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Résumé
Les globules rouges (GR dans ce résumé ou RBC en anglais, pour Red Blood Cell)
sont les cellules les plus nombreuses dans le sang des vertébrés [151]. Dans le cas
particulier du sang humain, les GRs représentent environ 45% du volume sanguin
chez l’homme et 35-40% du volume sanguin chez la femme.
Dans le sang, les cellules sont en suspension dans le plasma, qui occupe la
majeure partie du volume restant. Le plasma est principalement composé d’eau
(à approximativement 90%) et contient jusqu’à 10% de protéines, et d’autres
molécules jusqu’à 1 ou 2%. Enfin, environ 1% du volume sanguin est occupé par
d’autres cellules sanguines, les globules blancs et les plaquettes.

Le volume sanguin moyen pour un adulte est d’environ 5 L. A raison d’environ
50 milliards de GRs par litre de sang, le nombre de GRs est d’approximativement
25 ×1012 chez l’adulte, ce qui fait du globule rouge la cellule la plus présente (de
l’ordre de 80-90%) dans l’organisme.
Un GR sain a la forme d’un discocyte (Fig. 1). C’est la forme au repos du GR, ie

Figure 1: Un globule rouge dans sa forme en discocyte. Crédit : Science Picture
Co Collection Mix: Subjects Getty Images.

lorsque la cellule sanguine n’est pas sous flux. Il s’agit typiquement d’une forme
biconcave à symétrie de révolution. En 1972, Evans et Fung [45] ont caractérisé
la géométrie des GRs sur un échantillon de 50 GRs, à l’aide d’un microscope
interférentiel. En moyenne, ils ont trouvé que les GRs ont un diamètre de 7, 82 µm
pour un volume de 94 µm3, dans des conditions isotoniques. La surface de la
membrane mesure environ 135 µm2. Cette géométrie varie en fonction du globule
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rouge étudié, de la personne dont il est issu, mais également en fonction du milieu
extérieur dans lequel les GRs sont suspendus.

Les globules rouges jouent de nombreux rôles dans l’organisme. Leur rôle
principal est bien sûr le transport de l’oxygène et du dioxyde de carbone dans
l’organisme. Ce transport s’effectue grâce au liquide interne enfermé dans le GR,
contenant de l’hémoglobine, une molécule transportant un ion de fer permettant
de capter et de restituer l’oxygène. Les globules rouges transportent également le
dioxyde de carbone des tissus aux poumons.
Les globules rouges ont par ailleurs un rôle majeur dans le processus de margination
des leucocytes, ou globules blancs [52] et des plaquettes [92]. La margination
est le phénomène qui tend à pousser les cellules contre les bords des vaisseaux
pour augmenter leur densité près des parois auxquelles elles sont nécessaires pour
participer aux réponses inflammatoires ou de coagulation, par exemple. Enfin,
les globules rouges jouent également un rôle important dans les processus de
thrombose et d’hémostase [92].
La manière dont se déforme le GR, plus précisément la manière dont la membrane se
déforme, est essentielle afin de permettre au GR de jouer son rôle dans l’organisme,
car les échanges gazeux ont lieu dans la microcirculation, où le diamètre des
capillaires est de quelques microns seulement, inférieur donc à celui des GRs au
repos.
Un exemple illustrant les niveaux importants de déformation que les GRs peuvent
subir au sein de l’organisme est le cas du passage des GRs dans la rate. Une
expérience visant à reproduire ces niveaux de déformations a été réalisée par
Gambhire et al. 2017, et est illustrée Fig. 2.

Figure 2: RBC passant à travers un dispositif mimant le passage à travers la
rate. Image reproduite de Gambhire et al. 2017 [64]. Les différentes cellules
représentent le passage d’une seule cellule à différents moments.
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En effet, la rate est un organe contenant des micro-ouvertures pour le passage
des GRs, générant ces niveaux de déformations. Le passage dans la rate peut être
vu comme un test de la bonne santé des GRs. En effet, les GRs ne pouvant pas
se déformer suffisamment pour passer la rate restent bloqués dans la rate et sont
consommés par les macrophages.
Le fait que les GRs ne peuvent pas se déformer suffisamment peut provenir de
plusieurs phénomènes. Les GRs ont une durée de vie d’approximativement 120
jours. Les GRs en fin de vie sont plus rigides, et sont ainsi triés grâce à la rate.
De même, de nombreuses pathologies altèrent la déformabilité des GRs. C’est
le cas par exemple de la drépanocytose, où la polymérisation de l’hémoglobine
désoxygénée peut déformer les GRs jusqu’à prendre la forme une faucille rigide.
C’est aussi le cas de la sphérocytose qui altère certains GRS qui deviennent de
forme quasi-sphérique, ce qui en limite la déformabilité. Il y a donc un lien fort
entre déformabilité des GRs et la santé. Il convient donc d’étudier la manière dont
les GRs se déforment et comment les différentes pathologies altèrent les propriétés
de circulation des GRs.

L’étude de la déformations des GRs a d’abord été expérimental. Ainsi, de
nombreuses expériences visant à solliciter les GRs selon certains modes de dé-
formation ont été développés. Pour n’en citer que quelques-uns, il existe par
exemple l’expérience de micropipette visant à aspirer une partie de la membrane
d’un GR [45, 46]. Il est possible de relier la force d’aspiration à la quantité de
membrane aspirée, et ainsi obtenir des informations sur le comportement élastique
de la membrane. L’essai de traction par pinces optiques permet également de
mesurer des propriétés élastiques du GR à grande échelle (cellule complète) [75].
Il existe également des expériences visant à étudier le comportement du GR dans
un écoulement fluide cisaillé. C’est le cas de l’ektacytométrie qui quantifie la
déformabilité des cellules par un indice de déformation moyen des GRs dans un
fluide visqueux, avec ou sans variation de l’osmolarité [12, 17].
Depuis les années 70, s’est développée la simulation numérique de la déforma-
tion et de la dynamique des GRs. Elle a permis de donner accès à beaucoup
d’informations inaccessible avec une approche expérimentale. Cette approche a
été permise grâce aux mesures expérimentales permettant d’en apprendre plus sur
le comportement du GR. Cette approche permet d’enrichir les outils disponibles
et de pallier certaines limitations des mesures expérimentales liées, entres autres,
à l’échelle du problème. Les modèles actuels permettent l’étude de GR isolés ou
d’effets de groupes liés à la présence de plusieurs GR dans l’écoulement dans le
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cas des suspensions (voir Fig. 3). L’étude des effets collectifs permet d’aborder les
questions de circulation, de margination, d’hémorhéologie, etc.

(a) (b)

(c) (d)

Figure 3: Différentes images montrant illustrant les effets collectifs dans les
suspensions de globules rouges. (a) Simulation du passage des GRs dans un
réseau représentatif de la microcirculation, images de Balogh et al. (2017) [8].
(b) simulation des GRs et des plaquettes dans un flux cisaillé. Images tirées de
l’ouvrage concernant la diffusion effective de microparticules dans le sang de Liu
et al 2019 [97]. (c) Simulation du train de globules et comparaison avec la photo
expérimentale. Image extraite du travail d’Iss et al 2019 [81]. (d) Simulation de
l’écoulement de globules rouges et des plaquettes entre les parois d’un canal plan.
Image tirée des travaux sur la margination de Zhao et al 2012 [166].

Cependant, les modèles numériques utilisés doivent être suffisamment perti-
nents pour pouvoir interpréter des résultats expérimentaux, voire d’être aussi
fiables que l’approche expérimentale. Cela nécessite d’étudier l’ensemble des
aspects du comportement de la membrane dans le but d’améliorer des modèles
numériques et d’augmenter leur domaine de validité.
Parmi les comportements mécaniques de la membrane de GR classiquement
observés, un phénomène reste sous-représenté parmi les modèles théoriques et
numérique : la dissipation dans la membrane elle même. La viscosité de membrane
est associée à comme la dissipation interne provoquée par le frottement interne de
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la membrane lorsque celle-ci se déforme à une certaine vitesse. Ce phénomène a
pourtant été observé expérimentalement depuis les années 70, notamment grâce à
des expériences utilisant la micropipette pour mesurer le retard entre l’application
d’une force et l’atteinte de l’état d’équilibre de la membrane [46, 79]. Plus récem-
ment, des mesures de la dissipation ont été réalisées en fixant une microbille
ferromagnétique à la membrane de GRs et en appliquant un champ magnétique
oscillant afin de solliciter périodiquement la membrane des GRs [135]. Enfin,
des écarts significatifs entre les simulations et les mesures expérimentales ont été
trouvés lors de la reproduction de certains comportements numériquement, et
ont été justifiés par la non prise en compte de la viscosité de membrane dans les
simulations [38]. Il est certain que si la viscosité de membrane des GRs impacte
les comportements du GR isolé, elle peut aussi influencer les phénomènes collec-
tifs en suspension. C’est l’ensemble de ces éléments qui a motivé ce travail de thèse.

La problématique de cette thèse est donc la modélisation de la vis-
cosité de membrane dans les simulations numériques et l’impact de sa
prise en compte sur la dynamique des GRs dans des cas élémentaires
pour lesquels des mesures expérimentales sont disponibles.

Dans un premier temps, une présentation plus complète du cadre scientifique
de cette étude est faite dans le chapitre 1. Il sera détaillé dans ce chapitre plus
d’informations concernant la nature du GR, les différents types de mesure que l’on
retrouve dans la littérature ainsi que les différents types de modèles numériques
existants.

Dans le chapitre 2 sera présenté le cadre physique, introduisant les différents
modèles physiques utilisés dans cette étude. Nous y discuterons à la fois de la
modélisation de partie élastique, classique dans les travaux de modélisation et de
la modélisation de la viscosité de membrane.

Le cadre numérique de cette étude sera présenté dans le chapitre 3. Il s’agira
ici de détailler le modèle utilisé pour les simulations durant cette étude, à savoir le
modèle présent dans le code de calcul YALES2BIO. C’est aussi dans cette partie
que l’implémentation et la validation du modèle numérique de la viscosité de
membrane seront présentées.

