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All models are wrong, but some are useful. - George E. P. Box



Abstract

Coagulation cascade is a series of biochemical processes critical for preventing

bleeding and ensuring wound healing of which disorders lead to pathological issues.

However, the existing coagulation models, often lacking experimental validation and

simplification, present challenges in their practical application for understanding

diseases such as thrombosis and haemophilia. This thesis focuses on mathematical

modeling for the coagulation cascade, including optimizing parameters, model

reduction, and finally application of venous thrombosis.

First, a novel optimizer of clotting factors using gradient-based and evolutionary

optimization algorithms has been developed and used to fine-tune thrombin

coagulation models. It is found that the types of models and selection of variables

influence the complexity and the landscape significantly affects the optimization.

The novel optimizer improves the efficiency to find the global minimum, especially

for a very complex landscape.

An other achievement in this thesis is a multi-step reduction approach,

simplifying large-scale coagulation models without compromising their predictive

capability. This reduction approach combines the advantages of different reduction

methods and reduces the size of coagulation models efficiently, while conserving the

initial accuracy and robustness.

Finally, this thesis presents a 0-D coagulation model for venous thrombosis.

This model incorporates time-dependent transport effects derived from mechanical

features of 3-D simulations, along with biochemical interactions from the coagulation

cascade. Simulations were conducted for both platelet-based and platelet-free

models. The results highlight the critical influence of cascade stimulation, transport

effects, and platelet involvement in the development of models for deep venous

thrombosis.
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Résumé

La cascade de coagulation est une série de processus biochimiques essentiels

à la prévention des saignements et à la cicatrisation des plaies, dont les

dysfonctionnements peuvent entrâıner des pathologies graves. Cependant, les

modèles actuels de coagulation, souvent dépourvus de validation expérimentale et

simplifiés, posent des défis dans leur application pratique pour la compréhension des

maladies telles que la thrombose et l’hémophilie. Cette thèse se concentre sur la

modélisation mathématique de la cascade de coagulation, en abordant l’optimisation

des paramètres, la réduction des modèles et, enfin, leur application à la thrombose

veineuse.

Tout d’abord, un nouvel optimiseur des facteurs de coagulation, combinant des

algorithmes d’optimisation basés sur le gradient et des stratégies évolutionnaires, a

été développé et utilisé pour affiner les modèles de génération de thrombine. Il a été

observé que le choix des modèles et la sélection des variables influencent fortement

la complexité du paysage d’optimisation, ce qui impacte la recherche des minima

globaux. Ce nouvel optimiseur améliore l’efficacité du processus en permettant

d’identifier plus rapidement et plus précisément la solution optimale, en particulier

dans des paysages complexes.

Un autre apport majeur de cette thèse est le développement d’une approche

de réduction multi-étapes, permettant de simplifier les modèles de coagulation de

grande taille sans compromettre leur capacité prédictive. Cette méthode exploite les

avantages de différentes techniques de réduction et permet de diminuer efficacement

la taille des modèles tout en préservant leur précision et leur robustesse initiales.

Enfin, cette thèse propose un modèle de coagulation 0-D appliqué à la thrombose

veineuse. Ce modèle intègre des effets de transport dépendant du temps, dérivés

des caractéristiques mécaniques issues de simulations 3-D, ainsi que les interactions

biochimiques de la cascade de coagulation. Des simulations ont été réalisées pour

des modèles avec et sans plaquettes. Les résultats mettent en évidence l’influence

cruciale de la stimulation de la cascade, des effets de transport et de l’implication
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des plaquettes dans le développement de modèles de thrombose veineuse profonde.
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Chapter 1

Introduction

1.1 Backgrounds and motivations

Hemostasis is a complex physiological process that ensures vascular healing under

various conditions such as injury and trauma, as well as the proper flow of blood

throughout the vascular tree. It relies primarily on the interplay between blood cells

(platelets, red and white blood cells), and the coagulation cascade, which together

lead to the formation of thrombus when required plugs. Disorders in hemostasis can

result in bleeding or thrombosis, which leads to mortality. Central to this process is

the coagulation cascade, a critical biochemical pathway that leads to the activation

of clotting factors, ultimately resulting in the formation of fibrin strands and the

stabilization of the platelet plug.

Over the past decades, mathematical and computational modeling has emerged

as a powerful tool for understanding and developing the sophisticated mechanisms

of coagulation cascade. When numerical models align with empirical data, they

validate existing knowledge; when discrepancies arise, they highlight opportunities

for discovering new pathways and mechanisms.

Coagulation modeling efforts have spanned a wide range of approaches, from

differential equations to more sophisticated systems for closed and flow-based

conditions [17]. Widely accepted models [18, 15, 19, 20] have significantly advanced

our understanding of coagulation. A lack of comprehensive validation against

experimental data undermines the reliability of the models and limits their clinical

applicability [21]. Additionally, the complexity of some models hinders their

accessibility and practical use in research and clinical settings [22].
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To address these challenges, this thesis focuses on three key topics: parameter

optimization, model reduction, and the 0-D modeling under flow for venous valves,

based on Ordinary Differential Equations (ODEs). This work aims to enhance the

understanding of coagulation mechanisms while improving their computational and

clinical applicability.

1.2 Introduction to haemostasis and thrombosis

biology

Hemostasis involves the formation of a blood clot inside a blood vessel to seal injuries

and prevent excessive bleeding. The clotting process is critical for maintaining

vascular integrity as illustrated in Figure 1.1. In contrast, thrombosis occurs when

clot formation obstructs blood flow in the circulatory system. This obstruction

disrupts vessels and organs, such as the heart and brain, leading to severe conditions

like stroke, heart attack, or deep vein thrombosis [23, 4]. As illustrated in Figure

1.1, the coagulation cascade produces thrombin and converts fibrinogen into fibrin

(secondary hemostasis). Before this, primary hemostasis occurs as circulating

platelets adhere to the injury site through various biochemical interactions. This

adhesion activates the platelets, enabling them to aggregate with others via

fibrinogen to form an initial plug. However, this plug is not robust and requires

reinforcement by fibrin strands for structural stability and strength.

1.2.1 Components of clotting formation

1. Platelets: These small blood cells play an important role in hemostasis

and thrombosis. When a blood vessel is damaged, platelets are activated

and aggregate at the injury site to form a temporary “platelet plug.” Once

activated, the platelets surfaces provide biding sites for further activation of

clotting factors [24].

2. Red blood cells: Red blood cells (RBCs) play a complex role in hemostasis

and thrombosis. RBCs impact thrombosis through multiple pathways like

modulating viscosity. These effects are largely pro-thrombotic, though RBCs

can exert both pro- and anti-thrombotic influences [25].

3. Clotting Factors: Within the liver, hepatocytes are involved in the synthesis

of most clotting factors also called coagulation factors, mostly circulating in

an inactive form in the blood [25]. When triggered by injury or contact to

2



CHAPTER 1. INTRODUCTION

Figure 1.1: The process of clotting formation. Initially, a damaged blood vessel

releases clotting factors, initiating the cascade. Prothrombin is converted into

thrombin, which then transforms soluble fibrinogen into insoluble fibrin strands.

Activated platelets form a platelet plug to limit blood flow, while fibrin strands adhere

to the platelet plug, strengthening it and forming an insoluble blood clot. Adapted

from [1].

negatively charged surfaces, they undergo a series of activation in the thrombin

generation [26].

4. Fibrin: Fibrin along with activated platelets form stable clots. The fibrin

generated from fibrinogen is activated by thrombin. Meanwhile, thrombin

activates factor XIII which promotes fibrin cross-links. After this, fibrinolysis

starts to dissolve clot, as a therapeutic approach to deal with thrombosis [27].

1.3 Introduction to coagulation cascade

The coagulation cascade consists of a series of enzymatic reactions that involve both

the intrinsic and extrinsic pathways, leading to the production of thrombin which

activates platelets and converse fibrinogen into fibrin, two structural components of

clot [28] as shown in Figure 1.2. Both extrinsic pathway and intrinsic pathway serve

as the initial trigger for coagulation, rapidly producing small amounts of thrombin.

This thrombin activates other components of the coagulation cascade, such as factor

V, factor VIII, and platelets, to propagate the clotting process through several
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Figure 1.2: The coagulation cascade scheme. The system consists of two pathways

to trigger: the tissue factor (TF) pathway and the contact activation pathway.

Both converges at the activation of Xa to generate thrombin. (Abbreviations: a

= activated; F = factor; PC = protein C). Adapted from [2].
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feedback amplification loops.

1.3.1 The extrinsic pathway

The extrinsic pathway, also known as the tissue factor (TF) pathway, is initiated

when blood is exposed to TF as shown in Figure 1.1. This exposure occurs due to

vascular injury disrupting the endothelial layer. The process of extrinsic pathway is

indicated in Figure 1.2. TF binds to factor VII, forming the TF=VII complex which

converts factor VII to its active form, factor VIIa, in a calcium-dependent manner.

The TF=VIIa complex plays a dual role in the coagulation cascade. It directly

activates factor X to its active form factor Xa, which enters the common pathway

and initiates the conversion of prothrombin to thrombin. It also activates factor IX

to factor IXa, which subsequently amplifies thrombin production by forming the

tenase complex (IXa=VIIIa) with factor VIIIa.

The extrinsic pathway is regulated to prevent excessive clotting. The pathway

is regulated by tissue factor pathway inhibitor (TFPI), which limits excessive

activation by binding to and inhibiting the TF=VIIa complex and factor Xa.

Additionally, antithrombin III (ATIII), a serine protease inhibitor, plays a critical

role in regulating the coagulation cascade by neutralizing thrombin, factor Xa, and

other activated clotting factors.

1.3.2 The intrinsic pathway

Typically, as shown in Figure 1.3, the intrinsic pathway of coagulation is initiated

upon contact with negatively charged surfaces, such as in medical devices with help

of prekallikrein (PK).

As shown in Figure 1.2, this contact triggers the activation of factor XII, which

undergoes auto-activation to form XIIa through surface adsorption. The next step

involves the activation of factor XI to XIa by XIIa. factor XIa plays a pivotal role

in propagating the coagulation cascade by activating factor IX to IXa. Activated

factor IX (IXa), in conjunction with its cofactor VIIIa forms the tenase complex

(IXa=VIIIa). This complex is crucial for catalysing the conversion of factor X to Xa,

a key enzymatic step that bridges the intrinsic and common pathways. The tenase

complex significantly amplifies thrombin production, ensuring a rapid and efficient

clotting response. High molecular weight kininogen (HMWK) acts as a cofactor

during these reactions, enhancing XIIa generation and further strengthening the

activation signal [29]. The intrinsic pathway is regulated by feedback loops and
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cofactor involvement ensuring robust thrombin generation in response to injury.

Figure 1.3: Blood contacting medical device associated thrombosis. Adapted from

[3].

1.3.3 The common pathway

Both the intrinsic and extrinsic pathways converge at the common pathway, with

factor Xa serving as the link. factor Xa, in complex with factor Va, calcium ions, and

phospholipids, forms the prothrombinase complex (Xa=Va). This complex converts

prothrombin (factor II) into its active form, thrombin, which is the key enzyme

in the coagulation cascade. Thrombin is responsible for several critical functions,

including the conversion of fibrinogen (factor I) into fibrin (factor Ia), cross-linking

fibrin to stabilize clots, and initiating feedback mechanisms that further amplify the

coagulation cascade.

1.3.4 Feedback mechanisms

Thrombin not only plays a central role in clot formation but also amplifies the

cascade through positive feedback loops. Thrombin activates V, VIII, and XI,

accelerating the production of thrombin and further amplifying the cascade.

Thrombin also activates platelets, promoting platelet aggregation and the formation

of a stable platelet plug. To prevent excessive clotting, the body has several negative

feedback that regulate the coagulation cascade. These include inhibition of the

TF=VIIa=Xa complex by tissue factor pathway inhibitor (TFPI), inhibition of

multiple coagulation factors by antithrombin (ATIII), and proteolytic inactivation of

Va and VIIIa by activated protein C (aPC) [30].
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1.3.5 Fibrin formation and fibrinolysis

Fibrin formation is the final step of the coagulation cascade and plays a critical role

in stabilizing blood clots. Once thrombin is generated in the common pathway, it

converts fibrinogen (factor I), a soluble plasma glycoprotein, into fibrin monomers

[28]. These monomers spontaneously polymerize to form insoluble fibrin strands,

creating the structural scaffold of the clot. To stabilize the fibrin network, thrombin

also activates factor XIII to factor XIIIa. This enzyme cross-links fibrin strands

by forming covalent bonds between glutamine and lysine residues, increasing the

mechanical strength and resistance of the clot to enzymatic degradation [28]. Fibrin

serves as a meshwork that entraps platelets, red blood cells, and other components,

reinforcing the hemostatic plug and preventing further blood loss.

Fibrinolysis is the process by which fibrin clots are degraded after their

formation, restoring normal blood flow and preventing excessive clot accumulation

[27]. This process is primarily mediated by the enzyme plasmin, which breaks

down fibrin into soluble fibrin degradation products (FDPs). The balance between

fibrin formation and fibrinolysis is essential for maintaining vascular integrity and

preventing pathological condition.

1.4 Pathological bleeding disorders

There are many abnormalities associated with the blood clotting system. These

abnormalities can be divided into two families depending on the blood clotting

scenario: excessive clotting (thrombosis) and insufficient clotting (bleeding) as shown

in Table 1.1. In this section, some disorders of blood coagulation are presented.

Thrombosis results in the formation of a blood clot, also known as thrombus. They

can results in the complete or partial occlusion of the vessel. Alternatively, they

can detach and migrate with the flow causing the occlusion of smaller vessels in the

circulatory system. This is a serious medical condition known as embolism and can

potentially lead to dangerous complications (e.g. stroke).

1.4.1 Deep vein thrombosis

Deep vein thrombosis (DVT) is a condition where the clots form in deep veins,

most commonly in the legs, possibly causing swelling, pain and discoloration of

skin. This condition can be dangerous because the clot may travel through the

blood stream to the lungs, causing a pulmonary embolism (PE). DVT begins with
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Table 1.1:: Classification of blood clotting disorders and their potential causes.

Clotting disorder Causes

Excessive clotting (Thrombosis)

Deep venous thrombosis (DVT) Prolonged immobility, surgery, genetic

factors

Arterial thrombosis Atherosclerosis, hypertension

Pulmonary embolism DVT, hypercoagulability

Vessel occlusion Atherosclerosis, trauma, vasculitis

Cancer-associated thrombosis malignancies, chemotherapy

Inflammatory disease thrombosis Autoimmune diseases, chronic

inflammation

Inflammatory disease chronic systemic inflammation

Insufficient clotting

Hemophilia Genetic deficiency in clotting factors

(e.g., VIII or IX)

Anticoagulant therapy Use of anticoagulants (e.g., warfarin,

heparin) for medical treatment

the slow activation of the coagulation cascade, often due to endothelial injury or

stasis. Figure 1.4 illustrates the mechanisms underlying venous valve function and

dysfunction, distinguishing between healthy and pathological states. In the healthy

valve cycle, effective muscle pump action generates sufficient oscillatory blood flow,

which clears residual molecular and cells. Conversely, in the pathological valve cycle,

weak muscle pump action leads to insufficient oscillatory flow, creating a hypoxic

environment for accumulating cells and proteins.

1.4.2 Haemophilia

Haemophilia is a genetic disorder that impairs the body’s ability to form thrombin,

leading to excessive bleeding even from minor injuries. Individuals with haemophilia

often experience spontaneous bleeding into joints, muscles, and soft tissues [31].

Haemophilia are classified into:

1. Haemophilia A: This is the most common form, caused by a deficiency

of VIII, leading to improper activation of X and thus impaired thrombin

generation and reduced fibrin formation for further clot formation.
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Figure 1.4: Schematic representation of venous valve function and dysfunction. The

venous valve possessing antithrombotic properties, operates under oscillatory blood

flow. Top left: The valve is open, allowing blood to flow unidirectionally from the

lower extremities to the veins. Top right: The valve is closed, preventing retrograde

blood flow (reflux). Bottom left: Weakened blood flow fails to transfer blood to the

valve sinus, impairing endothelial function. Bottom right: Damaged endothelium

fosters thrombus formation in sinus. Adapted from [4].
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2. Haemophilia B: Also known as Christmas disease, this is caused by a

deficiency in IX. Since factor IX is crucial for activating factor X, a deficiency

similarly weakens the clotting process.

3. Haemophilia C: This is a rarer form caused by a deficiency in XI. Unlike

Haemophilia A and B, Haemophilia C usually affects thrombin production less

severely.

1.4.3 Thrombosis and Virchow’s Triad

The concept of Virchow’s Triad, introduced by Rudolf Virchow in 19th century is

commonly used to explain the interactions of different risk factors of thrombosis [32].

According to Virchow’s Triad, three primary conditions in Figure 1.5—blood stasis,

endothelial injury, and hypercoagulability, act together or individually to increase

the risk of clot formation.

Figure 1.5: virchow’s triad. Three factors contribute to thrombosis: stasis,

hypercoagulability and vessel wall injury

Blood stasis

When blood flow slows down or becomes stagnant, it creates an environment

conducive to thrombosis by allowing clotting factors and platelets to accumulate

locally. Blood stasis, particularly venous stasis, can occur in situations such as:

• Prolonged immobility: Extended periods of immobility, such as during long
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flights or extended bed rest, can significantly reduce blood flow, leading to

venous stasis [33].

• Heart failure: In patients with heart failure, reduced cardiac output can lead

to sluggish venous return, contributing to stasis in the venous system [33].

• Varicose veins: Abnormalities in the venous structure, such as varicose veins,

can slow down blood flow and lead to stasis in local areas [34].

Endothelial injury (Vessel wall injury)

Endothelial injury refers to damage to the inner lining of blood vessels. Under

normal conditions, clotting factors and platelets remain inactive. However, when

the endothelial lining is disrupted, it exposes subendothelial tissues, triggering the

coagulation cascade and platelet activation. Common causes of endothelial injury

include:

• Trauma or surgery: Physical injury to blood vessels during trauma or

surgical procedures can damage the endothelium, leading to clot formation

[35].

• Inflammation: Inflammatory processes weaken the endothelial layer, making

it more prone to injury. Chronic inflammation is associated with endothelial

dysfunction and increased thrombogenicity [36].

• Atherosclerosis: Plaques formed in atherosclerosis can rupture, damaging

the endothelium and contributing to thrombus formation, particularly in

arteries [37].

Hypercoagulability

Hypercoagulability refers to an increased tendency for thrombus formation resulting

from genetic or acquired conditions that disrupt the balance between clot formation

and dissolution. Key causes of hypercoagulability include:

• Genetic predispositions: Inherited conditions, such as factor V Leiden

mutation or deficiencies in natural anticoagulants (e.g., protein C, protein S,

antithrombin), increase the risk of clot formation by impairing the regulation

of thrombin generation [38].
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• Hormonal changes: Hormonal changes, such as those induced by oral

contraceptives or hormone replacement therapy, increase levels of clotting

factors. For example, estrogen-containing contraceptives stimulate the

production of procoagulant proteins, promoting clot formation [39].

• Cancer: Many cancers are associated with hypercoagulability due to

the release of procoagulant substances by cancer cells, which activate the

coagulation cascade. This phenomenon, often referred to as Trousseau’s

syndrome, is common in malignancies such as pancreatic and lung cancer [40].

1.5 Thrombin Generation Assay

The Thrombin Generation Assay (TGA) is a laboratory test designed to evaluate

the capacity of plasma to generate thrombin, the central enzyme in the coagulation

cascade. It addresses a gap left by traditional coagulation tests like prothrombin

time (PT) and activated partial thromboplastin time (APTT), which are limited in

their ability to capture the dynamic balance between procoagulant and anticoagulant

forces. TGA measures thrombin generation through the continuous monitoring of a

thrombin-specific fluorogenic substrate [41], providing several critical parameters as

shown in Figure 1.6:

• Lag time (τlag): The time between activation and the initiation of thrombin

generation.

• Thrombin peak (IIamax): The maximum concentration of thrombin formed.

• Time to peak (τmax): The time it takes to reach the thrombin peak.

• Endogenous Thrombin Potential (ETP): The total amount of thrombin

generated.

TGA has proven useful for understanding coagulation mechanisms in several

clinical contexts. It has been instrumental in assessing patients with hemophilia

[31], von Willebrand disease [42], venous thromboembolism (VTE) [43], and other

diseases, aiding in the therapies. The assay is sensitive to various anticoagulants,

including unfractionated heparin, low molecular weight heparin, and direct oral

anticoagulants (DOACs), allowing for individualized treatment adjustments [44]. In

summary, TGA captures the entire thrombin generation process, provides a deeper

understanding of coagulation dynamics and supports the personal treatments for

bleeding and thrombotic disorders.
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Figure 1.6: Quantities of interests in TGA. IIamax (peak thrombin concentration),

τmax (time to peak), τlag (time to reach 10 nM of thrombin) and ETP (endogenous

thrombin potential) for a thrombin formation curve in time. Adapted from [5].
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1.6 Mathematical modelling

Mathematical modelling is a fundamental tool in understanding the coagulation

process and predicting the outcomes of various physiological and pathological

conditions. Models are designed to simulate different spatial scales, from simplest

0D models, which capture reactions in a uniform space, to complex 3D models

that account for spatial heterogeneity, blood flow dynamics, and clot growth in the

vascular, veins, organs or medical devices, etc. This introduces an overview of various

types of models, their optimization, reduction methods, and their applications in

published works.

1.6.1 Coagulation models in quiescent plasma

Mathematical models in quiescent plasma are the simplest type of coagulation

models, where transport phenomena are neglected, and the system is assumed

to be homogeneous. A computational model typically includes activation and

self-regulating thrombin feedback reactions. These models assume that the amount

of available phospholipidic surfaces is above the threshold required to trigger the

cascade [45]. The coagulation cascade can be represented by a set of ODEs:

dX

dt
= R (1.1)

where X contains the concentrations of the n chemical species involved in the

cascade and R is the vector gathering all the associated source terms. The ODE for

each species can be figured out according to the law of mass action. A key purpose

of these models is to represent the thrombin generation assay computationally. Such

plasma-based models are widely used to simulate well-mixed systems, enabling

researchers to isolate and analyze the roles of specific clotting factors in the

coagulation cascade.

To the best of the author’s knowledge, Nesheim et al. [46] developed the first

mathematical coagulation model. Khanin and Semenov [47] proposed a model

including the positive feedback effect of Va on thrombin generation. However,

due to limited biological knowledge at that time, early models were often overly

simplified, failing to capture the physical meaning of the coagulation process. For

instance, crucial components such as factors VIII and IX (whose deficiencies can

cause hemophilia) and inhibitors were ignored in Khanin’s model. Hockin et al. [18]

later developed a well-known detailed coagulation model, which was subsequently

improved by Butenas et al. [15]. Zhu [48] integrated the intrinsic and extrinsic
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pathways into a unified model that simulates thrombin generation under various

conditions, including the absence of some inhibitors to simulate specific pathological

conditions. An ODE-based “Platelet-Plasma” model was developed to predict blood

stability under various enzyme perturbations, incorporating platelet activation

dynamics through phosphatidylserine exposure [19]. All reaction rates depended on

platelet activation are altered by a single function of thrombin concentration. This

model bridges coagulation kinetics with platelet function. This model was improved

by Anand et al. [49], integrating a neural network-based platelet calcium signaling

model issued by Chatterjee et al. [50].

Owen et al. [21] highlighted that no existing ODE-based models accurately

predict thrombin generation, with significant discrepancies between them and

experiment observations. Even so, these models remain valuable for analyzing the

roles of various clotting factors and certain medical applications. Lo et al. [51]

introduced a kinetic Monte Carlo simulation and revealed limitations of coagulation

models under sub-pM TF levels, where coagulation failed to initiate, emphasizing the

challenges of modeling in low TF scenarios. Luan et al. [52] employed a computation

model and sensitivity analysis to identify fragile mechanisms within the coagulation

cascade, demonstrating that FX/FXa activity and thrombin-mediated platelet

activation are particularly vulnerable. The findings align with the clinical efficacy

of FX/FXa and direct thrombin inhibitors, supporting the use of computational

models for rational anticoagulant target selection despite model uncertainties.

A deterministic computational model of extrinsic pathway and two empirical

experimental systems were used to evaluate clinical cases concerning anticoagulants:

wafarin, fondaparinux and Rivaroxaban [6] (See Figure 1.7). Bouchinita et al.

[53] developed a model describing blood clotting during warfarin treatment. The

function of warfarin is introduced by a Pharmacokinetics - Pharmacodynamics

(PK-PD) sub-model. Dunster et al. [54] investigated the differences in factors

between patients who experienced an early-age myocardial infarction (MI) and

healthy controls using both plasma measurements and a mathematical model. The

study suggests that models help identify individuals at risk for MI, predict recurrent

risk, and guide anticoagulant therapy effectively. Lee et al. [55] established a QSP

(quantitative systems pharmacology) model for non-bleeding baseline coagulation

activity with data from clinically relevant in vivo biomarkers at baseline and changes

in response to recombinant activated factor VII treatment . Menezes et al. [56]

introduced a personalized methodology based on 0-D coagulation model for treating

acute traumatic coagulopathy (ATC). Validated through in vitro experiments,

the model contributed to individualized resuscitation strategies for ATC patients.

Similarly, Ghetmiri et al. [57] developed a Goal-Oriented Coagulation Management
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Figure 1.7: Comparison of computational and empirical thrombin generation

profiles for an average healthy individual (diamonds) and an average warfarin-treated

individual (squares). Open symbols represent computational predictions, while closed

symbols represent empirical plasma measurements. 5 pM tissue factor (TF) stimulus

was used in all cases. Figure is from [6].

