fan situated downstream. The
cross flow is at ambient temperature. A convergent and a
honeycomb situated upstream reduce significantly the fluctu-
ation in the measurements section. The cross flow Reynolds
number (based on the cross flow mean velocity and the chan-
nel width) is about 16000 and the jet flow Reynolds number
(based on the mean inlet velocity and the injector’s diameter)
varies between 60000 and 12000.
PIV measurements were performed using a doubled frequency
Nd:YAG-laser at 532nm. The signal was recorded with a CCD
camera of 2048 X 2048 pixels resolution, equipped with a lens
with the following characteristics: f = 105mm and f# = 2.8.
The time delay between the two pulses is 2 microseconds.
Each pair of images was processed using cross correlation.
Two preliminaries series of measurements were performed to
get the initial conditions : a first one to characterize the in-
jector flow rate (seeding inside the injector), the second one
to characterize the cross flow turbulent intensity and mean
profile (seeding only of the cross flow). The PIV measure-
ments were performed on 3 plans in the streamwise direction
(Z direction at Z = 0mm,7mm, 15mm where the injector cen-
ter is the origin) and 3 in the spanwise direction (X direction
at X = −10mm, 0mm,10mm). For each plan, measurements
were done at different times after the injection and the statis-
tics were accumulated over 1000 snapshots.

Numerical procedure and results
The numerical set-up of the experiment consisted in two

steps. The first step was the cross flow modeling. This was
done by initializing the same mean flow obtained with the PIV
measurements with 1% turbulent intensity. Depending on the
number of injections to perform, different cross flows solu-
tions were used as initial conditions before the injection. This
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Figure 7. Velocity field at time 1.2ms after the beginning of
the injection. The cross flow comes from the left hand side.

allows to have a different cross flow at each injection and to
perform ensemble average if necessary. The target flow rate
of the injector was obtained from the PIV measurements with
cross flow rate turned off. The nitrogen inside the injector was
initialized at the temperature obtained via LIF measurement
and the solid boundaries of the convergent were kept at this
temperature during the simulation. The other solid boundaries
were maintained at ambient temperature with a noslip isother-
mal boundary condition.
The simulations were performed with a Lax-Wendroff finite
volume numerical scheme that is second order accurate in
space with a single time step integration. It has the advantage
to be fast and it is commonly used for industrial applications.
Fig 5 shows the different flows rate with and without cross
flow for the experiment and the simulation. As expected in
the experiment the flow rate decreases in presence of the cross
flow. We can also observe that the flow rate obtained in the
simulation with the cross flow is quite in good agreement with
the experiments. It is worth noting that the inlet conditions
have a major impact on the quality of the results of the sim-
ulations. The predictions of the simulation (averaged over 5
cycles/injections) at the impinging time (t = 1.2ms) are quite
in good agreement with the PIV measurements as it can be
seen on Fig 7 and Fig 9. The position of the vortex after the
impingement is also well predicted as shown on Fig 9. Further
comparison at various section are required to compare more
accurately PIV measurements and simulations. However the
concept of a global constant that varies only in time seems to
lead to quite good results even in a complex configuration.

Figure 8. Velocity magnitude at time 1.2ms after the begin-
ning of the injection. The cross flow comes from the left hand
side.

Figure 9. Velocity Field at time 2.0ms after the beginning of
the injection. Plan X = 0 perpendicular to the cross flow.

CONCLUSION
The proposed modification for the global dynamic pro-

cedure allows to account for solid boundaries while keeping
the interesting properties of the global approach. Indeed it
does not require homogeneous directions nor clipping and it
leads to same results in case of non wall bounded flows like
an HIT. The combination with the σ -model provides accurate
results on standard validation cases and on a more complex
configurations that consists in a hot impinging unsteady jet
with a cross flow. Although the constant is homogeneous in
space and only varies in time, a first analysis shows that the
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Figure 6. Schematic description of the experimental set-up of the hot impinging pulsed jet in presence of a cross flow.

simulation are in close agreement with the experiments. Fur-
ther quantitative comparisons of the velocity field, the tem-
perature stratification and rms still need to be done but the
proposed procedure/model seems promising for extending the
use of SGS models from simple academic cases to industrial
applications.
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A subgrid-scale model based on singular values for
LES in complex geometries

By H. Baya Toda†, O. Cabrit‡, G. Balarac¶, S. Bose, J. Lee‖, H. Choi‖
AND F. Nicoud ††

An eddy-viscosity based, subgrid-scale model for Large Eddy Simulations is derived
from the analysis of the singular values of the resolved velocity gradient tensor. It is
shown that the proposed σ-model has the property to automatically vanish as soon as
the resolved field is two-dimensional, including the pure shear and solid rotation cases.
In addition, the model generates no subgrid-scale viscosity when the resolved scales are
in pure axisymmetric or isotropic contraction/expansion. At last, it has the appropriate
cubic behavior in the vicinity of solid boundaries without requiring any ad-hoc treatment.
Results obtained for different physical configurations (isotropic turbulence, channel flows,
and periodic jet) are presented to illustrate the potential of the model. A dynamic version
based on a volume averaged procedure is also proposed.

1. Introduction

When dealing with Large Eddy Simulations (LES), the eddy-viscosity assumption is
by far the most used because it reduces the modeling effort considerably. In this view,
the subgrid-scale (SGS) tensor is written as τSGS

ij − 1
3τ

SGS
kk δij = 2νSGSSij , where Sij =

1
2 (gij + gji) and gij = ∂ui/∂xj is the velocity gradient tensor of the resolved scales. Note
that the (implicit) filter · is omitted throughout this paper for simplicity. From a simple
dimensional analysis, it is natural to model the subgrid-scale viscosity as

νSGS = (Cm∆)
2 Dm(u), (1.1)

where Cm is the model constant, ∆ is the subgrid characteristic length scale (in practice
the size of the mesh), and Dm is a differential operator associated with the model,
homogeneous to a frequency and acting on the resolved velocity field u = (ui). The
most classical operator is by far the strain rate; this leads to the Smagorinsky (1963)
model for which Dm = Ds =

√
2SijSij and Cm = Cs ≈ 0.18. This operator is known

for not vanishing in near-wall regions. In the past, this major drawback (not the only
one of the Smagorinsky operator) motivated the use of damping functions (Moin & Kim,
1982) and the development of the dynamic procedure by Germano et al. (1991). It is
actually possible to overcome this weakness by using advanced models that naturally
vanish in pure shear regions such as the WALE (Wall Adapting Local Eddy viscosity)
and Vreman models (Vreman, 2004). However, all the models based on the eddy-viscosity
assumption, Eq. 1.1, share the drawback that the model constant Cm must be adapted
to the mesh refinement so that the proper amount of energy is drained from the resolved
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scales. This issue is well addressed by the introduction of a dynamic procedure that can
automatically adapt the model constant. In this view, the model constant Cm can be
computed resorting to a least squares approach proposed by Lilly (1992),

(Cm∆)2 = − LijMij

2MijMij
, (1.2)

where Lij = ũi uj − ũi ũj is the (modified) Leonard term based on the grid-based filter
(which is omitted for clarity, ui = ui) and test filter ·̃. In addition, Mij is directly related
to the differential operator and the eddy-viscosity model is based on

Mij =
∆̃2

∆2
D̃mS̃ij − ˜Dm Sij ,

where ∆̃ stands for the test filter width. Unfortunately, the original dynamic procedure
most often requires some averaging in order to reduce the constant variability over space
and time. Several improved versions of the dynamic Smagorinsky model were proposed
in order to make it more robust and suitable for complex configurations where no homo-
geneous directions are present (Ghosal, 1995; Meneveau et al., 1996). Still, the common
practice when dealing with complex geometries is to apply the least mean square formula
over a small volume surrounding the current grid point and to clip the remaining negative
values of the dynamically computed constant. This means replacing Eq. 1.2 by