Le chapitre 4 regroupe deux études numériques réalisées dans le cadre de
cette thèse utilisant le modèle de viscosité de membrane développé. La première
étude concerne la modélisation d’un comportement particulier du GR dans un
écoulement cisaillé, à savoir le tank-treading. Cette étude purement numérique
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est basée sur des mesures expérimentales provenant des travaux de Fischer et al
[54, 56]. Ce travail a permis la mise en lumière d’un fort impact de la viscosité de
membrane sur le comportement en tank-treading du GR. Elle a également permis
de montrer une reproduction possible des mesures expérimentales en supposant un
modèle de membrane rhéofluidifiante, hypothèse déjà présente dans la littérature.
Cette étude a abouti à la publication d’un article dans le journal Physical Review
Fluids en 2021 [102].

La seconde étude concerne la conception d’une expérience en flux dédiée à la
mesure du comportement visqueux de la membrane des GRs. Il s’agit de l’étude de
l’élongation des globules dans un dispositif d’écoulement en croix. Cette étude a
été réalisée en collaboration avec l’entreprise HORIBA Medical ainsi que le Centre
de Biochimie Structurale (CBS) de Montpellier. Ce travail a permis de mettre
en lumière l’impact important de la viscosité de membrane sur le comportement
des GRs dans ce type de dispositif. Il a permis également la mise en place de la
chaîne de simulation ainsi que les différents outils de traitement nécessaires à la
compréhension du comportement du GR en extension.

Enfin, le dernier chapitre 5 récapitule les résultats majeurs, présente les
limitations du travail et propose plusieurs ouvertures possibles.

xii



Contents

Contents xiii

Chapter 1 Introduction 1
1.1 Red blood cell’s presentation . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 General presentation . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 RBC’s deformability and link with health . . . . . . . . . . 6

1.2 Mechanics and rheology . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Sensitivity of red blood cell dynamics to mechanical parameters . 17
1.4 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Experimental highlighting . . . . . . . . . . . . . . . . . . 20
1.4.2 Impact of the membrane viscosity on the RBC’s dynamics:

What do we know? . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Goal and presentation of this work . . . . . . . . . . . . . 24

Chapter 2 Physical framework 27
2.1 Introduction: a multiphysics problem . . . . . . . . . . . . . . . . 28
2.2 Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Fluid model . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Flow regime . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Inner fluid properties . . . . . . . . . . . . . . . . . . . . . 30

2.3 Red blood cell membrane model . . . . . . . . . . . . . . . . . . . 31
2.4 Modeling the inviscid behavior of the RBC membrane . . . . . . . 33

2.4.1 In-plane behavior: Hyperelasticity . . . . . . . . . . . . . . 33
2.4.2 Curvature forces . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Stress-free shape . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Membrane Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . 35
2.5.1 Physical meaning of the viscoelasticity . . . . . . . . . . . 35

xiii



CONTENTS

2.5.2 Introduction to rheological representation and small strain
viscoelastic model . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Viscoelastic model for the membrane . . . . . . . . . . . . 40
2.6 Non dimensional numbers . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3 Numerical framework 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Flow solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 The Navier-Stokes equations and their time advancement . 49
3.2.2 Space discretization method: Finite Volume Method . . . 50
3.2.3 Variable viscosity . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Fluid-structure interaction: Immersed Boundary Method . . . . . 55
3.3.1 Coupling: General algorithm . . . . . . . . . . . . . . . . . 55
3.3.2 Coupling: Interpolation and Spreading . . . . . . . . . . . 56
3.3.3 In-plane stress: Hyperelasticity . . . . . . . . . . . . . . . 59
3.3.4 From element stress to nodal forces . . . . . . . . . . . . . 60
3.3.5 Curvature forces . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Implementation of the membrane viscosity . . . . . . . . . . . . . 63
3.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Validation: small strain cases . . . . . . . . . . . . . . . . 66
3.4.3 Convergence Zener to Kelvin-Voigt . . . . . . . . . . . . . 69

3.5 Validation: capsule under shear flow . . . . . . . . . . . . . . . . 70

Chapter 4 Application 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Effect of membrane viscosity on tank-treading red blood cells . . . 77

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 Numerical setup and operating points . . . . . . . . . . . . 77
4.2.3 Non-dimensional study . . . . . . . . . . . . . . . . . . . . 80
4.2.4 Dimensional study . . . . . . . . . . . . . . . . . . . . . . 83
4.2.5 Shear-thinning model . . . . . . . . . . . . . . . . . . . . . 86

4.3 Strain experiment: RBCs in an extensional flow . . . . . . . . . . 89
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.2 Design of the extensional flow . . . . . . . . . . . . . . . . 90
4.3.3 Numerical setup and operating points . . . . . . . . . . . . 94
4.3.4 Initial state of the RBC in the crossflow device . . . . . . . 99

xiv



CONTENTS

4.3.5 Experimental case’s preliminary results using tank treading
initial shape and outcomes . . . . . . . . . . . . . . . . . . 100

Chapter 5 Conclusion and perspectives 107
5.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Study at the micro scale of the membrane . . . . . . . . . 109
5.2.2 Study at the macro scale of the membrane . . . . . . . . . 110

Chapter 6 Appendix 113
6.1 Appendix 1: Discretization of operators . . . . . . . . . . . . . . . 114

6.1.1 Laplacian operators . . . . . . . . . . . . . . . . . . . . . . 114
6.1.2 Divergence operators . . . . . . . . . . . . . . . . . . . . . 115
6.1.3 Gradient operator . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 119

xv





C
h
a
p
te

r

1
Introduction

Chapter contents

1.1 Red blood cell’s presentation . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 General presentation . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 RBC’s deformability and link with health . . . . . . . . . . 6

1.2 Mechanics and rheology . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Sensitivity of red blood cell dynamics to mechanical parameters . 17
1.4 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Experimental highlighting . . . . . . . . . . . . . . . . . . 20
1.4.2 Impact of the membrane viscosity on the RBC’s dynamics:

What do we know? . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Goal and presentation of this work . . . . . . . . . . . . . 24

1.1 Red blood cell’s presentation

1.1.1 General presentation

Red blood cells (RBCs in this study) are the most common cells in the blood of the
vertebrates [151]. A representation of the different components in human blood

1



CHAPTER 1. INTRODUCTION

is presented Fig. 1.1. In the specific case of the human blood, RBCs represent
approximately 45% of the blood volume for men and 35-40% of blood volume for
women. Those levels of RBC volume concentration called the hematocrit, are
representative of many species [159]. In the following, the term blood will be used
to refer to human blood et al.l RBC characteristics will refer to human cells. In
blood, cells are suspended in plasma, which occupies most of the remaining volume.
Plasma is mainly composed of water (at approximately 90%) and contains up to
10% of proteins, and other components up to 1 or 2%. Finally, approximately
1% of the blood volume is occupied by other circulating cells, the white blood
cells and the platelets. The average number of RBCs per liter of blood in an
adult is 5.4×1012 for men and 4.8×1012 for women. RBCs are the most present
cells in the organism. Red blood cells are generated in the bone marrow during a
process called erythropoiesis. This process lasts approximately 5 days. During
this process, the red blood cell goes through different phases with each different
shape before reaching the discocyte form. Also, red blood cells are ejected from
the bone’s narrow to the circulation before they reach their well-known mature
shape of a discocyte, a biconcave disk. It takes about 2 days to reach the discocyte
shape once in the circulation [111]. During this phase, in comparison with the cell
present in the bone narrow, they lose their nucleus. Two important specificities of
the red blood cell are that it does not have a nucleus and it is able to deform to
reach all the irrigated areas of the body.
The RBC lifespan is approximately 120 days. Along their lifespan, RBCs age
and progressively rigidify. At some point, they become unable to go through the
spleen, which acts as a filter to remove old/rigid cells from the circulation. Once
stuck in the spleen, cells are ingested by the body to evacuate toxins and to recycle
RBC’s component as well as possible. Some of the RBC degradation products
are stored in the spleen for reuse. Another part of this waste, such as iron, is
sent to the liver to then transmit to the bone marrow to produce hemoglobin,
the internal fluid of RBCs, carrying oxygen [157]. This lifespan corresponds to
about 2.5 million blood cells dying every second. To replace dead cells, the same
number is produced by the body at the same time.

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Representation of the result of a centrifugation of blood. This process
enables to separate the different elements of the blood composition. Picture taken
from Taraconat [154]

1.1.2 Geometry

Figure 1.2: The discocyte shape of a RBC. Credit: Science Picture Co Collection
Mix: Subjects Getty Images.

A healthy RBC has a discocyte shape (Fig. 1.2). It is the resting form of the
RBC, ie when the blood cell is not under flow. It is typically a biconcave form
with symmetry in revolution. In 1972, Evans and Fung [45] characterized the
RBC geometry on a sample of 50 RBCs, using an interference microscope. On
average, they found that RBCs are 7.82 µm in diameter for a volume of 94 µm3, in
isotonic conditions. The area of the membrane measures approximately 135 µm2.
However, those characteristics depend on the individual and can change with the
external medium. For example, the Evans and Fung (1972) highlight the impact
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of the osmolarity of the external medium, as it can be seen Fig. 1.3.

Figure 1.3: Drawing of the RBC average geometrical characteristics for different
osmolarities, from Evans and Fung 1972 [45].

1.1.3 Role

RBCs play many roles in the body. Their main role is of course the transport of
oxygen from the lungs to the various tissues and organs of the body on carbon
dioxyde on their way back. This transport is performed thanks to the internal
fluid enclosed in the RBC, containing hemoglobin, a molecule transporting an
iron ion, making it possible to catch and release oxygen. To ensure the good
oxygen distribution throughout the body, recent research also highlights their role
as chemical sensors-regulators [41, 60]. Indeed, the red blood cells, by releasing
adenosine triphosphate (ATP), a molecule that dilates blood vessels, plays a
fundamental role in meeting local oxygen needs in the body.