(GCM) algorithm, a personalized approach for calculating coagulation factors. This

algorithm integrates patient-specific factors, rapid concentration measurements, and

an improved thrombin dynamics model for precise control for personalized treatment.

1.6.2 Coagulation models under blood flow

Blood flow affects the distribution of clotting factors, platelets even blood cells, as

well as the mechanical forces on thrombus. Models involving blood flow require

more complex representations to account for transport effect such as diffusion and

convection. These models are critical for understanding how clots form in specific

dynamic environments.

The first 0-D mathematical coagulation model under blood flow was proposed by

Kuharsky et al. [58]. The model takes into account plasma-phase and surface-bound

enzymes and zymogens, coagulation inhibitors, and activated and inactivated

platelets. It includes both plasma-phase and membrane-phase reactions, and

accounts for chemical and cellular transport by flow and diffusion, albeit in a

simplified manner by assuming the existence of a thin and well-mixed fluid laye

near the surface. This model was adapted by Elizondo et al. [59] to present a

0-D mathematical model for venous thrombosis (VT) due to slow flow. Recently,

Miyazawa et al. [60, 61] improved this models family to account for the effects of the
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half-activated factor V (V-h). An increased FV-h fraction was found to accelerate

the thrombin generation process. A detailed explanation of these types of models is

in Figure 1.8. These models allow to consider the effect of blood flow on thrombin

concentration in addition to chemical reactions and provides a new perspective for

the analysis of the effects of clotting factors on thrombin generation. However, like

the 0D model in plasma, this model cannot accurately quantify clotting formation

in specific applications.

The first one-dimensional (1-D) spatio-temporal mathematical model was

developed by Zarnitsina et al. [62, 63]. The study provides insights into clot

formation, its spatial spread, and growth from the injury site perpendicular to the

vessel wall into the blood flow [62]. Spatial dynamics analysis demonstrated that

above-threshold activation generated a high-speed thrombin concentration wave

propagating from the activation zone [63].

Two-dimensional (2D) models include both length and width dimensions,

providing more details about the spatial distribution of clotting factors, cells, and

blood flow within a plane. These models use more complex Partial Differential

Equations (PDEs) to represent diffusion, advection, and reactions of clotting

factors over an area. Leiderman et al. [64] developed the first spatial–temporal

mathematical model of platelet aggregation and coagulation under flow that includes

details of coagulation biochemistry, chemical activation and deposition of blood

platelets, as well as the two-way interaction between the fluid dynamics and the

thrombosis growth. Chen et al. [65] developed a reduced coagulation model,

accurately predicting thrombin and fibrin generation. Xu et al [66]. developed a

two-dimensional multi-scale model to study thrombus formation in blood vessels.

The model integrates macroscale blood flow dynamics with microscale platelet and

fibrinogen interactions modeled using an extended stochastic discrete cellular Potts

framework. Govindarajan et al. [8] used Leiderman’s model to investigate the

temporal changes in the spatial distributions of the key enzymatic (i.e., thrombin)

and structural (i.e., platelets) components within a growing thrombus. The

simulation was validated using experimental data in a ”Y” shape flow-chamber

(See Figure 1.9). On a more practical level, Dydek et al. [67] used numerical

simulations to analyze thrombin formation and location relative to tissue factor (TF)

position in disturbed flow induced by an open venous valve. The computational

model incorporated hemodynamics, reaction kinetics, and chemical transport of 22

biochemical species. And a fluid-chemical model was developed to study thrombin

transport and its role in Intra-Luminal Thrombus (ILT) formation within Abdominal

Aortic Aneurysms (AAAs) by Biasetti et al. [68]. This model revealed that coherent

vortical structures drive thrombin accumulation in the distal AAA, consistent with
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Figure 1.8: Schematic representation of coagulation reactions and the reaction zone

included in the model. (A) Coagulation Reactions: Dashed red arrows indicate

cellular or chemical activation processes, blue arrows represent chemical transport

in the fluid or on surfaces, and green arrows depict binding and unbinding from cell

surfaces. Rectangular boxes denote surface-bound species. Solid black lines indicate

enzyme action in the forward direction, while dashed black lines show feedback

enzyme action. Black lines with a fade indicate release from platelets, while purple

shapes denote inhibitors. The lowercase “a” signifies the activated form of a species

(e.g., X and Xa refer to clotting X and activated clotting X, respectively). (B)

Reaction Zone: A schematic of the vessel, reaction zone, and transport of platelets

and proteins as incorporated in the model. Abbreviations: APC, activated protein

C; AT, antithrombin; TF, tissue factor; TFPI, tissue factor pathway inhibitor; EC,

endothelial cell; Vh, partially activated V; PC, protein C; TM, thrombomodulin.

Adapted from [7].
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clinical observations of thicker ILTs in this region.

Figure 1.9: Comparison of thrombus growth predictions between computational

models and experimental measurements at 430 seconds. Upper Panel: Spatial

distribution of deposited platelets, with model predictions shown in color and

experimentally measured platelet accumulation represented by the black line. The

vertical white dashed lines mark the boundaries of the thrombogenic surface.Lower

Panel: Spatial distribution of deposited fibrin, with model predictions in color

and experimentally measured fibrin accumulation indicated by the black line. The

vertical white dashed lines denote the beginning and end of the thrombogenic surface.

Adapted from [8].

Three-dimensional (3D) models provide the most detailed and realistic

simulations by capturing the full spatial dynamics of clot formation and growth.

These models represent the vasculars, veins, organs or medical devices environments

in three dimensions, accounting for the complex geometry, interactions between

clotting factors, blood cells and blood flow. Bouchnita et al. [69] proposed a venous

thrombus formation model and implemented it in 3D using a novel cell-centered

finite-volume solver. The numerical simulations reproduced in vitro experiments of

blood coagulation in microfluidic capillaries. Additionally, a simplified one-equation
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model of thrombin distribution was derived, enabling analysis of clotting initiation

under varying platelet counts, shear rates, and clotting factors. Jimoh-Taiwo

[70] proposed a CFD model that considers the biochemical reactions between

thrombin and fibrinogen, pulsatile blood flow, and clot growth in a three-dimensional

patient-specific common femoral vein to simulate the DVT as well. Rojano et al. [9]

performed simulation considering the effects of reactions and transport of clotting

factors into a CFD solver in a cannulated left ventricle (See Figure 1.10). Shankar

Figure 1.10: Regions of thrombin concentration ( more than 1 nmol/m3) around the

VAD inlet cannula at 20 seconds (A), 50 seconds (B), and 150 seconds (C). Region

in which velocity magnitude less than 0.005 m/s. The figure is adapted from [9].

et al. [71] developed a pioneering 3D multiscale framework for simulating thrombus

growth under flow conditions on surfaces presenting collagen and tissue factor (TF).

The model integrates a Neural Network (NN) for platelet signaling rather than

traditional chemical scheme for facilitating blood flow computation. This framework

is the first to incorporate patient-specific platelet phenotypes, enabling robust and

clinically relevant 3D simulations of thrombus growth.

An ideal mathematical model of coagulation would encompass all biochemical

processes, account for the mechanistic contributions of solid components such as

vessel walls and circulating cells, and integrate precise measurements of clotting

factor concentrations, reaction kinetics, and the spatial and velocity profiles of all

molecules and solids in blood flow. Complex models face two significant drawbacks:

high computational cost and substantial uncertainty. These challenges highlight the

necessity of adopting strategies like model reduction and parameter optimization to

strike a balance between accuracy, computational efficiency, and reliability.
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1.6.3 Optimization of coagulation cascade models

On the one hand, no existing model can accurately fit the experimentally obtained

thrombin generation [21]. On the other hand, neither the reaction mechanism nor the

reaction constants and initial concentrations are precisely known. These quantities

are taken as average or normal values in the theoretical model and are estimated by

fitting experimental data [44]. Therefore, the optimization of mathematical models

is critical for aligning simulated outcomes with experimental or clinical observations.

Optimizations for coagulation cascade involve fine-tuning parameters, such as

rate constants or initial concentrations, to achieve the best fit to target data. Rojano

et al. [5] optimized an intrinsic pathway model of [19] by adjusting parameters

slightly, improving the prediction of thrombin generation under different levels of

VIII and the improvement was validated by comparison with experimental data.

Rojano et al. [9] developed a simple extrinsic pathway model and using optimization

tool to define the initial concentrations in the reduced model. Ratto et al. [72]

developed a patient-specific modeling approach for coagulation. The method starts

with fine-tuning parameters of a reduced kinetic model to fit experiment data,

which is then applied to analyze spatial distributions of blood factors under flow

conditions and to assess the outcomes of treatments for coagulation disorders.

Sagar et al. [73] developed a optimizer named Dynamic Optimization with Particle

Swarms (DOPS), a novel hybrid meta-heuristic that combined multi-swarm particle

swarm optimization with dynamically dimensioned search (DDS). The authors

compared the performance of DOPS with other commonly used meta-heuristics

such as differential evolution (DE), simulated annealing (SA) and dynamically

dimensioned search (DDS). DOPS outperformed other common meta-heuristics on

the optimization test for a coagulation cascade model.

These optimizations achieved good fits from the aspect of thrombin generation.

However, these studies did not explore the highly complex landscape of coagulation

models, nor did they analyze the nature of the obtained minima. While their solutions

may appear optimal based on small numerical errors, there is no guarantee that

they correspond to a true global minimum. Figure 1.11 shows that different patients

have different levels of clotting factors and generation of thrombin-antithrombin in

coagulation dynamics. Although this figure is based on real statistics, instead of

simulation, it indicates the complexity of coagulation dynamics.
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Figure 1.11: Prothrombin and factor X levels on T-AT formation from 122 patients

[10].

1.6.4 Model reduction of coagulation cascade

The application of detailed models is often constrained by substantial parameter

uncertainties. Additionally, the complexity of such models limits their practical

application in scenarios involving complex flow configurations. Reducing the number

of parameters to a minimum is crucial, avoiding the incorporation of redundant

parameters [74]. The primary aim of this chapter is to simplify coagulation models

by reducing equations, or parameters while preserving essential system dynamics.

Rojano et al. [75] developed a novel reduced model comprising only eight

chemical reactions by a sensitivity analysis using two techniques to identify the

most influential parameters in an existing detailed coagulation model. Following

calibration via Bayesian inference, the reduced model demonstrated strong predictive

capabilities across various initial conditions. Chen et al. [65] presented a reduced

coagulation model based on experimental measurements, incorporating a thin-film

assumption for the clot core with zymogen levels equated to those in a flowing

plasma. Sagar et al. [76] developed a hybrid modeling approach combining ODEs

with logical rules to simulate the coagulation cascade. The model consisted of

five differential equations and logical rules resulting in a formulation significantly

smaller than traditional mechanistic models. Hansen et al. [77] introduced an

automated framework to generate reduced-order models. The framework consists of

nested optimizations, where an outer optimization selects the optimal species for the
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reduced-order model and an inner optimization selects the optimal rate constants

for the new coagulation models. Lacroix [78] presented a reduced model consists

of 15 factors interacting within 8 PDEs to simulate the formation and subsequent

fibrinolysis of a clot in quiescent plasma. By adjusting the initial concentration

of anti-thrombin (ATIII) and degradation constant of fibrin, the model is able to

replicate the size of the clot. However, the modification of initial concentration

of ATIII and rate constant indicates that the model lose the original physical

robustness. Orfao et al. [44] developed a linear model more helpful for mathematical

analysis and parameter estimation than a non-linear model. The linearization

preserved the global behavior of the system and gave suitable results that precisely

reproduce numerical simulation. However, the linear model is not a positive system,

limiting its application.

1.7 Main objectives and summary

While mathematical models are powerful tools for analyzing coagulation cascade,

significant challenges exist due to high complexity and uncertainties. These

challenges highlight the need for advanced optimization techniques to effectively

explore complex parameter landscapes. Additionally, model reduction and

simplification are valuable tools for simplifying optimization and enhancing

applicability.

To be clinically relevant, computational models of thrombosis must be both

efficient and patient-specific. Specifically, the models should be reduced to enhance

interpretability and applicability. At the same time, parameters must be carefully

optimized and tuned to ensure predictive accuracy and being patient-specific.

Additionally, reducing the dimensionality of the model is crucial for accelerating

computation. In certain cases, it is essential to couple fluid–structure interaction

(FSI) with biochemical processes to capture key aspects of thrombus formation.

However, 3D FSI simulations are computationally expensive. This motivates the

need to reduce the model from three dimensions (3D) to a simpler framework.

Chapter 1 focuses on optimizing coagulation models, highlighting the impact

of variable selection and landscape complexity on outcomes. To address the

challenge of local minima, a hybrid optimization strategy is introduced, combining

gradient-based and evolutionary algorithms to achieve global solutions and accurate

thrombin generation predictions under diverse conditions.

In Chapter 2, a multi-stage reduction strategy is presented to reduce coagulation
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models while maintaining their dynamic accuracy. Using different physical-based

method, the reduction is validated for both extrinsic and intrinsic pathways models,

demonstrating robust performance in clinical scenarios such as hemophilia A.

Chapter 3 examines the interplay between blood flow and coagulation dynamics

in venous sinus leaflets. Computational simulations reveal effects of stimulus,

anticoagulants, hemodynamic characteristics and selection of models on thrombin

generation, offering some insights for predict risk of DVT and tailoring anticoagulant

therapies.

The final chapter summarizes the findings and discusses the clinical and

computational implications future research directions are proposed.
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Chapter 2

How well can a coagulation model

be fitted?

This chapter forms the basis of a manuscript currently under consideration for

publication, titled “On the Impact of Model Complexity on the Optimization

of Coagulation Models: A Computational Study Using Gradient-Based and

Evolutionary Strategies” authored by Junyi Chen and Franck Nicoud, and submitted

to Mathematical Modelling of Natural Phenomena.

Abstract

Accurately optimizing models of coagulation cascade is crucial for developing

effective treatments for bleeding disorders and preventing thrombotic diseases. This

chapter focuses on the optimization of coagulation models, comparing the results

across multiple existing models with different complexity (number of parameters to

be optimized, number of chemicals, tendency of the model to show local minima).

Namely, the initial concentrations of the chemical species are first perturbed

randomly from their reference values and then optimized to recover the original

thrombin generation. The findings suggest that the complexity of the coagulation

models significantly affects the optimization process, with more complex models

presenting additional challenges for optimization because of the presence of a large

number of local minima. It is shown that the density of the latter can become so

large that the use of a gradient-based optimization method is hopeless as soon as the

distance between the initial and optimal positions is greater than 1% in the species

concentration space. Finally, by combining gradient-based methods and evolutionary
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strategies, the global optimization problem can be successfully solved. This study

highlights the important role of model complexity in parameters optimization of

coagulation models and provides a way for improving optimization techniques in

coagulation modeling.

2.1 Introduction

Over the last decades, significant progress has been made in characterizing the

individual components of the hemostatic system, including the coagulation cascade,

platelet activation, and fibrinolysis [79]. Characterizing the individual components

has multiple potential health benefits. To name but a few, it would contribute to a

better control of wound treatment [80], based by promoting the design of efficient

hemostatic materials [81]; help understand and reduce the thrombogenicity of any

artificial surface, one of the main limitations to the development of blood-contact

devices (extracorporeal circulation, artificial valves, ventricular assist devices, etc)

[82]; help design patient-specific treatments to limit the occurrence of venous

thromboembolism, one of the main causes of death in hospitals [83].

From a computational point of view, many models have been developed to

integrate the available knowledge about biochemistry and provide a systems-level

understanding of the process [84]. Mathematical models for coagulation can be

classified into three categories: homogeneous models, pseudo-homogeneous models

and heterogeneous models [85]. Homogeneous models describe the coagulation

cascade as a set of ordinary differential equations (ODEs) and all the species are

uniformly distributed and well mixed throughout the fluid phase. They have been

developed for 40 years and one of the most famous model of this category was issued

by Hockin et al. [18]. Pseudo-homogeneous models and non-homogeneous models are

both cell-based models, which have been proposed for 20 years but not applied very

widely [86]. For example, Chatterjee et al. [19] considered the activation of platelets

by introducing a coefficient pre-multiplying the constant rates of those biochemical

reactions which mainly occur over the membrane of activated platelets, instead of

describing the whole activation process. The initiation of thrombin generation can

be achieved either by adding exogenous tissue factor (TF), which corresponds to

the extrinsic pathway, or by lowering the levels of corn trypsin inhibitor (CTI), a

substance that impedes the generation of XIIa, representing the intrinsic pathway.

These pathways eventually merge at the activation point from factor X to Xa. Xa

then collaborates with its cofactor Va to constitute the prothrombinase complex,

a crucial element in the conversion of prothrombin (II) to thrombin (IIa). Rather

26



CHAPTER 2. HOW WELL CAN A COAGULATION MODEL BE FITTED?

than introducing an ad-hoc pre-multiplying coefficient, the heterogeneous model

proposed by Fogelson et al. [20] considers platelets as separate entities which have

a finite number of adhesion sites on their surface. Bouchnita et al. [69] derived a

methodology to study the interplay between the platelets count, the injury site and

the blood flow and its effect on coagulation in a tube under venous conditions.

In the core of coagulation process is thrombin (IIa), a key enzyme interacting

with various sub-systems and factors, converting fibrinogen into fibrin and activating

platelets. There is no doubt that figuring out the production of thrombin by

experimental approaches is very relevant to assess the coagulation profile of

individuals. To this respect, Thrombin Generation Assays (TGA) where the time

evolution of thrombin in a blood sample at rest is monitored are widely used in the

clinical routine and research [22] to assess the coagulation profile of individuals. For

example, TGAs play role in the diagnosis and management of bleeding disorders,

including hemophilia [87] and von Willebrand disease [42], by helping understand

and personalize treatment plans based on hemostatic capability [88]. However,

experiments consume a lot of resources. If based on accurate biochemical schemes,

the computational approach is more economical and faster, and it gives the

opportunity to integrate and quantify reaction details, which can help the design of

experiments in turn [17, 89].

Any mathematical model for coagulation involves parameters (rate constants,

initial concentrations) which are not perfectly known and may change depending on

the patients and their condition. It is therefore useful to develop tools capable of

optimizing the parameters on a case-by-case basis so that the coagulation models,

once properly tuned, can predict the generation of thrombin or other clotting

factors accurately and efficiently. Some modern computation technologies have

been used to find the suitable parameters and outputs for biochemistry reactions

including coagulation cascade. Machine learning can explore massive design spaces

to identify correlations and multi-scale modeling can predict system dynamics to

identify causality [90]. Chelle et al. [91] optimized kinetic rates with evolutionary

algorithm, but a poor agreement was reached when the whole set of rate constants

was treated as the variables to optimize. Rojano et al. [9] used a python package

called S-timator using both least square optimization and artificial neural networks

to optimize the parameters and make them fit well to some numerical data.

Hansen et al. [77] employed evolutionary algorithms in both their outer and inner

optimization processes to choose the most effective species and search for the best

rate constants. The purpose of their work was to create the method of reduction

of the models instead of optimization, so that they did not pay much attention

to verify optimization results. Ranc et al. [5] modified certain rate constants
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and concentrations based on their expertise and intuition, aiming to enhance the

prediction of thrombin generation more effectively than with the original models.

[92] optimized the rate constants in the process to establish a reduced model and

pay some attention to the landscape, although the size of this reduced model is

relatively small. Ratto et al. [72] proposed a patient-specific modelling approach to

study blood coagulation, taking into account the complications of the process and

the large inter-patient variation of blood factors and physiological conditions. They

used conventional thrombin generation tests to determine parameters of a reduced

kinetic model, which is then used to study spatial distributions of blood factors and

blood coagulation in flow.

It is quite intuitive to think that the surface response of a dynamical system is

all the more prone to contain minima as the dimension of the vector of unknowns

is large. These minima can be either local or global and should be treated and

discussed carefully. In order to find the global minima more efficiently and exactly,

some researchers have combined the evolutionary strategies and gradients-based

methods to optimize models from various research areas [93, 94]. By combining

these two types of methods, these authors leveraged the strengths of each algorithm

to efficiently explore the search space and converge to the global minimum. To the

best of our knowledge, no one has yet applied hybrid optimization techniques to

coagulation mathematical models.

The objective of this chapter is to study to what extent the parameters of

a coagulation scheme can be optimized and what is the impact of the number

of unknowns on the optimization process and the complexity of models (number

of parameters to be optimized, number of chemicals, tendency of the model to

show local minima). The numerical framework, the optimization strategies and

the coagulation schemes considered are described in Section 2.2. The results

are discussed in Section 3.4, where it is shown that a classical gradient-based

optimization procedure can be effective for a reduced order scheme (5 species)

and a sophisticated scheme with only 4 variables to optimize. After identifying

the large number of local minima as the reason for the failure of the optimization

for a 10-species scheme, the results of a combined gradient/CMAES approach are

discussed to show the potential of this optimization procedure.
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2.2 Methods

2.2.1 Details of coagulation models and reference cases

This study presents the optimization of two distinct models for the extrinsic pathway

of the coagulation cascade. Both models consist in a set of ordinary differential

equations (ODEs) that describes the time evolution of various coagulation factors,

along with the rates of enzymatic reactions that govern the dynamics of the system;

they were both validated through previous academic researches [15, 9]. Measuring

rate constants experimentally can be challenging, costly and time-consuming, even

impossible. When dealing with a large number of unknown parameters, finding a

unique solution to this problem often becomes unfeasible [95, 96]. Additionally, large

models exhibit a widespread sensitivity to parameter (kinetic rate) values, spanning

across several orders of magnitude. This characteristic, known as ”sloppiness,” has

been identified as a significant obstacle to accurate parameter estimation [97]. On

the other hand, accurately determining the exact initial concentrations is critical, as

it provides essential insights into the initial conditions of experiments or chemical

reactions, enabling more accurate predictions of their progression and outcomes.

It should also be noted that, unlike rate constants which describe biochemical

interactions at protein/molecule level, initial concentrations are specific to individuals

and may even vary considerably over time depending on the patient’s condition

(fatigue, dehydration, infection, ...). This makes the development of methodologies

able of correctly assessing/adjusting the physical parameters of coagulation models

all the more essential where initial concentrations are concerned.

Butenas’ extrinsic pathway model

This sophisticated model of the extrinsic pathway with 38 species and 28 reactions

was originally proposed by [18] and improved by Butenas et al. [15]. The cascade is

initiated by tissue factor (TF) binding to factor VII, forming the extrinsic tenase

complex TF=VIIa (representing the joined TF-VII complex). This complex then

activates factor X to Xa, which then binds to activated factor V to convert factor

II to IIa. During this process, antithrombin III, protein C (PC), and tissue factor

pathway inhibitor (TFPI) act as inhibitors (refer to Figure 2.1a; only some key

species are shown). The reactions of this scheme are shown in Table 2.1, while the

initial concentrations are displayed in Table 2.2.
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Table 2.1:: Chemical reactions defining Butenas’ extrinsic pathway model [15].

No. Reaction k1 k−1 kcat

1 TF + VII←−→ TF––VII 3.2× 106 M−1s−1 3.1× 10−3 s−1

2 TF + VIIa←−→ TF––IIa 2.3× 107 M−1s−1 3.1× 10−3 s−1

3 TF––VIIa + VII −−→ TF––VIIa + VIIa 4.4× 105 M−1s−1

4 Xa + VII −−→ Xa + VIIa 1.3× 107 M−1s−1

5 IIa + VII −−→ IIa + VIIa 2.3× 104 M−1s−1

6 TF––VIIa + X←−→ TF––VIIa––X −−→ TFVIIa––Xa 2.5× 107 M−1s−1 1.05 s−1 6 s−1

7 TF––VIIa + Xa←−→ TF = VIIa––Xa 2.2× 107 M−1s−1 19 s−1

8 TF––VIIa + IX←−→ TF––VIIa–– IX −−→ TF––VIIa + IXa 1× 107 M−1s−1 2.4 s−1 1.8 s−1

9 II + Xa −−→ IIa + Xa 7.5× 103 M−1s−1

10 IIa + VIII −−→ IIa + VIIIa 2× 107 M−1s−1

11 VIIIa + IXa←−→ IXa––VIIIa 1× 107 M−1s−1 5.0× 10−3

12 IXa––VIIIa + X←−→ IXa––VIIIa––X −−→ IXa––VIIIa + Xa 1× 108 M−1s−1 1× 10−3 s−1 8.2 s−1

13 VIIIa←−→ VIIIa1 +VIIIa2 6.0× 10−3 s−1 2.2× 104 s−1

14 IXa––VIIIa––X −−→ IXa + X+VIIIa1 +VIIIa2 1.0× 10−3 s−1

15 IXa––VIIIa −−→ IXa + VIIIa1 +VIIIa2 1.0× 10−3 s−1

16 IIa + V −−→ IIa + Va 2.0× 107 M−1s−1

17 Xa + Va←−→ Xa––Va 4.0× 108 M−1s−1 0.2 s−1

18 Xa––Va + II←−→ Xa––Va–– II −−→ Xa––Va +mIIa 1.0× 108 M−1s−1 103 s−1 63.5 s−1

19 Xa––Va +mIIa −−→ Xa––Va + IIa 1.5× 107 M−1s−1

20 Xa + TFPI←−→ Xa––TFPI 9.0× 105 M−1s−1 3.6× 10−4 s−1

21 TF––VIIa––Xa + TFPI←−→ TF––VIIa––Xa––TFPI 3.2× 108 M−1s−1 1.1× 10−4 s−1

22 TF––VIIa––Xa + TFPI −−→ TF––VIIa––Xa––TFPI 5× 107 M−1s−1

23 Xa + ATIII −−→ Xa––ATIII 1.5× 103 M−1s−1

24 mIIa + ATIII −−→ mIIa––ATIIIa 7.1× 103 M−1s−1

25 IXa + ATIII −−→ IXa––ATIII 4.9× 102 M−1s−1

26 IIa + ATIII −−→ IIa––ATIII 7.1× 103 M−1s−1

27 TF––VIIa + ATIII −−→ TF––VIIa––ATIII 2.3× 102 M−1s−1

28 IXa + X −−→ IXa + Xa 1.4× 10−7 M 8× 10−4 s−1

Table 2.2:: The concentration of factors of Butenas’ model [15]. The other initial

concentrations are set to 0.