(Cm∆)
2
= max

[
− 〈LijMij〉loc
2 〈MijMij〉loc

, 0

]
, (1.3)

where 〈·〉loc stands for an integral taken over a small volume (typically a few grid cells)
surrounding the current grid point. Note that the model constant then depends on both
space and time.
The main motivation of the local dynamic procedure was to adapt the constant to

compensate the non-vanishing behavior of the Smagorinsky model in near-wall regions.
Recently, Ghorbaniasl & Lacor (2008) proposed to extend the dynamic procedure to the
WALE model. However, Baya Toda et al. (2010) reported that the combination of the
classical dynamic procedure with any SGS model that has the proper near-wall cubic
behavior leads to a paradox: the underlying differential operator rapidly goes to zero
near solid boundaries, which favors unstable computations. For the sake of robustness
while keeping an adaptation of the model coefficient to the grid resolution and numerical
errors, two concepts of global dynamic procedure emerged from the properties of the
Vreman model. The first one is based on the global equilibrium hypothesis (da Silva &
Metais, 2002) and was proposed by Park et al. (2006) and was later improved by You &
Moin (2007). The second one, based on the Germano identity, was also proposed by Park
et al. (2006) and was proven to be better suited for transient flows (Lee et al., 2010).
This global dynamic procedure amounts to change Eq. 1.3 to

(Cm∆)2 = − 〈LijMij〉dom
2 〈MijMij〉dom

, (1.4)

where 〈·〉dom stands for an averaging over the whole computational domain; the model
constant is then uniform over space by construction. It has the advantage of producing
mostly positive values for the dynamic constant, thus avoiding the clipping issue. The
price to pay is that the differential operator Dm must behave appropriately in basic
flow configurations because no compensation from the dynamic procedure can be ex-
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pected (the constant of the model is uniform over space). For example, such formulation
is not expected to provide good results if applied to the Smagorinsky model since the
eddy-viscosity would then not vanish near solid walls. The differential operators used in
the WALE and Vreman models are not very appropriate either. For example, it can be
shown analytically that the latter is linear with respect to the distance to solid bound-
aries instead of having a cubic behavior in near-wall regions. Also, they both produce non
zero eddy-viscosity in simple flow configurations such as solid rotation, and more gener-
ally two-dimensional and/or two-component (2C) flows, where no subgrid scale activity
is expected to occur. Indeed, although two-dimensional turbulence has been evidenced
experimentally and numerically (Lesieur, 2008), it is a phenomenon of fundamental in-
terest that “might thus be viewed as just a toy model” (Frisch, 1995). Given that two-
and three-dimensional turbulence are fundamentally different because of the absence of
the vortex-stretching term in the former, it seems appropriate to make sure that any
SGS model for three-dimensional turbulence switches off in the two-dimensional case.
The alternative would be to switch to a SGS model appropriate for two-dimensional tur-
bulence. Still, given the very little probability that a three-dimensional computation of
a two-dimensional turbulent flow remains two-dimensional without any external action
to maintain its two-dimensionality, this choice was not pursued. At the end, the main
objective of this paper is to define and test a new static model for three-dimensional
flows with better properties than the existing formulations. The analytical formulation
is provided in section 2, numerical results are discussed in section 3.

2. A singular values-based model

Several properties are desirable for an improved differential operator, although estab-
lishing a definite list of such properties would be a very difficult task. Similar to the
WALE and Vreman models, the operator should tend to zero in near-wall regions in
order to mimic the turbulence damping due to the no-slip condition. It can be shown
that the turbulent stress, thus the eddy-viscosity and the differential operator, would de-
cay as the distance to the solid boundary to the third power (Chapman & Kuhn, 1986)
(Property P1). At the same time, it would vanish in the case of a flow in solid rota-
tion, like the Smagorinsky model, and in the case of a pure shear, like the WALE and
Vreman models. More generally, the improved differential operator should be zero for
any two-dimensional flow (Property P2). Indeed, such a situation for the resolved scales
is not compatible with a subgrid-scale activity, which is presumably three-dimensional.
The same reasoning leads to the conclusion that the SGS viscosity should be zero in
the case where the resolved scales are either in pure axisymmetric or isotropic contrac-
tion/expansion (Property P3). The former case corresponds to the situation of a laminar
round jet impinging on a solid plate for which turbulent effect should indeed not be
present. The latter is representative of the velocity field near an acoustic monopole or a
spherical premixed flame, which again are not phenomena of turbulent nature.
Analyzing the spectral content of the velocity gradient tensor proves to be a proper

framework to investigate how these properties can be met by a single differential oper-
ator. Note, however, that the eigenvalues of g can be complex-valued in number of flow
configurations (in the case of a solid rotation, for example). One way to avoid this diffi-
culty is to consider the strain rate tensor instead of g. In this case, the three eigenvalues
are real-valued, although their sign is not known a priori. This route is explored in an-
other paper in this volume (Verstappen & Bose, 2010). In the present study, one relies on
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the singular value decomposition of g to build an improved differential operator for the
SGS eddy viscosity. Specifically, let us introduce σ1 ≥ σ2 ≥ σ3 ≥ 0, the three singular
values of g = (gij). By definition, these values are always positive and equal the square
root of the eigenvalues of the matrix G = gtg (which are always positive because G is
symmetric semi-definite positive). The smallest singular value, σ3, is null if and only if
one row or column of g is zero up to a rotation of the coordinate system. In other words,
σ3 = 0 is a marker for two-dimensional and/or 2C flows, and any operator proportional
to this singular value would meet property P2. Similarly, the knowledge of the singular
values of g helps to detect the case where the resolved velocity field is in axisymmetric
contraction or expansion. Indeed, an appropriate rotation of the coordinate system then
makes the velocity gradient tensor diagonal:

g = diag (β,−α,−α), (2.1)

where α is positive for a contraction and negative for an expansion. Depending on the
relative values of the parameters α and β, the singular values of g read either σ1 =
|β| > σ2 = σ3 = |α| or σ3 = |β| < σ1 = σ2 = |α|. In other words, the marker for
such flow situations is either σ2 = σ3 or σ1 = σ2. Also a isotropic contraction/expansion
corresponds to σ1 = σ2 = σ3, thus any differential operator proportional to (σ1−σ2)(σ2−
σ3) would meet property P3. Note that the divergence-free assumption was not made to
obtain the above results (β not necessary equal to 2α).
From the above analysis, a differential operator proportional to σ3(σ1 − σ2)(σ2 − σ3)

would meet both properties P2 and P3. By analyzing the asymptotic behavior of the
singular values in the vicinity of a solid boundary, it is actually possible to show that

σ1 = O(y0) ; σ2 = O(y1) ; σ3 = O(y2). (2.2)

The algebra that leads to this result is not given in this report for the sake of simplicity.
Eqs. 2.2 indicate that the product σ3(σ1−σ2)(σ2−σ3) selected to meet properties P2 and
P3 is of order O(y3) near solid boundaries and thus meets property P1. The derivation of
the differential operator is finished by choosing a scaling factor so that it is a frequency
scale. A natural choice is the use the largest singular value σ1, which is nothing but the
norm of g, and which would not change the asymptotic behavior of the ratio. Finally,
the proposed SGS model and associated differential operator read

νSGS = (Cσ∆)
2 Dσ ; Dσ = σ3(σ1−σ2)(σ2−σ3)