RBCs also have a major role in the process of margination of leukocytes, or
white blood cells [52], and platelets [92]. Margination is the phenomenon that
tends to push cells against the edges of vessels to increase their density near walls
where they are needed to participate to inflammatory or coagulation responses, for
instance. Finally, RBCs also play a significant role in the processes of thrombosis
and hemostasis [92]. The deformability of the membrane is essential to allow the
RBC to play its role in the body.
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1.1.4 Membrane

Figure 1.4: Pictures taken from Kim et al. [86]. (a) Cross-sectional view of a
red blood cell with a zoom on the membrane shown in (b), showing the spectrin
network. (c) Schematic of a red blood cell membrane model.

The membrane of RBCs is composed of multiple elements, as it can be seen in
Fig. 1.4 [86]. First, a lipid bilayer at the surface of the RBC ensures the sealing
between the internal medium and the external environment of the RBC. However,
exchanges of water are enabled and controlled by the osmotic pressure. Thereby
the membrane ensures a selective permeability. Its thickness is of approximately 4
nm. However, the external glycocalyx, which regulates the membrane permeability,
can extend to a size of 10 nm [73]. The lipid bilayer is also crossed by proteins
that form little channels inside the bilayer to enable communication between the
two environments. Below this bilayer and linked to it is the cytoskeleton of the
membrane.

The spectrin network, which is linked to the bilayer thanks to multiple proteins
that are anchored in the bilayer, gives rigidity to the membrane. Its organization
can be seen in Fig. 1.4 (b) and (c). The spectin monomers measure 5 nm and the
spectrin molecule is present at approximately 25 copies for a single RBC. The
thickness of the spectrin network is approximately 40 nm [73]. However, those
orders of magnitude of the spectrin network thickness is highly depending on the
membrane deformation [73].

The membrane has multiple roles. First, it ensures that the hemoglobin does
not circulate freely in the body, thanks to the lipid bilayer. Indeed, to catch
oxygen, the hemoglobin contains an iron ion that is harmful for the body.
Then the membrane has for main constraint to ensure the supply of the oxygen
inside every area of the organism. To do so, the cell has to be deformable enough.
In the human body, the circulation network is composed of large vessels where
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RBCs can freely circulate (like the aorta, of a diameter of approximately 2.5 cm),
but also narrow channels. Indeed, capillaries are only a few micrometers large,
which means that RBCs must circulate inside vessels smaller than their diameter
at rest.
Even larger deformations are undergone by the RBCs when they circulate in the
spleen. Indeed, during their passage, the RBCs must be able to deform sufficiently
to pass through openings with an order of magnitude of less than one micrometer.
[61]. Moreover, all RBCs must pass through the spleen multiple times during
their lifespan. A visualization of RBCs passing through devices that mimic the
passage through the spleen can be found in Fig. 1.5, from the work of Gambhire
et al. (2017) [64].
At the end, an RBC undergoes very large deformations, and without its great
deformability, it cannot reach every area in the body and cannot fuel the tissues
with oxygen or being filtered by the spleen.

1.1.5 RBC’s deformability and link with health

The word deformability is an important keyword in the study of the RBC behavior.
However, even if definitions have been given in the literature [23, 115], the concept
is vague. Indeed, we may call deformability the capacity of a body (here a RBC)
to change its shape in response to a stress. The nature of this deformation can
vary (change of area, curvature, shear ...) and it is important to note that in the
literature the term deformability encompasses all these forms of deformation, but
also mixes different types of stresses.
In hemorheological studies, the term deformability is generally associated with the
deformation measured using ektacytometry, by measuring the relative lengthening
of RBCs under shear [16, 17, 120]. The quantity measured is well defined, but
the differences in deformability may come from the cytoplasm or the membrane
of the RBCs, for instance. Another example is the use of the deformability term
are study using Laser Assisted Optical Rotational Cell Analyzer (LORCA) [71].
Indeed, in this context, deformability refers to measurements of the elongation
index and of the mean cell transit times in the device. This shows that, depending
on the context, this term may or may not have a precise meaning.
However, even if the definition of the term is not clear from a mechanical/physical
point of view, RBC deformability (its ability to change its shape) is so important
that the body tests it as a criterion for RBC capability to fulfill its role in the
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circulation, when the RBCs pass through the spleen. Indeed, one of the functions
of the spleen is to eliminate RBCs that cannot circulate normally inside the
organism due to an altered deformability.

Figure 1.5: RBC passing through a biomimetic splenic slit from Gambhire et al.
(2017) [64]. The different cells represent different times during the passage of the
cell through the device.

Indeed, the deformability of the RBCs can be altered. As already mentioned,
aging changes the cell deformability. The aging of an RBC changes its shape
[132, 158]. Indeed, during its lifetime, the RBC loses up to 30% of its initial volume
and gradually loses its membrane in the form of small vesicles. By increasing the
enclosed volume with respect to the membrane area, this leads the aged RBCs to
become less deformable than the younger healthy ones [31, 77, 134]. In addition,
the cytoplasm of old cells has a higher concentration in hemoglobin than young
cells, which increases the cytoplasm viscosity [25]. However, changes seem to be
more pronounced in the first week of the cell, as shown by joint measurements of
volume and hemoglobin content of population of red blood cells [77].

Finally, some diseases alter the shape of RBCs, such as sickle cell anemia, which
is characterized by the presence of RBCs in the form of a rigid sickles [13, 43],
or spherocytosis, characterized by RBCs in the form of small barely deformable
spheres, and elliptocytosis [32, 111], to name a few. Those are genetic diseases, but
other pathologies like type II diabetes or COVID-19 also alter RBC deformability
[4, 116]. We therefore also have a strong link between the deformability of the
RBC and health.

These examples show that the deformability of the RBCs can be altered in
different ways. They also show that the RBC deformability can be used as a
health-o-meter, to identify some diseases. However, in diagnostics, deformability
generally refers to a behavior through a deformability score, which is specific to the
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Figure 1.6: Graph showing the different volume and amount of hemoglobin of
red blood cells over their lifetime. Red contours represent the probability density
for volume and hemoglobin in the total RBC population of a healthy adult. The
blue contours represent the same probability density for reticulocytes. Contours
enclose respectively 90%, 75%, 50% and 25% of cells. The gray lines are lines of
constant hemoglobin concentration. From Higgins (2015) [77]

.

context or test undergone by the RBCs. To go further in the understanding of RBC
mechanics in health and disease, a more precise definition of what deformability
means is needed: for instance, a reduced deformation index in ektacytometry may
come from a higher cell viscosity, a stiffer membrane or a change in the cell aspect
ratio. If RBC deformability is sensible to many pathologies, its lack of specificity
limits its use as a true diagnostic index. We will see that we need to separate the
deformability into several elementary aspects, for which mechanical characteristics
may be defined.

1.2 Mechanics and rheology

To define more precisely the meaning of the deformability in the RBC’s framework,
it is necessary to make an inventory of the different membrane mechanical behav-
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iors that has been observed experimentally. The membrane is composed of a lipid
bilayer on which is anchored a cytoskeleton. Each of these elements contributes to
the overall mechanics of the membrane in a different way. The bilayer limits the
area change of the RBC membrane and bursts if a change of area of more than a
few percents is imposed [45, 91]. At ambient temperature, this corresponds to a
membrane area modulus of 450 mN.m−1 [78]. It is this very small change in area

Figure 1.7: Figure showing the physical link between the compressibility and the
ability to bend of a biological membrane: bending is only possible if different local
changes of area are possible for the two layers of lipid. From Canham (1970) [20].

that the bilipidic layer allows, which results in a significant curvature modulus
[20, 78, 143]. This curvature modulus is of the order of 10−19 N.m. The physical
link between compressibility and bending is illustrated in Fig. 1.7.
The cytoskeleton is responsible of the shear resistance of the membrane. The order
of magnitude of the shear modulus of the cytoskeleton is 2.5µ N.m−1. Its area
change modulus, on the other hand, is of the same order of magnitude as the shear
modulus (typical twice as large) and thus much lower than that of the bilipidic
membrane, by five orders of magnitude [75]. This low area change modulus implies
that its resistance to bending is negligible compared to the resistance provided by
the bilipid layer.
All those observations are relevant of an elastic behavior of the membrane. The
elastic behavior means that the material has a reference state, which is the config-
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uration to which the material will return geometrically as soon as it is freed from
the external forces. Thus, for a material said to be purely elastic, it is possible to
directly link its deformed state to its internal stress by only knowing its reference
state1.
This behavior was first demonstrated using an experimental device called a

Figure 1.8: Photo and diagram of a micropipette experiment on a RBC. From
Evans (1983) [44]

.

micropipette, illustrated in Fig. 1.8. The idea of this experiment is to impose a
suction on a part of the membrane of the RBC. By measuring the amount of
membrane sucked into the pipe for a given suction, it is possible to trace the
stress that is imposed in the material and therefore its elastic properties. These
works have been widely put forward by Evans and Hochmuth, among others,
and have allowed a first understanding of the deformability of the membrane
[45, 46]. Generally, by removing the pressure applied, we notice that the aspirated
membrane retracts, and that the RBC regains its initial shape, which accounts
for the elastic behavior.
Similarly, another experimental means of highlighting the elastic aspect of the
behavior of the RBC membrane is by using optical tweezers, represented in Fig. 1.9.
Indeed, this technique makes it possible, by fixing beads of silica on the membrane
1 This reference state can be a stress-free configuration or can be considered as a stress-free
configuration without the knowledge of the stress field on the material. In the case of the RBC,
the problem of the reference shape of a RBC corresponding to the problem of knowing the
prestress field on a RBC in discocyte shape. This aspect is presented later in this part.
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Figure 1.9: Photo and diagram of a stretching of a RBC using optical tweezers.
Taken from Dao et al. (2003) [34]

.

of the RBCs and exert a force on the membrane. This technique therefore allows
to measure the elastic character of the RBCs [75], in a similar way to the technique
of micropipette.
Another way to measure the elastic properties of RBCs is ektacytometry, illus-
trated in Fig. 1.10. Ektacytometry is the process of studying the deformation
of RBCs in a liquid medium where a shear is imposed. The measurement of
this deformability is done using a laser which, by crossing the moving solution,
generates a diffracted image characteristic of the deformation of the RBCs in the
flow [12]. Thus, if no shear rate is imposed in the sample, the image produced
is circular. Once the shear rate is imposed, the diffracted image caused by the
passage of the deformed cells in front of the laser is an ellipsoid, as cells elongate
in the direction of the flow. The characteristics of this ellipsoid are related to the
deformation of the RBC shape in the imposed flow. Classically, the information
measured during ektacytometry experiments is linked to an elongation index
EI = L−l

L+l with L and l respectively the major and minor axis of the elliptix
diffraction image. It has been shown that this elongation changes depending on
the age of the RBCs as well as the pathologies present such as sickle cell disease
or spherocytosis [12, 17]. The ektacytometry experiment has become the gold
standard when it comes to testing RBC’s deformability [11] in the clinical context.
This elastic behavior means that a membrane with a very high elastic modulus
will stiffen the RBC, while conversely a RBC with a low elastic modulus can
deform easily. However, as already said, ektacytometry measurements may be
affected by a change of deformability due to other aspects of the cell, notably cell
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Figure 1.10: Diagram representing RBCs during a measurement using ektacy-
tometry (left) and resulting diffracted images (right). From Bessis et al. (1981)
[12]

.

viscosity, which is not the case of static techniques.