Factor VII VIIa X IX II VIII V TFPI ATIII TF

Concentration (nM) 6.67 0.0667 106.67 60.0 933.0 0.4667 13.33 1.667 2267.0 0.001
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(a) Butenas et al. [15] model of the

extrinsic pathway.

(b) Rojano et al. [9] model of the

extrinsic pathway.

Figure 2.1: Comparative display of extrinsic pathway models highlighting key

species and reactions. The arrows indicate the direction of the activation or conversion

processes. Blue lines show direct transformations, while green dashed lines represent

activations influenced by other factors. Non-zero Factors: TF (Tissue Factor), VII,

V, X, II (Prothrombin); activated factors: VIIa, TF=VII, TF=VIIa, Va, Xa, IIa

(Thrombin); complexes: Xa=Va (Prothrombinase complex), IIa=ATIII (Thrombin-

Antithrombin complex). (a) Butenas’ model (Full): This model illustrates the

complex interactions between various factors, activated factors, and complexes. (b)

Rojano’s model (Reduced): A reduced model that focuses on the interactions between

various factors, activated factors, and complexes.
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Rojano’s extrinsic pathway model

Rojano et al. [9] proposed a reduced model of the extrinsic pathway, which was

used to simulate a Left Ventricular Assist Device (LVAD) in 3D fluid model. This

coagulation model consists of five reactions and eight species, as shown in Table

2.3. The cascade is triggered by TF activating factor VII into VIIa, which in turn

activates factor II to IIa (thrombin). The model also includes a positive and an

inverse feedback. IIa activates factor V to Va, and Va further activates factor II.

In addition, IIa combines with ATIII to form IIa=ATIII, which consumes thrombin

(refer to Figure 2.1b). The initial concentrations of the species at time t = 0 are

shown in Table 2.4.

Table 2.3:: Reactions defining Rojano’s extrinsic pathway model [9].

No. Reaction km[M ] kcat[s
−1] k[s−1]

1 TF −−→ VIIa 2.283× 10−3

2 VIIa + II −−→ VIIa + IIa 3.01908× 10−7 0.109473

3 IIa + V −−→ IIa + Va 7.907× 10−10 1.17856× 10−3

4 Va + II −−→ Va + IIa 2.029× 10−7 11.71

5 IIa + ATIII −−→ IIa––ATIII 11.701 7243.5× 103

Table 2.4:: Reference initial concentrations for Rojano’s extrinsic pathway model [9].

The other initial concentrations are set to 0.

Factor TF V II ATIII

Concentration (nM) 50 20 1610.98 3576.03

2.2.2 Definition of the optimization problem

The coagulation cascade can be represented by a set of ODEs:

dX

dt
= R (2.1)

where X contains the concentrations of the n chemical species involved in the

cascade and R is the vector gathering all the associated source terms. In order to

compute the source terms R, it is needed to know the rate constants, the initial

concentrations of each species and the reaction scheme. Then the ODEs for each
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species can be figured out according to the law of mass action, which states that the

rate of reaction is proportional to the product of the concentrations of the reactants.

For example, for the reaction #26 in [15] scheme in Table 2.1:

IIa + ATIII −−→ IIa−−ATIII (2.2)

translates into:
d[IIa = ATIII]

dt
= k[IIa][ATIII] (2.3)

where k is the rate constant of the reaction.

In this study, enzymatic reactions are simulated using the Michaelis–Menten

equation. This approach is particularly suitable when the enzyme concentration

is constant and significantly lower than the substrate concentration. The

Michaelis–Menten equation is derived under the quasi steady-state assumption and

is defined as follows:

v =
d[P ]

dt
=

Vmax[S]

Km + [S]
(2.4)

Here, Vmax = kcat[E]0 represents the maximum reaction velocity, with kcat being the

catalytic constant and [E]0 the initial enzyme concentration. The Michaelis constant

Km is a value that depends on the constants of the reaction. As an example, consider

reaction #2 from Table 2.3, which follows the Michaelis-Menten kinetics:

VIIa + II −−→ VIIa + IIa (2.5)

The rate of formation of product IIa in this reaction is described by the following

ordinary differential equation (ODE):

d[IIa]

dt
=

kcat[V IIa]0[II]

Km + [II]
(2.6)

This equation captures the essence of the enzymatic reaction dynamics in the models

used, where kcat is the rate at which the enzyme catalyses the conversion of the

substrate to the product. The source terms corresponding to all the reactions in

Tables 2.1 and 2.3 can be computed like exemplified above in Eqs. 2.3 and 2.6. This

leads to two sets of differential equations relevant to the schemes described in Tables

2.1 and 2.3, and which can be solved numerically. The dynamics of all species in the

coagulation cascade were determined by solving the associated ordinary differential

equations (ODEs).

For optimization, a computation was performed firstly using the original values

reported in Tables 2.2 and 2.4 as reference, respectively. Next, the initial values were
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changed randomly by adding or subtracting a certain amount of each chemicals,

which creates a perturbation or disturbance in the system. The objective of the

optimization problem is then to recover the reference state by minimizing the

distance between the outcomes of the optimized and reference models. Considering

the crucial role of thrombin as the final product of this cascade, the cost function

was defined in the following manner:

f(x) =

∫ tfinal

0

[IIa(t;x∗)− IIa(t;x)]2 dt (2.7)

In this formulation, IIa(t;x∗) denotes the target concentration of thrombin obtained

when the reference initial concentration vector x is as specified in Tables 2.2 and

2.4. Conversely, IIa(t;x) represents the thrombin concentration for any value of

x assessed during the optimization process. The variable tfinal denotes the end of

the time range for the simulation. This expression is classical and informative for

calibrating models parameters [96]. For clearer and more efficient comparisons, the

following relative error, which is nothing but a scaled version of the cost function,

Eq. 2.7, will be used to display the results:

ϵ =

∫ tfinal
0

[IIa(t;x∗)− IIa(t;x)]2 dt∫ tfinal
0

[IIa(t;x∗)]2 dt
(2.8)

The original loss function is scaled by the L2-norm of IIa over time. The numerator

represents the total squared error between the optimized thrombin concentration

IIa(t;x) and the reference thrombin concentration IIa(t;x
∗), integrated over time.

This quantifies the deviation of the simulation from the experimental or reference.

The denominator, serves as a normalization factor by integrating the squared

reference thrombin concentration over time. This normalization ensures that the

error measurement is relative to the overall thrombin generation.

If the traditional Euclidean distance in the state space of n dimensions were

used to evaluate the distance between two outcomes of any of the two coagulation

models, the species with a large concentration would disproportionately influence

the results, causing a biased representation of the true distribution of the outcomes.

To overcome this issue, the following normalized distance is introduced:

D =

√√√√ n∑
i=0

(x∗
i − xi)2

(x∗
i )

2

=

√√√√ n∑
i=0

(
1− x

′
i

)2 (2.9)
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where the summation is performed over the species with non zero initial value

(see Tables 2.2 and 2.4). Moreover, x∗
i and xi are the reference and optimized

concentration of the ith chemical species, respectively. x′ = x/x∗, where x∗ stands

for the initial value of the reference given in Tables 2.2 and 2.4. Another advantage

of this normalization is to reduce the numerical errors due to the large variety of

values taken by the different concentrations.

2.2.3 The basic optimization algorithms

This section outlines the optimization methods employed in this study: Truncated

Newton Conjugate Gradient (TNC), Covariance Matrix Adaptation Evolution

Strategy (CMA-ES), and the Broyden–Fletcher–Goldfarb–Shanno (BFGS). Each

method offers distinct advantages suited to specific types of optimization problems.

It solves optimization problems:

min
x

f(x) subject to l ≤ x ≤ u, (2.10)

where f(x) is the objective function, and l and u represent the lower and upper

bounds of the variables x.

Truncated Newton Method (TNC)

The term ”truncated” in TNC refers to the fact that the Newton direction is not

computed exactly but is approximated using an iterative method, such as the

conjugate gradient (CG) method. The search direction in Newton methods is

determined by solving the equation:

∇2f(xk)pk = −∇f(xk), (2.11)

where ∇f(xk) represents the gradient of the objective function at the current

iteration xk, and ∇2f(xk) is the Hessian matrix, which captures second-order

curvature information. The solution pk to this equation determines the search

direction, which is then used to update the solution iteratively:

xk+1 = xk + αkpk, (2.12)

where αk is the step size determined through a line search.

The Truncated Newton Conjugate Gradient (TNC) method does not require

the explicit computation of the Hessian matrix. Instead, it approximates the
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Newton direction iteratively using the Conjugate Gradient (CG) method, using only

first-order gradient information. This approach significantly reduces computational

costs while still capturing second-order curvature effects [98]. TNC was used to

detect the local minima in this chapter.

Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Box

constraints (L-BFGS-B)

The L-BFGS-B algorithm is particularly suited for optimization problems involving

simple bound constraints and large-scale problems where computing and storing

a full Hessian matrix is infeasible. A key advantage of L-BFGS-B is the memory

efficiency, as it uses a limited number of gradients and updates to approximate the

Hessian, making it scalable for high-dimensional problems [99].

Initially, it set the initial point x0 within the defined bounds. Meanwhile, it

initializes the limited-memory approximation of the inverse Hessian, typically as the

identity matrix or a suitable diagonal matrix. For each iteration k, the algorithm

performs the following steps. Firstly, the gradient ∇f(xk) at the current point and

search direction are computed.

Hkdk = −∇f(xk), (2.13)

where Hk is the limited-memory approximation of the inverse Hessian matrix. Hk is

updated using information from the previous iterations. The new point is adjusted

to respect the bounds by projecting the search direction:

xk+1 = Projbounds(xk + αdk), (2.14)

where α is the step size determined using a line search that satisfies the Wolfe

conditions [100]. The limited-memory approximation of the inverse Hessian matrix,

Hk, is refined by incorporating the position differences sk = xk+1 − xk and the

gradient differences yk = ∇f(xk+1)−∇f(xk), which capture the changes in position

and gradient between iterations. The algorithm terminates when the norm of the

gradient satisfies:

∥∇f(xk)∥final ≤ ϵ, (2.15)

where ϵ is a predefined tolerance. As discussed next, L-BFGS-B was used as the

outer optimization for the global optimization to reduce the search space. The outer

optimization is commonly referred to as the upper-level optimization task in bi-level

optimization.
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Covariance Matrix Adaptation Evolution Strategy (CMAES)

CMAES is particularly effective for high-dimensional and complex search spaces,

where it estimates and updates a covariance matrix to adaptively capture

dependencies between variables. By leveraging statistical learning principles,

CMA-ES efficiently navigates intricate, non-convex landscapes [101].

The algorithm begins by initializing key parameters, including the population

size λ, the number of selected parents µ, recombination weights wi, and adaptation

coefficients for the covariance matrix and step size. The evolution paths for step size

and covariance adaptation are initially set to zero, while the covariance matrix C(0)

is initialized as the identity matrix. The step size σ(0) and the initial mean vector

m(0) are chosen based on the specific problem being optimized [101].

At each iteration, a new population of candidate solutions is sampled from a

multivariate normal distribution centered at the current mean vector:

x
(g+1)
k ∼ N

(
m(g),

(
σ(g)

)2
C(g)

)
, k = 1, . . . , λ. (2.16)

Once the new population is generated, the best-performing individuals are selected

based on the objective function values, and their weighted average is used to update

the mean vector:

m(g+1) =

µ∑
i=1

wix
(g+1)
i:λ ,

µ∑
i=1

wi = 1, wi > 0. (2.17)

This recombination step ensures that the search distribution is gradually shifted

toward promising regions in the search space. To control the step size, the algorithm

adapts the step length based on the evolution path, which accumulates information

over multiple iterations. The step size update mechanism enables CMA-ES to

balance exploration and exploitation dynamically, preventing premature convergence

while ensuring efficient progress toward the optimum. A key strength of CMA-ES is

its ability to adapt the covariance matrix, allowing it to capture correlations between

variables.

The algorithm proceeds iteratively until a predefined stopping criterion is

met, such as reaching a maximum number of iterations or satisfying a convergence

threshold. The adaptive nature of CMA-ES makes it particularly well-suited for

problems where gradient-based methods struggle, such as rugged, multi-modal, or

highly non-convex landscapes. As discussed next, , CMA-ES was used as the inner

optimization of hybrid optimizer to find the global minimum. The inner optimization

is commonly referred to as the lower-level optimization task.
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Calculation of the gradients

The adjoint method was used for calculating the gradients of the error function Eq.

2.8 with respect to the initial conditions. The advantage of adjoint method is twofold:

first, it is more accurate than finite differences (FD) because the adjoint allows

computing the gradients locally, without introducing a finite amplitude variation of

the input; second, the associated computational cost increases with the number of

outcomes and not with the number of input parameters, as in the case of FD. In the

case of coagulation schemes, where the number of outcomes is generally small (only

one in the present study, the error defined in Eq. 8) and the number of inputs much

larger (up to 10 in the present case), this makes the adjoint-based gradient method

more computationally efficient [102]. A comprehensive mathematical derivation and

analysis of the adjoint-based gradient computation for coagulation models has been

presented recently in [103].

Combination of evolutionary algorithm and gradient-based optimization

The complexity of the coagulation model makes it challenging to find the exact

global minimum using either gradient-based or evolutionary algorithm strategy

alone. To address this issue, a hybrid optimization that combines these two methods

was used to optimize the model and locate the global minimum.

Figure 2.2 shows the schematic of the hybrid optimizer. The optimization

process consists of two loops: outer and inner. In the outer optimization, 100

L-BFGS-B optimizations are performed. In both outer and inner optimizations, the

variables are normalized concentrations x′ mentioned above, thus their optimal value

is 1. Then, the average value of each variable (initial concentration of each non-zero

clotting factor) is computed. The average value is calculated from the results of 100

optimizations in outer optimizer using the L-BFGS-B algorithm. If the average value

of a variable is close to unity (i.e., within the range of 0.999 to 1.001), this variable is

fixed at its averaged value for the next stage (inner optimizer). In addition, because

the concentrations of each species are not infinite, it is beneficial that concentrations

of each species subject to bounds between 0 and 2. While parameters are normalized

around 1, the algorithm is constrained to adjust these within the specified bounds of

0 and 2 during the optimization. The bounds for the variables (initial concentrations

of non-zero clotting factors) are updated based on the results of the outer stage and

set as strict min/max bounds. In the inner stage, only one CMA-ES optimization

is performed for searching the global minimum using the new set of variables and

bounds.
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In this new algorithm, L-BFGS-B method is used to fix some influential

variables that always keep the same values and narrow the bounds of the others.

This step reduces the overall dimensionality and enables the CMA-ES based inner

optimizer to more efficiently and accurately search for the global minimum. Notably,

in the outer optimization stage, the optimizer never satisfies the convergence criteria

in terms of distance to the reference, highlighting the necessity of employing the

hybrid optimization strategy.

Implementation in computer language

The stiff BDF integration method provided by the Python3 package scipy.integrate.solve ivp

was used to obtain the dynamics of concentrations of species by solving the sets of

ODEs (Eqs. 2.3 and 2.6). A tolerance value of 10−10 was set for the integration

process, which proves sufficient to avoid measurable numerical errors for the problems

considered.

All gradients-based computation experiments use Python version 3.8.5 and

SciPy version 1.13.0. The optimization routines discussed were implemented using

SciPy’s optimize.minimize function. For example, the application of the L-FBGS-B

method was executed with a convergence tolerance of 1×10−10 on the function value.

The method-specific parameters are detailed in Table 2.5. CMA-ES simulations were

performed using python 3.8.5 and cma package, of which parameters are displayed

in Table 2.5 as well.

Table 2.5:: Comparison of parameters for optimization methods: TNC, L-BFGS-B,

and CMA-ES

Parameter TNC L-BFGS-B CMA-ES

maxiter Not applicable. 10000. Not applicable.

tol 1× 10−10 1× 10−10 Not applicable.

fmin 1× 10−10 1× 10−10 1× 10−10

popsize Not applicable. Not applicable. 50

sigma Not applicable. Not applicable. one-sixth of

the length of each

variable’s variation

maxfun 10000 10000 Not applicable.

eta 0.25 Not applicable. Not applicable.

stepmx 5 Not applicable. Not applicable.

For optimization method, details are shown in Section 2.2.3. For the gradient-
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Figure 2.2: Workflow of hybrid global optimizer. The workflow initiates with

inputting the model, references, and perturbation range. In the outer optimization,

100 L-BFGS-B runs with randomly perturbed initial conditions determine parameter

stability. Parameters within 0.1% of reference are fixed; others proceed to inner

optimization via a single CMA-ES run for refinement. The final evaluation includes

relative error and normalized distance to the global minimum.
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based methods (refer to Table 2.5), the tolerances for gradients and loss function

were set to 10−6 and 10−10, respectively. In addition, the maximum step of the line

search was set to 5, and the severity of the line search was set to 0.25 for TNC.

For CMA-ES, the population size was 50 at first and the initial normalized sigma

(initial standard deviation in each coordinate) was set to one sixth of the length of

normalized bounds. The increase population size was set to 0.5.

2.3 Numerical testing and validation of optimizer

This study optimized two models under different conditions. In order to clearly state

the conditions and results, the different conditions are presented in Table 2.6.

2.3.1 TNC-based optimization of Rojano’s model

The reduced extrinsic pathway model of Rojano et al. [9] involves five species

and eight kinetic parameters, out of which we considered four non-zero initial

concentrations of species as variables for optimization. The optimization condition

is M 8 5 04 in Table 2.6. The initial variables were randomly varied by up to 20%

of the reference. 100 random tests were conducted with varying initial guesses and

considering gradient-based optimization (20 perturbed by 1%, 20 perturbed by 5%,

20 perturbed by 10%, 20 perturbed by 15%, 20 perturbed by 20%). Table 2.7 shows

the scaled loss function and solutions (normalized initial concentrations). The results

show very small distances and relative errors, representative of a numerical global

minimum (see Figure 2.3a). Figure 2.4 shows the details of optimization cases when

the initial guess is within 20% of the reference. For the reduced model (M 8 5 04),

Figure 2.4a displays the time evolution of thrombin before and after optimization

and shows that the latter closely aligns with the target and with a relative error

close to machine precision ×10−15 (see Figure 2.4b). In this context, different colors

in the figure are used to represent distinct perturbations ranges for initial guesses

from the reference values for each species.

2.3.2 TNC-based optimization of the Butenas’ model

The model of Butenas et al. [15] has 34 species and 45 kinetic parameters. Like for

Rojano’s model aforementioned, the initial guess of the species concentration was

randomly selected in the range from 80% to 120% of the reference values depicted in
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Table 2.6:: Summary of different optimization conditions considered. The identifier

for each optimization condition is constructed as follows: the first and second integer

values denote the number of species and reactions, respectively; the final integer

specifies the number of initial concentrations set as variables during the optimization

process. If a letter (e.g., 04a, 04b) is appended, it indicates different variable

selection configurations under the same model and number of variables.

Identifier Coagulation

Model

No.

species

No.

reactions

Variables Description

M 8 5 04 Rojano’s

model

8 5 ATIII, II,

TF, V

All 4

non-zero

initial

concentrations

were set as

variables.

M 38 28 04a Butenas’

model

38 28 ATIII, II,

TF, TFPI

4 out of 10

non-zero

initial

concentrations

were set as

variables.

M 38 28 04b Butenas’

model

38 28 V, IX, TF,

TFPI

4 out of 10

non-zero

initial

concentrations

were set as

variables.

M 38 28 10 Butenas’

model

38 28 ATIII, II,

IX, TF,

TFPI, V,

VII, VIII,

VIIa, X

All 10

non-zero

initial

concentrations

were set as

variables.
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Figure 2.3: This figure illustrates the relationship between the relative error ϵ

(Eq. 2.8) and the normalized distance for the optimization process of Rojano’s and

Butenas’ models using the TNC algorithm under conditions M 8 5 04 and M 38 28 10

in Table 2.6. The plot shows how the initial guess deviations affect the optimization

results. Each dot’s color represents a specific percentage of random perturbation

in the initial guess. The black stars mark the global minimum points. The

vertical dashed lines indicate the theoretical maximum distances for each perturbation

amplitude. The black dash-dot line shows the trend of error change with distance,

characterized by a slope of approximately 1.67.

Table 2.7:: Results of the optimization of Rojano’s model using TNC (The initial

values are obtained by perturbing the reference values by up to 20%).

ATIII II TF V Relative

error

Min 99.9% 99.9% 99.9% 99.9% 6.170 ×
10−17

Max 100.0% 100.0% 100.0% 100.0% 3.447 ×
10−15
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(c) Time evolution of thrombin for the

reference, initial guess and optimized

concentrations of the species depicted in

Table 2.2 using TNC.
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Figure 2.4: Optimization outcomes for Rojano’s (M 8 5 04) and Butenas’

(M 38 28 10) models using TNC. The amplitudes of perturbation for the initial

concentrations are 20%. (a): Time evolution of thrombin for the reference, initial

guess, and optimized concentrations in Rojano’s model. (b): Convergence curve for

Rojano’s model, showing the optimization trajectory. (c): Time evolution of thrombin

for the reference, initial guesses, and optimized outcomes for Butenas’ model with 10

non-zero species. (d): Convergence curve for Butenas’ model, demonstrating the

iterative optimization progress.
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Table 2.2. The Butenas’ model with all 10 variables under condition of M 38 28 10

required multiple iterations for optimization. For clarity on the convergence

process of one such case refer to Figure 2.4d. The relative error initially stood at

approximately 1 × 10−1 and ultimately reduced to around 1 × 10−8, as depicted in

Figure 2.4d. Figure 2.3b presents the outcomes of 100 random tests derived from a

range of initial guesses, with each color corresponding to a specific deviation from

the reference. The ’Red’ dashed line in the figure illustrates the distance between

the reference and a set of concentrations corresponding to exactly 1% perturbation.

Furthermore, the red dots represent the optimized results obtained from initial

guesses where all species are within a +/-1% perturbation range of their respective

reference values. In other words, these red dots are the outcomes when each species

starts from a value that is no more than 1% higher or lower than its reference. In the

same ways, different series of dot correspond to initial perturbations bounded by 5%,

10%, 15% and 20% (see the legend in Figure 2.3 for the color code). In the reduced

model M 8 5 04, the relative error consistently remains minimal, aligning with the

observations in Figure 2.4a. In the Butenas’ model scenario M 38 28 10, with all

variables within 20% perturbation, although the relative error remains consistently

low (10−8; see Figure 2.5b), there is a notable deviation in the normalized distance

as high as 15%. This deviation suggests potential challenges in accurately retrieving

reference values through the optimization process.

2.3.3 Indication of complexity of Butenas’ model

It is fair to assume that the difficulty in retrieving the reference conditions through

the optimization process, as well as the large dispersion of the results (see Figure

2.3b), is due to the presence of local minima. To further analyse the model response,

the distance between the optimized solution and the reference is plotted against

the initial-reference distance in Figure 2.5. For the reduced order scheme (under

M 8 5 04 condition), the optimized solution is always very close to the reference

point: no matter what the initial condition is, the final result almost reaches the

reference (see to Figure 2.5a).

In order to get more insights of complexity, it is necessary to explore the

optimization of Butenas’ model with 10 dimensions deeper. In this case (under

M 38 28 10 condition), the dispersion of results is significant for initial perturbations

greater than 2% (see Figure 2.5b). Nevertheless, a general trend towards an increase

of the optimized-to-reference distance is clearly apparent when the initial-to-reference

distance increases. The distance to the reference point can increase or decrease

during the optimization process with the same probability in Figure 2.5b. Figure 2.3b
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reveals that there is a trend for the error ϵ to increase with the optimized-to-reference

distance, as the black dash-dot line reflects with a slope around 1.67; thus the surface

response contains a lot of local minima, but the quality (in terms of error value) of

these minima improves when they are closer to the global minimum.
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Figure 2.5: Comparative analysis of distances between initial parameter guesses

and reference values versus distances between optimized minimum parameters and

reference. This figure illustrates how variations in initial guesses impact the

optimization trajectory and final model accuracy in predicting thrombin generation.

Different sub-figures correspond to different conditions in Table 2.6.

Optimization with +/-1% perturbation of initial guesses

To further characterize the surface response of the M 38 28 10 case, a new condition

is considered where the reference concentrations perturbed by a small amount
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(+/-1%) are used as initial conditions. Contrary to Sections 2.3.1 and 2.3.2 where

the initial perturbations were randomly selected within the +/- 1% range, the

perturbation values for each species are exactly equal to +/-1% (See Table 2.8).

A key aspect of this setup is the randomization of the +/- signs for each species.

This means that while the magnitude of deviation from the reference is consistent

across species, the direction of the change (increase or decrease) varies. The results

obtained from 5 different choices of the sign of the perturbations are shown in Table

2.8, which shows that the optimization process leads to different solutions, even if the

initial perturbation is only 1 % in amplitude. In some cases and for certain species,

the converged solution is even further from the reference value than the initial guess

(see the bold entries in Table 2.8). This behavior has been already evident in Figure

2.5b, where several dots lie above the dashed line, indicating that the normalized

distance became larger after optimization.