σ2
1

. (2.3)

This model will be referred to as the σ-model in the remaining of this paper.
Table 1 summarizes the properties of different differential operators and associated

models. Contrary to what is often mentioned, the asymptotic behavior of the Vreman
model is linear in y instead of being cubic. Thus, only the WALE and σ models comply
with property P1. Note however that the first order behavior of the Vreman model is
enough to make it more suitable for wall-bounded flows than the Smagorinsky model for
which the eddy-viscosity does not tend to zero because Ds = O(y0). Table 1 also shows
that the σ-model meets properties P2-P3, contrary to the other formulations which all
fail at some point. It also shares with the three other models the common property that
involves only one-point velocity gradients; it is thus easy to implement in any general
purpose LES code. The value reported for the model constant Cσ is a rough estimation
generated by equating the averaged SGS dissipation obtained by feeding the Smagorinsky
model and Eq. 2.3 with a large sample of random velocity gradient tensors. Of course,
a more accurate assessment could be done by performing appropriate computations, for
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Model Smagorinsky WALE Vreman σ-model
Smagorinsky (1963) Nicoud & Ducros (1999) Vreman (2004) Present

Operator
p

2SijSij Eq. 13 of above ref. Eq. 35 of above ref. Eq. 2.3
Model constant Cs ≈ 0.18 Cw ≈ 0.50 Cv ≈ 0.28 Cσ ≈ 1.5

Asymptotic O(y0) O(y3) O(y) O(y3)
P1 NO YES NO YES

Solid rotation 0 ≈ 0.90 ≈ 0.71 0
Pure shear 1 0 0 0

P2 NO NO NO YES

Axisym ≈ 3.46 ≈ 0.15 ≈ 1.22 0
Isotropic ≈ 2.45 0 1 0

P3 NO NO NO YES

Table 1. Properties of the SGS models considered. Labels Axisym and Isotropic refer to axisym-
metric and isotropic contraction/expansion respectively. The entries below the P1 row are the
values taken by the differential operators when all the velocity derivatives are zero except: Solid
rotation: du1/dx2 = −1 and du2/dx1 = 1; Pure shear: du1/dx2 = 1; Axisym: du1/dx1 = ±2,
du2/dx2 = ∓1, du3/dx3 = ∓1; Isotropic: du1/dx1 = ±1, du2/dx2 = ±1, du3/dx3 = ±1

example, of decaying isotropic turbulence cases. This task is not pursued here since the
result of any tuning effort would depend on the grid resolution and numerics. Note,
however, that the random procedure used to assess Cσ leads to fair estimates of the
WALE and Vreman’s constant [Cw ≈ 0.63 and Cv ≈ 0.29, to be compared with the
values recommended by Nicoud & Ducros (1999) and Vreman (2004) and reported in
Table 1]. The chosen value Cσ = 1.5 is thus sufficient to assess the potential of the static
σ-model. The proper way to reduce the influence of the selected value for the model
coefficient is to use some kind of dynamic procedure able to compensate, at least partly,
for the grid resolution and numerical errors. Concerning this topic, a Germano-identity-
based global dynamic procedure applied to the σ-model will be presented in section 3.

3. Numerical experiments

The σ-model was implemented in several numerical tools for LES and tested over a
variety of academic flow configurations.
• Solver A: The general purpose AVBP code was developed at CERFACS and IFP

Energies Nouvelles. It is based on a cell-vertex formulation and embeds a set of finite
element/ finite volume schemes for unstructured meshes. In the present study a cen-
tered Galerkin finite element method (4th order in space) with a 3rd order Runge-Kutta
temporal integration is retained for the investigation of two configurations: the decaying
isotropic turbulence from the Comte-Bellot & Corsin (CBC) experiment and a turbulent
channel flow at Reynolds number Reτ = 395. These flows were computed with the Dy-
namic Smagorinsky model and the present static σ-model. The dynamic procedure was
applied locally, without averaging over homogeneous directions. Negative values of the
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dynamically tuned constant of the Smagorinsky model were clipped to ensure stability
(see Eq. 1.3).
• Solver B: a finite difference code dedicated to the computation of turbulent channels

and developed at the Center for Turbulence Research. It is based on a kinetic energy
conserving, 4th order scheme in space as proposed by Morinishi et al. (1998). A 3rd order
Runge-Kutta scheme is used for the time integration, except for the diffusion terms in the
direction normal to the wall that are integrated thanks to an Crank-Nicholson scheme.
The divergence-free condition is met by a projection scheme. It was used to compute the
turbulent channel flow case at Reτ = 590 with both the dynamic Smagorinsky model
and the present static σ-model. Note that contrary to the implementation used in the
general purpose AVBP solver, the dynamic procedure is not applied locally in this case.
Instead, the Smagorinsky constant is computed as

(Cs∆)2 = −
〈LijMij〉plane
2 〈MijMij〉plane

, (3.1)

where 〈·〉plane stands for an integral taken over homogeneous planes parallel to the walls
of the channel. This avoids clipping while keeping the favorable dependence of the model
constant on the distance to the solid boundaries.
• Solver C: a dealiased spectral code developed at Seoul National University. It is based

on a 2nd order semi-implicit scheme for time integration: diffusion terms are treated
implicitly using the Crank-Nicolson method, and a 3rd order Runge-Kutta scheme is
applied to convection terms. The decaying isotropic turbulence from the Comte-Bellot
& Corsin (1971) experiment was computed with a dynamic version of the σ-model. The
Germano-based global dynamic procedure (Park et al., 2006; Lee et al., 2010) was used
(see Eq. 1.4), meaning that a single-model constant was computed for the whole domain
at each iteration. A divergence-free initial field was generated using the re-scaling method
proposed by Kang et al. (2003).
• Solver D: a pseudo-spectral code developed at the LEGI lab in Grenoble, France.

With this tool, the viscous terms are treated exactly using a 2nd order explicit Runge-
Kutta time-advancement. A classical two-third rule is used for dealiasing the non-linear
convection term. This tool was used to compute the case of a periodic plane jet as de-
scribed in da Silva & Pereira (2008). Several SGS formulations were considered, including
the global dynamic σ and Smagorinsky models (both based on the procedure of Eq. 1.4),
a local dynamic Smagorinsky model with clipping (see Eq. 1.3), and a planewise dynamic
Smagorinsky model without clipping (see Eq. 3.1).

3.1. Isotropic decaying turbulence

We first validate the behavior of the σ-model for the simple case of a freely decaying
isotropic homogeneous turbulence. The experiment by Comte-Bellot & Corrsin (1971) on
decaying turbulence behind a grid is simulated, where the mesh size of the grid turbulence
is M = 5.08 cm and the free-stream velocity is U0 = 10 m/s. The Taylor micro-scale
Reynolds number is Reλ = urmsλ/ν = 71.6 at time tU0/M = 42 and decreases to
60.6 at tU0/M = 171. In a reference frame moving with the average flow velocity the
problem can be thought of as freely decaying isotropic turbulence. We model this by
considering the fluid to be inside a cube-shaped box with periodic boundary conditions.
The flow was first computed with the general purpose code AVBP (Solver A), where the
static σ-model was implemented with Cσ = 1.5 . The grid resolution was 613 and Fig. 1
shows that the computed spectra are in fair agreement with the experimental data. The
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Figure 1. Time evolution of energy spectra for freely decaying isotropic turbulence with the
σ-model. Symbols are experimental measurements corresponding to the three-dimensionless
times tU0/M = 42, 98 and 171. Left: Results from general purpose solver AVBP (Solver A)
with grid 613. Static σ-model. Right: Results from spectral code (Solver C) with grid 323.
Global dynamic σ-model.

biggest differences are obtained for the smallest scales; they are most probably from the
large numerical errors that characterize finite volume/finite element methods for large
wave numbers. This is confirmed by the results obtained from the spectral code Solver
C which are essentially in good agreement with the measurements, although the grid
is even coarser (323). Note that the global dynamic σ-model was used in this case; the
constant (homogeneous in space) varied only weakly with time during the simulation with
Cσ ≈ 1.5 − 1.7, in close agreement with the value retained from the random procedure
(see Table 1).