A second parameter governing the RBC deformability is the surface-volume
ratio of the RBC. The aspect ratio (or isoperimetric quotient) is the ratio between
the surface S of the membrane of the RBC and the volume V it contains to
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obtain a non-dimensional number. It is calculated as S3

V 2 . It gives us information
about the shape of the RBC. The lowest area-to-volume ratio, for a given volume,
is obtained for a sphere. Average measurements allowing indirectly to measure
the aspect ratio of an RBC are available in [45]. By using ektacytometry as a
measure of the deformability of RBCs, and by subjecting these RBCs to different
chemical treatments as well as to different osmotic pressure values, the impact of
the surface/volume ratio has been highlighted [138]. It has therefore been shown
that a low aspect ratio tends to stiffen the RBC.

Figure 1.11: Diagram representing different RBC’s behaviors as a function of the
viscosity ratio between the cytoplasm and the external fluid and of the capillary
number, which represents a ratio between the shearing viscous forces applied on
the RBC and the elastic restoring forces of the membrane. From Abkarian and
Viallat (2016) [3]. The ‘Unknown Region’ of the diagram has been investigated
more recently in [87, 103, 105].

.

Finally, the third essential aspect which has an impact on the deformability of
the RBC is its viscosity. Viscosity is linked to the friction between the particles of
a material during its deformation. The expression ’RBC viscosity’ is not precise
enough because the RBC has different sources of viscosity. Indeed, the internal
fluid of the cell is a viscous fluid which strongly impacts the deformability of
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the RBC. Indeed, it has been demonstrated that viscosity plays a major role
in the behavior of RBCs under flow. This is beautifully illustrated in Fig. 1.11,
where Abkarian and Viallat [3] have gathered the different dynamics of a single
red blood cell in pure shear flow as a function of the viscosity ratio between
internal and external fluids and the non-dimensional stress applied. Clearly, the
stress applied is a major parameter in terms of dynamics. Large stresses (large
capillary numbers in Fig. 1.11) yield visible deformations of the cell. However, the
internal viscosity also controls the type of dynamics of the RBC. The diagram
was gathered in 2016. Since then, the ’Unknown Region’ in the diagram, for
large viscosity ratios and large capillary numbers, has been investigated, with
the identification of specific dynamics (stomatocyte, trilobe and polylobes under
flow, see [87, 103, 105]). Some of those configurations will be detailed later in this
work.

Different measurements of the viscosity of hemoglobin solutions can be found in
the literature [25, 112, 113]. However, it has been shown experimentally that the
RBC’s membrane was not only elastic but also viscous [46]. Thus, a membrane
with a high viscosity will tend to stiffen the RBC. The impact of membrane
viscosity on the deformability of the RBC as well as the measurement of the
membrane viscosity value are precisely at the center of this research work.

It can therefore be seen that there are several components of RBC deformability,
which are involved or not in the RBC deformation depending on the type of stress
it is subjected to. The notion of deformability of the RBC brings together several
mechanical behaviors. In general, it is not possible to link a measurement of the
deformation to a unique component of the membrane mechanics. Therefore, to
allow the study of the deformation behavior of the RBC, it is necessary to model
the deformability of the RBC by proposing a 3D mechanical model accounting for
the internal fluid and the membrane.

There are several approaches to model these different mechanical properties to
obtain a RBC model with a deformability like what is observed experimentally.
One type of approach is to directly model the molecular chains of the different
components of the RBC. Thus, by modeling the different interactions, we obtain a
similar behavior as the experimental deformations observed, and we are therefore
able to identify what is the role of each aspect presented previously, and therefore to
learn more about the deformability of the RBC. This method also makes it possible
to identify the role of each component of the RBC during the local deformation
of the membrane. This type of model has the advantage of representing physics
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at the molecular level. The direct consequence of working at this scale is that it
is difficult to calibrate, most of the experiments measuring properties at the RBC
scale and not at the scale of the spectrin network. Finally, this type of model
is also more cumbersome to set up [89, 123]. Note that the model by Peng et
al. [121, 122, 126] is an elaborate multi-scale model which has been applied for
simulations of red blood cells under flow, but such models are generally not used
for large-scale simulations.

Another type of approach is to consider the membrane of the RBC as a
continuous material and thus use the equations of continuum mechanics to translate
the different behaviors observed experimentally. The main advantage is to use
the mechanical modules that can be estimated from experimental measurements
at the cellular level as input parameters. It is therefore easy with this type of
model to inspect different behaviors by directly varying the physical parameters
used as input. However, the continuity of the membrane is a strong hypothesis.
This assumption precludes the identification of local membrane properties, unlike
the micro-scale model presented previously. These models are for example used
in the works of Bagchi et al. [8, 30, 161], Shaqfeh et al. [117, 166], Mendez et al.
[81, 87, 104], Krüger et al. [42], among others [36, 61].

Finally, some models choose an intermediate scale, such as the model used in the
works of Karniadakis et al. and Fedosov et al. among others [49, 53, 123, 133, 136].
The idea here is to model the RBC as a binding set of particles with different
properties aiming to model the properties of a set of spectrin chains for example.
We are therefore on a larger scale than the molecules constituting the membrane,
a bond representing a multitude of molecular bonds of the membrane, while
not considering the membrane as a continuous material. This type of model is
obviously very malleable and adapts to many configurations, although it needs to
be recalibrated according to the stresses.

The first interest of having such model is to support experiments in parameter
identification. The example of the optical tweezers is interesting in this respect.
For small deformations, interpreting the experimental results is rather simple and
provides the mechanical moduli of the membrane. However, for large deformations,
a model of the RBC is essential for inverse analysis of the data [34, 109]. However,
depending on the model used, one may obtain quite different values of mechanical
moduli from large-deformation behaviors [35, 109, 146]. The accuracy of the
mechanical model is thus essential to use it to support experiments in the context
of parameter identification. Another example of the need for numerical simulation
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is the question of reference shapes. It is classical in the literature to find the
stress-free shape mention concerning the membrane of the RBC [1, 39, 57], which
knowledge is required to model the prestress field on the membrane of the RBC.
The search for this prestress field leads to finding a shape where the RBC membrane
is not constrained, hence the reference shape term. Investigating the impact of
different forms of references can only be done through numerical simulation. This
makes it possible to sort the different models to choose the most suitable for the
study of the deformability of RBCs.

(a) (b)

(c) (d)

Figure 1.12: Different images showing illustrating collective effects in suspensions
of RBCs. (a) Simulation of the passage of RBCs within the microcirculation,
images from Balogh et al. [8]. (b) simulation of RBCs and platelets within a
sheared flow. Images taken from Liu et al. [97]. (c) Simulation of globule train
and comparison with experimental photo. Image taken from Iss et al. [81]. (d)
Simulation of RBCs and platelets within a flow. Image taken from Zhao et al.
[166].

The mechanical models allowing to reproduce the mechanics of the membrane
of the RBCs is the central point of the studies concerning the blood on larger
scales. Indeed, many phenomena that make blood so special mechanically are
linked to the fact that blood is composed of red blood cells that deform during
circulation. Examples of the deformations that red blood cells can undergo during
blood circulation are visible on Fig. 1.12.
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We can cite as an example the phenomenon of margination between platelet
and white blood cell [137], globule train dynamics that are no longer present
when the RBCs are stiffened [81], shear-induced diffusion phenomena changing the
trajectory of RBCs depending on how they deform [166] or even the phenomena
of cell free layer and RBC lift, which are highly dependent on the way in which
the cells are deformed [67, 165]. Apparent blood viscosity is also a consequence
of RBC deformation [87]. Indeed, the apparent viscosity changes with stiffened
RBCs compared to deformable RBCs [22, 53]. Of course, transport in networks
and the consequences in terms of oxygenation are also determined by red blood
cells behavior and can be explored numerically [8, 42].

It can therefore be seen that the search for fine identification of RBC model pa-
rameters is dependent on experiment but also on numerical simulation. Simulation
is vital to translate experimental measurements into elementary parameters usable
in RBC models. Moreover, it is obviously necessary to have a model as complete
as possible to be able to fully rely on numerical simulations when exploring blood
flow phenomena.

1.3 Sensitivity of red blood cell dynamics to
mechanical parameters

In this section, we illustrate more specifically how red blood cell dynamics depends
on the membrane characteristics and how dynamics under flow may be used for
mechanical characterization.

An excellent configuration to study the relationship between RBC mechanics
and dynamics is the single RBC under shear flow. Indeed, it enables to highlight the
contribution of different parameters of the membrane according to the established
regime. It therefore constitutes an entire section of hemorheology and is still the
subject of active study [2, 3, 87, 103, 104, 105, 130].