To further investigate if the results displayed in Table 2.8 do correspond to

local minima, the Hessian matrix was calculated and its eigenvalues examined.

The eigenvalue analysis of the Hessian matrix is a fundamental step to ensure

that minimum points were correctly identified and avoid saddle points which are

characterized by negative eigenvalues. All of the eigenvalues are positive as shown

in Table 2.9, indicating that the optimization results correspond to minima. It is

worth noting that the variables were normalized before calculating the eigenvalues to

ensure accuracy and consistency. Figure 2.6, which corresponds to Case 1 in Tables

2.8 and 2.9, shows that the optimizer reached the minimum for all the species. Table

2.8 demonstrates that the outcomes are influenced not only by the distance of the

initial guesses from the reference but also significantly by the direction of change for

each species.

Optimization in 4 dimensional sub-spaces

In the initial approach using all 10 variables (condition M 38 28 10), multiple local

minima were encountered, making it challenging to pinpoint the global minimum

(refer to Figure 2.3). By considering a sub-optimization problem with only 4

variables, the aim is to reduce dimensionality. This might help in simplifying

the landscape of the problem, allowing for a clearer understanding of its inherent

complexities and a more direct route to the global minimum. Firstly, only the four

most sensitive species were chosen as the variables, namely ATIII, factor II, TF

and TFPI (condition M 38 28 04a). The sensitivity of the variables was assessed

by calculating the absolute value of the gradients of error scaled by each reference
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Table 2.9:: Eigenvalues of the Hessian computed at the optimal point. The Hessian

matrix was calculated after normalization.

EV index Case 1 Case 2 Case 3 Case 4 Case 5

1 1.77× 1010 1.77× 1010 1.75× 1010 1.77× 1010 1.76× 1010

2 7.90× 108 7.91× 108 7.89× 108 7.89× 108 7.88× 108

3 1.68× 107 1.70× 107 1.70× 107 1.67× 107 1.70× 107

4 3.35× 105 3.16× 105 3.16× 105 3.17× 105 3.16× 105

5 1.11× 105 1.24× 104 1.17× 104 1.19× 104 1.18× 104

6 3.72× 104 4.37× 103 4.20× 103 4.15× 103 4.12× 103

7 9.44× 102 2.35× 103 2.43× 103 2.40× 103 2.38× 103

8 1.81× 104 1.69× 102 1.30× 102 1.35× 102 1.31× 102

9 9.97× 103 1.02× 103 9.94× 102 1.02× 103 1.00× 103

10 8.82× 103 8.34× 102 8.34× 102 7.88× 102 7.28× 102

0.9990 0.9995 1.0000 1.0005 1.0010
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Figure 2.6: Trends of species near local minima. The abscissa is the concentration

scaled by its corresponding value after optimization; the ordinate is the error when

only one species is deviated from the optimal value.
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concentration. The analysis ranks the species based on their influence, where higher

gradients indicate greater sensitivity. The sensitivity analysis of the species yielded

the following ranking based on their impact on ϵ of Eq. 2.8: ATIII, II, TF, TFPI,

IX, V, VII, VIII, and X. Table 2.10 shows that the variables almost converge to

the reference values in all the cases and the relative error after optimization is very

small, in any case less than 1.7×10−14, very close to machine precision. On the other

hand, Table 2.10 demonstrates that when a different set of four variables (specifically

IX, V, TF, and TFPI, condition M 38 28 04b) is optimized, there is a noticeable

dispersion in both the concentrations and the loss function values. In Figs. 2.7a

and 2.7b, distinct behaviors and results of loss function and distance are depicted

for the two cases where only 4 variables were considered. The primary difference

between these two cases is the presentation of local minimum. The second 4-variable

case exhibits a lot of local minima, while the first 4-variable case demonstrates only

one global minimum. In Figure 2.7b, it is shown that the optimizer finally got

different points and the relative error of loss function reaches about 1 × 10−12 and

the distribution is wide. If the normalized distance is less than 1%, the relative error

is less than 1× 10−9. Generally, Figure 2.7 suggests that the difficulty in optimizing

is related to the species (number and type) rather than the kinetic scheme itself.

Figs. 2.5c and 2.5d indicates similar phenomenon as well. In Butenas’ model

involving the optimization of condition M 38 28 04a, it was consistently observed

that the optimized solutions closely align with the reference point. This holds true

across various initial conditions, as the final outcomes invariably converge near

the reference, as illustrated in Figure 2.5c. In contrast, when optimizing either

M 38 28 04b (as detailed in Table 2.2), the results exhibit notable dispersion. Despite

this variability, there is a discernible pattern where the distance from the optimized

solution to the reference tends to increase in proportion to the initial-to-reference

distance. Notably, in 4 out of 100 instances, the distance post-optimization is even

larger when only M 38 28 04b are optimized, as shown in Figure 2.5d. Figs. 2.5c and

2.5d also suggest a correlation between the error ϵ and the optimized-to-reference

distance. This indicates that the response surface is characterized by numerous local

minima of decreasing quality when located further from the global minimum.

By comparing the two scenarios, it becomes evident that different variables will

present different complexity, although in the same size dimensions. However, the

quality of these minima, as measured by the error value, tends to improve as they

approach closer to the global minimum.

50



CHAPTER 2. HOW WELL CAN A COAGULATION MODEL BE FITTED?

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
Normalized distance (log(D))

−17
−16
−15
−14
−13
−12
−11
−10

−9
−8
−7
−6

Re
la

tiv
e 

er
ro

r (
lo

g(
ε)

)

(a)

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
Normalized distance (log(D))

−17
−16
−15
−14
−13
−12
−11
−10

−9
−8
−7
−6

Re
la

tiv
e 

er
ro

r (
lo

g(
ε)

)

(b)−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

1% perturbation
Bound 1%

5% perturbation
Bound 5%

10% perturbation
Bound 10%

15% perturbation
Bound 15%

20% perturbation
Bound 20%

Figure 2.7: Relative error ϵ (Eq. 2.8) versus the normalized distance (Eq. 2.9)

between minimum reached and reference for the optimization of Butenas’ model

using TNC (optimization of two sets of four variables). The dots signifies that the

initial guess for each variable deviates by no more than corresponding percentage of

random perturbation. The vertical dashed lines indicate the theoretical maximum

distance corresponding to each amplitude of random perturbations. Different colors

represent different perturbations values. (a) Optimization condition is M 38 28 04a

in Table 2.5. The coagulation model adapted here is Butenas’s model. Four initial

concentrations are considered as varibales: ATIII, II, TF and TFPI; (b). Optimization

condition is M 38 28 04b in Table 2.5. The coagulation model adapted here is

Butenas’s model. Four initial concentrations are considered as varibales: IX.V.TF

and TFPI

51



CHAPTER 2. HOW WELL CAN A COAGULATION MODEL BE FITTED?

Table 2.10:: Results of optimization of Butenas’ model with four variables (either

ATIII, II,TF and TFPI (M 38 28 04a) or V, IX, TF,and TFPI(M 38 28 04b)) using

TNC. The initial values are obtained by perturbing the reference values by up to 20%.

ATIII II TF TFPI Relative

error

Min 100.0% 100.0% 99.9% 99.9% 1.834 ×
10−16

Max 100.0% 100.0% 99.9% 99.9% 1.676 ×
10−14

V IX TF TFPI Relative

error

Min 99.6% 97.9% 94.3% 96.2% 1.132 ×
10−12

Max 116.3% 107.8% 111.4% 110.6% 8.194×10−8

2.3.4 Seeking for the global minimum

It has been demonstrated that gradient-based method is incapable to identify the

global minimum under condition M 38 28 10. However, gradient-based methods play

a supportive role in global optimization. On one hand, TNC is not directly integrated

into the core methodology of the hybrid optimizer due to its high tendency to become

trapped in local minima. Instead, it is used to illustrate the complexity challenges

inherent in full coagulation models. On the other hand, even another gradient-based

method, L-BFGS-B, fails to consistently find the global minimum in 100 independent

random optimizations. However, it proves effective in optimizing a subset of

variables. Its results were subsequently utilized in the outer optimization step of

the novel hybrid optimization approach. Consequently, an efficient evolutionary

algorithm, CMA-ES was utilized to search for the global minimum under condition

M 38 28 10. Given that performing this type of optimization in a 10-dimensional

space is computationally expensive, only 5 results are presented, as displayed in

Table 2.11. This table provides a comparative analysis of the optimization outcomes

for two distinct methods, CMA-ES and L-BFGS-B, across five different scenarios

characterized by unique random initial guesses. The table displays key metrics

such as the percentage values for various coagulation factors, relative errors, and

distances to the reference for each case. These findings indicate that despite using

the CMA-ES algorithm, locating the global minimum remains a challenge and

neither method consistently achieves a global minimum. This phenomena highlights

the importance of using hybrid optimization under these conditions.
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To start the global optimization, L-BFGS-B was used to optimize 100 random

optimization with initial guesses varying from 80% to 120% of the reference as the

outer global optimization. The final results of these optimizations are shown in

Table 2.12, which shows that the concentrations of ATIII and II do not vary a lot

from one case to the other. Thus, the concentrations of these species were fixed

during the following inner optimization, while the ranges observed for the other

variables were set as strict min/max bounds. With the new bounds and variables

remaining, the inner optimization used CMA-ES and the global minima obtained

are shown in Table 2.13 for 5 different initial guesses. Both the relative error and

optimized-to-reference distance are very small. The best relative error is 1.68× 10−16

with a distance of 6.38 × 10−4 and the max value is 1.00 × 10−14 with a distance

of 2.03 × 10−3. Low levels of distances and relative errors of the five solutions

demonstrate that they are indeed much better than the solutions from the gradient

based method (See Figure 2.3b). These five minima are identified as numerical

global minima, as the corresponding error values approach machine precision.

Table 2.12:: Summary of outer optimization (in hybrid optimizer) outcome of 100

L-BFGS-B optimizations (perturbation up to 20%).

Name ATIII II IX TF TFPI V VII VIII VIIa X

Lower 100% 100% 88% 83% 86% 88% 82% 95% 90% 94%

Upper 100% 100% 114% 108% 111% 114% 113% 102% 116% 107%

Table 2.13:: Summary of some outcomes of inner optimization (in hybrid optimizer)

using CMA-ES.

Case 1 Case 2 Case 3 Case 4 Case 5

ATIII fix at 100% fix at 100% fix at 100% fix at 100% fix at 100%

II fix at 100% fix at 100% fix at 100% fix at 100% fix at 100%

IX 100.0% 99.8% 99.9% 99.9% 100.0%

TF 99.9% 100.0% 100.0% 100.1% 99.9%

TFPI 99.9% 100.0% 100.0% 100.0% 100.0%

V 100.0% 100.0% 100.0% 100.0% 100.0%

VII 100.0% 100.0% 100.0% 100.0% 100.1%

VIII 100.0% 100.0% 100.0% 100.0% 100.0%

VIIa 100.0% 99.7% 99.9% 99.9% 100.1%

X 100.0% 100.0% 99.9% 100.0% 100.0%

relative error 3.74× 10−16 1.00× 10−14 8.22× 10−16 1.59× 10−16 1.68× 10−16

distance to reference 4.21× 10−4 2.03× 10−3 6.42× 10−4 3.53× 10−4 6.38× 10−4
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2.4 Optimization using experiment data

So far, the optimization algorithms are tested in a fully defined parameter space

where all reaction rates and initial conditions are precisely known. This allows for a

detailed evaluation of algorithm efficiency and convergence properties. However, real-

world applicability requires moving beyond numerical validation and applying the

optimization framework to experimental data. The experimental data were chosen

based on their clinical relevance, availability of time-resolved thrombin generation

profiles, and compatibility with the model structure. Only well-characterized assays

with known initial conditions were used to ensure meaningful optimization and

reliable validation.

Firstly, optimization of Butenas’ model was performed targeting at experiment

data from [5] rather than numerically generated reference. The comparison in Figure

2.8 highlights the improved accuracy of thrombin generation predictions following

optimization. In Figure 2.8a, where the optimization is based on 10 clotting factors,

the optimized model shows closer agreement with the experimental data (black dots)

compared to the original model. However, slight deviations remain in the start time,

the peak time and the timing of thrombin decay which corresponds to systematic

errors between experiment and this mathematical model. In order to diminish the

natural error, the rate constants were set as variables as well. In Figure 2.8b, where

the optimization includes 10 clotting factors and 44 rate constants, the optimized

model shows an even stronger alignment with the experimental data.

2.4.1 Optimization in the pathological conditions of

hemophilia A

A promising clinical application of this study involved adjusting the initial

concentrations of the extrinsic pathway model to simultaneously predict

experimental data curves under three different conditions of Factor VIII variation,

simulating haemophilia A: 100% (normal level), 50% (moderate deficiency), and 15%

(severe deficiency). The error Eq. 2.7 are slightly modified, for simulate the TGA

under different conditions, in sections 2.4.1 and 2.4.2. To simulate the hemophelia

A conditions, the loss function are nothing but just a summation of error under

different level of VIII:

ϵ = ϵV III100% + ϵV III50% + ϵV III15% (2.18)

Eq. 2.18 represents the total error, ϵ, as the sum of errors across three experimental

conditions: V III100%, V III50%, and V III15%. Each term quantifies the relative
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(a) (b)

Figure 2.8: Comparison of thrombin generation under two optimization scenarios.

(a) Thrombin generation comparing the original model (blue dashed line), optimized

model (red solid line), and experimental data. The variables are 10 clotting factors.

(b) Thrombin generation comparing the original model (blue dashed line), optimized

model (red solid line), and experimental data [5]. The variables are 10 clotting factors

and 44 rate constants.

error between the optimized thrombin concentration and the experimental thrombin

concentration over time under the corresponding factor VIII level. For example,

ϵV III15% =

∫ tfinal
0

[IIa(t;x∗|15%V III)− IIa(t; x̂|15%V III)]
2 dt∫ tfinal

0
[IIa(t;x∗|15%V III)]

2 dt
(2.19)

In Eq. 2.19, x̂|V III=15% represents the parameter set x̂, where the concentration

of Factor VIII is reduced to 15% of its corresponding value at the 100% condition

(the optimized value). The numerator calculates the time-integrated squared

differences between the simulated thrombin concentration, IIa(t; x̂|15%V III), and the

experimental thrombin concentration, IIa(t;x∗|15%V III), for the V III15% condition.

The denominator normalizes this error using the total thrombin concentration from

the experimental data under the V III15% condition.

In Figure 2.9, the original model shows noticeable discrepancies when predicting

the thrombin concentration at different levels of Factor VIII (100%, 50%, and 15%).

The optimized model (error refers to Eq. 2.18), on the other hand, closely matches

the experimental data across all three conditions. This close alignment underscores

the effectiveness of the optimization process in improving the models robustness

under different Factor VIII levels, thereby improving its predictive accuracy. Table

2.14 shows that significant adjustments were made to the initial concentrations of

several factors, notably factor II, IX, V, X and TF. However, some species hit the
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bounds as shown in boldface in Table 2.14. This means that due to the constraints

of bounds, the obtained minimum is not a mathematically optimal solution.

Table 2.14:: Final Optimized Initial Concentrations for VIII variations

Factor Original initial concentrations (nM) Optimized initial concentrations (nM)

ATIII 2267 2615.5

II 933 1941.7

IX 60 30.6

TF 0.001 0.0017

TFPI 1.667 1.728

V 13.33 5.01

VII 6.67 4.73

VIII 0.4667 0.4

VIIa 0.0667 0.103

X 106.67 54.2

2.4.2 Optimization in the conditions of anticoagulants

treatment

Therapeutic agents regulating the coagulation cascade are essential in managing

thrombotic disorders. Low molecular weight and synthetic heparins such as

fondaparinux (Fpx) are widely used for both acute and long-term treatment of

venous thromboembolism (VTE). In [6], computational models were compared with

experimental data across different Fpx levels. Simulations predicted that 125 nM

Fpx would approximately double the duration of the initiation phase and reduce

thrombin generation rates by 2-fold. Empirical evaluations in synthetic coagulation

proteomes proved these findings, showing a 2-fold prolongation of the initiation

phase and a 1.5-fold suppression of peak thrombin generation rates. Although the

simulations capture the overall trends observed in the experiments, they do not

perfectly align with the experimental data. Additionally, initial concentrations of

clotting factors are not directly measured. Therefore, it is meaningful to optimize

the initial concentrations of mathematical models to fit the experiment observations.

Numerically, the function of Fpx was incorporated into the model by adding

relevant equations to the existing differential equation framework. Experimental

conditions were respected by setting the initial tissue factor (TF) concentration to

5 pM. Variables optimized in the model included the initial concentrations of FII,

FV, FVII, FVIIa, FVIII, FIX, FX, TFPI, and ATIII. Based on the reaction scheme
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(a) (b)

(c) (d)

Figure 2.9: Thrombin generation for FVIII concentration levels (100%, 50%, and

15%) obtained from experimental data, the original model (blue dashed line), and the

optimized model (red solid line; error refers to Eq. 2.18). (a) Experimental thrombin

generation for V III100% (black dashed line with circle), V III50% (black dashed line

with square), and V III15% (black dashed line with triangle). (b) Thrombin generation

for V III15% comparing the original model, optimized model, and experimental data.

(c) Thrombin generation for V III50% comparing the original model, optimized model,

and experimental data. (d) Thrombin generation for V III100% comparing the original

model, optimized model, and experimental data.
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presented in Table 3.4, the reactions involving anticoagulants (See Table 2.15) were

incorporated into the extrinsic pathway model. To ensure consistency with the

original framework described in [6], the initial concentrations in the scheme were

adjusted to align with the earliest version of the model as detailed in Table 2.16.

Figure 2.10 illustrates the comparison of thrombin generations obtained from

experimental data, the original model, and the optimized model with or without

Fpx treatment. For the 0 nM Fpx condition (see Figure 2.10a), the original

model overestimates the thrombin peak, indicating that optimization significantly

improves the fit to experimental data in untreated conditions. Under the 12.5 nM

Fpx condition (see Figure 2.10b), both the original and optimized models predict

reduced thrombin generation and time delay due to the anticoagulant effect of Fpx.

Specifically, the peak values of thrombin concentration decrease from over 200 nM

to below 150 nM, while the time to reach this peak is delayed from approximately

450 seconds to around 830 seconds for both. However, the optimized model again

provides a closer match to the experimental data, particularly in the non-peak area.

The original model overestimates thrombin levels and peak duration, suggesting

that it fails to fully capture the inhibitory impact of Fpx even the optimized model

underestimates the peak value.

Table 2.15:: Chemical reactions defining anticoagulation [6].

No. Reaction k1 k−1

1 Fpx + ATIII←−→ Fpx––ATIII 1× 108 M−1s−1 3.6

2 Fpx––ATIII + Xa←−→ Fpx––ATIII––Xa 3.1× 7.15 M−1s−1

3 Fpx––ATIII + IXa←−→ Fpx––ATIII–– IXa 3.1× 104 M−1s−1

4 Fpx––ATIII + mIIa −−→ Fpx––ATIII––mIIa 7.1× 103 M−1s−1

5 Fpx––ATIII + TF––VIIa −−→ Fpx––ATIII––TF––VIIa 2.3× 102 M−1s−1

6 Fpx––ATIII + Xa––Va −−→ Fpx––ATIII––Xa––Va 8.6× 103 M−1s−1

7 Fpx––ATIII + IIa←−→ Fpx––ATIII–– IIa 1.4× 104 M−1s−1

Multi-species optimization

The multi-objective optimization of thrombin (IIa), factor Xa, and factor VIIa

dynamics was explored for several reasons. By including the dynamics of multiple

species in the optimization process, the complexity is expected to be distributed

across multiple species’ dynamics. This would improve the likelihood of numerous

local minima, as the optimization process becomes more constrained by the interplay

of species. From aspect of clinical treatments, not all interventions should focus
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Table 2.16:: Optimized initial concentrations with Fpx [6].

Factor Original initial concentrations (nM) Optimized initial concentrations (nM)

ATIII 3600.0 2490.00

II 1400 1461.60

IX 90 114.91

TFPI 2.50 0.93

V 20.00 24.00

VII 10 4.73

VIII 0.70 0.14

VIIa 0.10 0.12

X 160.00 224.00

(a) (b)

Figure 2.10: Thrombin generation with or without fondaparinux treatment obtained

from experimental data (black dashed line with square), the original model (blue

dashed line), and the optimized model (red solid line). (a) Thrombin generation for

0 nmol fondaparinux. (b) Thrombin generation for 12.5 nmol fondaparinux.
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(a) Experimental data of generation of three

species (b) IIa generation

(c) VIIa generation (d) Xa generation

Figure 2.11: Dynamics of three species (IIa, VIIa and Xa), comparing the original

model (blue dashed line), optimized model (red solid line), and experimental data

(black dashed line with symbols). (a) Experiment data: IIa; square; VIIa: cycle;Xa:

triangle. (b) IIa generation. (c) VIIa generation. (d) Xa generation.
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solely on thrombin. For example, anticoagulant drugs such as fondaparinux (Fpx)

and heparin primarily target factor Xa, a critical enzyme upstream of thrombin in

the coagulation cascade, meaning that the dynamics of Xa is worth evaluating as

well. In addition, whether multiple species can be optimized at the same time can

also evaluate the quality of the model. If the simulation result of multiple species

cannot fit the experimental results together, it indicate the drawbacks of the scheme

to some extent.

The multi-objective optimization process aims to minimize the combined error

in the generation dynamics of thrombin (IIa), factor VIIa (V IIa), and factor Xa

(Xa). The total loss function is defined as:

ϵ = ϵIIa + ϵV IIa + ϵXa (2.20)

Each term quantifies the deviation of the simulated species‘ dynamics from the

corresponding experimental reference data. For example, the term ϵXa in the loss

function is defined as:

ϵXa =

∫ tfinal
0

[Xa(t;x∗)−Xa(t;x)]2 dt∫ tfinal
0

[Xa(t;x∗)]2 dt
(2.21)

where Xa(t;x∗) is the experimental Xa dynamics over time. Xa(t;x) is the

optimized dynamics of Xa using the current parameter set x. The numerator

computes the time-integrated squared difference between the experimental and

optimized Xa dynamics. The denominator normalizes the error using the total

integrated experimental dynamics of Xa. The same formulation applies for ϵIIa and

ϵV IIa respectively.

The experiments in [104] served as the reference for this section. Butenas et al.

[104] investigated the generation dynamics of thrombin, factor Xa, factor VIIa, and

factor XIa, using highly sensitive and specific chromogenic and fluorogenic assays.

The experimental setup utilized a reconstituted system comprising physiological

concentrations of key coagulation factors, including factors II, VII, IX, X, XI, V,

and VIII. The experiments were conducted using identical samples, which were

subsequently divided into subsets for specific assays targeting individual species.

This ensured consistency across all measurements except for the stimulus. The

dynamics of thrombin (IIa) generation were primarily driven by 1.25 nM TF=VIIa

complex, whereas the generation of Xa and VIIa was initiated directly by 1.25 nM

TF. To align with the experimental setup, the initial concentrations of inhibitors

(ATIII and TFPI) were set to zero. The variables considered in the model included

factors II, VII, IX, X, XI, V, and VIII. For thrombin (IIa) generation, the system

was initialized with TF = 0 and (TF=VIIa) = 1.25 nM to mimic experimental
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conditions. Conversely, for the dynamics of VIIa and Xa, the initial setup was

defined with TF = 1.25 nM and (TF=VIIa) = 0.

Figure 2.11 displays the dynamics of the three species, comparing the original

model, optimized model (error refers to Eq. 2.20), and experimental data. In

Figure 2.11b, the thrombin generation of optimized model aligns more closely

with the experimental data compared to the one of original model. The peak

thrombin level is reached more accurately, even the improvement is slight. However,

neither model fully aligns with the experimental data (black dashed line with solid

cycle). The timing of the peak is delayed in both models. In experiment, the

thrombin concentration decreased after peak, although in absence of inhibitors. VIIa

generation performs best among the three dynamics as shown in Figure 2.11c, due

to the optimized model improves the match with the experimental data significantly.

For Xa generation in Figure 2.11d, the optimized model displays no improvement

over the original model. Both the original and optimized curves fail to closely follow

the experimental data. They underestimate Xa generation, particularly during the

late stages, where the experimental data shows a sharp rise that is not captured in

the simulations. The results reveal that while the dynamics of VIIa were successfully

optimized to closely match the experimental measurements, the dynamics of IIa and

Xa showed significant deviations and were not optimized effectively.

2.5 Discussion and conclusions

This research contributes significantly to a relatively unexplored area, as there

are only a few studies dedicated to the optimization of coagulation models to the

extent presented here. Rojano et al. [9] optimized a simplified model to predict

the dynamics of thrombin using a Python package designed for chemical reactions.

Hansen et al. [77] applied a evolutionary algorithm for both internal and external

optimization in model reduction. Ranc et al. [5] adjusted some rate constants and

concentrations according to their knowledge and intuition in order to predict the

generation of thrombin better than original models. However, no previous study has

undertaken automated optimization of an exceedingly original model, analysed its

complexity, and verified the minima as comprehensively as this study has.

As a reduced model, Rojano’s model lacks a complex landscape, which eases

the process of identifying global minima (refer to Figure 2.5a). On the other hand,

Butenas’ scheme under condition M 38 28 10 presents a more complex landscape.