3.2. Turbulent Channel flow

The performance of the static σ-model for wall-bounded flows was investigated by com-
puting LES of turbulent channel flows at friction Reynolds number Reτ = 395 and 590
with solvers Solver A (general purpose) and Solver B (channel solver), respectively. In
both cases, the computed mean velocity profile is in good agreement with the DNS data
from Moser et al. (1999), as displayed in Fig. 2. The results are in fact slightly better than
what is obtained with the dynamic Smagorinsky model. The same trend is observed when
looking at the velocity fluctuations (not shown). The theoretical asymptotic behavior of
the σ-model near solid boundaries (νSGS = O(y3)) is also well retrieved numerically, as
shown in Fig. 3. Note that the amount of SGS eddy-viscosity is not negligible in front of
the molecular viscosity, at least in the core region. This reflects the fact that the grid res-
olution is far from what is required to perform DNSs of the same flows: ∆x+ ≈ 48, ∆y+

in the range 1-17, ∆z+ ≈ 10 for the LES at Rτ = 395 - Solver A; ∆x+ ≈ 58, ∆y+ in the
range 1-17, ∆z+ ≈ 29 for the LES at Rτ = 590 - Solver B. This figure also illustrates that
the proper asymptotic behavior is obtained with the dynamic Smagorinsky model only
when the plane-wise procedure (Eq. 3.1) is applied, as for the case Rτ = 590 and Solver
B. Recall that this procedure can be used only for simple cases with homogeneous direc-
tions. Conversely, the asymptotic behavior is built in the σ-model’s differential operator
itself and no specific dynamic procedure/homogeneous directions is required.

3.3. Turbulent Plane jet

Further LESs of a periodic planar jet configuration were performed in order to illustrate
the potential of the global dynamic σ-model. The spectral code Solver D was used. The re-
sults from several 643 LESs are compared to 2563 DNS data obtained by running the same
spectral code. The configuration is close to the one studied in da Silva & Pereira (2008)
except for the jet width-to-initial momentum thickness, which is 20 instead of 35. The
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Figure 2. Mean velocity profile from the static σ-model ( ) and the dynamic Smagorinsky
model ( ). Symbols correspond to the DNS data of Moser et al. (1999). Some symbols of
the DNS were removed for clarity. Left: Results from the general purpose solver AVBP (Solver
A) at Reτ = 395. Right: Results from the channel code (Solver B) at Reτ = 590.
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Figure 3. Scaled SGS eddy-viscosity from the static σ-model ( ) and the dynamic
Smagorinsky model ( ). The dotted lines correspond to the proper y3 asymptotic be-
havior. Left: Results from general purpose solver AVBP (Solver A) at Reτ = 395. Right: Results
from the channel code (Solver B) at Reτ = 590.

computational domain is periodic in the three spatial directions and its size is four times
the initial jet width. The DNS initial field is generated by super-imposing divergence-free
random fluctuations to the mean velocity profile. The LES initial condition is obtained
from the DNS data by spectral interpolation. Because periodic conditions are imposed
in both the streamwise and spanwise directions, the flow is not statistically steady and
the jet keeps growing thicker and thicker as time increases. Figure 4 displays the resolved
kinetic energy and SGS eddy-viscosity. from the different LES performed at time 12 h/U
where h is the jet width and U is the maximum mean velocity. Note that the profiles
are not symmetric because only plane-averaging over the homogeneous directions was
applied and the flow is not statistically stationary. Regarding the dynamic Smagorinsky
model, the best agreement with the filtered DNS is obtained when the dynamic procedure
is applied planewise (see Eq. 3.1). This formulation permits the combination of accuracy
(the model constant depends on the position in the plane jet) and robustness (the planar
averaging stabilizes the procedure sufficiently to avoid clipping). When the dynamic pro-
cedure is applied locally to the Smagorinsky model, Eq. 1.3, a large amount of clipping
is required to stabilize the pointwise model constant, and the overall accuracy degrades.
On the other hand, when the global procedure, Eq. 1.4, is applied, the model constant
is uniform over space and no clipping is required. However, a high level of eddy-viscosity
is generated in the mean shear regions because the mean gradient contributes to the
strain rate. As a consequence, the resolved scales are over-dissipated and their kinetic
energy is under-estimated. Note that the over-estimation of νSGS does not appear in Fig.
4 because the amount of fluctuation is already way too small at the instant considered.
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Figure 4. LES of a periodic plane jet with a 643 grid performed with the spectral code Solver
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energy. Symbols correspond to the filtered 2563 DNS. Right: SGS eddy-viscosity scaled by the
molecular viscosity.

On the contrary, because the static σ-model produces zero eddy-viscosity for the mean
shear associated with the jet, applying the same global dynamic procedure to this model
leads to much better results, comparable to the planewise dynamic Smagorinsky model.
Note, however, that the global dynamic σ-model can readily be extended to any com-
plex geometry because neither averaging over homogeneous directions nor clipping are
required.

4. Conclusions

A differential operator based on the singular values of the velocity gradient tensor is
proposed as a basis for an improved SGS eddy-viscosity model. It is shown that the pro-
posed static σ-model generates zero eddy-viscosity for any two-dimensional or 2C flows,
as well as for axisymmetric and isotropic situations. It also has the proper cubic behav-
ior in near-wall regions. Owing to its unique properties, this model is well suited for the
global dynamic procedure, which adapts the overall coefficient to the grid resolution and
numerical errors. The σ-model was implemented in several academic and general purpose
CFD codes, under either its static or global dynamic version. The results presented in
this report are promising because of the relative ease of implementation. It is anticipated
that the σ-model could be useful in the current effort to make LES even more suitable
for complex flow configurations.
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Abstract. The rapid growth of supercomputers will probably make the use of Large eddy
simulations (LES) more accessible for industrial applications in a near future. It is then
important to develop accurate models able to represent as well as possible the turbulence
effects in very complex and wall-bounded flows. While the Smagorinsky model is known
for its extradissipation in near wall regions, other models with the appropriate near wall
behaviour are now available (e.g. WALE and Vreman model). Still, values of the constants
proposed by the authors are expected to be not universal notably in complex geometries.
In this study, a dynamic version of the WALE subgrid model has been developped based on
the Germano-identity. The dynamic WALE, the dynamic Smagorinsky and the WALE
models are first tested on the homogeneous isotropic turbulent (HIT) experiment of Comte-
Bellot and Corsin (CBC). Large eddy simulations of an isothermal turbulent channel flow
are then performed and results are compared with the DNS of Moser et al. at wall Reynolds
number Reτ 395 and 590. This last test illustrates how the dynamic procedure combined
with the WALE fails to correctly model the mean velocity. It leads to very high values of
the WALE constant near the wall and to an over prediction of the turbulent viscosity in the
buffer-layer. It is then shown in the paper that the dynamic procedure might degrade any
SGS model with the proper wall behaviour. Finally, a cure to this problem is proposed and
used to built an appropriate dynamic WALE model which proves accurate in the channel
flow and promising in an industrial like configuration.
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1 INTRODUCTION