At low shear rates, the red blood cell in the form of a discocyte starting to
have a rigid rotational movement. This rotation of the cells is done by following
an orbit. The shape of this orbit is of course dependent on the shear rate and the
properties of the red blood cell [40]. This dynamics is called tumbling. In this
configuration, it is shown that the dynamics is mainly controlled by the stress-free
shape of the cytoskeleton [104].

In external fluid of large viscosities such as dextran solutions, when the shear
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(a)

(b)

Figure 1.13: Representation of the (a) tumbling and (b) tank-treading motions
at different times. Small black circles represent a bead fixed to the membrane to
illustrate the circulation (in the case of tank treading) of the membrane around
the cell.

rate is high enough, the globule enters a dynamics called tank treading. Under
these conditions the membrane circulates around the cell (like tank caterpillars,
hence the name). Moreover, the general orientation of the cell takes an angle of
inclination with the direction of the flow and oscillates slightly. Tank treading is
mainly defined by the frequency at which the membrane circulates around the
cell, the angle of inclination that the cell takes with the flow and its deformation
index. Here, the dynamics is controlled by viscous phenomena, related to either
the external fluid, the internal fluid, or the membrane viscosity [56]. The impact
of membrane viscosity on tank treading motion is of one of the objectives of this
thesis and will therefore be detailed later in this work.

There is also an intermediate dynamics, where deformations are negligible,
membrane circulation exists as in tank-treading, but the orientation angle strongly
oscillates around an average position. This dynamics is called swinging and is
mainly influenced by viscous effects related to external and internal fluids. It also
depends on the elastic parameters of the membrane [1], such as the energy barrier
associated with the non-spherical stress-free shape.

The transition regimes are particularly interesting, with intermittent regimes
and hysteresis [1, 29, 40, 104, 108]. An example of transition between swinging
and tumbling, is illustrated on the Fig. 1.14. Moreover, these transitions are also
dependent on other parameters such as the confinement of the channel in which
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the globule evolves [82]. Nevertheless, these transitions are also dependent on
the mechanical parameters linked to the membrane, like the stress-free shape.
Indeed, an RBC modeled with a spherical stress-free shape would always tank-
tread if sheared in a viscous fluid due to the absence of energy barrier associated
with membrane circulation. This leads to the conclusion that the values of the
parameters allowing these transitions are not easy to quantify et al.so require
investigations by experiment and simulation [58, 150].

Figure 1.14: (a) Representation of the tank treading motion on a ellipsoid. (b)
Images of swinging RBCs at different times. (c) Images of a bead that circulates
with the membrane around the cell during the swinging motion. (d) Representation
of the transition between the swinging motion and the tumbling motion of the
RBC by imposing a step to the shear rate.

The ratio of the internal to the external fluid viscosities also controls the
RBCs dynamics. In physiological conditions of viscosity, where the viscosity of
the cytoplasm is typically 5 to 10 times higher than that of the external fluid,
a sheared discocyte never tank-treads. Increasing the shear rate, the tumbling
discocyte transitions to rolling[14, 40], then to the rolling stomatocyte (form
displaying only one lobe and not two as for the discocyte) or even more complex
forms such as trilobes and multilobes [87, 103]. It is important to understand
that these forms are encountered in vitro but are also present in physiological
conditions.

Although partial, diagrams representing the dynamics of RBC submitted to
shear can be found in the literature [3, 103], the most complete one being presented
by Mendez and Abkarian (2019) [105]. Indeed, the many parameters, of the RBC
as well as of the external environment, lead to a very large number of possible
situations and therefore potentially a large number of different dynamics [70].

These dynamics are observed on individual blood cells, but it is important to
note that they have an impact on all phenomena related to blood, the most salient
and known examples being the effect of cell properties on blood apparent viscosity
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[23, 87]. For example, the self-organization of red blood cells in confined flows
does not exist if the blood cells are rigidified [81]. The size of the cell-free layer,
which represents the layer in a flow where there is no cell, is also dependent on
the phenomenon of migration of the red blood cells, which is itself very dependent
on the way in which the blood cells deform [51]. This leads also to different
hematocrit profiles in small tubes depending on the viscosity ratio considered
[142]. The alteration of the deformability of the blood cells can also have an
impact on the rheology at the scale of the blood, as in the case of sickle cell disease
[7, 127].

It is therefore well known that understanding the different dynamics of blood
cells, due to the great diversity of observable behaviors and their impact on all
blood-related phenomena, is one of the major challenges of hemorheology. To
carry out this investigation, it is necessary to have a model allowing the fine
measurement of the properties of red blood cells, and therefore to use numerical
simulation in addition to the experimental approach. The interest of having a red
blood cell model that can be manipulated under the different conditions mentioned
in the literature is also highlighted.

1.4 Motivations

In this part, we will focus on the different observations that motivated this work
on the viscous behavior of the red blood cell membrane, as well as its impact on
the behavior of the complete red blood cell.

1.4.1 Experimental highlighting

Historically, the first attempts to characterize a viscous behavior concerning the
membrane of RBCs date from the 1970s. These measurements were carried out
using the micropipette technique, by observing the aspiration of the membrane
in the micropipette as well as the relaxation of the membrane sucked in the
micropipette until the cell returns to its initial configuration, after the membrane
goes out of the pipette [24, 46]. This process is illustrated in Fig. 1.15. These
measurements made it possible to obtain a first order of magnitude of a membrane
surface viscosity, of the order of 10−3 cP.m. They also demonstrated that this
viscosity value is much higher than the value measured on a simple bilipidic layer,
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Figure 1.15: Figure showing the process of measurement of the membrane viscosity
of the RBC’s membrane using micropipette. Sketch from Evans and Hochmuth
(1976) [46].

with a value of approximately 10−5 cP.m. That means that the source of the
viscosity in the membrane involves the cytoskeleton.

Tran-Son-Tay et al. (1984) used a rheoscopy method to observe red blood
cells tank-treading in shear flow. From data of elongation and tank-treading
frequency, they estimated membrane viscosity by an inverse analysis [155], using
the simplified model of a tank-treading ellipsoid of Keller and Skalak (1982) [84],
resulting in a membrane viscosity between 10−4 cP.m and 10−3 cP.m. Similarly,
this order of magnitude of viscosity was also confirmed in 2007 by the work of Liu
et al. using a technique like ektacytometry [95]. These different measurements of
the membrane viscosity, made at different times and using different methods, make
it possible to give a confidence interval of the value representing the membrane
viscosity of the red blood cell of the order of 10−4 cP.m to 10−3 cP.m.

The rheoscopy measurements used in the work of Tran-Son-Tay et al. (1984), in
addition to confirming the order of magnitude measured during the micropipette
experiments, found a notable impact of RBC age on the measured viscosity.
Finally, these estimates of the membrane yielded a shear-thinning behavior (the
viscosity tends to decrease as the shear increases), as illustrated on the results
reproduced from Tran-Son-Tay et al. (1984), in Fig. 1.16.

This result constitutes, together with the work previously published by Chien
et al. in 1978 [24], the first measurements showing a non-Newtonian behavior
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Figure 1.16: Plot of the different surface viscosity values measured on RBCs
by Tran-Son-Tay et al. as a function of the shear rate. Membrane viscosity is
estimated by matching the measured tank-treading frequency of red blood cell
and values predicted by the model of Keller and Skalak [84].

of membrane viscosity. However, these results were obtained using a simplified
analytical model [84], which features some assumptions whose impact on the
results is impossible to assess (for instance, membrane elasticity is neglected, the
shape of the cell is supposed to be an ellipsoid, the velocity field is simplified...).

However, another work concludes in favor of a more complex behavior of RBC
membrane viscosity. This is the work of Puig de Morales Marinkovic et al. in 2007:
by attaching ferromagnetic beads to red blood cells and plunging the assembly
into an oscillating magnetic field (see Fig. 1.17), they measured the complex
modulus of the RBC membrane. However, like the work previously carried out by
Tran-Son-Tay et al., many assumptions must be made before directly deducing a
viscosity model from these measurements. Nevertheless, they highlight a potential
complex behavior of membrane viscosity and point to a lack in the literature
concerning this characteristic of RBC.

It has therefore been observed in the literature that membrane viscosity is
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Figure 1.17: Sketch representing the experimental setup for the measurement
of the complex modulus of the membrane. Image taken from Puig de Morales
Marinkovic et al. (2007) [135].

indeed a measurable characteristic of RBCs, with 10−4 cP.m to 10−3 cP.m the
plausible range. We have also been able to observe that it is difficult to accurately
measure this quantity on red blood cells, due to the difficulty of disentangling
geometrical, elastic and viscous effects, or membrane dissipation from internal
fluid dissipation. We can even see that on simpler objects than red blood cells,
namely capsules (droplets of liquids enclosed in polymer membranes), it was also
very complex to measure this characteristic of the membrane. [80]. However, in
addition, this quest for determining the ‘exact’ RBC membrane viscosity value is
questioned by the studies suggesting a non-Newtonian behavior of the membrane.

1.4.2 Impact of the membrane viscosity on the RBC’s
dynamics: What do we know?

There are estimates of membrane viscosity in the litterature. But what do we
know of its specific role in red blood cell dynamics? First, until recently it was
often considered that membrane viscosity had a similar impact as internal fluid
viscosity [100, 138]. Furthermore, a study on the tank treading behavior by
Dodson & Dimitrakopoulos in 2010 suggest that the membrane viscosity can slow
down tank-treading frequencies by a factor 2 [36]. Currently RBC’s models rarely
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considered membrane viscosity [66]. It leads that results on the specific role of
membrane viscosity on RBC dynamics are sparse, and only date from the very
last years [68, 102]. Moreover results on systems simpler than RBCs, such as
capsules and vesicles, suggest possible trends for RBCs [6, 27, 150, 160]. A capsule
is a drop of liquid surrounded by a deformable membrane. Works concerning the
impact on the impact of membrane viscosity on different behaviors of capsules
exist, in pure shear flow. It has been shown that the membrane viscosity has a
significant impact on the orientation and the deformability of the capsules in shear
flow [10, 118, 162]. An idea of the difference in shape that can cause the presence
of membrane viscosity is shown Fig. 1.18. We see that the difference in shape is

Figure 1.18: Two different simulated capsules in a shear flow, at the same shear
rate, from Yazdani et al. (2013). On the left, the capsule is without membrane
viscosity and on the right, the capsule membrane is viscous.

significant. There is therefore a real interest in clarifying this gray zone in the
behavior of the RBC which is the impact of the viscosity of the membrane on the
different dynamics and classic forms that it can encounter. This trend has been
confirmed by the works that are currently coming out, dealing with the subject
[68].