The prevalence of local minima in coagulation model optimization was shown in

Figure 2.5b. These findings are useful for assessing the reliability of coagulation
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cascade models. Models with numerous local minima, despite aligning well with

experimental data, might depend on suboptimal parameters. This phenomenon

reflects the inherent complexity of systems with numerous interconnected pathways

and species. It suggests that model reduction could be advantageous while

preserving its accuracy. The random variation of the +/- signs across species in

the initial guesses introduces a diverse range of starting conditions. This diversity

allows for a more comprehensive exploration of the model’s response to changes

in initial conditions. The findings from this approach underscore the importance

of considering both the magnitude and the direction of initial perturbations when

analysing the sensitivity and dynamics of the model.

The number of variables and their selection significantly influence the scheme’s

complexity as well, even when the model structure, reactions, and equations remain

unchanged. For example, optimization under condition M 38 28 04a using classical

gradient-based methods successfully led to the global minima (see Figure 2.5c).

However, when the variables comply with M 38 28 04b, non-unique solutions were

obtained, indicating a landscape peppered with local minima, as illustrated in

Figure 2.5d. This observation highlights the importance of proper variable selection

when modifying or optimizing concentrations in these models. It also indicates

the importance of model reduction rather than just reduce dimensions based on a

original model as well for avoiding existence of local minima in process of modifying

coagulation models.

It is also observed that gradient-based optimization algorithms struggle to

effectively identify global minima. The tendency of optimized solutions to cluster

near the initial guesses suggests a propensity for the optimization process to settle

into local minima. This results in suboptimal solutions, despite minimal gradients

and a positive Hessian matrix.

Consequently, a hybrid optimizer was developed that combines gradient-based

techniques with evolutionary strategies like CMAES to effectively locate global

minima in models with complex landscape. This two-step strategy involves initially

attempting to reduce the dimensions using a gradient-based optimizer and then

using the hybrid optimizer to find global minima. The results demonstrate that the

complexity of models with numerous local minima can be overcome, and a global

minimum can be found, although this process is challenging and computationally

intensive due to high cost of the outer and inner optimizations. In addition to

error, the eigenvalues of the Hessian matrix and the distance between optimized

variables and the reference were also used as criteria to determine whether a

solution represents a global minimum. This hybrid approach and identification are

particularly beneficial when model reduction is not anticipated or dynamics of each
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species are requested.

The optimizations presented in this study demonstrates significant potential for

clinical applications. While optimizing clotting factors alone improves the model’s

accuracy, incorporating rate constants addresses additional dynamics and enables a

better fit to experimental data (Figure 2.8). This finding highlights the potential

of parameters optimization for improving the predictive capability of coagulation

models. By adjusting the initial concentrations of clotting factors, the optimized

models accurately predicted thrombin generation under varying pathological

conditions, including hemophilia A and anticoagulant treatment with fondaparinux

(Fpx). For hemophilia A, the optimizer enabled precise alignment with experimental

thrombin generation data across different levels of Factor VIII deficiency, enhancing

the model’s robustness and predictive accuracy (Figure 2.9). Similarly, for Fpx

treatment, the optimized model successfully incorporated anticoagulant reactions and

captured the effects of varying Fpx concentrations on thrombin generation, achieving

closer agreement with experimental observations (Figure 2.10). The multi-species

optimization result presented in Figure 2.11 reveals that the improvements achieved

through optimization are insufficient to address the discrepancies between numerical

simulations and experimental data. This highlights the inherent complexity of

coagulation cascade and the limitations of currently used models in accurately

capturing the dynamics of several species individually. The findings suggest that

optimization efforts should go beyond concentration adjustments for multi-target

optimization. Further optimization may not only involve fine-tuning rate constants

but also rebuild the reaction mechanisms themselves.

In conclusion, this study focuses on a thorough examination of coagulation

model optimization and its complexity under various conditions, ultimately

developing a method to identify global minima. Although this chapter focuses on

optimizing the initial concentrations of clotting factors, It is also expected that the

optimized parameters (rate constants) will be capable of predicting outcomes for

different experimental conditions such as varying initial concentrations.
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Chapter 3

Multi-Step model reduction of

coagulation cascade

The content of this chapter is based on a paper published in Biomechanics and

Modeling in Mechanobiology, titled “Multistep Model Reduction of Coagulation

Schemes” authored by Junyi Chen Quentin, Cazeres, Eleonore Riber, and Franck

Nicoud.

Abstract

This chapter introduces a comprehensive multi-step model reduction technique for

coagulation models, specifically targeting the dynamics of thrombin generation. By

employing a synergistic approach that combines Direct Relation Graph with Error

Propagation, chemical lumping, Quasi Steady State Assumption, and conservation

analysis, the method efficiently reduces the complexity of original coagulation

models without compromising accuracy. Applied to both extrinsic and intrinsic

coagulation pathway schemes, this approach significantly diminishes the number

of species and reactions, demonstrating its robustness through varied simulation

conditions in the context of haemophilia. The findings underscore the potential of

this reduction method to facilitate more efficient computational simulations that

retain the essential characteristics of different coagulation models.
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3.1 Introduction

Over recent decades, there has been considerable advancement in understanding the

components of the hemostasis, encompassing the coagulation cascade, the formation

of platelet plug, and fibrinolysis [79]. From the perspective of computational

modeling, numerous frameworks have been devised to synthesize this biochemical

knowledge, aiming to offer a comprehensive view of the system’s dynamics [84]. For

instance, Butenas et al. [15] introduced a model focused on the extrinsic pathway,

comprising 34 species and 45 reactions, which has served as a foundation for

many subsequent models. [52] developed a model that captures not just thrombin

generation but also platelet activation, featuring 92 species and 148 reactions;

Fogelson et al. [20] created a model that depicts clot formation under flow conditions,

including 76 species and 105 reactions. Thrombin (IIa) being a key enzyme which

interacts with various sub-systems and factors, converting fibrinogen into fibrin

and activating platelets, in vivo experiments monitoring the evolution of thrombin

concentration over time (Thrombin Generation Assay-TGA) are widely used as a

global assessment of coagulation [89]. It is therefore natural to consider TGA and

associated coagulation factors when developing schemes reduction strategies relevant

to coagulation.

Advancements in numerical algorithms of CFD and computational capabilities

have made it feasible to conduct precise and efficient numerical simulations of

highly complex systems combining hemodynamics and coagulation cascade schemes

which benefiting the evaluation of the thrombosis formation. Leiderman et al. [64]

developed the first spatial–temporal mathematical model of platelet aggregation

and coagulation under flow that includes details of coagulation biochemistry,

chemical activation and deposition of blood platelets, as well as the two-way

interaction between the fluid dynamics and the thrombosis growth. [66] developed

a two-dimensional multi-scale model to study thrombus formation in blood vessels.

On a more practical level, [105] used numerical simulations to analyze thrombin

formation and location relative to tissue factor (TF) position in disturbed flow

induced by an open venous valve.

Due to complex coagulation models involve dozens of species and hundreds of

reactions, reduced coagulation model is essential to capture the key mechanisms,

and practically to enable integration into Computational Fluid Dynamics (CFD)

simulations. Additionally, complex models demand significant computational

resources, limiting their feasibility for simulations in detailed geometries and maybe

leading to convergence difficulties.
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For instance, Bouchnita et al. [69] developed a model with only 7 species and

13 kinetic rates to simulate clots in a straight 3D tube. Wagenvoord et al. [106]

proposed a reduced 10-species “minimal model” for thrombin generation, which

showed good results when fitted to different experimental thrombin generation

curves. However, the lack of a reported reaction rate parameter fitting procedure and

the need to refit parameters for each case limit the usefulness of this model. A 2D

model proposed by Sorensen et al. [107], adopts a more phenomenological approach,

grouping most of species into categories like agonists and defines a reactive network

that is broadly intended to reproduce coagulation dynamics. A highly reduced

extrinsic pathway coagulation model (8 ODEs) under flow presented by Chen et

al. [65] simulated fibrin formation and thrombin generation, accurately reflecting

experimental data.

These models are reduced and more suitable for CFD applications. However,

systematic and automatic reduction methods are desirable to further streamline

the process and improve efficiency. Sagar et al. [76] developed a hybrid modeling

approach combining ODEs with logical rules to simulate the coagulation cascade.

The model consisted of five differential equations and logical rules resulting in a

formulation significantly smaller than traditional mechanistic models. Hansen et

al. [77] reduced a coagulation model from 34 species to 9 species using genetic

algorithm. However, reactions in this reduced model of extrinsic pathway lose their

original physical meaning. Mendez et al. [75] proposed a deeply simplified model

with optimized rate constants. Ratto et al. [72] simplified a model to only three

ordinary difference equations (ODEs) using conventional approximations which

needs a large degree of mathematical derivation and expert intervene, and kinetic

parameters adjustment to fit clinical data under different conditions. However, these

methods are not physical method.

In different scientific communities (e.g. combustion, weather forecast, and

other branches of biochemistry) sharing the objective to simplify chemical schemes,

various physics-based reduction techniques have been developed. In contrast

to other, aforementioned more intrusive methodologies, physics-based reduction

methods seek to preserve as much as possible the structure of the original chemical

kinetic model: all relevant chemical pathways are included, and there is no kinetic

parameter optimization [108]. These guiding principles enhance robustness in

complex simulations and improve the chemical interpretability of Computational

Fluid Dynamics (CFD) results. For example, physic-based reduced model allows for

the direct application of real diffusion coefficients, avoiding the limitations introduced

by meta-species in intrusive reduction methods [77]. In some cases, CFD simulations

need to capture multiple chemical species. This reduction method serves as a
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strong foundation for such applications by preserving key biochemical interactions

while simplifying the system [109]. In the context of thrombus formation, thrombin

generation is essential for coagulation, while other clotting factors contribute

to different stages of clot development, such as fibrin, which stabilizes the clot

structure [78]. Using a physics-based reduction approach, the model efficiently

incorporates multiple key species into CFD simulations, ensuring both accuracy and

computational efficiency.

The objective of this chapter is to investigate to what extent coagulation models

can be reduced by using physics-based methods. The coagulation framework as well

as the reduction strategies considered are described in Section 3.2 and Section 3.3

respectively. Some outcomes of the proposed reduction methodology are discussed

in Section 3.4.4 and 3.4.5, where it is shown that the reduced models reflect the

thrombin generation accurately. The robustness of the scheme reduction procedure

is further discussed in Section 3.4.6 where a variety of initial concentrations of

coagulation factor VIII is considered to mimic haemophilia A conditions.

3.2 Coagulation framework

3.2.1 Computational models of coagulation cascade

This chapter presents the reduction of two existing computational models for the

different pathways of the coagulation cascade. Both models consist in a set of

ordinary differential equations (ODEs) that describes the time evolution of various

coagulation factors, along with the rates of enzymatic reactions that govern the

dynamics of the system; they were both validated through previous academic

research [15, 19, 5]. In these computational models, the coagulation cascade can be

represented by a set of ODEs:
dS

dt
= R (3.1)

where S contains the concentrations of the n chemical species involved in the cascade

and R is the vector gathering all the associated source terms. The concentration

evolution of all species in the coagulation cascade is determined by solving the

corresponding set of ordinary differential equations (ODEs). In order to compute

the source of terms R, it is needed to know the rate constants, the concentrations of

each species and the reaction scheme. This ODE system describes a 0D model for

thrombin generation assay (TGA), where species dynamics are governed by reaction

kinetics without spatial dependence. The system tracks the temporal evolution of

clotting factors, with initial conditions defined by their concentrations at t = 0.
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Then the ODEs for each species can be figured out according to the law of mass

action, which states that the rate of reaction is proportional to the product of the

concentrations of the reactants.

0D models can easily be implemented in CFD solvers to study the interplay

between hemodynamics and coagulation. This was for example done by using an

in-house numerical platform named YALES2BIO [110], [111] and [9] who used

OpenFoam and [105] who relied on Comsol Multiphysics.

Extrinsic pathway model

An extrinsic pathway model was originally proposed by [18] and improved by

[15]. This scheme was tested against independent experimental data by [5], who

proposed a slightly modified version of this scheme; this is the one used in the

present chapter. The cascade is initiated by tissue factor (TF) binding to factor VII,

forming TF=VIIa complex. This complex then activates factor X to Xa, which then

binds to activated factor V to convert factor II to IIa. During this process, protein

C (PC), antithrombin III (ATIII), and tissue factor pathway inhibitor (TFPI) act as

inhibitors. The details of this model is shown in appendix 3.6.1.

Intrinsic pathway model

The intrinsic pathway model proposed by [19] and modified by [5] was used in this

chapter. The intrinsic pathway begins when factor XII is activated to XIIa once

adsorbed to negatively charged surfaces. Then XIIa converts prekallikrein (PK)

to kallikrein (K), further activating more factor XII to factor XIIa that activates

factor XI to factor XIa. factor XIa activates factor IX to factor IXa. This cascade

continues, leading to the activation of factor X to factor Xa in the presence of factor

VIIIa, eventually converting II to IIa. This scheme is detailed in appendix 3.6.1 as

well.

3.2.2 Quantities of interests and basic notations

Thrombin Generation Assay (TGA) is a comprehensive dynamic test that

simultaneously measures thrombin production and its inhibition in real-time, as

illustrated in Fig. 3.1. This figure also offers a physical interpretation of critical

metrics used to analyse the outcome of a TGA, including: (i) the Endogenous

Thrombin Potential (ETP), which evaluates the overall amount of thrombin
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production; (ii) the peak thrombin level (IIamax), denoting the highest concentration

of thrombin achieved; (iii) the time to peak (τmax), which is the duration required

to reach IIamax; and (iv) the lag time (τlag), the time needed to generate 10 nM of

thrombin.

Figure 3.1: Quantities of interests. IIamax (peak thrombin concentration), τmax

(time to peak), τlag (time to reach 10 nM of thrombin) and ETP (endogenous thrombin

potential). Adapted from [5].

The chapter aims to simplify coagulation models while preserving accuracy in

thrombin generation. To determine whether the model reduction is acceptable, an

error metric is required. The error used in this work accounts for the quantities of

interest depicted in Fig. 3.1 and is defined as:

E =
( |ETP−ETP reduced|

ETP
+ |IIamax−IIareducedmax |

IIamax
+ |τmax−τreducedmax |

τmax
+

|τlag−τreducedlag |
τlag

)

4
(3.2)

The superscript ’reduced’ in Eq. 3.2 corresponds to the values of the reduced model.

Here, equal weighting is assigned to these parameters because each is considered
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equally important in the context of TGA, and each contribution is properly scaled.

The error metric framework is inherently flexible; alternative weightings may be

applied to emphasize particular parameters if certain outputs are regarded as having

higher clinical or experimental priority.

It proves useful to introduce fundamental parameters in chemical kinetics.

Considering both forward and backward reactions separately, the rate of the jth

reaction, denoted by ωj, is given by:

ωj = kj

nS∏
i=1

[Si]
ν′i,j , (3.3)

where [Si] represents the concentrations of the ith species, and nS represents the

overall number of species. The rate coefficient of reaction j is denoted by kj. The

stoichiometric coefficient for species i in the jth reaction is νi,j; it reads:

νi,j = ν ′′
i,j − ν ′

i,j (3.4)

where ν ′
i,j and ν ′′

i,j represent the stoichiometric coefficients of species i in reaction j

on the reactant and product sides, respectively. In practice, ν ′′
i,j is either 0 or +1, ν ′

i,j

is either 0 or +1, so that νi,j is either −1, 0 or +1. Additionally, the production and

consumption rates of species i are defined as follows, where nR represents the total

number of reactions:

Pi =

nR∑
j=1

max(0, νi,jwj) (3.5)

Ci =

nR∑
j=1

max(0,−νi,jwj) (3.6)

The formation rate of a species in a chemical reaction scheme can be determined by

accounting for all reactions where the species is produced or consumed. The general

expression for the net rate of production of species i is:

Ri =

nR∑
j=1

νi,jωj (3.7)

3.3 Physics-based reduction methods

The methods combined into the proposed multi-step strategy are the Direct Relation

Graph with Error Propagation (DRGEP, for both species and reactions), Chemical

Lumping, the Quasi Steady State Approximation (QSSA) and Conservation

Analysis. The following subsections explain the principles and implementation of

the aforementioned methods.
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3.3.1 Direct Relation Graph with Error Propagation

(DRGEP)

The principle of the DRGEP methodology is to identify the species and reactions

that are not influential to key metrics and remove them from the schemes [112]. In

order to quantify how much each species or reactions influence the evolution of the

target species T , the so-called Direct Interaction Coefficients (DIC) are computed.

Denoting i any species different from T , the coefficient which measures the influence

of i on T reads:

dT i =

∣∣∣∑nR

j=1 νT,jωjδ
j
i

∣∣∣
max(PT , CT )

(3.8)

δji =

{
1 if the jth reaction involves species i,

0 otherwise.
(3.9)

where nR is the number of reactions in the scheme, νT,j the stoichiometric coefficient

of species T in the reaction j, ωj the net rate of progress of reaction j, CT and PT

the consumption and production rates of species T . For reactions, the DIC between

a target species T and one reaction j is:

dTj =
|νT,jωj|

max(PT , CT )
. (3.10)

The coefficient dT i gives an evaluation of the dependence of target T on species i at

time t when Eq. 3.8 is evaluated. To obtain a measure of the overall dependence of

target T on species i throughout the TGA, we can consider the maximum value DT i:

DT i = max
all paths,time

dT i (3.11)

The maximum over all paths in Eq. 3.11 means that there are multiple paths

linking target and specific species, and the path that provides the highest value is

used. A “path” refers to a sequence of linked species. A path begins from a target

species and follows the directed edges to a destination. In Fig. 3.2, species A is the

target, and paths such as A −−→ B −−→ D and A −−→ C −−→ D illustrate possible

paths to reach species D. Global DRGEP coefficient of reaction j on target T named

DTj, is calculated in a similar way:

DTj = max
time

dTj (3.12)

Species or reactions are ranked based on global DRGEP coefficients (Eqs. 3.11 or

3.12) and gradually removed starting from the one with the smallest value, until the
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Figure 3.2: Concept of a “path” in DRGEP. Starting from the target species A,

paths such as A −−→ B −−→ D and A −−→ C −−→ D demonstrate possible paths to

reach species D.
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error in the target quantities (Eq. 3.2 in this study) meets a user-defined criterion.

Subsequently, the DRGEP coefficient is recalculated using the resulting reduced

scheme. Iterations continue as long as the error on target quantities remains below

a specific threshold (the user-defined criterion).

3.3.2 Chemical Lumping

Chemical lumping groups species with similar properties into one entity, with the

aim of reducing the number of species without significantly altering the dynamics

of the system [113]. In certain communities, such as combustion, candidate species

for lumping are identified based on their molecular structures and thermodynamic

properties. However, applying such criterion to species involved in processes like

the coagulation cascade is very challenging. Hence, an alternative mathematical

approach to lumping proposed by [114] is used in this study. This approach relies

on the evolution of species concentrations to identify candidates and form lumped

groups. Firstly, a normalized formation rate R∗
i for species i is defined as follows:

R∗
i =

Ri

[Si]
(3.13)

where Ri is the formation rate for species i.

If the initial concentrations of the two species i and i′ are identical and the ratio:

γii′ =
R∗

i

R∗
i′

(3.14)

does not vary over time, two species i and i′ can be lumped. Note that if

[Si] = [S ′
i] = 0, the ratio in Eq. 3.14 is redefined as γii′ =

Ri

Ri′
.

In nonlinear models, the conditions that initial concentrations are identical and

that γii′ is constant over time is usually not met consistently, hence it is relaxed

allowing for an approximate lumping if:

|γii′ − γ̄ii′| ≤ ϵ (3.15)

where γ̄ii′ is the time-averaged value of γii′ , and ϵ is a predefined tolerance. This

tolerance is not unique and can produce different acceptable results over a wide

range [114]. Note that the methodology can also be extended to deal with more than

two individual components. Consider an original set of species S = Si, i = 1, . . . , nS

and subdividing it into I lumped groups; within each group LI , a representative

species is designated. The concentration of this representative is defined by:

[S̃I ] =
∑
i∈LI

[Si] (3.16)
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The fractional numbers α are assessed as [114]:

αi =
Ri

Ri +
∑

j∈{J} γijRij

(3.17)

Where J includes all the species lumped to a specific complex except species i.

The concentrations of species Si are calculated from the concentrations of grouped

species and fraction number as:

[Si] = αi[S̃I ] (3.18)

New stoichiometric coefficients of lumped system are defined as:

ν̃I,j =
∑
i∈LI

νi,j (3.19)

where LI , for I = 1, . . . , ñS, represents a partition of the set S. New rate constants

for the lumped system are then defined following the method outlined in [113]. This

allows us to express the reaction rate in terms of lumped variables as:

ωj = kj

nS∏
I=1

([Si])
νi,j

= kj

nS∏
i=1

(αi[S̃I ])
νi,j

= kj

nS∏
i=1

α
νi,j
i

ÑS∏
I=1

∏
i∈LI

[S̃I ]
νi,j

= kj

nS∏
i=1

α
νi,j
i

ÑS∏
I=1

[S̃I ]
∑

i∈LI
νi,j

= kj

nS∏
i=1

α
νi,j
i

ÑS∏
I=1

[S̃I ]
ν̃I,j .

(3.20)

3.3.3 Quasi Steady State Assumptions

The concept of QSSA is that the production and consumption rates of some

intermediate species are balanced, so that their concentration remain relatively

constant throughout the reaction process [115]; the ODEs for the concentration of

these particular species can then be removed from the set of equations to solve.

Despite being over a century old, the Quasi-Steady-State Approximation (QSSA)

remains widely used for simplifying complex reaction networks while preserving
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essential system dynamics. QSSA also plays an important role in Computational

Fluid Dynamics (CFD) simulations, where overcoming stiffness is a major challenge.

For instance, [116] proposed the Iterative Dynamic Chemical Stiffness Removal

(IDCSR) method, which builds upon QSSA principles and achieved substantial

speed-up in both 0-D and 2-D simulations.

Several refinements have been developed to enhance QSSA’s accuracy and

applicability, such as Total QSSA (tQSSA), Prefactor QSSA (pQSSA) and Stochastic

QSSA [117]. Beyond QSSA, alternative reduction techniques, such as Computational

Singular Perturbation (CSP) [118] and Intrinsic Low-Dimensional Manifolds (ILDM)

[119], transform coordinate systems to exploit timescale separation. However, these

two methods may compromise physical interpretability when applied to complex

biochemical systems. As a representative of these timescale exploitation methods,

standard QSSA is applied here as part of the multi-step reduction.

Quasi-steady-state (QSS) approach typically requires detailed sensitivity

analysis, which demands a significant amount of data [120]. However, it follows an

alternative method outlined by [108], which avoids the need for sensitivity analysis.

Instead, to identify QSS candidates among species, a modified level of importance

for each species i is defined as follows:

Li = DT i[Si]τi (3.21)

where τi represents the timescale of species i, indicating the chemical lifetime, and

DT i is the global DRGEP coefficient, defined in Eq. 3.8. Species are ranked in

ascending order based on their Li values, as described in Eq. 3.21, with smaller

Li values signifying likely QSS species. To simplify the calculation of Eq. 3.21,

the product of concentration [Si] and timescale τi can be approximated by the

integral of the concentration, which is readily obtained from the solution of the

coagulation scheme, Eq. 3.1. Previously, some researchers have determined QSS

species concentrations by analytically solving linear systems using the constraint

that QSS species exhibit only linear coupling [112, 108]. Furthermore, optimization

has been emerged as a useful tool for dealing with QSSA problems by [115]. In the

present chapter, an optimizer based on python3 has been developed to figure out

concentrations of QSS species, ensuring the simulation results align with the original

models without QSSA in this chapter. The tool minimizes the overall error defined

in Eq. 3.2, adjusting QSS species concentrations computationally.
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3.3.4 Conservation Analysis

Conservation Analysis is a method to discover the linear quantity relations among

species concentrations which holds over the duration of the simulation, if any [121].

If such relations exist, they allow to simplify the representation of the chemical

system; note that contrary to the previous methodologies discussed in Sections 3.3.1

- 3.3.3, Conservation Analysis consists in an exact reformulation of the original

kinetic scheme, without any loss of information and/or accuracy [122]. The existence

of conservation relations indicates that the ODE system of model (Eq. 3.1) can be

expressed as a system of differential algebraic equations:

dS(t)

dt
= Nv(t) (3.22)

where S(t) = [S1(t),S2(t), · · ·Sp(t)] is the vector of p = nS species concentrations,

v(t) = [v1(t),v2(t), · · ·vq(t)] is the vector of q = nR reactions rates and N is

the stoichiometric matrix with p rows and q columns, relating the species to the

reactions.

The rank of N is denoted by p0. It follows that there are p0 independent species

and (p − p0) dependent species. Independent rows form an p0 × q matrix NR that

is of full rank, and an (p− p0)× q matrix N0 that comprises the dependent rows of

the matrix. Through a series of transformations, a matrix L0 can be derived that

establishes relations among independent species, dependent species, and constants

[123]:

dS(t)

dt
=

[
dSi(t)
dt

dSd(t)
dt

]
=

[
NR

N0

]
v(t) =

[
I

L0

]
NRv(t) (3.23)

where I represents a unit matrix. This equation can be written separately as:

dSi(t)

dt
= NRv(t) and

dSd(t)

dt
= L0NRv(t) (3.24)

The quantity relations among species are then expressed in terms of dependent

and independent species as:

dSd(t)

dt
− L0

dSi(t)

dt
= 0 (3.25)

By integrating Eq. 3.25, the conservative relations are:

Sd(t)− L0Si(t) = T (3.26)
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where Sd(t) denotes the dependent species which can be expressed from independent

species Si(t) and the vector T consisting of constant values.