One of the most challenging aspect of LES modelling is certainly near wall effects. For
industrial applications the knowledge of the latter is important for the optimisation of
the energy consumption (heating or cooling); it is then necessary to develop accurate LES
models able to represent as well as possible wall effects.
Since the Smagorinsky model1, many attempts have been done to meet the requirements
of modelling in presence of a solid wall. These requirements2 are the y3 asymptotic be-
haviour and the capability to represent laminar-to-turbulent transition. To this respect,
the use of damping function3 or of the Germano-identity4 to dynamically adapt the model
constant have been successfully used. This approach is most referred in the literature as
an optimisation method and is more suitable for complex geometries where the knowl-
edge of the distance to the wall is not straightforward. More recently the WALE model
developed by Nicoud and Ducros5 and the Vreman’s6 model have allowed to respect these
requirements without using any damping functions or dynamic procedure. Still the value
of the constant proposed by the authors is expected to vary depending on the flow and
the geometry.
The present paper is organized as follows: in section 2, the governing equations and the
different subgrid scales models are presented. In section 3, the models and their implemen-
tation are validated by considering the homogeneous isotropic turbulence configuration
of Comte et Bellot7. In section 4, results by considering an isothermal turbulent channel
computed with the different models are compared. The problem which arises when con-
sidering the WALE dynamic model based on the Germano-identity is also presented. A
cure to the previous problem is presented in section 5 and the results with the improved
dynamic WALE model are presented in the same section followed by a conclusion.

2 GOVERNING EQUATIONS AND SGS MODELS

The filtered compressible Navier-Stokes equations are solved in this study but their
incompressible counterpart are presented here for simplicity since only low Mach number
flows will be considered:

∂ūj

∂xj

= 0 (1)

∂ūi

∂t
+

∂(ūiūj)

∂xj

= −1

ρ̄

∂p̄

∂xi

+ ν
∂2ūi

∂xi∂xj

+
∂τ sgsij

∂xj

+ Si

where t is time, p the pressure, ρ the density, ν the kinematic viscosity, Si a source
term and τ sgsij the subgrid scale (SGS) tensor expressed as:

τ sgsij = ūiūj − uiuj (2)

An eddy viscosity approach has been chosen to model the SGS tensor which is then
expressed as :

2
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τ sgsij − 1

3
τ sgskk δij = 2νsgsS̄ij (3)

where S̄ij is the strain rate based on the filtered velocity ūi and νsgs the eddy viscosity.

2.1 WALE model5:

Like the Vreman’s model6, the WALE model5 does not generate SGS activity for pure
shear flows and was built to recover the right asymptotic behaviour near solid walls and
the eddy viscosity is expressed as follows:

νsgs = C2
w∆̄

2 ¯|OP | (4)

where Cw = 0.5 , ∆̄ is the filter size and ŌP an operator defined as follows:

¯|OP | = (Sd
ijS

d
ij)

3/2

(S̄ijS̄ij)5/2 + (Sd
ijS

d
ij)

5/4
(5)

where Sd
ij is the symmetric traceless part of the square of the strain rate, expressed as:

Sd
ij = S̄ikS̄kj + Ω̄ikΩ̄kj −

1

3
δij[S̄mnS̄mn + Ω̄mnΩ̄mn], (6)

where Ω̄ij is the rotation rate based on the filtered velocity ūi

2.2 Dynamic WALE model

To develop the dynamic WALE model, a second test filter ∆̂ bigger than the initial
filter ∆̄ is first considered, the Navier-Stokes equations filtered at the test filter level are
then expressed as follows:

∂ ˆ̄ui

∂t
+

∂(ˆ̄ui ˆ̄uj)

∂xj

=
1

ˆ̄ρ

∂ˆ̄p

∂xi

+ ν
∂2 ˆ̄ui

∂xi∂xj

+
∂T sgs

ij

∂xj

, (7)

where T sgs
ij is the sgs tensor at the test filter level. Using the Germano-identity, we

have the following relationship between T sgs
ij and τ sgsij :

T sgs
ij − τ̂ sgsij = Lij (8)

Lij is the Leonard term expressed as:

Lij = ̂̄uiūj − ̂̄uî̄uj (9)

The WALE eddy viscosity model is used for the SGS tensors at the two level so that
equation Eq.(8) becomes:
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C2
w∆̂

2 ˆ̄|OP | ˆ̄Sij − ̂(C2
w∆̄

2|ŌP |S̄ij) = Lij (10)

If Cw is assumed constant over a distance at least equal to the testfilter width, its
dynamic value can be expressed as follows using the least square method of Lilly8:

C2
w =

1

2

< LijM
w
ij >+

< Mw
ijM

w
ij >

(11)

with

Mw
ij = ∆̂2 ˆ̄|OP | ˆ̄Sij − ̂(∆̄2|ŌP |S̄ij) (12)

The superscript + in the expression Eq.(11) denotes a positive clipping of all negative
values to zero and the sign <> is a stabilisation method that consists in a local volume
averaging. In contrary to what is often done for the dynamic Smagorinsky4 model and
recently for the WALE model9, the stabilisation is not performed over homogeneous di-
rections but locally; it is then well adapted to complex geometries.

2.3 Dynamic Smagorinsky model4

The dynamic Smagorinsky constant was calculated with the same consideration as for
the dynamic WALE constant. The only difference is the operator |ŌP | in the expression
of M s

ij :

M s
ij = ∆̂2 ˆ| ¯OP s| ˆ̄Sij − ̂(∆̄2|ŌP

s|S̄ij) (13)

with |ŌP
s| the second invariant of the strain rate based on the filtered velocity ūi

expressed as :

|ŌP
s| =

√
2S̄ijS̄ij (14)

and the dynamic Smagorinsky constant is expressed as :

C2
s =

1

2

< LijM
s
ij >

+

< M s
ijM

s
ij >

(15)

The WALE5 , the dynamic WALE and the dynamic Smagorinsky4 models will be
denoted respectively as WA, WAD and SMD.
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2.4 Numerical solver

The calculations were carried out with AVBP, the CFD solver developed at CERFACS.
This parallel solver offers the capability to handle unstructured and structured grids in
order to solve the 3D compressible reacting Navier-Stokes equations with a cell-vertex
formulation. A centered Galerkin finite element method with a three step Runge-Kutta
temporal method has been used. The numerical solver is fourth order accurate in space
and third order in time. The efficiency of the numerical method used and the AVBP code
has already been successfully tested in the past years by Colin and Rudgyard10, Moreau
et al.11 and recently by Cabrit and Nicoud12.

3 HOMOGENEOUS ISOTROPIC TURBULENCE

The SGS models are first tested on the HIT experiment of Comte-Bellot and Corsin7.
This experiment has already been widely 4,13,14,15 used either to validate purely eddy-
viscosity models or to find their constant values. The characteristics of the CBC experi-
ment are summarised in table.1.

t∗ = Uot
M

urms(cm.s−1) ε(cm2.s−3) η(cm) λ(cm) Rλ

42 22.2 4740 0.029 0.484 71.6
98 12.8 633 0.048 0.764 65.3
171 8.95 174 0.066 1.02 60.7

Table 1: Characteristics of the HIT of CBC where Uo = 10m/s is the convective velocity, ε is the kinetic
energy dissipation, η is the kolmogorv scale, M = 5.08cm is the grid size, λ the Taylor micro scale and
Rλ the Reynolds number based on λ.