1.4.3 Goal and presentation of this work

The general objective of this thesis was to develop a computer code to model RBC
dynamics, considering membrane viscosity. Obtaining such a model also amounts
to reinforcing the realism and the robustness of the simulations by giving access,
using the simulations, to new configurations, not accessible without considering
the viscosity of the membrane. It also opens the way to simulations of more diverse
pathological cases, by making it possible to model the impact of the diseases
on the mechanical parameters of the membrane. In parallel to this, the idea is
also to highlight the gaps in the literature concerning the models of viscosity
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of the membrane of red blood cells and to enrich these models with the help
of comparison between simulations and experimental works. Thus, thanks to a
numerical model, we aim at learning about the behavior of the red blood cell by
exploiting the combination with experimental results, which is expected in an
improvement of the models.

At the root of all the applications and motivations listed above, there is the
necessity to implement a model of membrane viscoelasticity in simulations of RBC
dynamics. Numerous studies have been performed with YALES2BIO, the in-house
flow solver developed at IMAG (http://imag.umontpellier.fr/~YALES2BIO) on
the dynamics of single RBCs under shear [87, 103, 104, 105] or in hematological
analyzers [153, 154], on the deformation of RBCs by optical tweezers [146] and on
collective dynamics of RBCs in confined channel flows [81]. However, all those
simulations neglect membrane viscosity. To implement membrane viscoelasticity
in YALES2BIO, we chose a phenomenological approach to answer this problem.
We first studied the existing rheological models and selected one of them for
implementation in YALES2BIO. Then, we validated the implementation of the
model using specifically designed elementary test cases. Finally, we studied
different configurations of red blood cells under flow to assess the impact of
membrane viscosity on the RBC behavior.

Chapter 2 will thus present the physical framework of the present work.
In this part, we will detail the different fluid models, the behavior models of the
membrane. In additional, physical modeling of the membrane viscosity will be
detailed, as well as the important dimensionless numbers.

Subsequently, the numerical framework will be detailed in the chapter 3.
Fluid solvers, discretization methods, as well as the management of fluid-structure
interactions will be detailed. The general resolution algorithm will be presented
and the implementation for passing from the mechanical law to the discretized
law of the viscoelasticity of the membrane will be detailed. Finally, the validation
case to test the good implementation of the membrane viscoelastic behavior will
also be presented in this chapter.

Chapter 4 will be devoted to the different applications. This part will be
separated into two applications: the study of strain configurations and the study
of tank treading behavior. The first application studies in more detail the impact
of membrane viscosity on a particular behavior of the red blood cell: tank-treading.
The second part aims to show the interest of considering the membrane viscosity
in the design phases of experimental devices for testing on RBCs. In this chapter
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we aim at answering to the membrane viscosity’s impact on the RBC’s behavior
on different setups.

Finally, chapter 5 will gather the conclusions and perspectives of this work.
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2.1 Introduction: a multiphysics problem

The study of the behavior of the RBC involves the study of several elements, with,
in the first place, the membrane of the RBC. This object has many mechanical
properties that must be reproduced to predict the dynamics of the RBCs under
flow, such as the resistance to curvature, the in-plane elasticity or the prestress
distribution, determined by the reference shape of the RBC. All this makes
the membrane alone a complex object to model, resulting in a combination of
mechanical models, which will be presented in this part.
In addition, RBCs always evolve in a fluid and have their own internal fluidic
cytoplasm, with their own density and viscosity parameters. These elements are
obviously involved in the RBC deformation process and must be modeled. It is
also not uncommon to experimentally study RBCs in different external fluids,
having different viscosities, to allow access to a wider range of dynamics. The
study of the deformation of RBCs is therefore a multiphysics problem leading to
fluid-structure modeling.
Finally, all the elements that we have introduced here, once modeled, involve their
own mechanical parameters. One of the challenges of modeling RBCs is the quest
for representative values of these parameters, given the disparity of measurement
methods and resulting values in the literature. This disparity in parameters has
several sources. First, there is a disparity linked to the difficulty of measuring
some mechanical parameters. Indeed, when we study the membrane of RBCs, we
are talking about an object about 8µm in diameter and a thickness of a few tens
of nanometers. The measurement of mechanical parameters in this context cannot
be done on a dedicated sample, as for macroscopic materials, and must be done
on the whole of the red blood cell [86]. The main idea is so to calibrate values of
local parameters from non-local measurements. This may result in inaccuracies,
depending on the assumptions made.
It is necessary to add to discrepancies the natural dispersion of the properties of
the RBCs. Indeed, two RBCs do not have the same properties.

This is why the choice of parameter values is a major issue in the modeling of
RBCs. The idea here is to have an idealized model, with parameter values that
are representative and that give access to the different observable dynamics. In
this part, the main idea is to describe each element that must be considered when
studying RBC behavior. We will start by describing how the external and internal
fluid are modeled. Then, we will describe the different models that are combined
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to describe the membrane behavior. Finally, we will describe the membrane
viscous behavior and detail choices that lead to the selection of the model used in
this work.

2.2 Fluids

2.2.1 Fluid model

In this part, we will give the physical framework linked to the fluid model used
in the study to model the external and internal fluids. First, the fluids are
incompressible viscous fluids. This assumption is possible thanks to the Mach
number Ma = V

a
with V the representative velocity of the considered object,

here the RBC, and a the sound celerity in the medium considered (and at the
given temperature). Of course, in every study considered the RBC velocity is
infinitesimal compared to the sound velocity, so that compressibility effects are
negligible. The fluid flows can thus be represented by the classical incompressible
Navier-Stokes equations:

∂u

∂t
+∇.(u⊗ u) = −1

ρ
∇P +∇.(ν∇u) +∇.(ν(∇u)T )

∇ · u = 0

(2.1)

with ρ the fluid density in kg.m−3, u the velocity of the fluid in m.s−1, p the
pressure in Pa, ∇ the gradient operator, P the pressure in Pa and ν the fluid
kinematic viscosity in m2.s−1.

2.2.2 Flow regime

Classically, to describe flow regimes in the literature, the Reynolds number is
used. The Reynolds number is a non-dimensional number representing the ratio
between inertial forces and viscous forces in a flow and it is classically expressed
as:

Re = UL

ν
= ρUL

µ
(2.2)

with U a representative speed of the flow in m.s−1, L a representative length in m,
ν the fluid kinematic viscosity (or µ the dynamic viscosity in Pa.s). In this study
and commonly in the RBC framework, the Reynolds number at the scale of the
RBC is expressed as a function of the shear rate γ̇ or the strain rate ε̇ both in s−1
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and a the characteristic size of the RBC in m, to build a characteristic velocity
difference at the scale of cell. As a characteristic size, one often uses the radius of
the sphere having the same volume as that of an RBC. Using those parameters,
the Reynolds number is expressed as:

Re = ργ̇a2

ν
;Re = ρε̇a2

ν
(2.3)

The most relevant version of the Reynolds number depends on the configuration
of interest. In general, when flows at the scale of the RBC are studied, the value
is generally much smaller than unity, which means that viscous forces dominate at
the scale of the cell, except for very fast flows that may be found in some biomedical
devices [153]. The numerical method to solve those equations is presented in the
chapter 3.

2.2.3 Inner fluid properties

RBC is filled by a inner fluid referred to as the cytosol. The dry content of the
cytoplasm is mainly hemoglobin, to which oxygen may bind to be transported
into the circulation and delivered to the organism. This hemoglobin solution has
a concentration that varies among individuals and among cells, with the age of
the cells [132]. The cytoplasm has a density ρin and dynamic viscosity µin. The
goal of this part is to describe the model used in this study to consider the impact
of the internal fluid on the RBC’s behavior. Indeed, the inner fluid is known to
play a major role in the RBC’s behavior, as discussed in the introduction [3].

The density of the cytoplasm depends on its concentration in hemoglobin
content, which is used to separate RBCs by their density. The typical density of
the RBC is about 10% larger than that of water. First, the fact that densities are
different is neglected in this study. It is important to note that, for some specific
RBC’s behavior such as sedimentation, this parameter is crucial. Generally, this
hypothesis is made when short-time phenomena are studied, as in this work and
is motivated by the fact that external viscous fluid increases the drag forces that
leads to a decrease of the impact of the internal fluid [105]. In addition, many
experiments use a suspending fluid with a higher density to limit sedimentation
effect, such as Optiprep (iodixanol solution, Axis-Shield) [110, 140]. However,
internal viscosity has to be taken into account to reproduce the full spectrum of
the RBC’s behaviors [3, 87, 105]. The value of internal fluid viscosity is dependent
on the temperature and on the hemoglobin concentration [83, 112].
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Concerning the impact of temperature, the cytosol viscosity decreases as the
temperature increases [83]. It is important to note that in this work, every
simulation is made to simulate behavior at temperature between 20°C and 25°C.
In this range, the viscosity does not vary a lot. However, because of the major
impact of the temperature on the inner fluid viscosity, it must be considered before
simulating a case [19].

Hemoglobin concentration for a human RBCs is inside the range 320g.l−1

to 350g.l−1 and often taken as 330g.l−1 as a typical value. Literature values of
viscosity as a function of the concentration of hemoglobin can be seen in Fig. 2.1.
Using the earlier presented range leads to find an internal viscosity range between
5cP and 12cP. The discrepancies between different measurements shows that it is
uncertainties remain regarding cytoplasm viscosity, which should be kept in mind
when analyzing simulations with respect to experimental results.

µ
in

(c
P)

Concentration of hemoglobin (g/l)

Figure 2.1: Plot of different RBC internal fluid viscosity as a function of the
hemoglobin concentration curves found in the literature at 20◦C for data from
Chien et al. work, and 25.◦C for Monkos et al. works.