3.3.5 Multi-step reduction process

[108] observed that optimizing the sequence of reduction steps, including potential

repetitions of specific steps, can significantly improve the level of reduction

achievable within a given error threshold. The procedure comprises several stages:

1. Reducing species; 2. Reducing reactions; 3. Lumping similar species; 4. Applying

Quasi-Steady State Assumptions; 5. Performing conservation analysis. The initial

step involves eliminating species and reactions through DRGEP steps due to the

redundancies in the original models. After each iteration, which involves removing

a species or reaction, the system representing the remaining network may undergo

substantial changes. Consequently, it is essential to recompute the DRGEP ranking

after each removing. Elimination of species and reactions was performed alternately

until no more species or reactions could be removed. The eliminations using DRGEP

are followed by chemical lumping, which is a one step process acting on the species

only. Following lumping, the Quasi-Steady State Assumption (QSSA) is used to

reduce the number of species for which a differential equation must be solved. The

final step is conservation analysis, which again reduces the number of independent

species and differential equations. Note that this process links dependent and

independent species so that no change can be done afterwards (refer to Fig. 3.3).

The whole process is designed to be automated, requiring no intermediate inputs

or expert decisions. Since DRGEP acts on species and reactions, two orders may

be considered. In what follows, the ordering SR and RS will be applied to the two

typical schemes detailed in Section 3.2. SR indicates the process start with reducing

species and followed by reducing reactions, and RS is the reverse.

3.4 Practical cases

3.4.1 Reference models for validation

The performance of the reduction algorithm is assessed by considering two

widely-used and newly-revised coagulation models which are described in section

3.2.1 and 3.6.1. The extrinsic pathway model [15] is a hallmark in coagulation

modeling and serves as the foundation for many studies in the field. The intrinsic

pathway model [5], on the other hand, is derived from another hallmark model [19]
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Figure 3.3: Schematic of multi-step reduction. Starting with the original schemes,

the process involves a series of reduction steps to derive a simpler and more compact

reduced scheme. The Directed Relation Graph with Error Propagation (DRGEP)

technique is applied to eliminate insignificant reactions and species. Then, the

system undergoes ’Lumping’ to group similar species, followed by the Quasi-Steady-

State Approximation (QSSA) to treat certain species concentrations as constant

valued. The final conservation analysis ensures the reduced scheme maintains essential

dynamical properties, culminating in a simplified yet accurate representation of the

original scheme.
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that specifically accounts for intrinsic pathway. The original complex models do not

directly fit experimental data due to uncertainties in clotting factor concentrations,

which are difficult to measure simultaneously in a single sample. Nevertheless, these

models remain a critical reference in the field. After optimizing clotting factor

concentrations, the complex model aligns well with experimental observations. This

optimization is a separate effort and is not discussed further in this chapter. More

details about the optimisation are provided previously.

3.4.2 Numerical setup

In order to consider all methods comprehensively, the criterion for DRGEP, the

tolerance fo Lumping and threshold for QSSA are set moderately. The user-defined

criterion for DRGEP is set to 5%. The predefined tolerance for lumping in Eq. 3.15

is 0.1 for both the extrinsic and intrinsic pathway models. However, despite using

the same tolerance, the effect of lumping differs between the two models. Similarly,

the QSSA threshold for Eq. 3.21 to define the candidates is also set to 0.1.

3.4.3 Optimization of methods sequences

The reduction methodologies for both extrinsic and intrinsic way models are

illustrated in Figs. 3.4 and 3.5. For the extrinsic pathway model, the orders of

DRGEP did not influence remarkably the reduced scheme obtained at the end of

the procedure (refer to Fig. 3.4). For the intrinsic pathway model, the number of

reactions after reduction is affected by the RS/SR ordering very slightly (by only 1),

while the number of species is not (refer to Fig. 3.5). Therefore, for both extrinsic

and intrinsic pathway models, all the reduction results discussed in the remaining

sections were simulated according to the SR ordering.

3.4.4 Reduction of extrinsic pathway model

The reduction of the extrinsic pathway model resulted in a decrease in the number

of species from 35 to 19 and a reduction in the number of reactions from 46 to

23, which is detailed in Table 3.1, while Fig. 3.4a shows the effects of each steps.

Starting from the original scheme with 35 species and 46 reactions, the first species

reduction using DRGEP (S) lowers the number of species to 30, while the number

of reactions decreases to 38. This is followed by reaction reduction using DRGEP

(R), which results in a drop in the number of reactions to 32, while the number of
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(a) Extrinsic pathway model: SR (b) Extrinsic pathway model: RS

Figure 3.4: Reduction process of extrinsic pathway models: number of species (blue

line with circles) and number of reactions (red line with squares). On the abscissa

axis, ’S’ stands for species reduction using DRGEP, ’R’ for reactions reduction using

DRGEP, ’L’ for lumping, ’QSSA’ for Quasi-Steady State approximation step and

’CA’ for conservation analysis.

(a) Intrinsic pathway model: SR (b) Intrinsic pathway model: RS

Figure 3.5: Reduction process of intrinsic models: number of species (blue line

with circles) and number of reactions (red line with squares). On the abscissa

axis,’S’ stands for species reduction using DRGEP, ’R’ for reactions reduction using

DRGEP, ’L’ for lumping, ’QSSA’ for Quasi-Steady State approximation and ’CA’ for

conservation analysis.
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species decreases to 28. A second round of species reduction (S) further decreases

the number of species by 1, with the number of reactions going to 31. The second

reactions reduction (R) leads to 23 reactions and 27 species. The number of reactions

remains constant at 23 from this point onward. As the reduction process continues,

lumping (L) leads to another decline, reducing the number of species to 24. The

application of QSSA reduces the number of species to 23. Finally, Conservation

Analysis (CA) achieves the most compact model, reducing the system to 19 species.

The final error is remarkably low, at only 2.3%. This small error margin indicates a

high similarity in thrombin generation between the reduced and the original models,

as depicted in Fig. 3.6a.

(a) Extrinsic pathway model (b) Intrinsic pathway model

Figure 3.6: Thrombin generation (a) Extrinsic pathway; (b) Intrinsic pathway.

Comparison between original model (solid red lines) and reduced model (dashed black

lines).

Table 3.1:: Comparison of original and reduced extrinsic pathway models. (user-

defined criterion for DRGEP: 5%; chemical lumping tolerance: 0.1; QSSA threshold:

0.1).

Original Model Reduced Model

Number of species 35 19

Number of reactions 46 23

Reduction ratio of species – 45%

Reduction ratio of reactions – 50%

Error – 2.3%

Of course, some species are more important than others in the kinetic
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Figure 3.7: The error in Eq. 3.2 as a function of of number of species reduction by

DRGEP in the extrinsic pathway model (until the error reaches 100%).

mechanisms; this results in a non-homogeneous increase in the error in the DRGEP

phase, as illustrated in Fig. 3.7, which shows how the error (Eq. 3.2) evolves

as the number of species removed for the extrinsic model increases. The error

remains constant when the first and second, third and fifth species are removed;

it is especially after the removal of the sixth species (TF ) that the error increases

considerably, going from 0.46% to 6.3%. Interestingly, the error decreases slightly

when the 7th species is removed. However, beyond this point, the error gradually

increases, reaching approximately 10% after the removal of the 8th species. The

increase becomes more pronounced, rising sharply to around 40%, a level that is no

longer acceptable. Finally, the error escalates to 100% upon the removal of the 14th

species, indicating a complete loss of accuracy.

3.4.5 Reduction of the intrinsic pathway model

The intrinsic pathway model underwent a multi-step reduction process, resulting in

a scheme with 26 species and 42 reactions, compared to the original scheme’s 61

species and 77 reactions (refer to Table 3.2). The reduction process is depicted in

Fig. 3.5a, showcasing the sequence of steps from the original to the final reduced
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model. Starting from the original scheme with 61 species and 77 reactions, the

first species reduction step (S) using DRGEP significantly lowers the number of

species to 48, while the number of reactions drops to 54. The subsequent reaction

reduction step (R) further reduces the number of reactions to 49, while the species

count drops to 45. A second species reduction step (S) leads to a gradual decline in

species count to 43, while the reaction count continues to decrease to 48. The second

reaction reduction step (R) reduces the number of reactions to 42, while its impact

on species count is minimal, decreasing by only one species. Lumping (L) further

reduces the number of species to 34, while the number of reactions stabilizes at 42

and remains constant through the QSSA and Conservation Analysis (CA) steps.

The final reduced model contains 26 species and 42 reactions. Upon comparison,

the reduced model closely aligns with the detailed one, demonstrating only a 3.5%

error, as shown in Fig. 3.6b, which indicates a good preservation of the behavior of

original model, although a very slight shift to the left exists.

Table 3.2:: Comparison of original and reduced intrinsic pathway models. (user-

defined criterion for DRGEP: 5%; chemical lumping tolerance: 0.1; QSSA threshold:

0.1).

Original Model Reduced Model

Number of species 61 26

Number of reactions 77 42

Reduction ratio of species – 46%

Reduction ratio of reactions – 45%

Error – 3.5%

3.4.6 Robustness and generality

Reduction algorithms do not always preserve the generality of the original models. To

assess the robustness of the reduced models in simulating haemophilia A conditions,

the initial concentration of factor VIII was varied from 100% (the normal level in

original models) to 10% ( 100%, 50%, 10%), as documented by [5]. Fig. 3.8 presents

the comparison of thrombin generation dynamics between the original and reduced

models under different factor VIII concentrations (100%, 50%, and 10%). Both the

extrinsic and intrinsic pathway schemes are analyzed to assess the robustness of the

reduced models in simulating haemophilia A conditions.

The thrombin generation of the original and reduced extrinsic pathway models
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(a) Extrinsic pathway scheme (b) Intrinsic pathway scheme

Figure 3.8: Thrombin generation across a range of VIII concentrations (100%,

50%, 10%. Each color represents a different concentration level. Solid lines indicate

simulations obtained from original models, while dashed lines represent simulations

obtained from reduced models. Blue: normal (100%) VIII; Orange: 50% VIII; Green:

10% VIII.

show excellent agreement across all tested concentrations of factor VIII, as illustrated

in Fig. 3.8a. The error between the original and reduced models increases as

factor VIII concentration decreases, particularly at 10% VIII. Before reaching peak

thrombin concentration, a visible gap emerges between the original and reduced

models, indicating that the reduced model does not fully capture the early-phase

thrombin generation dynamics at lower VIII levels (10% VIII). After the peak,

the discrepancy between the original and reduced models diminishes, and the two

profiles converge. This suggests that the reduction method effectively preserves

late-phase thrombin decay, even under low factor VIII conditions. The overall trend

suggests that the reduced model performs best at normal factor VIII levels but

slightly deviates under conditions of severe deficiency. Future refinements could

focus on improving early-stage thrombin prediction in the extrinsic pathway model.

However, overall agreement between the original and reduced models remains strong.

A similar pattern was observed for the intrinsic pathway model (Fig. 3.8b),

although with a more pronounced trend to underestimate τmax (see the left shift

in Fig. 3.8b). The difference between the original and reduced models increases as

factor VIII concentration decreases. This effect is particularly noticeable at 10%

factor VIII. However, unlike the profile of extrinsic pathway model in Fig 3.8a,

the peak thrombin concentration is slightly higher in the reduced model at 10%

factor VIII levels rather than being underestimated. Additionally, the time to peak
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(τmax) occurs earlier, indicating that the reduced model predicts a faster thrombin

response compared to the original model. Before and after the peak, the difference

between the original and reduced models remains notable. Despite these differences,

the general trend of thrombin generation with decreasing factor VIII levels is well

captured, demonstrating that the reduced model retains the essential characteristics

of haemophilia A conditions.

For both pathway models, the agreement confirms that the reduction process,

designed for normal concentrations of factor VIII, faithfully preserves the ability of

the models to reflect the impact of haemophilia A on thrombin generation.

(a) Extrinsic pathway scheme (b) Intrinsic pathway scheme

Figure 3.9: Thrombin generation metrics for both extrinsic and intrinsic pathway

models under different factor VIII concentrations. RED: original models; BLUE:

reduced models. The reduced model closely emulates the original in terms of ETP,

IIamax, and τmax, validating the effectiveness of the reduction approach in capturing

essential thrombin generation characteristics even at diminished factor VIII levels.

To further highlight the robustness and accuracy of the reduced model compared
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to the original model across different factor VIII concentrations, Fig. 3.9 displays

different quantities of interest under different conditions. For the extrinsic pathway,

both original and reduced models exhibit a decrease in ETP as the factor VIII

level decreases, which is expected due to the diminishing coagulation factors (refer

to Fig. 3.9a). The reduced model closely follows the trend of the original model,

indicating that essential dynamics are well-preserved. Similar to ETP, IIamax

decreases with lower factor VIII levels. The minor discrepancies observed suggest

some nuances in peak thrombin generation that the reduced model approximates

slightly differently. τmax generally increases as factor VIII levels decrease, indicating

slower thrombin generation under reduced coagulation factor concentrations. This

trend is also very well captured by the reduced model, even if the generation of

thrombin from the reduced model is a little bit faster than the one of the original

model. Fig. 3.9b provides a comparative analysis for the intrinsic pathway scheme

under similar varying conditions of factor VIII. ETP measurements in the intrinsic

pathway mirror those observed in the extrinsic pathway, with a consistent reduction

in thrombin potential as factor VIII decreases, even if the change is not so obvious as

for the extrinsic pathway. IIamax declines with decreasing factor VIII, which is well

captured by both models. The increase in τmax at lower factor VIII levels observed

in the intrinsic pathway is similar to that in the extrinsic pathway, although τmax of

the reduced model is slightly smaller than that of the original model, consistently

with the observation made in Fig. 3.8b.

3.5 Conclusion

The multi-stage reduction strategy introduced in this chapter for coagulation

models proved effective when applied to both extrinsic and intrinsic pathways. By

incorporating Direct Relation Graph with Error Propagation (DRGEP), chemical

lumping, Quasi Steady State Assumption (QSSA), and conservation analysis, the

methodology has demonstrated its efficacy by significantly reducing the complexity

of detailed coagulation models while maintaining high fidelity to the original models’

dynamic behavior.

Applied to a extrinsic pathway model originally encompassing 46 reactions and

35 species, the technique effectively reduced it to a more simplified model with

23 reactions and 19 species. This reduced model not only preserved the essential

dynamics of thrombin generation but also performed robustly under varied factor

VIII levels, a crucial feature for simulating haemophilia conditions. A substantial

reduction was also obtained for the intrinsic pathway model (reactions from 77 to
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42 and species from 61 to 26), while maintaining an excellent agreement with the

original configuration, reinforcing the method’s applicability and accuracy. Notably,

the reduced models recover the dynamics of thrombin very nicely as shown in Fig.

3.8 in different levels of VIII, even they are adapted from the normal initial VIII

level.

The findings confirm that the reduced models not only capture thrombin

generation with high fidelity but also conserve the predictive capability of the

original schemes for clinical scenarios, such as in haemophilia treatment. This

highlights the efficacy of the multi-step, physics-based reduction approach in the

simplification of complex coagulation models automatically, ensuring that they

remain both accurate and robust for clinical use. However, lumping, similar to

QSSA, may not be essential for regular applications but becomes particularly useful

in computationally demanding tasks, such as parameter optimization [73], control

systems [57] and sensitivity analysis [65].

In this chapter, the scheme reduction methodology is applied exclusively to

thrombin generation assays (TGA), although it could be adapted to underflow

configurations. The reduced model obtained from this multi-step reduction method

is more physically meaningful and robust, which facilitates the application of real

diffusion coefficients for CFD. This is particularly advantageous since intrusive

reduction methods often replace real species with meta-species, which can obscure

the true diffusion behavior of the system. Similarly, adapting the methodology to the

case of kinetic schemes including Michaelis-Menten type enzymatic reactions would

not pose any major difficulty, even if the application case chosen here only includes

n-order reactions (n between 1 and 4). These adaptations will be the subject of

future investigations.

This study relies on deterministic models, which describe the coagulation

cascade through a set of ODEs with fixed parameters. Apart from them, another

type of model is the stochastic models, such as kinetic Monte Carlo methods

[51], which account for molecular fluctuations [124]. However, in this study, a

deterministic framework is chosen due to its suitability for thrombin generation

assays (TGA), where the reaction volume is at the µL scale [125] assuming that the

reactions take place in a perfectly-stirred reactor. Additionally, deterministic models

are more computationally efficient [51, 124] and more practical for integration with

Computational Fluid Dynamics (CFD) simulations. For these reasons, this study

focuses on deterministic models. However, in extreme small volume (nL and pL),

molecular fluctuations become significant [51, 124], making stochastic modeling more

relevant. Future work should explore model reduction for stochastic models of which

the computation cost is very significant.
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3.6 Details of models

All mathematical models used in this chapter are summarized in this section.

3.6.1 Original models

This subsection introduces the original models for the coagulation cascade, of both

the extrinsic and intrinsic pathways. The extrinsic model, which is initiated by the

presence of tissue factor (TF), is critical for the rapid response to injury. Table 3.3

lists the initial concentrations of clotting factors, based on the work by [5], while

Table 3.4 outlines the chemical reactions that define this pathway. On the other

hand, the intrinsic pathway, which can be triggered by contact activation and is

important for amplifying the coagulation process, is detailed similarly in Table 3.5

and 3.6 for initial concentrations and reactions scheme respectively.

Table 3.3:: The concentration of factors in the original model of extrinsic pathway [5]. The other

initial concentrations are set to 0.

Factor V II V IIa X IX II V III V TFPI ATIII TF

Concentration (nM) 6.67 0.0667 106.67 60.0 933.0 0.4667 13.33 1.667 2267.0 0.001

3.6.2 Reduced models

As final results of this study, reduced models are proposed to approximate the

coagulation models in Section 3.6.1 while retaining key dynamic behaviors. This

section contains tables that describe reduced versions of both the extrinsic and

intrinsic pathway models. For the extrinsic pathway, Table 3.7 displays key initial

concentrations (concentrations of which is not 0 at time t = 0). Table 3.7 also

provides details on the lumped species and their combinations and information

about the QSS species as well. Table 3.8 details the kinetics of the reduced extrinsic

pathway. Additionally, conservation relations applied to the reduced model are

documented in Table 3.9. For the intrinsic pathway, Table 3.10 lists the initial

concentrations, lumped species and QSS species, the kinetics is detailed in Table

3.11 and complemented by Table 3.12, where conservation relations are outlined.
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Table 3.4:: Chemical scheme defining the original model of extrinsic pathway [5].

No. Reaction k1 k−1 kcat

1 TF + VII←−→ TF––VII 3.2× 106 M−1s−1 3.1× 10−3 s−1

2 TF + VIIa←−→ TF––IIa 2.3× 107 M−1s−1 3.1× 10−3 s−1

3 TF––VIIa + VII −−→ TF––VIIa + VIIa 4.4× 105 M−1s−1

4 Xa + VII −−→ Xa + VIIa 1.3× 107 M−1s−1

5 IIa + VII −−→ IIa + VIIa 2.3× 104 M−1s−1

6 TF––VIIa + X←−→ TF––VIIa––X −−→ TFVIIa––Xa 2.5× 107 M−1s−1 1.1 s−1 6.0 s−1

7 TF––VIIa + Xa←−→ TF = VIIa––Xa 2.2× 107 M−1s−1 19.0 s−1

8 TF––VIIa + IX←−→ TF––VIIa–– IX −−→ TF––VIIa + IXa 1.0× 107 M−1s−1 2.4 s−1 1.8 s−1

9 II + Xa −−→ IIa + Xa 7.5× 103 M−1s−1

10 IIa + VIII −−→ IIa + VIIIa 2.0× 107 M−1s−1

11 VIIIa + IXa←−→ IXa––VIIIa 1.0× 107 M−1s−1 s−1 5.0× 10−3

12 IXa––VIIIa + X←−→ IXa––VIIIa––X −−→ IXa––VIIIa + Xa 1.0× 108 M−1s−1 1× 10−3 s−1 8.2 s−1

13 VIIIa←−→ VIIIa1 +VIIIa2 6.0× 10−3 s−1 2.2× 104 s−1

14 IXa––VIIIa––X −−→ IXa + X+VIIIa1 +VIIIa2 1.0× 10−3 s−1

15 IXa––VIIIa −−→ IXa + VIIIa1 +VIIIa2 1.0× 10−3 s−1

16 IIa + V −−→ IIa + Va 2.0× 107 M−1s−1

17 Xa + Va←−→ Xa––Va 4.0× 108 M−1s−1 0.2 s−1

18 Xa––Va + II←−→ Xa––Va–– II −−→ Xa––Va +mIIa 1.0× 108 M−1s−1 103.0 s−1 63.5 s−1

19 Xa––Va +mIIa −−→ Xa––Va + IIa 1.5× 107 M−1s−1

20 Xa + TFPI←−→ Xa––TFPI 9.0× 105 M−1s−1 s−1 3.6× 10−4 s−1

21 TF––VIIa––Xa + TFPI←−→ TF––VIIa––Xa––TFPI 3.2× 108 M−1s−1 s−1 1.1× 10−4 s−1

22 TF––VIIa––Xa + TFPI −−→ TF––VIIa––Xa––TFPI 5.0× 107 M−1s−1

23 Xa + ATIII −−→ Xa––ATIII 1.5× 103 M−1s−1

24 mIIa + ATIII −−→ mIIa––ATIII 7.1× 103 M−1s−1

25 IXa + ATIII −−→ IXa––ATIII 4.9× 102 M−1s−1

26 IIa + ATIII −−→ IIa––ATIII 7.1× 103 M−1s−1

27 TF––VIIa + ATIII −−→ TF––VIIa––ATIII 2.3× 102 M−1s−1

28 IXa + X←−→ IXa––X −−→ IXa + Xa 1.0× 106 M−1s−1 0.5s−1 5.0× 10−4 s−1

Table 3.5:: The concentration of factors in the original model of intrinsic pathway [5]. The

other initial concentrations are set to 0.

Factor V II V IIa X IX II V III V TFPI ATIII XII

Concentration (nM) 6.67 0.0667 106.67 60.0 933.0 0.4667 13.33 1.667 2267.0 226.7

Factor PK C1NH αAT αAP XI

Concentration (nM) 300.0 1667.0 30000.0 667.0 20.67
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Table 3.6:: Chemical scheme defining the original model of intrinsic pathway [5].

No. Reaction k1 k−1 kcat

1 TF + VII←−→ TF––VII 3.2× 106 M−1s−1 3.1× 10−3 s−1

2 TF + VIIa←−→ TF––VIIa 2.3× 107 M−1s−1 3.1× 10−3 s−1

3 TF––VIIa + VII −−→ TF––VIIa + VIIa 4.4× 105 M−1s−1

4 Xa + VII −−→ Xa + VIIa 1.3× 107 M−1s−1

5 IIa + VII −−→ IIa + VIIa 2.3× 104 M−1s−1

6 TF––VIIa + X←−→ TF––VIIa––X −−→ TF––VIIa––Xa 2.5× 107 M−1s−1 1.1 s−1 6.0 s−1

7 TF––VIIa + Xa←−→ TF––VIIa––Xa 2.2× 107 M−1s−1 19.0 s−1

8 TF––VIIa + IX←−→ TF––VIIa–– IX −−→ TF––VIIa + IXa 1.0× 107 M−1s−1 2.4 s−1 1.8 s−1

9 II + Xa −−→ IIa + Xa 7.5× 103 M−1s−1

10 IIa + VIII −−→ IIa + VIIIa 2.0× 107 M−1s−1

11 VIIIa + IXa←−→ IXa––VIIIa 1.0× 107 M−1s−1 5.0× 10−3

12 IXa––VIIIa + X←−→ IXa––VIIIa––X −−→ IXa––VIIIa + Xa 1.0× 108 M−1s−1 1.0× 10−3 s−1 8.2 s−1

13 VIIIa←−→ VIIIa1 +VIIIa2 6.0× 10−3 s−1 2.2× 104 s−1

14 IXa––VIIIa––X −−→ IXa + X+VIIIa1 +VIIIa2 1.0× 10−3 s−1

15 IXa––VIIIa −−→ IXa + VIIIa1 +VIIIa2 1.0× 10−3 s−1

16 IIa + V −−→ IIa + Va 2.0× 107 M−1s−1

17 Xa + Va←−→ Xa––Va 4.0× 108 M−1s−1 0.2 s−1

18 Xa––Va + II←−→ Xa––Va–– II −−→ Xa––Va +mIIa 1.0× 108 M−1s−1 103.0 s−1 63.5 s−1

19 Xa––Va +mIIa −−→ Xa––Va + IIa 1.5× 107 M−1s−1

20 Xa + TFPI←−→ Xa––TFPI 9.0× 105 M−1s−1 3.6× 10−4 s−1

21 TF––VIIa––Xa + TFPI←−→ TF––VIIa––Xa––TFPI 3.2× 108 M−1s−1 1.1× 10−4 s−1

22 TF––VIIa––Xa + TFPI −−→ TF––VIIa––Xa––TFPI 5.0× 107 M−1s−1

23 Xa + ATIII −−→ Xa––ATIII 1.5× 103 M−1s−1

24 mIIa + ATIII −−→ mIIa––ATIII 7.1× 103 M−1s−1

25 IXa + ATIII −−→ IXa––ATIII 4.9× 102 M−1s−1

26 IIa + ATIII −−→ IIa––ATIII 7.1× 103 M−1s−1

27 TF––VIIa + ATIII −−→ TF––VIIa––ATIII 2.3× 102 M−1s−1

28 BocVPRMCA+ IIa←−→ BocVPRMCA––IIa −−→ BocVPR+AMC+ IIa 1.0× 108 M−1s−1 6.1× 103 s−1 53.8 s−1

29 XII −−→ XIIa 5.0× 10−3 M

30 XIIa + XII←−→ XIIa–– XII −−→ XIIa + XIIa 1.0× 108 M−1s−1 750.0 s−1 3.3× 10−2 s−1

31 XIIa + PK←−→ XIIa–– PK −−→ XIIa + K 1.0× 108 M−1s−1 3.6× 103 s−1 40.0 s−1

32 XII + K←−→ XII–– K −−→ XIIa + K 1.0× 108 M−1s−1 45.3 s−1 5.7 s−1

33 PK +K −−→ K+K 2.7× 104 M−1s−1

34 K −−→ Kinhibited 1.1× 10−2 s−1

35 XIIa + C1inh −−→ XIIa––C1inh 3.6× 103 M−1s−1

36 XIIa + ATIII −−→ XIIa––ATIII 21.6 M−1s−1

37 XI + IIa←−→ XI–– IIa −−→ XIa + IIa 1.0× 108 M−1s−1 5.0 s−1 1.3× 10−4 s−1

38 XIIa + XI←−→ XIIa––XI −−→ XIIa + XIa 7.0× 108 M−1s−1 200.0 s−1 2.0× 10−3 s−1

39 XIa + XI←−→ XIa––XI −−→ XIa + XIa 0.8× 106 M−1s−1

40 XIa + ATIII −−→ XIa––ATIII 3.2× 102 M−1s−1

41 XIa + C1inh −−→ XIa––C1inh 1.8× 103 M−1s−1

42 XIa + α1AT −−→ XIa––α1AT 1.0× 102 M−1s−1

43 XIa + α2AP −−→ XIa––α2AP 4.3× 103 M−1s−1

44 XIa + IX←−→ XIa–– IX −−→ XIa + IXa 1.0× 108 M−1s−1 41.0 s−1 7.7 s−1

45 IXa + X←−→ IXa––X −−→ IXa + Xa 1.0× 105 M−1s−1 2.6× 10−1s−1 6.7× 10−4 s−1

46 Xa + VIII←−→ Xa––VIII −−→ Xa + VIIIa 1.0× 108 M−1s−1 2.1 s−1 2.3× 10−2s−1
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Table 3.7:: Details of species in the reduced model of extrinsic pathway including one

QSS species and two lumped species. This table displays the initial concentrations of

the key species. The other initial concentrations are set to 0.