The experimental validation consists in initialising in a computation with a velocity
field whose spectrum matches the first spectum at time t∗ = 42 and comparing the ex-
perimental and the spectra at times t∗ = 98 and t∗ = 171. The reference length and the
reference velocity are respectively Lref = LB

2π
and Uref =

√
3/2urms(t∗ = 42). LB = 11M

is the length of the computation box. The simulations are performed over a 613 mesh.
Since the experimental evolution of the kinetic energy is not available, the results will be
compared with the data of the EQDNM simulations of Park and Mahesh16.

Figure 1 shows the evolution of the spectra predicted by the static WALE model5 and
the dynamic WALE described in section 2.2 compared with the experiment.

The first spectrum corresponds to the initialisation at time t∗ = 42. As expected, the
spectra obtained with WALE5 and the dynamic WALE models are very similar at the
following time and in good agreement with the experiment for wavelengths smaller than
K < Kc

2
. In fact, for greater wavelengths the energy is under predicted. But those wave-

lengths are resolved with least than 4 points. The discrepancies observed are probably due
to numerical errors rather than SGS model limitations. Nevertheless, the global energy
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Figure 1: Three spectra at 3 times t∗ = 42, 98, 171: � Experiment of CBC; — WAD; R WA

prediction will not be affected since the under resolved wavelengths represent only 1% of
the maximum energy. On figure 2, the spectra predicted by the dynamic Smagorinsky4

and WALE5 models are compared. The spectra are very similar at the different time and
also in good agreement with the measurements.
The underprediction of the energy spectrum for K > Kc

2
is also observed for the dy-

namic Smagorinsky4 model, supporting the fact that this issue is due to limitations of the
numerical method at very high wavelengths.

Figure 2: Three spectra at 3 times t∗ = 42, 98, 171: � Experiment of CBC; — WAD; ··· SMD
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The temporal evolution of the resolved kinetic energy is also well predicted by the
different models as shown in figure 3. The energy is normalised with the initial kinetic
energy at time t∗ = 42. The simulations are in good agreement with the experiment data
and with the EDQNM simulations, the dynamic Smagorinsky4 slightly underpredicts the
resolved energy but still, remains in good agreement with the EDQNM results.

Figure 3: Temporal evolution of the resolved kinetic energy: � EDQNM; — WAD; R WA; ··· SMD

Figure 4: Temporal evolution of the dynamic constants: — WAD; ··· SMD

The temporal evolution of the dynamic constants is shown in figure 4. The dynamic
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WALE constant converges to 0.55 a value closed to the one proposed by Nicoud and
Ducros5. In the same way, the dynamic Smagorinsky constant converges to 0.2 that is
closed to the canonical value, Cs = 0.2 performed by Clark et al.17 for a HIT.

4 TURBULENT CHANNEL

4.1 Numerical set up

The periodic turbulent channel configuration is appropriate for testing the near wall
behaviour of SGS models. It consists in a flow between two parallel planes (as shown in
figure 5) which is driven by a source term imposed dynamically to reach a target bulk
velocity:

Figure 5: Turbulent channel

Sx =
ρUbulk − 1

V

∫ ∫ ∫
ρuxdV

τrelax
(16)

V is the volume of the computational domain and τrelax is a relaxation time whose
expression is:

τrelax =
1

5

h

uτ

, (17)

where utau is the friction velocity and h the channel half height. The reference data for
this case are the DNS of Moser at al.18. The characteristics of the mesh for the friction
Reynolds case Reτ = 395 are summarised in table 2. They were chosen in order to meet
the requirement of the minimum turbulent channel dimensions advised by Jimenez and
Moin19.
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Reτ nx × ny × nz
Lx

h
Lz

h
∆x+ ∆z+ ∆y+w ∆y+c

395 31 ∗ 139 ∗ 51 3.5 1.3 46 10 1 17

Table 2: Characteristics of the mesh

4.2 Results

The friction Reynolds number, the friction coefficient and the error on this coefficient
compared to the Petukhov20 correlation as obtained with the different models are sum-
marised in the table 3.

Case Reτ = 395 Cf % Error
WA 413 6.55 ∗ 10−3 9.9
SMD 396 6.03 ∗ 10−3 1.2
WAD 387 5.75 ∗ 10−3 −3.6

SVS WAD 396 6.03 ∗ 10−3 1.2

Table 3: Comparison of the different friction values

The main results is that the WALE model5 over estimates the friction velocity while
the dynamic WALE model slightly under estimates the friction velocity. However the
dynamic Smagorinsky4 model is in good agreement with the correlation and the expected
friction velocity.

Figure 6: Mean velocity in the channel: � DNS Moser et al.18 Reτ = 395 — WAD; R WA; ··· SMD

Mean velocity profiles in wall units are displayed in figure 6 which shows that the
dynamic Smagorinsky computation is in good agreement with the DNS data of Moser et
al.18 with a slight overprediction of the mean velocity in the buffer-layer. The dynamic
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WALEmodel does not improve the WALE5 model and its velocity profile is not better than
the dynamic Smagorinsky4 model. The mean velocity is clearly overestimated from the
buffer-layer to the centre of the channel. This is due to the overestimation of the viscosity
as depicted in figure 7 due to high value of the constant near the wall as shown in figure
8. The WALE computations are in good agreement with the DNS but it is certainly
due to the overprediction of the friction veolicty as shown in table 3. Considering the
eddy viscosity, figure 7 shows that the dynamic Smagorinsky model4 does not have a y+3

asymptotic behaviour in contrary to what was obtained by Germano et al.3. This is due
to the stabilisation method that is not performed over the homogeneous directions, as
already mentionned in section 2.
The cubic asymptotic behaviour is better retrieved by the WALE5 and the dynamic WALE
models because they are built with the spatial operator of Eq.5. However, the eddy
viscosity from WALE is substantially smaller than the values obtained by both dynamic
models in the turbulent region (y+ > 30). On the other hand, the dynamic WALE
produces too large eddy-viscosity in the buffer-layer (5 < y+ < 30). These behaviours are
better understand by considering the profiles of the model constant, as depicted in figure
7. It strongly decreases in the near wall region for the dynamic Smagorinsky4 model since
the dynamic procedure is required to damp the eddy viscosity, if the Smagorinsky1 model
is used. The opposite is observed for the dynamic WALE model for which the model
constant is 40 times larger than the value proposed by Nicoud and Ducros5 (10 against
0.25). Note that even in the core region, the dynamic procedure generates a constant
which is approximatively 3 times larger than its static counter part. This situation is
different from what is observed for the dynamic Smagorinsky4 model; in this case the
dynamic constant (0.182) in the core region is close to the classical model constant as
shown in figure 8.

The dynamic version of the WALE model leads to very high value of the constant near
the wall and to a bad prediction of the mean velocity. It rises the question of the effective-
ness of the Germano-identity when developping a dynamic version of a model that has a
right asymptotic behaviour. This was already observed by Park et al.21 in their attempt to
develop a dynamic version of the Vreman’s model6 based on the Germano-identity. They
observed a low correlation between the SGS tensor predicted by the dynamic model with
the true SGS tensor specially near the wall. They then developed a global dynamic model
improved by You and Moin22 where a global equilibrium instead of the local equilibrium
was assumed. The final constant was homogeneous in space but time dependent. The
main drawback of such a global dynamic procedure is that it relies on the SGS model to
ensure that the spatial variations in the eddy viscosity are properly obtained. Notably,
one could expect that νsgs goes to zero with the appropriate y+3 behaviour near solid
wall and at the same time vanishes in region of pure rotation. However, it can be easily
demonstrated that the latter condition is not met for both the Vreman’s6 nor the WALE5

models. It is then still necessary to investigate if a local version of those dynamic models
can be developed. This is discussed in the next section.
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Figure 7: Mean viscosity in the channel: — WAD; R WA; ··· SMD

Figure 8: Square of the constant in the channel: — WAD; ··· SMD; – · – SVS WAD

5 MODIFIED DYNAMIC WALE MODEL

5.1 Theoretical study

The behaviour of the eddy viscosity and the constant in the channel shown respectively
in figure 7 and 8 point out that the main problem of the model is near the wall. In fact for
Y + > 30 the eddy viscosity predicted by the dynamic WALE and Smagorinsky4 models
are almost similar but the high values of the constant near the wall have an impact on
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the viscosity in the buffer-layer.
In order to better understand this behaviour, we have first carried out a theoretical study
of the asymptotic behaviour of the numerator and denominator of expression (11).