2.3 Red blood cell membrane model

The RBC’s membrane is a composite membrane composed by a lipid bilayer and
a cytoskeleton attached together. Mechanically, the lipids of the bilayer may
circulate, but the bilayer strongly resists any change of area: the lipid bilayer is
thus responsible for the resistance to area changes of the membrane, but also to
membrane bending [44]. In this bilayer is anchored the cytoskeleton, a spectrin
network that gives the elastic shear resistance to the RBC membrane [3].
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A way to model all the internal membrane mechanisms is to model every membrane
component and to model RBCs as a multilayer model and multiscale computation
[121, 125], or more simply to allow sliding between the lipid bilayer and the
cytoskeleton [98]. One of the main interests of those kind of model is the multiscale
aspect that enable to link macro-scale behavior with internal mechanisms. For
example, it enables to identify the role of each part of the membrane for each
behavior. In addition, it may be possible to quantify the detachment between the
membrane and the cytoskeleton. Such approaches are certainly more realistic but
more involved in terms of model complexity

A most common approach in the literature is to design a monolayer membrane
that reproduces the RBC behavior at the macroscale. It is this kind of model that
was used in this study. Their main advantage, in comparison with the multiscale
approach, is that they are easier to use and calibrate. However, they do not allow
relating macroscopic dynamics to protein/lipid behaviors. A common approach
to model the membrane of a RBC suspended in a fluid is to assimilate the full
membrane as a single surface and give to this infinitely thin object mechanical
properties to reproduce the behavior of the whole membrane. The membrane is
thus represented as an interface between two viscous fluids, with specific rheology
linking its stress state to its deformation. Generally, stress from deformation is
obtained as the sum of several sub-models accounting for different mechanical
properties of the membrane [30, 36, 50, 62, 105, 123]. Here, we use and extend
such a continuum framework, in which a hyperelastic model accounts for the
in-plane resistances in the membrane while a curvature resistance is implemented
separately. The model used in this study has been presented and validated in
several publications [87, 107, 146], in cases without membrane viscosity.

In this chapter, the properties of the membrane will be described. In the
numerical approach used in this thesis, RBC membrane used to be modeled as
hyperelastic surfaces. This modeling level, which implementation was performed
before the present thesis, is first described, in section 2.4. The non-dissipative
behavior is first introduced, with the in-plane hyperelastic model (section 2.4.1) and
the curvature model used (section 2.4.2), respectively. Then, the choice concerning
the stress-free shape is presented in section 2.4.3. The stress-free shape is essential
because it is necessary to compute the stress field of the membrane. Contrary to
the non-dissipative behavior, membrane viscosity modeling was developed during
this work. Membrane viscoelasticity is discussed in Section (2.5).
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2.4 Modeling the inviscid behavior of the RBC
membrane

2.4.1 In-plane behavior: Hyperelasticity

In this work, in-plane elastic resistances are modeled using the Skalak hyperelastic
law [149]. This law controls the membrane shear and area change resistances. In
the local strain eigen basis, it is expressed as:

σ11 = Gs

λ1λ2
[λ2

1(λ2
1 − 1) + C(λ1λ2)2 [(λ1λ2)2 − 1]]

σ22 = Gs

λ1λ2
[λ2

2(λ2
2 − 1) + C(λ1λ2)2 [(λ1λ2)2 − 1]]

σ12 = σ21 = 0

(2.4)

with σij the components of the Cauchy stress tensor σ on the surface (in
Pa.m), λi the eigenvalues of the transformation gradient tensor F expressed as
F = ∂x(t)

∂x(0) , with x(t) the current state and x(0) denotes the stress-free state. Gs

is the Skalak shear modulus (in Pa.m) and C the ratio between the area change
modulus and the shear modulus. Because only in-plane behaviors are modeled
here, the curvature behavior is modeled separately, the stress tensor here has
only two dimensions. It means that, for a single element, stress and strain are
considered in-plane. The membrane is generally considered as incompressible,
due to the strong resistance to area change of the lipid bilayer. To ensure area
incompressibility, a large value of C may be imposed. A value of the order of 100
is often found [6, 163], but higher values may be necessary in cases involving high
stresses [153].

2.4.2 Curvature forces

The Skalak law only models in-plane changes. Resistance to bending is modeled
separately, using a specific curvature law. The free-energy functional used in this
study is the Helfrich energy [74, 167], expressed as:

Wb = Eb
2

∫
S
(2κ− c0)2dS, (2.5)

with Wb the bending energy of Helfrich in J, Eb the bending modulus in Pa.m, κ
the mean curvature, c0 the spontaneous curvature and S the membrane surface,
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in m2. Curvature forces generally prevent the formation of small folds on the RBC
membrane, and of course determine the shapes of the RBC at rest [91].

2.4.3 Stress-free shape

As the cytoskeleton is seen as an elastic surface, local stresses in the membrane
depend on its deformation with respect to a stress-free state. For the whole cell,
a stress-free shape has thus to be imposed. Note that the resting shape of the
red blood cell is not stress-free, as the equilibrium shape results from a balance
between elastic forces and bending forces, which are non-zero for a discocyte. Of
course, the level of membrane stress in the equilibrium configuration depends on
the stress-free shape.

The stress-free shape of an RBC is not possible to measure directly. Conse-
quently, it is generally inferred from simulation results and may be seen as a free
parameter to needs to be adjusted to reproduce experimental results. However,
shape memory of the RBC membrane has been demonstrated by Fischer [55],
which means that the stress-free shape of the membrane is not a sphere, either
the membrane elements differ spatially. In the model, the former assumption is
made: the membrane mechanical moduli are supposed to be uniform, and shape
memory associated with the stress-free shape.

The choice of the stress-free configuration has a major impact on the dynamics
of current RBC model. An interesting example is the transition to the tank
treading behavior of a RBC. Briefly, the tank treading behavior is a configuration
where the RBC membrane circulates around the RBC (see chapter 4 for more
information). It happens when the external viscosity is low enough and shear
rates high enough [1]. For lower shear rates, flipping-like dynamics are observed
[65, 104, 110]. The fact that the transition from flipping to tank-treading is
shear-dependent [1] shows the role of elasticity. As a consequence, a spherical
stress-free shape is not possible, as the RBC would never flip. When taking the
discocyte’s configuration as the stress-free shape, the transition to tank treading
is obtained higher shear rates than those measured experimentally [124]. It shows
the stress-free shape matters, especially in regimes where it controls the circulation
(or not) of the membrane). The choice of the stress-free shape to choose has been
a massive debate in the community. However, it seems that the literature on the
subject converges, and leads to choose the stress-free shape as an oblate ellipsoid
(ellipsoid with two of the three axis equals and the third axis smaller than the
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two others) [30, 103, 124] of reduced volume higher than 0.95. Such values allow
to reproduce the behaviors of RBCs under shear and are notably consistent with
the stress-free shape inferred to predict the Stomatocyte-Discocyte-Echinocyte
sequence of shapes at rest with different spontaneous curvature [91]. Such shapes
are often characterized by the aspect ratio or by the reduced volume. The aspect
ratio is the ratio between the smaller and the bigger axis of the oblate ellipsoid.
The reduced volume V0 is computed as V0 = Vobl

A
3/2
RBC/3

√
4π
, with Vobl the volume of

the oblate ellipsoid and ARBC the surface area of a normal RBC. We will now
present the stress-free shape taken for all simulation presented in this work. It is
an oblate ellipsoid with an aspect ratio of 0.9 and a reduced volume at V0 = 0.997.

2.5 Membrane Viscoelasticity

The former section introduced classical models used in the RBC framework which
constitute the basis of the current work, which consisted in complementing the
model with membrane viscoelasticity. First, generality on the viscoelastic behavior
will be presented to introduce vocabulary and general ideas. Then, the membrane
viscous model used is this work will be described using a rheological model
framework.

2.5.1 Physical meaning of the viscoelasticity

Viscoelasticity is the simplest dissipative behavior in the continuum mechanics
framework. Where pure elasticity is only linked to the material strain and its state
at a given moment, viscoelastic behavior is also dependent of the strain changes
in time. This dependency is also exposed by the dimensions of the elastic and
viscosity parameters: while the classical Young elastic modulus E is expressed
in Pa, dynamic viscosity modulus η is expressed in Pa.s. Physically it could be
seen as internal friction during the deformation of the material [101] that leads to
energy dissipation. This dissipation can also be associated to a delay, or a phase
shift between an input into the material (stress or strain) and the reaction of the
material (the complementary of the input).

The link between the delay due to viscoelasticity and the energy dissipated by
the viscous behavior can directly be highlighted on the simple case of sinusoidal
stress imposed on an ideal viscoelastic material and by observing the stress-strain
graph Fig. 2.2. Fig. 2.2(a) illustrates that, without dissipation, the input stress and
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Figure 2.2: Representation of an experiment imposing a sinusoidal stress on an
elastic and a viscoelastic material. (a) curves representing the input stress and
the observed strain response, (b) the corresponding stress-strain graph, (c) the
same input stress and the observed strain of the viscoelastic material and (d) the
corresponding stress-strain graph.

the resulting strain are in phase. However, the viscoelastic material involves a delay
that is highlighted in Fig. 2.2(c) as a phase shift. Observing the corresponding
stress-strain graphs Fig. 2.2(b,d), the delay due to the viscous material leads
to a hysteresis effect. Calculating the integral of the stress over a full cycle of
charge leads to a non-zero area, whereas the pure elastic material that do not
generate an area. This area has the dimension of an energy and is proportional
to the dissipation due to the internal friction. It leads to measure this delay
to quantify the internal dissipation of a material, and so its viscous behavior.
There are multiple quantities that are linked to this delay. They can be recovery
time/relaxation time of the material to a mechanical load, or phase shift between
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an input and an output for more complex viscoelastic model. To go into more
details, viscoelastic models are introduced in the next part.