Name of species Concentration

(nM)

Type of species

X 106.67

IX 60.0

II 933.0

V III 0.4667

V 13.33

TFPI 1.667

ATIII 2267.0

L1 0.0 Lumped species: TF = V IIa = IX, TF =

V IIa = X and TF = V IIa = Xa

L2 0.0 Lumped species: V IIIa1 and V IIIa2

QSS1 0.0 QSS Species: Xa = ATIII

Table 3.8:: Reactions in the reduced model of extrinsic pathway including one QSS species and two

lumped species.

No. Reaction k1 k−1 kcat

1 TF––VIIa + X −−→ L1 −−→ TF––VIIa
+Xa 2.5× 107 M−1s−1 3.6 s−1

2 TF––VIIa + IX←−→ L1 −−→ TF––VIIa + IXa 1.0× 107 M−1s−1 0.5 s−1 0.4 s−1

3 II + Xa −−→ IIa + Xa 7.5× 103 M−1s−1

4 IIa + VIII −−→ IIa + VIIIa 2.0× 107 M−1s−1

5 VIIIa + IXa −−→ IXa––VIIIa 1.0× 107 M−1s−1

6 IXa––VIIIa + X −−→ IXa––VIIIa––X 1.0× 107 M−1s−1

7 IXa––VIIIa––X −−→ IXa––VIIIa + Xa 1.0× 107 M−1s−1

8 VIIIa −−→ L2 + L2 6.0× 10−3 s−1

9 IIa + V −−→ IIa + Va 2.0× 107 M−1s−1

10 Xa + Va←−→ Xa––Va 4.0× 108 M−1s−1 0.2 M−1s−1

11 Xa––Va + II←−→ Xa––Va–– II −−→ Xa––Va +mIIa 1.0× 108 M−1s−1 103.0 s−1 63.5 s−1

12 Xa––Va +mIIa −−→ Xa––Va + IIa 1.5× 107 M−1s−1

13 L1 +TFPI −−→ TF––VIIa––Xa––TFPI 6.0× 107 M−1s−1

14 mIIa + ATIII −−→ mIIa––ATIII 7.1× 103 M−1s−1

15 IXa + ATIII −−→ IXa––ATIII 4.9× 102 M−1s−1

16 IIa + ATIII −−→ IIa––ATIII 7.1× 103 M−1s−1
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Table 3.9:: Conservation relations in reduced model of extrinsic pathway

# Equation

1 [TF = V IIa = Xa = TFPI] + [TF = V IIa] + [L1] = 0.001

2 [IIa] + [II] + [Xa = V a = II] + [IIa = ATIII] + [mIIa] + [mIIa = ATIII] = 933.0

3 [Xa = V a] + [V a] + [Xa = V a = II] + [V ] = 13.33

Table 3.10:: Details of species in the reduced intrinsic pathway model including four

QSS species and six lumped species. This table displays the initial concentrations of

the key species. The other initial concentrations are set to 0.

Factor Concentration (nM) Description

X 106.67

IX 60.0

II 933.0

V III 0.4667

V 13.33

ATIII 2267.0

L1 0.0 V IIIa1 and V IIIa2

L2 0.0 AMC and BocV PR

L3 226.7 lumped species: XII and XII = K

L4 20.67 lumped species: XIIa = XI and XI

L5 0.0 lumped species: XIa = α1AT , XIa = α2AT and

XIa = C1inh

L6 2334.0 lumped species: α2AT and C1inh

QSS1 0.0 QSS Species: mIIa = ATIII

QSS2 0.0 QSS Species: IIa = ATIII

QSS3 300.0 QSS Species: PK

QSS4 30000.0 QSS Species: α1AT
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Table 3.11:: Reactions in the reduced intrinsic pathway model including four QSS species and six lumped species.

No. Reaction k1 k−1 kcat

1 II + Xa −−→ IIa + Xa 7.5× 103 M−1s−1

2 IIa + VIII −−→ IIa + VIIIa 2.0× 107 M−1s−1

3 VIIIa + IXa←−→ IXa––VIIIa 1.0× 107 M−1s−1 5.0× 10−3 s−1

4 IXa––VIIIa + X −−→ IXa––VIIIa––X 1.6× 108 M−1s−1

5 IXa––VIIIa––X −−→ IXa––VIIIa + Xa 29.0 M−1s−1

6 IXa––VIIIa −−→ IXa + L1 + L1 1.0× 10−3 s−1

7 IIa + V −−→ IIa + Va 2.0× 107 M−1s−1

8 Xa + Va←−→ Xa––Va 4.0× 108 M−1s−1 0.2 s−1

9 Xa––Va + II←−→ Xa––Va–– II −−→ Xa––Va +mIIa 1.0× 108 M−1s−1 103.0 s−1 63.5 s−1

10 Xa––Va +mIIa −−→ Xa––Va + IIa 1.5× 107 M−1s−1

11 Xa + ATIII −−→ Xa––ATIII 1.5× 103 M−1s−1

12 mIIa + ATIII −−→ QSS4 7.1× 103 M−1s−1

13 IIa + ATIII −−→ QSS3 7.1× 103 M−1s−1

14 BocVPRMCA+ IIa←−→ BocVPRMCAIIa −−→ L2 + L2 + IIa 1.0× 108 M−1s−1 6100.0 s−1 53.8 s−1

15 L3 −−→ XIIa 3.0× 10−3 s−1

16 XIIa + QSS1 −−→ XIIa––PK 1.0× 108 M−1s−1

17 XIIa––PK −−→ XIIa + K 40.0 M−1s−1

18 L3 +K←−→ L3 −−→ XIIa + K 6.2× 106 M−1s−1 17.2 s−1 2.2 s−1

19 XIIa + L4 ←−→ L4 −−→ XIIa + XIa 4.0× 106 M−1s−1 87.3 s−1 8.7× 10−4 s−1

20 XIa + L4 −−→ XIa + XIa 4.5× 105 M−1 s−1

21 XIa + QSS2 −−→ l5 1.0× 102 M−1s−1

22 XIa + L6 −−→ L5 1.3× 103 M−1s−1

23 XIa + IX←−→ XIa–– IX −−→ XIa + IXa 1.0× 108 M−1s−1 41.0 s−1 7.7 s−1

24 IXa + X←−→ IXa––X −−→ IXa + Xa 1.0× 105 M−1s−1 2.6× 10−1 s−1 6.7× 10−4 s−1

25 Xa + VIII←−→ Xa––VIII −−→ Xa + VIIIa 1.0× 108 M−1s−1 2.1 s−1 2.3× 10−2 s−1

Table 3.12:: Conservation relations in reduced model of intrinsic pathway

No. Equation

1 [V ] + [V a] + [Xa = V a] + [Xa = V a = II] = 13.3

2 [XIa] + [l3] + [XIa = IX] = 20.67

3 [X] + [IXa = X]+ = 106.67

4 [V III] + [Xa = V III] = 0.467
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Chapter 4

A simplified computational model

of coagulation cascade in venous

valves

Abstract

The previous chapters have has explored optimization and model reduction based

on thrombin generation assays (TGA). In this chapter, the analysis is extended to

an open system by developing a simplified 0-D model designed to assess the risk of

thrombosis in venous valves. The complex hemodynamic characteristics of venous

valve regions derived from 3D simulations have been simplified into a single mass

transfer coefficient kflow, and integrated into two distinct coagulation models: one

including platelets and another focusing solely on plasma-based reactions. The study

investigates the impact of these simplified hemodynamics on thrombin generation

under various stimulus conditions, relevant to deep vein thrombosis (DVT). Results

reveal that the mechanical behavior of venous valves and the presence or absence of

platelets significantly affect the thrombin generation process. This research addresses

the critical question of how venous hemodynamics, in combination with biochemical

interactions, contribute to DVT.
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4.1 Introduction

DVT is a condition characterized by the formation of blood clots in the deep veins.

Specifically, the thrombus is primarily likely to locate in the venous valve sinus. It is

a major public health concern due to its association with severe complications. If a

part of the thrombus dislodges and travels to the lungs, it can result in pulmonary

embolism (PE), a life-threatening complication [126, 127]. The medical significance

of DVT lies in its high morbidity and mortality rates, particularly among hospitalized

patients, postoperative individuals, and those with underlying conditions such as

cancer or thrombophilia, as these populations are at an increased risk of thrombus

formation and subsequent embolization [128]. Anticoagulant therapy remains the

primary treatment strategy for DVT and specific treatment plans vary depending

on the situation [129]. Therefore, it is necessary to improve modeling frameworks to

enhance risk assessment and personalized treatment strategies.

Hemodynamics plays a crucial role in DVT pathogenesis, particularly in

venous valves where stasis can promote coagulation. As shown in Figure 4.1, the

valves regulate blood flow direction by opening and closing in response to pressure

differentials within the vessel/vein. During the opening phase, a pressure drop across

the valve initiates forward flow, forcing the leaflets apart and increasing the orifice

size. As the valve reaches equilibrium, the flow stabilizes, creating distinct velocity

profiles: high axial velocity in the vessel/vein center and vortex formation within the

sinus due to detached streamlines at the leaflet tips. These vortices play a crucial

role in mixing and preventing prolonged blood stasis. During the closing phase, a

reduction in forward flow and potential retrograde pressure cause the leaflets to

move toward each other, gradually reducing the orifice size. Finally, in the fully

closed state, the valve leaflets come into contact, preventing retrograde blood flow

and ensuring unidirectional circulation. Throughout this process, altered shear rates

and turbulence contribute to thrombus initiation and propagation [130].

Moreover, muscle contraction and respiratory-induced venous return influence

clot development by modulating local flow conditions [131]. In veins, the skeletal

muscle pump is the primary driver of valve dynamics. When the leg muscles

contract, they compress the deep veins between themselves and the bones, generating

a pressure that enhances blood flow velocity and more effectively flushes the sinus

region. In contrast, when a person is at bed rest, the calf muscle pump remains

inactive, and blood flow is primarily maintained by the respiratory pump. Under this

condition, venous return is significantly slower, leading to prolonged residence times

of blood in the valve pockets, which increases the risk of Deep Vein Thrombosis

(DVT).
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Figure 4.1: The dynamic behavior of venous valve leaflets (blue) follows distinct

phases: opening, equilibrium, closing, and fully closed. The pressure drop across the

vessel dictates the flow direction (indicated by black hollow arrows), while differential

forces on either side of the valve leaflets (Pup, Pdown) regulate their movement and

determine the orifice size. Black arrows illustrate key flow patterns and velocity

variations within the valve pocket. The gray line represents vessel/vein distension

during the valve’s opening phase. Adapted from [11].

99



CHAPTER 4. A SIMPLIFIED COMPUTATIONAL MODEL OF
COAGULATION CASCADE IN VENOUS VALVES

Simulations provide insights into shear stress distributions, velocity profiles, and

residence times, which are critical in understanding how clots initiate and grow in

venous circulation. Elizondo et al. [59] used a 0-D model that ignored macro-scale

geometry, simplifying computation but overlooking important spatial dynamics and

the roles of platelets is misunderstood. In [69, 66], the geometry complexity of

venous valves was not considered and the reactions scheme is simple. In all these

models, the only factor that emphasizes venous flow is low shear rate, even the flow

in venous valves is very complex. In [67], a 2-D sinus-like geometry was used for

simulation, even the geometry remained static over time.

Despite advances in CFD-based thrombosis modeling, these models still

face several limitations. One major challenge of aforementioned models is the

oversimplification of hemodynamics and deformation, where many models assume

valves as unmoved solid walls rather than incorporating patient-specific geometries,

which are crucial for accurately predicting thrombus formation. The interaction

between blood flow and deformable structures is crucial in the case of cardiac or

venous valves. Fluid-structure interaction (FSI) methods are naturally suited for

these issues.

However, large-scale 3D FSI simulations come with high computational costs,

making them difficult for real-time clinical applications. For instance, the 3D

simulations performed by Thibaud et al. [13] were executed on 192 computing cores

(80 for the solid domain and 112 for the fluid domain) of the ADASTRA HPC cluster

at GENCI/CINES. These simulations covered only about 1 second of physical time

but required a total runtime ranging from 24 to 36 hours. This high cost also blocks

biochemistry coupling with FSI, which hinders the ability to simulate thrombus

initiation and progression precisely.

To address these gaps, in this chapter, the 3-D FSI simulations results are

simplified to a single representative transport coefficient, allowing for the integration

of reaction schemes with fluid profiles. The impacts of stimulus and effect coefficient

on thrombin generation are investigated under different types of coagulation schemes.

This study enhances the analysing and understandings of the biomechanical and

biochemical interactions in valve leaflets.
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4.2 Methods and Materials

4.2.1 Mathematical models

A mathematical representation is used to model the dynamics of the chemical

species’ concentration within a localized reaction zone, as illustrated in Figure 4.2.

This model describes the evolution of chemical concentrations within the reaction

zone under two key assumptions: (1) the concentrations are spatially homogeneous,

effectively treating the zone as a perfectly stirred reactor; (2) mass exchange occurs

with the external environment at a rate of kflow. The introduction of this mass

exchange term marks a key distinction from the equations discussed in Chapters 2

and 3, where the system was previously assumed to be closed. Here, the model is

extended to an open system, allowing for interactions with its surroundings [58].

dC̄i

dt
= Ri + kflow(C

up
i − C̄i) (4.1)

Eq. (4.1) describes the temporal evolution of the average concentration C̄i of

species i in a reaction zone within the venous system. The term Ri accounts for

the biochemical reaction rates. The second term, kflow(C
up
i − C̄i), represents the

transport of species into and out of the region due to blood flow, where Cup
i is the

upstream concentration, and kflow is the mass transfer coefficient governing exchange

dynamics. Mass balance of the reaction zone requires:

V (t+ dt)C̄i(t+ dt)− V (t)C̄i(t) = Q+Cup
i dt−Q−C̄idt (4.2)

where V (t) is the volume (in m3) of blood in the zone at time t, and C̄(t) is

the average concentration of the species (in mol/m3). The terms Q+, and Q−,

denote the inflow and outflow flow rates (in m3/s) across the boundary between the

zone of interest and the rest of the vein respectively (see Figure 4.2). From mass

conservation, it is clear that

Q+ = Q− +
dV

dt
(4.3)

To first order deviation, Eq. (4.2) is equivalent to:

dV C

dt
= Q+Cup

i −Q−C̄i (4.4)

Then inject (4.3) into (4.4), the rate of change of average concentration in reaction

zone is:
dC̄i

dt
=

Q+

V
(Cup

i − C̄i) (4.5)
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Eq. 4.5 defines the mass transfer in the (bottom) zone of the sinus of venous valves.

Then consider the source term of the chemical reaction:

dC̄i

dt
= Ri +

Q+

V
(Cup

i − C̄i) (4.6)

Compare Eq. 4.1 and Eq. 4.8:

kflow =
Q+

V
(4.7)

Figure 4.2: Schematic of venous valves with notations used in section 4.2.1. Modified

from [12]. Reaction zones of venous leaflets enclosed by the vein walls, leaflets and

dashed black lines. V: Represents the volume of blood flow in the venous valve region.

Q+: The inflow rate into the venous valve region. Q−: The outflow rate from the

venous valve region. Cup: The concentration of species in the incoming blood flow.

C̄: The concentration of species in the reaction zone.

These formulas are based on the assumption that the reaction zone is relatively

small and well-mixed where spatial gradients are negligible. This simplification

allows for a single averaged concentration C̄i rather than a full spatially dependent

reaction-diffusion model. Additionally, venous valves and vein wall motions induce

periodic variations in blood flow, which contribute to the homogenization of species

concentrations, making the assumption of a well-mixed zone more reasonable.
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4.2.2 3D Fluid-Structure Interaction (FSI) Simulation for

Venous Valves and mass transfer coefficient kflow

In the studies conducted by Thibaud et al. [13, 132], a three-dimensional model of

a venous vein with valves designed based on experimental anatomical observations

was simulated under physiologically relevant conditions. Blood was modeled as an

incompressible Newtonian fluid governed by the Navier–Stokes equations, while the

valve leaflets were treated as deformable hyperelastic solids. The fluid–structure

interaction (FSI) simulations were carried out using the YALES2BIO solver suite. A

partitioned and body-fitted scheme was employed to couple fluid and solid domains.

Interface conditions were imposed using a Dirichlet–Neumann boundary condition,

and convergence was accelerated with Aitken method.

Figure 4.3 illustrates the axial velocities of 3D simulations from [13] capturing

the flow dynamics at key time points throughout a single cycle. At the start of the

cycle (t = 0.01 s, panel a), the valve leaflets are fully closed, effectively preventing

retrograde flow. The velocity remains minimal, with low-velocity recirculation

zones forming within the sinus region. As forward flow increases (t = 0.1 s, panel

b), the valve begins to open, and small regions of increased velocity emerge near

the leaflet tips, marking the initial separation of the leaflets. At t = 0.5 s (panel

c), the valve reaches its fully open state, allowing maximum axial velocity in the

center of the vessel, as indicated by the strong red region. The sinus region exhibits

distinct recirculating vortices due to localized flow separation. As the inflow starts

to decrease (t = 1.0 s, panel d), the velocity declines, and the valve leaflets gradually

move back toward closure, with velocity gradients forming near the closing edges.

By t = 1.2 s (panel e), the valve is almost fully closed, and axial velocity drops

significantly. The cycle nears completion, and the valve returns to its fully closed

state, marking the beginning of a new flow cycle. Figure 4.3 aligns with the valve

dynamics described in Figure 4.1.

To assess the influence of the calf muscle pump on venous valve dynamics, the

inflow boundary condition was modified to a sinusoidal profile with a peak velocity

approximately twice that of the bed-rest configuration. The geometric parameters of

the vein model included a valve diameter of 10 mm, a uniform leaflet thickness of 70

µm, a sinus length equal to one valve diameter, and a sinus depth of 1.2 times the

vessel radius.

As defined in Figure 4.2, a boundary (dashed line) is needed to enclose the

reaction zone. This region is identified as high-risk due to local flow stagnation and

biochemical accumulation observed in artificial valve experiments.
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(a)

(b)

(c)

(d)

(e)

Figure 4.3: Axial velocity distributions at different time points illustrating the

venous valve cycle. The snapshots correspond to distinct phases of the cycle: (a)

fully closed at t = 0.01 s, (b) early opening at t = 0.1 s, (c) fully open at t = 0.5 s,

(d) transition to closure at t = 1 s, and (e) nearly closed at t = 1.2 s. The color scale

represents axial velocities, with red indicating high forward flow and blue representing

low or reversed flow. This analysis is based on Thibaud’s PhD thesis work [13].
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The selection of the boundary of reaction zone is based on experimental

observations from Figure 4.4a in simulation. According to the observation, thrombus

formation is primarily localized from the bottom of the sinus to approximately 25%

of its depth in an artificial venous valve system. By setting the boundary at 25%

depth, the simulation focuses on the region where clotting is most likely to initiate

and progress, as observed in the experiment. If the boundary is placed farther from

the sinus, the mass transfer coefficient kflow increases due to a larger exchange

surface with the surrounding blood flow. Conversely, selecting a boundary closer to

the sinus could decrease the mass transfer coefficient, as almost no flow exist at the

extremely bottom.

As in Eq. 4.7, the computation of the mass transfer coefficient kflow requires

values for Q+ and V , which are derived from 3D fluid-structure interaction (FSI)

simulations conducted by Thibaud et al. [132, 13]. From these 3D FSI simulations,

the inflow rate (Q+) and local volume (V ) were extracted by Paraview to quantify

the mass transfer coefficient. Figure 4.4b shows how the boundary defines the control

volume in this chapter.

In Figure 4.5, the mass transfer coefficients were measured according to 3-D

simulations under theses conditions are exhibited. The reduced flow dynamics during

bed rest correspond to a lower mass transfer coefficient kflow, while the dynamics with

muscle pump is more intensive. The red curve demonstrates minimal fluctuations in

no muscle contraction condition, remaining relatively flat over time. Conversely, the

blue curve illustrates the effect of muscle contraction on the dynamic behavior of the

venous valves. The coefficient kflow shows larger and periodic peaks.

4.2.3 Mass transfer efficiency α

The mass transfer between the sinus and the outer flow of fresh blood is characterized

by the kflow coefficient derived above from mass conservation. Moreover, its numerical

values correspond to simplified fluid-structure interactions recently performed by

Thibaud et al. [132, 13]. Assuming that the corresponding time evolution displayed

in Figure 4.5 can be strongly affected by these modeling choices, a prefactor

coefficient α is introduced as in Eq. 4.8 to ease further parametric studies about the

effect of the efficiency of the mass transfers on the thrombin dynamics in the sinus

region:

dC̄i

dt
= Ri + αkflow(C

up
i − C̄i) (4.8)

The function of α can be understood in terms of its effect on venous
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(a)

(b)

Figure 4.4: (a) Scanning electron micrographs of various sections (increasing

magnification from left to right) of the Vein-Chips after thrombus have formed.

thrombus are rich in fibrin and red blood cells, devoid of platelets and contain

leukocytes. Scale bars from left to right, 100, 50, 10, and 5 µm. Adapted from

[14]. (b) The boundary (red line) of the control volume (hatched area) in Paraview.
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Figure 4.5: The influence of muscle contraction on the parameter k (Computed via

Eq. 4.7) over time. The blue curve represents the system with muscle contraction,

indicating dynamic oscillations of kflow under blood flow driven by muscle activity.

The red curve, representing the system without muscle contraction.

hemodynamics. For example, when α = 0, the transport term vanishes mimicking a

condition where venous valves lose their normal function. When α > 0, the transport

mechanism is active, allowing for a controlled inflow and outflow of biochemical

species. Greater α values mimick situations where the mass exchange between the

inner and outer regions are larger, e.g. because of stronger valve motion.

4.2.4 Chemical schemes

Platelets play a less important role in DVT compared to the arterial system. Unlike

arterial thrombi, which are characterized by vast platelet aggregates, venous thrombi

lack such structures [133]. Instead, fibrin cross-linking forms large fibrin strands that

entangle blood cells, resulting DVT. Consequently, the chemical model excluding

platelets and proposed by Butenas et al. [15], as shown in Table 2.1, is used as a

first step. On the other hand, activated platelets support coagulation by expressing

elevated levels of phosphatidylserine (PS) on their surface, a key marker of platelet

activation [134]. However, in the venous system, platelets do not aggregate or

adhere to the endothelium. As illustrated in [133], platelet membrane coagulation

influences both the tenase complex (comprising factor IXa and cofactor VIIIa) and
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the prothrombinase complex (comprising factor Xa and cofactor Va). Consequently,

a coagulation model developed by Susree et al. [16] that incorporates the surface

binding sites of platelets is employed as an alternative to the model of Butenas et

al. [15]. In this model, platelets neither adhere to the endothelium nor aggregate

with each other, reflecting the physical principles underlying DVT formation. The

scheme is displayed in Tables 4.1 and 4.2, in which AP stands for activated platelets

and PL represents inactivated platelets. APi represents the competitive biding sites

of the coagulation factors on the surface of a platelet. For example, AP5 stands for

number of biding sites of factor V on an activated platelet.

Table 4.1:: Reactions of the coagulation cascade platelets-based model [16].