Considering a filtered incompressible velocity field ū1, ū2, ū3 the asymptotic behaviour
of the different components of the velocity are expressed as :

ū1 = ay + by2 +O(y3)

ū2 = cy2 +O(y3)

ū3 = dy + ey2 +O(y3) (18)

where a, b, c, d and e depend on x, z and time. We only consider the components that
are most important near the wall. Then Mw

ij and Lij will be simplified to Mw
12 and L12

and we have the following behaviour:

Mw
12 = ∆̂2 ˆ|ŌP | ˆ̄S12 − ̂(∆̄2|ŌP |S̄12)

L12 = ̂̄u1ū2 − ̂̄u1̂̄u2 (19)

From the expression 18, we have:

S12 = a+O(y)

ū1ū2 = acy3 +O(y4) (20)

and the operator |ŌP | that is based on the WALE model5 has a y3 behaviour.

|ŌP | = fy3 +O(y4) (21)

With the relation Eq.20 and Eq.21 the terms Lij and Mij have the following behaviour:

Mw
12 = ∆̂2fay3 − ̂(∆̄2fay3) +O(y4)

L12 = âcy3 − âyĉy2 +O(y4) (22)

Then near the wall, the dynamic constant converges to the following expression:

Cw =
< âcy3 − âyĉy2 >

< ∆̂2fay3 − ̂(∆̄2fay3) >
+O(y) (23)

This relation shows that the dynamic constant formally behaves like y0 near the wall.
However, the leading order term in Eq.23 is the ratio of two very small quantities (behaving
like y+3) whose numerical assessment strongly depends on the details of the test filter
application and stabilisation procedure. This situation is obviously ill-posed numerically
and can lead to very large value of the dynamic constant, as observed in fig 8. Note
that the situation is drastically different when the dynamic procedure is applied to the
Smagorinsky1 model. In this case, the spatial operator |ŌP | behaves like y0 and the
denominator of Eq.23 also. A model with a proper asymptotic behaviour seems to be
more sensitive to the choice of the filters and the stabilisation, specially near the wall.
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5.2 Proposed solution

The analysis conducted in section 5.1 suggests that the SGS models that have the
correct behaviour near the wall could be very sensitive to the filtering procedure and the
stabilisation method. This could be a real drawback to the development of any dynamic
version based on the Germano-identity for those models. Since the laminar viscosity is
dominant in the vicinity of the wall, there is no need, if one considers a SGS model with
the proper wall behaviour, to adapt its constant dynamically in the near wall region.
Still, it remains necessary to evaluate the constant in fully developed turbulent parts of
the flow.
A simple way to achieve this is to identify the ”near wall region”. In other words, to
have a sensor able to detect the presence of the wall without a priori knowledge of the
geometry which can be arbitrary complex. Such a sensor is not unique. Here we propose
to make use of an invariant similar to the one involved in the WALE model5 (see Eq.5)
More precisely, we have selected the following dimensionless parameter:

SV S =
(Sd

ijS
d
ij)

3/2

(Sd
ijS

d
ij)

3/2 + (SijSij)3
(24)

which has the following properties :

� the SV S behaves like y+3 since it shares the same numerator than the WALE
operator (Eq.5),

� the SV S = 0 for pure shear flows for the same reason,

� the SV S = 1 for pure rotating flows since Sij = 0 in this case

This last property indicates that SVS is bounded by 0−1, its lower value corresponding
to pure shear flows, its larger value corresponding to pure rotating flows. This also justifies
the acronym SVS (Shear and Vortex Sensor) we have chosen for this sensor.

Figure 9 shows the SVS in the channel as a function of y+ for the Reτ = 395.
It illustrates that this quantity can be used to divide the simulated geometry into two

zones: a zone far from the wall where the model constant should be estimated dynamically
using the Germano-identity and a zone close to the wall where the constant should be
fixed to 0.5, suggested by Nicoud and Ducros5. The value 0.09 is considered here as the
value below which the SVS behaves nearly y+3 and was thus chosen as threshold value
(see figure 9).
The modified dynamic WALE model is then expressed as follows:

if SV S > 0.09

C2
wsvs =

1

2

< LijM
w
ij >+

< Mw
ijM

w
ij >

(25)
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Figure 9: SVS in the channel at Reτ = 395

and if SV S < 0.09

C2
wsvs = 0.25 (26)

5.3 Results of the dynamic WALE with SVS at Reτ = 395

The modified model has been validated on the HIT of Comte-Bellot and Corsin7 and
the results are similar to those obtained with the normal dynamic WALE model. We will
then only focus on results obtained in the turbulent channel.
Results of the friction value obtained with the SVS dynamic WALE (see table 3) show
that the model has improved the prediction of the the static WALE model5 and are sim-
ilar to those obtained with the dynamic Smagorinsky model4.

Figure 10 compares the mean velocity predicted by the modified dynamic WALE, the
dynamic Smagorinsky4 and the WALE5 models. The mean velocity obtained with SVS
dynamic WALE is in good agreement with the experiment. Figure 11 indicates that the
viscosity in the channel is no longer affected by the high values near the wall. This is also
illustrated in fig 8.

The figure 8 compared the prediction of the square of the dynamic WALE constant
obtained with the normal and the modified dynamic WALE model. The introduction of
the SVS helps to controlling the value of the constant near the wall while keeping the
dynamic computation of the constant in the core region of the channel. This combination
leads to a better results than the WALE model5.
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Figure 10: Mean velocity in the channel at Reτ = 395: � DNS Moser et al.17 Reτ = 395; ··· SMD; – · –
SVS WAD

Figure 11: Eddy viscosity in the channel at Reτ = 395: ··· SMD; – · – SVS WAD

5.4 Results of the dynamic WALE with SVS at Reτ = 590

In an attempt to assess the adaptability of the procedure, we have kept the same
mesh to compute the Reτ = 590 channel flow, also computed by Moser et al.18 The
characteristics of the mesh in wall units are summarised in the table 4.
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Reτ nx × ny × nz
Lx

h
Lz

h
∆x+ ∆z+ ∆y+w ∆y+c

590 31 ∗ 139 ∗ 51 3.5 1.3 65 14 1.4 24

Table 4: Characteristics of the mesh for the case Reτ = 590

Figure 12 shows the mean velocity in channel obtained with the modified dynamic
WALE model. The velocity is slightly overestimated in the centre of the channel probably
due to the resolution but results are still in good agreement with the DNS.

Figure 12: Mean velocity in the channel at Reτ = 590: � DNS Moser et al.17 ; — SVS WAD

Figure 13 shows the rms velocity. Although the maximum of the axial velocity is over-
estimated, the location of the maximum is reasonably well predicted by the simulations.
The poor resolution of the mesh in the streamwise and spanwise directions is certainly
the main cause of the discrepancies observed in figure 13.