Reaction k1
(nM−1s−1)

k−1

(s−1)

kcat
(s−1)

PL +AP −−→ 2AP 0.3

PL + IIa −−→ AP+ IIa 0.37

TF + VII←−→ TF––VII 3.2× 10−3 3.1 ×
10−3

TF+VIIa←−→ TF––VIIa 0.023 3.1 ×
10−3

TF––VIIa + VII −−→ TF––VIIa + VIIa 4.4× 10−4

VII + Xa −−→ VIIa + Xa 0.013

VII + IIa −−→ VIIa + IIa 2.3× 10−5

TF––VIIa + IX −−→ TF––VIIa + IXa 243.0 0.26

TF––VIIa + X −−→ TF––VIIa + Xa 450.0 1.15

II + Xa −−→ IIa + Xa 7.5× 10−6

VIIIa −−→ VIIIi 3.7× 10−3

Va −−→ Vi 2.8× 10−3

I + IIa −−→ Ia 3160 59

IX/IXa + AP9 ←−→ IXm/IXam 0.01 0.0257

IXam+VIIIam←−→ VIIIam––IXam 0.01 0.005

X/Xa + AP10 ←−→ Xm/Xam 0.029 3.3

Xm+VIIIam––IXam −−→ Xam+VIIIam––IXam 63 8.33

Xam+Vam←−→ Vam––Xam 0.4 0.2

II/IIa + AP2 ←−→ IIm/IIam 0.01 5.9

IIm + Xam––Vam −−→ IIam + Xam––Vam 1060 22.4

VIII/VIIIa + AP8 ←−→ VIIIm/VIIIam 4.3× 10−3 2.1 ×
10−3

VIIIm + IIam −−→ VIIIm + IIam 200 0.9
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Table 4.1:: (continued)

Reaction k1
(nM−1s−1)

k−1

(s−1)

kcat
(s−1)

VIIIm + Xam −−→ VIIIm + Xam 20 0.023

V/Va + AP5 ←−→ Vm/Vam 0.057 0.17

Vm+ IIam −−→ Vm+ IIam 71.7 0.23

Vm+Xam −−→ Vm+Xam 10.4 0.046

ATIII + Xa −−→ ATIII + Xi 3.06× 10−6

ATIII + IXa −−→ ATIII + IXi 2.22× 10−4

ATIII + IIa −−→ ATIII + IIi 1.79× 10−4

ATIII + TF––VIIa −−→ ATIII + TF––VIIi 4.5× 10−8

TFPI + Xa←−→ Xa––TFPI 4.381 5.923 ×
10−8

Xa––TFPI + TF––VIIa←−→ Xa––TFPI + TF––VIIi 0.05

Table 4.2:: Concentration of coagulation factors, platelets and the number of biding

sites in the platelets-based model. The binding sites are listed as the count on per

activated platelet [16].

Clotting Factors (nM)

ATIII I II IX TF TFPI VII VIII V X

3400 7000 1400 90 0.025 2.5 10 0.7 20 170

Platelets and the binding sites.

PL P2 P5 P8 P9 P9a

0.415 nM (2.5× 105/µl) 2000 2700 750 250 550
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4.3 Results

4.3.1 Thrombin generation in venous valves

Using the platelets-free model

The thrombin generation in Figure 4.6 illustrates the differences between scenarios

with and without muscle contraction using the platelet-free model under three

conditions: (i) no inhibitors (Both the initial concentrations of ATIII and TFPI

were set to 0), (ii) ATIII inhibition only (The initial concentration of TFPI was

set to 0.), and (iii) both ATIII and TFPI inhibition. Notably, the results show

negligible differences among these three conditions, suggesting that the strong mass

transfer effect dominates the system. In Figure 4.6a, muscle contraction introduces

cyclic flow conditions that lead to oscillatory thrombin dynamics, reflecting periodic

increases and decreases in thrombin concentration. In contrast, Figure 4.6b shows

thrombin dynamics without muscle contraction, where thrombin steadily oscillate

around 0 nM similarly. This indicates no significant risk of clot formation, as 2 nM

thrombin appears to be an threshold concentration to initiate fibrin clot formation

in a flowing system [135].

(a) (b)

Figure 4.6: Comparison of thrombin generation with and without muscle contraction

using the no-platelets model in Table 2.1. (a) Thrombin generation dynamics under

the influence of muscle contraction. (b) Thrombin generation dynamics without

muscle contraction.
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Using the platelets-based model

The results in Figure 4.7 illustrate the dynamics of thrombin generation and

platelet activation under conditions with and without muscle contraction using the

platelets-based model. Figure 4.7a represents thrombin generation without muscle

contraction. In the absence of inhibitors, thrombin levels rapidly reach peak at

approximately 1400 nM within 180 s, indicating an unregulated coagulation process.

With ATIII alone, the peak thrombin levels are significantly reduced to around 300

nM, occurring at approximately 300 seconds. The combination of ATIII and TFPI

further significantly delays thrombin generation.

In contrast, Figure 4.7c illustrates thrombin generation in the presence of muscle

contraction. Compared to the no-contraction case, thrombin initiation is significantly

delayed, occurring at approximately 220 seconds in the absence of inhibitors, with a

peak concentration reaching about 1350 nM. The presence of ATIII further prolongs

the initiation time around 340 seconds reducing the peak thrombin concentration

to around 1000 nM. When both ATIII and TFPI are included, the delay becomes

even more pronounced, with thrombin generation beginning at 580 seconds and the

peak concentration decreasing to 890 nM approximately. These results highlight the

strong regulatory role of inhibitory mechanisms under muscle contraction conditions.

Platelet activation dynamics, shown in Figures 4.7b and 4.7d, parallel the

thrombin trends. Without muscle contraction (Figure 4.7b), the fraction of activated

platelets (= all the platelets are activated) reaches 1 rapidly within 50 s in the

absence of inhibitors. With ATIII, the activation fraction reaches at peak after 100

s, while the addition of TFPI reduces the fraction to around 0.3 after 25 s and allows

another increasing to 1 from 150s to 250s. In the presence of muscle contraction

(Figure 4.7d), platelet activation is slower, with peak fractions reaches 1 around

300 seconds without inhibitors and the oscillation is very large. For ATIII alone,

the fraction extenda 0.3 after 380s, and with both ATIII and TFPI, the maximum

fraction remains below 0.1 before 550s time.

4.3.2 Effects of anticoagulant drugs

Anticoagulant drugs can help prevent or treat DVT when normal natural inhibitors

work improperly. Because the components of venous thrombosis is fibrin intead of

platelets plug, anti-platelet therapy is not commonly prescribed in the treatment

of (recurrent) Venous Thrombo-Embolism (VTE), and anticoagulant drugs are

more effective in combatting the disease [43, 6]. Fondaparinux (Fpx) is a typical

anticoagulant drug used in venous thrombosis, acting on Xa [6]. The inhibitory
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(a) (b)

(c) (d)

Figure 4.7: Comparison of thrombin generation under different conditions with

and without muscle contraction using the platelets-based model. The model used

is described in Table 4.1. (a) thrombin generation without muscle contraction; (b)

platelets activation without muscle contraction; (c) thrombin generation with muscle

contraction; (d) platelets activation with muscle contraction.
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effects on thrombin generation in the valve was evaluated computationally. The

simulations focused on the platelets-based model (Table 4.1) and the mechanism

concerning Fpx is given in Table 2.15.

Figure 4.8: Comparison of thrombin generation between scenarios with and without

Fpx. No muscle contraction and natural inhibitors function normally.

Figure 4.8 compares thrombin generation under two scenarios: with and without

Fpx, regulating by natural inhibitors (ATIII and TFPI). In the presence of Fpx (100

nM), thrombin generation is completely suppressed, as indicated by the red curve.

Without Fpx, thrombin generation begins before 250 seconds, with a rapid increase

in concentration and oscillatory behavior, reaching peaks near 280 nM.

Notably, Fondaparinux (Fpx) primarily delays the initiation of thrombin

generation rather than directly inhibiting its production, as modeled using the Fpx

schemes outlined in Table 2.15. As shown in Figure 4.9, the time to 2 nM thrombin

increases significantly with rising Fpx concentrations under respiratory-driven flow

conditions (black line). This delay results from the anticoagulant effect of Fpx, which

enhances the inhibition of factor Xa via its interaction with antithrombin (ATIII).

However, this effect diminishes when the muscle pump is active. As indicated by

the red line in Figure 4.9, thrombin generation time remains largely unchanged

despite increasing Fpx concentrations, suggesting that the enhanced flow dynamics

associated with muscle contraction override the anticoagulant’s effect.
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Figure 4.9: Effect of Fpx concentrations on time to 2 nM thrombin (initiation of

thrombin),under blood flow driven by respiratory (black line with circle) and muscle

(red line with triangle) pumps.
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4.3.3 Effect of the efficiency of the mass transfer α on

thrombin generation

Figure 4.10 provides insights into the effect of α on thrombin-related properties,

comparing models with and without platelets. For the average thrombin

concentration (Figures 4.10a and 4.10b), the no-platelets model shows a relatively

(not absolutely) sharp decline in thrombin concentration as α increases, with

concentrations approaching negligible levels beyond α = 0.6. In contrast, the

platelet-based model exhibits an increasing trend, with thrombin concentrations

reaching approximately 400 nM at α = 1.4. The time to steady-state oscillation

(Figures 4.10c and 4.10d) reveals different dynamics as well. In the no-platelets

model, the time to steady-state rapidly decreases with increasing α, which means

the thrombin generation reaches steady-state faster under stronger flow. Conversely,

in the platelet-based model, the time initially decreases for α < 0.4, then sharply

increases to approximately 400 seconds at α = 0.6 before plateauing. Regarding

the amplitude of steady-state oscillations (Figures 4.10e and 4.10f), the no-platelets

model shows a relatively (not absolutely) rapid decline in oscillation amplitude

with increasing α, with the absolute amplitudes nearing zero. On the other hand,

the platelet-based model demonstrates a steady increase in oscillation amplitude,

reaching an amplitude above 90 nM at α = 1.5.

The opposite behaviors under varying α can be attributed to the fundamental

differences in how thrombin generation and regulation occur in the presence and

absence of platelets. In the platelets-free model, thrombin concentration declines

with increasing α due to the enhanced transport effect, which results in the rapid

washout of clotting factors. Beyond α = 0.6, thrombin concentrations approach

negligible levels because the reactants are mostly flushed out once entering the

reaction zone. In contrast, the platelet-based model shows an increasing thrombin

concentration with α due to the crucial role of platelets in amplifying coagulation.

Platelets provide a surface for procoagulant reactions, particularly the assembly of

the tenase (IXa=VIIIa) and prothrombinase (Xa=Va) complexes, which significantly

enhance thrombin production. As α increases, moderate transport effects facilitate

the continuous replenishment of clotting factors at the platelet surface without

prematurely washing them away.

4.3.4 Threshold of thrombin activation

Figure 4.11 visually demonstrates how thrombin generation peaks are influenced by

the tissue factor (TF) concentration and the effect coefficient (α). In figure 4.11a,
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No platelets Platelets-based

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Effect of α on various thrombin-related properties in the platelet-

free platelets (left column) and the platelet-based model (right column); blood flow

is driven by the respiratory pump. (a) Average thrombin concentration vs α for

the no platelets model. (b) Average thrombin concentration vs α for the platelet-

based model. (c) Time to steady-state oscillation for the no platelet model. (d)

Time to steady-state oscillation for the platelet-based model model. (e) Amplitude

of oscillation vs α for the no platelet model. (f) Amplitude oscillation vs α for the

platelet-based model. 116
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(a) (b)

Figure 4.11: Contour representing the peak thrombin generation (nM) as a function

of tissue factor (TF) concentration and the effect coefficient (α). The filled contours

indicate the peak thrombin values, while the dashed red line marks the threshold of 2

nM thrombin generation. Specific points (TF = 0.001 nM, α = 0 (Point 1), 0.1 (Point

2), 1 (Point 3), 1.5 (Point 4)) are highlighted since they correspond to simulations

discussed in previous sections. under blood flow (a) driven by respiratory pump; (b)

driven by calf msucle pump.

the filled contours represent the peak thrombin values across these parameters under

blood flow driven by respiratory pump. The dashed red line specifically indicates

the 2 nM threshold for thrombin generation, which serves as a critical marker for

substantial clot formation. Figure 4.11b illustrates the peak thrombin concentrations

under blood flow conditions driven by the muscle pump. Compared to Figure 4.11a,

the red dashed line representing the 2 nM threshold shifts downward, indicating

a reduced region where thrombin concentrations exceed 2 nM. This suggests that

muscle pump activity decreases the probability of thrombin initiation. Additionally,

the yellow region, which corresponds to peak thrombin values above 10 nM, is

moderately smaller, also indicating the inhibitory effect of muscle pump on thrombin

accumulation and clot formation. Four distinct points are labeled on the plot to

represent specific parameter sets corresponding to simulations discussed earlier.

Point 1 (TF = 0.001 nM, α = 0) relates to the original model in a closed system.

Point 2 (TF = 0.001 nM, α = 0.1) and Point 4 (TF = 0.001 nM, α = 1.5) are

conditions explored in left column (No platelets) in Figure 4.10. Point 3 (TF =

0.001 nM, α = 1) pertains to the thrombin generation in Figure 4.7a. These points

emphasize the interplay between chemical stimulus (TF concentration) and effect

coefficient (α), showcasing how variations in these parameters can dramatically

affect thrombin production.
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4.4 Conclusions

A simple 0-D model for coagulation in venous leaflets was developed and used in

this chapter, using a mass transfer coefficient measured from results of 3-D model

to mimick the exchanges between the sinus region and the outer flow on the first

hand, and two different coagulation models for assessing the thombin dynamics on

the other hand. Notably, since valve dysfunction is one of the primary contributors

to deep vein thrombosis (DVT), modeling abnormal valve behavior is essential.

However, this aspect is not addressed in the present thesis due to the lack of relevant

and sufficient 3D simulation data.

The oscillations observed in Figure 4.6 indicate a regulatory effect of flow

that prevents the over-accumulation of thrombin. The maximum thrombin values

remain close to zero throughout the simulation, indicating that according to the

platelet-free model, there is no significant risk of DVT as long as the venous valves

are functioning properly and the TF level is normal.

Figure 4.7 underscores the critical impact of hemodynamic factors (effect

coefficient; muscle contraction) on thrombin generation and platelet activation

dynamics in platelet-based model. Muscle contraction slows and reduces thrombin

generation and platelet activation in Figure 4.7, indicating its potential protective

role against hypercoagulation. In addition, inhibitors not only lower thrombin levels

and activation fractions but also delay the timing of these processes.

For clinical application, Fpx suppresses thrombin generation under normal

conditions where natural inhibitors (ATIII and TFPI) are functional without muscle

pump, demonstrating the value of this model in simulating DVT treatment (Figure

4.8).

In Figure 4.10, the effects of α on thrombin generation are carefully analysed.

The results show that α may has different effects for different models, indicating

that the selection of models is critical for simulation as well. In the platelet-free

model, increasing α leads to a suppression of thrombin generation, a reduction in

oscillation amplitude, and a faster convergence to steady-state conditions. This

behavior can be attributed to the fact that a higher α value enhances the removal

of activated coagulation factors and intermediate complex from the reaction zone,

thereby limiting the accumulation of thrombin and other procoagulant species. As a

result, thrombin production is significantly reduced, and the system stabilizes more

rapidly.

Unlike the platelet-free model, thrombin formation in the platelet-based model

shows a growing trend with increasing α. Thrombin concentration initially increases
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as α rises from 0 to 1.5 due to the greater availability of platelet surface binding

sites, which facilitate the assembly of procoagulant complexes and enhance localized

thrombin production. In parallel, the delay time, defined as the period required to

reach a critical thrombin concentration, decreases with α because increased transport

accelerates the supply of clotting factors to the platelet surfaces, reducing the time

needed to initiate coagulation. These findings highlight the critical role of transport

dynamics in thrombosis, demonstrating that while increasing α suppresses thrombin

generation in the platelet-free model, it enhances coagulation in the platelet-based

model by improving reactant availability at platelet surfaces. The opposite trends

indicate the 0-D model is a swift approach to assess coagulation models’ practicality.

In Figure 4.11, the clear gradient underscores the sensitivity of thrombin

generation to both the chemical stimulus and the effect coefficient. The findings

provide predictions and insights into the mechanistic understanding of thrombin

generation, which inform thrombotic risk.
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Chapter 5

Conclusions and perspectives

This chapter is a summary of this thesis. Perspectives are concluded based on the

results as well.

5.1 Main results

5.1.1 Chapter 2

In this thesis, The question:”How well can a coagulation model be fitted?” is

answered. A comprehensive approach to optimizing coagulation models is presented,

focusing on understanding the complexity of the models landscapes and identifying

global minima. A key finding is that the complexity is significantly influenced by

the number of variables, their selection and loss functions, even when the model

structure and reactions remain unchanged.

Through the application of classical gradient-based optimization methods, it

was observed that these algorithms often struggle to escape local minima, especially

in complex landscapes. To overcome this challenge, a hybrid optimization strategy

was developed, combining gradient-based methods with evolutionary strategies such

as CMA-ES. This two-step approach was shown to be effective in navigating complex

landscapes, ultimately leading to the identification of global minima.

The optimization was applied to various practical scenarios, highlighting both its

strengths and limitations. When targeting experimental data, optimization with and

without rate constant adjustments showed that while optimizing concentrations alone
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provided moderate improvements, including rate constants yielded better alignment

with experimental results. Under hemophilia A conditions, the models captured

thrombin generation from experiment data at varying Factor VIII levels, yet the gaps

in accuracy indicated limitations in current model structures. For anticoagulation

therapy with a fixed Fondaparinux (Fpx), the optimized models performs similarly.

Multi-species optimization revealed that while improvements were achieved for VIIa,

the dynamics of thrombin and Xa remained largely unsatisfactory. This suggests

that the typical models used in this paper cannot perfectly reflect the dynamics of

multiple species at the same time.

5.1.2 Chapter 3

The multi-stage reduction strategy developed in this thesis for coagulation models

has been successfully validated for both the extrinsic and intrinsic pathways. By

utilizing a combination of Direct Relation Graph with Error Propagation (DRGEP),

lumping techniques, the Quasi Steady State Assumption (QSSA), and conservation

analysis, this approach has proven highly effective in significantly reducing the

complexity of detailed coagulation models while preserving their dynamic accuracy.

When applied to both the extrinsic and intrinsic pathways models, the reduction

approach simplified the models significantly. This reduced versions retained the core

dynamics of thrombin generation and exhibited robust performance across varying

factor VIII levels, which is essential for simulating conditions like hemophilia.

This consistency validates the method’s applicability and reliability. These results

demonstrate the effectiveness of the multi-step, physics-informed reduction strategy

in simplifying complex coagulation models while ensuring they remain accurate and

robust for clinical applications.

5.1.3 Chapter 4

This chapter explored the dynamic interactions between blood flow and clotting

factor concentrations within the sinus leaflets using a 0D under-flow model, revealing

the impacts fo different factors on thrombin generation. It provides a detailed

characterization of how changes in hemodynamics influence the temporal profiles

of thrombin, offering valuable insights into the conditions under which thrombosis

might occur. In this chapter, the role of platelets was also investigated. The analysis

shows that platelets significantly impact the coagulation process by supporting

thrombin generation through surface interactions. Additionally, it was found
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that the combination of stimulus and the transport coefficient has a threshold

that must be surpassed to generate considerable thrombin levels, indicating the

interplay between biochemical and physical factors in coagulation. Furthermore,

the functions of natural inhibitors, such as ATIII and TFPI, and anticoagulant

drugs, like Fondaparinux, were analyzed. These inhibitors and drugs effectively

modulate thrombin generation and prevent unregulated coagulation, demonstrating

the values of numerical simulations in therapeutic applications. These findings

not only enhance the understanding of valve mechanics and thrombin generation

dynamics but also help potential pathways to optimize DVT treatment.

5.1.4 Summary

In conclusion, this thesis advances the computational modeling of the coagulation

cascade. First, a novel hybrid optimization framework combining gradient-based

and evolutionary algorithms was developed to overcome the challenge of complex

landscapes. Second, a multi-step model reduction strategy was proposed to simplify

coagulation networks without sacrificing predictive accuracy, enhancing both

interpretability and computational efficiency. Finally, a 0-D thrombosis model of

venous valves incorporating transport effects was derived from 3-D FSI simulations.

This approach provides a new framework for simulating clot formation under flow,

offering insights into the hemodynamic regulation of thrombosis. Moreover, Chapters

2 and 3 lay the methodological groundwork for the applications explored in Chapter

4. The reduced models and well-tuned parameters from earlier chapters can used to

simulate clotting under flow conditions informed by 3-D FSI data.

Nevertheless, this work still has some limitations to be overcome. Firstly, the

current optimization framework focuses only on tuning the initial concentrations

of clotting factors. However, other parameters, particularly kinetic rate constants

are also influential. Secondly, while the reduced models developed in this thesis

have demonstrated strong performance in closed systems, they have not been

systematically validated in open systems such as flowing blood environments.

Thirdly, the 0-D thrombosis model assumes only ideal venous valve function. In

reality, valve dysfunction plays a critical role in DVT development.
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5.2 Perspectives

5.2.1 Optimization framework to include kinetic parameters

By allowing kinetic parameters to vary within physiological ranges, the model could

better simulate individual patient responses to coagulation stimulus, inhibitors and

treatments. This optimization would also enable the development of more accurate

models under different conditions. In the practice of this thesis, we found that

optimization with more freedom yields better results, as rate constants are also

patient-specific. However, implementing such an approach is challenging. These

parameters are difficult to measure and validate directly, and the inclusion of too

many parameters introduces catastrophic complexity, making the optimization

process computationally intensive and prone to uncertainties. Further research

and advancements are needed to address these challenges, enabling the effective

incorporation of kinetic parameter optimization into clotting factors.

5.2.2 Integration with machine learning

The integration of coagulation models with machine learning (ML) algorithms

presents significant opportunities to enhance both the predictive and practical

utility of these models. By combining patient datasets with ML algorithms, it

becomes possible to incorporate parameters that are traditionally difficult to model

mathematically, such as age, gender, smoking status, and other lifestyle factors.

This allows for a more comprehensive understanding of patient-specific coagulation

dynamics and the prediction. Additionally, ML can address challenges posed by

chemical stiffness in complex 2-D or 3-D reaction-diffusion-advection equation

models. These models often face computational difficulties due to the wide range

of reaction timescales. ML-based techniques, such as surrogate modeling or neural

networks, can be used to approximate the solutions of stiff equations, significantly

optimize time steps while for simulation.

5.2.3 Model reduction under flow

Hemodynamics play a critical role in coagulation processes, as discussed in Chapter

4. Future work could explore whether reduced-order models of 0D models under

flow are more suitable for integration with CFD than reduced-order models of 0D

in closed systems. By incorporating hemodynamic effects, such as shear rates and
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flow-induced transport of biochemical species, reduced models could better represent

real-life cases. This approach would be significant for studying thrombus formation

in complex geometries, such as venous valves or heart. Coupling these reduced

models with computational fluid dynamics (CFD) simulations would enable efficient

and accurate predictions of clotting behavior under different flow conditions.

5.2.4 Patient-specific modeling

While most patient-specific coagulation models researches emphasize on spatial

specificity, such as the localization of thrombus formation, there is an increasing need

to focus on temporal specificity. Real-time data integration is an example of this

approach, where dynamic information, including blood coagulation profiles, platelet

counts, and clotting factor levels, is continuously monitored through wearable devices

or laboratory systems. Incorporating temporal variability allows models to reflect

patient-specific changes over time, such as the evolution of coagulation dynamics

during treatment or after surgical interventions.
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[31] Ovilla R, Pérez F, Alvarez J, and Alvarado M. Hemophilia: review of the past

and present. Hematology & Transfusion International Journal, 12:56–62, 08

2024.

[32] David Kumar, Erin Hanlin, Ingrid Glurich, Joseph Mazza, and Steven Yale.

Virchow’s contribution to the understanding of thrombosis and cellular biology.

Clinical medicine and research, 8:168–72, 12 2010.

[33] Kerry Hitos, Mary Cannon, Stephen Cannon, Simon Garth, and John P

Fletcher. Effect of leg exercises on popliteal venous blood flow during prolonged

immobility of seated subjects: implications for prevention of travel-related deep

vein thrombosis. Journal of Thrombosis and Haemostasis, 5(9):1890–1895,

2007.

[34] Peter Gloviczki and Monica L Gloviczki. Legs are a pathway to the heart:

connections between chronic venous disease and heart failure. European Heart

Journal, 42(40):4166–4168, 2021.

[35] Alexander GG Turpie. Venous thromboembolism: pathophysiology, clinical

features, and prevention. BMJ, 325(7369):887–890, 2002.

[36] Peter Libby. Inflammation and atherosclerosis. Circulation, 105(9):1135–1143,

2002.

[37] Russell Ross. Atherosclerosis—an inflammatory disease. New England Journal

of Medicine, 340(2):115–126, 1999.

[38] Björn Dahlbäck. The discovery of activated protein c resistance. Journal of

Thrombosis and Haemostasis, 86(1):13–20, 2001.

[39] Ka Leung Chan and Cheuk Man Cheng. Hormonal contraceptives and venous

thromboembolism: mechanisms, risks, and risk factors. Thrombosis Research,

100(3):157–165, 2000.

[40] Benjamin Rack, Brigitte Schlieter, and Stefan Janes. Cancer-associated

thrombosis. Thrombosis Research, 114(3):201–207, 2004.

[41] Armando Tripodi. Thrombin generation assay and its application in the

clinical laboratory. Clinical Chemistry, 62(5):699–707, 05 2016.

130



REFERENCES

[42] Meera Chitlur, Geoff Rivard, and David Lillicrap. Thrombin generation

assay: A powerful tool in the laboratory monitoring of von willebrand disease.

Haemophilia, 18(3):307–314, 2012.

[43] Lana A Castellucci, Chris Cameron, Grégoire Le Gal, Marc A Rodger, Doug
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