The eddy viscosity is represented in figure 14. Even at this high wall Reynolds number
the near wall behaviour of the model is preserved.
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Figure 13: Root mean square of velocity in the channel at Reτ = 590: � DNS Moser et al.18; — SVS
WAD

Figure 14: Sgs viscosity in the channel at Reτ = 590

The dynamic constants of the SVS WALE model are represented in figure 15 for the
two friction Reynolds numbers. The constants clearly adapt their value to the flow in the
turbulent part of the channel while the SVS keeps the same behavior (see figure 16). The
only difference is due to the y+ resolution that increased from the low to the high friction
Reynolds number case when using the same mesh.

It is worth nothing that even by adding high level of artificial viscosity during the
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Figure 15: Constants of the SVS WAD for the two friction Reynolds number: – · – Reτ = 395; · – –
Reτ = 590

Figure 16: SVS for the two friction Reynolds number: – · – Reτ = 395; · – – Reτ = 590

runs, no satisfying results were obtained with the dynamic Smagorinsky model4. This
is probably due to the fact that no averaging on homogeneous directions as discussed in
section 2. This indicates that the SVS dynamic WALE model has greater potential than
the dynamic Smagorinsky model4 for complex/high Reynolds configurations while leading
to equivalent results in simple/moderate Reynolds situations.
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6 CONCLUSIONS

A dynamic version of the WALE model5 with a Shear and Vortex Sensor has been
proposed. The model was succefully implemented and tested on the HIT experiment of
CBC7. The model gives equivalent results than the dynamic Smagorinsky model4 at low
friction Reynolds number and better results at high Reynolds number in an isothermal
turbulent channel configuation. In contrary to the dynamic Smagorinsky constant, the
dynamic WALE constant does not need to be averaged over homogeneous direction and
is then more suitable for very complex flows and geometries. In order to avoid highest
values of the viscosity in the laminar zone of the boundary layer due to the use of the
Germano-identity and the small value of the WALE operator near the wall, the SVS has
been introduced to divide the flow in two regions. A first one, close to the wall where the
constant keeps the value advised by Nicoud and Ducros5 and a second one corresponding
to the fully developped parts of the flow where the constant is dynamically evaluated and
can adapt to the mesh resolution and the turbulent flow level. The resulting viscosity
still has the proper y+3 behavior near the wall. The SVS dynamic WALE model seems
promising for modelling turbulent flow in very complex geometries without important
additional CPU cost and control strategies with equivalent or even better results than the
dynamic Smagorinsky model4 and static constant SGS models.
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APPENDIX D

This section gives more precision on the parameters used regarding the boundary conditions for the LES
simulations of the experimental set-up. The different patches are recalled in Fig. 5.1. The explanations
on the boundary conditions are taken from the AVBP Handbook [1].

Figure 5.1: Different patches for the LES simulation of the experimental set-up
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Patch1: INLET RELAX UVW T Y TURB
This characteristic boundary condition allows to impose the velocity components the static temperature
and the mass fraction at an inlet in a soft way. This means that the ingoing waves are taken proportional to
the difference between the actual state at the boundary nodes and the reference velocity and temperature.
Three integer parameters allow to fix the way the waves are calculated in AVBP, the way the reference
state is defined and the type of relaxation that is performed. It also allows a turbulent perturbation to
enter the domain. The different values of the parameters used are given below:

• wave: 2
The variations of the conservative variables are assessed from their time derivative and the strength
of the ith wave using Thompson’s approach.

• ref type: 2
The velocity and temperature are given through the user defined subroutines.

• relax type: 1
The ingoing waves are computed pointwise so that the relaxation tends to drive the velocity com-
ponents and temperature towards the exact profiles given in the reference state

• relax on Un: 500

• relax on T: 500

• relax on Y: 500

• inject type : 1
It defines the type of turbulence injected: CERFACS approach (Taylor hypothesis)

• turb param1: 2

• turb param2: 1000

• turb param3: 0.0050

• turb param4: 0.0010

• turb param5: 6.68

Patch2: INLET RELAX RHO UVW T Y
This characteristic boundary condition allows to impose the components of the surfacic mass flow rate,
the static temperature and the mass fraction at an inlet in a soft way. This means that the ingoing waves
are taken proportional to the difference between the actual state at the boundary nodes and the reference
flowrate, temperature and species. Three integer parameters allow to fix the way the waves are calculated
in AVBP, the way the reference state is defined and the type of relaxation that is performed. The different
values of the parameters used are given below:

• wave: 2.
The variations of the conservative variables are assessed from their time derivative and the strength
of the ith wave using Thompson’s approach.

• ref type: 1
The flowrate components, temperature and species are given in their user defined subroutines

• relax type: 1
The ingoing waves are computed pointwise so that the relaxation tends to drive the flowrate com-
ponents and temperature towards the exact profiles given in the reference state.

• relax on rhoUn: 0

• relax on rhout: 0
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• relax on T: 8000

• relax on Y: 8000

Patch3: OUTLET RELAX P 3D
This characteristic boundary condition allows to impose the static pressure at an outlet in a soft way.
This means that the ingoing wave is taken proportional to the difference between the actual state at the
boundary nodes and the reference static pressure. Three integer parameters allows to fix the way the
waves are calculated in AVBP, the way the reference state is defined and the type of relaxation that is
performed. In addition, there are transverse terms in the expression of the incoming wave’s amplitude.
This boundary conditions is aimed to substantially reduce spurious acoustic wave reflections. Based on
the work of Yoo et al. [155] due to numerical instabilities, a damping coefficient β may be needed while
using these transverse terms. In [155] the damping coefficient has to be equal to the local, normal to the
boundary patch, mach number of the form (please note that 0 ≤ β < 1): Ma = Un/c where Ma is the
local mach number, n is the number of node on the boundary patch, Un is the velocity component normal
to the boundary patch and c is the speed of sound. The different values of the parameters used are given
below:

• wave: 3

• ref type: 1
The static pressure is given in the used defined subroutine.

• relax type: 2
The ingoing wave is computed from the difference between the mean value (over the patch) of the
pressure at the outlet and the reference pressure (which should be constant over the patch in this
case, although there is no consistency check coded in AVBP). As a result, the boundary treatment
tends to drive the mean (over the patch) pressure towards the target value given in the reference
state and the shape of the profile is the result of other non boundary terms (such as the swirl).

• damping type: 2
The damping coefficient β applied is equal to the mean (in space over the boundary patch), normal
to the boundary patch, mach number Ma

• relax on P: 500

Patch4, Patch8, Patch9, Patch10 and Patch11: WALL LAW COUPLED ADIAB
It is an improved velocity/temperature wall-model is used. It is notably able to take into account sig-
nificant density/temperature variations and molecular Prandtl number effects. It is thus strongly rec-
ommended to use this wall-model when simulating anisothermal configurations. It is based on the Van
Driest transformation [147] that introduces a new scaling for the velocity profile.

• free corner: 0.75

Patch5, Patch6 and Patch7: WALL NOSLIP ADIAB
Defines an adiabatic wall with zero normal velocity. No additional parameters are needed:

Patch13, Patch14: WALL SLIP RELAX T
Defines a zero mass-flux boundary condition with zero normal velocity (useful for DNS computations).
The wall temperature is controlled by a relaxation coefficient that acts on the wall heat flux. The different
values of the parameters used are given below:

• ref type: 1 The temperature is given in the user defined subroutine.

• relax coeff: 0.9

xlv



BIBLIOGRAPHY

Patch16: WALL NOSLIP ISOT
Defines an isothermal wall with zero velocity. The only parameter used to describe the patch is an integer
to define the reference temperature to impose at the wall:

• ref type: 1. The Temperature is given in the user defined subroutine.
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