2.5.2 Introduction to rheological representation and
small strain viscoelastic model

(a) (b)

(c)

Figure 2.3: Three basic viscoelastic behavior laws represented by their rheological
models in the small strain framework. (a) the Kelvin-Voigt model, (b) the Maxwell
model and (c) the Zener model.

During this study, to facilitate visualization of the different viscoelastic laws,
the rheological representation will be used. Rheological models are a convenient
way to visualize mechanical laws. The main principle is to associate symbols
representing basic mechanical behaviors in series or in parallel to obtain a more
complex behavior law. In this introduction, every law is represented in the small-
strain hypothesis. In this framework, the stress tensor is classically taken as the
Cauchy stress tensor σ and the strain represented with the small-strain tensor
ε. The only rheological elements needed in this work are the springs and the
dashpots. The springs are representative of the classical Hooke elastic law σ = Gε

in the small-strain framework (later we will define springs as hyperelastic springs
that will follow hyperelastic behavior laws) and the dashpots represent linear
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viscous laws σ = ηε̇, with G here the young modulus (in Pa) and η the viscosity
modulus (in Pa.s).

to represent a more complex behavior law, those rheological elements are
put in parallel or in series. When elements are put in series, it means that the
whole strain tensor is obtained by addition of the strains of the elements in
series. On the other hand, elements put in parallel means that the stress of the
resulting behavior law is obtained by summing the stresses in each of the element
in parallel. Putting a spring and a dashpot in parallel leads to the Kelvin-Voigt
model, (Fig. 2.3a). Summing stresses of the different elements directly leads to
the following expression of the Kelvin-Voigt viscoelastic behavior law:

σ = Gε+ ηε̇. (2.6)

Using the same logic, putting a spring and a dashpot in series leads to the
Maxwell viscoelastic behavior law, usually written in the following form:

η

G
σ̇ + σ = ηε̇, (2.7)

with σ̇ the derivative with respect to time of the stress tensor. In this form, the
Maxwell behavior law clearly highlights the Maxwell characteristic time tc = η

G
.

Because the term characteristic time is classically used to describe a viscoelastic
behavior, to avoid misunderstanding, it is important to understand the physical
interpretation of this time. Indeed, the characteristic time interpretation depends
on the viscoelastic behavior law. For example, in the case of the Maxwell, the
characteristic time represents the time for the stress to decrease of 66% of its initial
value when the material undergoes an instantaneous deformation. However, for a
material following the Kelvin-Voigt behavior law, the characteristic time tc = η

G

represents the time for the strain to increase to 66% of the pure elastic deformation
when the material undergoes an instantaneous stress. Also, to highlight the fact
that the physics behind those two characteristic times are different, it is not possible
to impose an instantaneous strain on a pure Kelvin-Voigt material, and impossible
to impose an instantaneous stress on a pure Maxwell material. Replacing the
viscous branch in the Kelvin-Voigt model by a Maxwell branch leads to construct
the Zener model Fig. 2.3. The Zener behavior law can be written as:

σ + η

Gbranch

σ̇ = G

(
ε+ (G+Gbranch)

G

η

Gbranch

ε̇

)
(2.8)

Similarly, to before, two characteristic times can be calculated here. The
first one tc1 = η

Gbranch
is the Maxwell characteristic time and represent the same
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physics. Moreover, the second characteristic time tc2 = G+Gbranch
G

tc1 is like the
Kelvin-Voigt characteristic time. Indeed, if Gbranch tends to infinity, then tc2 tends
to the Kelvin-Voigt characteristic time η

G
. Finally, when Gbranch tends to infinity,

Eq. (2.8) tends to Eq. (2.6). This property of the Zener behavior law will be used
during this work.

Figure 2.4: Rheological representation of the generalized Maxwell law with n the
number of viscoelastic branch.

Finally, multiple characteristic times can be introduced in the system, by
adding more Maxwell branches in parallel to the Zener model: it leads to the
so-called generalized Maxwell model Fig. 2.4.

Interestingly, the Maxwell model has a general solution to compute stress for
a given strain. This solution is obtained by integrating the differential equation
Eq. (2.7). It leads to the following expression of the Maxwell stress:

σ(t) =
∫ t

0
Ge−

t−t′
η/G ε̇(t′)dt′. (2.9)

Thanks to this solution, because the generalized Maxwell model is just a sum of
Maxwell model in parallel with a spring as a first branch, the general expression
of the stress of a material following a Generalized maxwell model, using the same
notation as in Fig. 2.4 leads to the following equation:

σ(t) = G∞ε+
n∑
i=1

∫ t

0
Gie

− t−t′
ηi/Gi ε̇(t′)dt′. (2.10)

The main interest of this model is that it enables to represent every viscoelastic
law under the small strain hypothesis. Indeed, putting Maxwell branch enables the
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selection of the frequencies where the material dissipates the most. It enables even
to reproduce non-Newtonian behaviors (where the apparent viscosity depends on
the mechanical load) like shear-thinning behaviors or shear-hardening. After this
presentation of the classical viscoelastic models in the small strain framework, next
section will present choices made to describe the membrane viscoelastic behavior.

2.5.3 Viscoelastic model for the membrane

Since the early 80’s, the RBC’s membrane is described as a viscoelastic material
thanks to experimental measurements [24, 78]. However, even if the hyperelastic
behavior of the membrane has been studied extensively [149, 164], the viscous
aspect of the membrane behavior has not received the same interest from the
community. Always in the early 80’s, experiments trying to measure membrane
viscosity are done using multiple techniques as the study of recovery of the red
blood cell membrane from micropipette aspiration [24] or rheoscopic techniques
combined with the Keller and Skalak theoretical model [84, 155]. However, since
those works, experiments trying to increase knowledge on the RBC’s membrane
viscosity are rare and do not propose a mechanical model richer than a Kelvin-
Voigt like model. The only work that we found that propose another model is the
work done by Puig-de-Morales-Marinkovic et al, using ferromagnetic microbeads
fixed to the membrane inside a magnetic field to apply stretch at different stretch
locally on the membrane [135]. Even if advances thanks to this work are big by
measuring a nonlinear viscous behavior of the membrane, the work to transpose
the measure of viscosity effect done thanks to this experiment to the membrane
mechanical viscoelastic behavior law is not done yet.

The design of complex membrane viscoelastic models involving multiple char-
acteristic times is depending on the experimental measurements of the membrane
viscosity. The more the membrane viscosity will be inspected, the more complex
and precise membrane viscous models will be. This lack of knowledge about
membrane viscosity leads to model the membrane viscoelasticity with a simplistic
model. Statements made by literature on the model suggest that this simplistic
model is a Kelvin-Voigt like behavior law, suggesting the addition of viscous stress
and hyperelastic stress [78]. Research of such a model in publications about nu-
merical simulations of RBCs and capsules leads to three main works [68, 90, 162].
For both of those publications, the same viscoelastic model is used to represent
the membrane. This model is based on an existing viscoelastic model used in the
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commercial simulation software ABAQUS©. It leads that publications using this
model to briefly present the model and cite the ABAQUS© manual. To this day
and to our knowledge, it does not exist yet a document that details the physical
framework of this mechanical model and the hypothesis behind this model. The
model is based on the hypothesis of stress addition between the viscous and the
hyperelastic stresses. The choice of the model was therefore mainly based on
2 criteria. The first and that, not knowing the real behavior of the material,
we wanted a simple model based close to the Kelvin-Voigt model. The second
criterion was that we wanted to be able to quickly validate the model with others
works, and quickly inspect impact of such a behavior on the RBCs deformability.
Since the simulation works modeling the membrane viscosity are not numerous,
we have therefore made the same choice of modeling as the works cited above,
namely those of Yazdani et al. [162], Li et al. [90] and Guglietta et al. [68], based
on the commercial computer code ABAQUS ©. This model is based on the work
of Simo [147]. In this work, Simo describes a fully three-dimensional finite-strain
viscoelastic damage model. First, the damage part of the law is not considered
here This model enables the local additive split of the stress tensor into initial and
nonequilibrium parts. As it is written in Simo’s work, this characteristic leads to
a free-energy form that generalizes the linear viscous model presented previously.
This model also enables the decomposition of the stress tensor into an uncoupled
deviatoric part and a hydrostatic part. Finally, it enables the viscous relaxation
to recover to general finite elasticity. This bulk of characteristics corresponding to
all the needs that were described earlier motivates the literature to use this model.

The third characteristic interesting for this work in Simo’s work is the recovery
to a general finite elasticity behavior. It was in particularly tested during Simo’s
work using classical rubber hyperelastic law as neo-Hookean or Mooney-Rivlin
laws and is thus supposed to work the same with the Skalak model. Moreover,
Simo’s model is a fully 3D finite strain model. However, in the RBC membrane
framework where is located this study, the membrane is represented by a 3D mesh
composed of 2D triangular elements, on which in-plane stresses and curvature
resistance are treated separately. Moreover, Simo’s model is a fully 3D finite
strain model. However, in the RBC membrane framework where is located this
study, the membrane is represented by a 3D mesh composed of 2D triangular
elements. Those 2D elements follow a mechanical behavior law that ensures the
reproduction of the in-plane strain behavior, and a bending resistance law ensures
the reproduction of the curvature behavior separately. First, viscosity linked
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to the curvature was neglected. Then, the result that generalizes linear viscous
behavior in finite strain is used but in a plate theory framework. It supposes
that Simo’s law can also be expressed in this framework and leads to the same
characteristics as mentioned before. Finally, because of the quasi-incompressibility
of the RBC membrane, it has been decided to neglect the viscosity linked to the
hydrostatic part of the stress tensor. It means that only the deviatoric part of the
stress tensor is described using a viscoelastic behavior. This concludes to present
the mechanical framework where this viscoelastic behavior law exists. As said
before, the framework could still be improved in terms of fundamental mechanics.
However, the description of the existing framework and of its limitations had not
been made. By doing that work, we hope that it will highlight lack of knowledge
and will motivate future works to consolidate it. Unfortunately, it could not be
performed within this thesis. Now that a framework enabling the generalization
of small strain viscoelastic model is defined, let’s define the rheological model that
was implemented to achieve this study. The literature highlights the fact that a
direct implementation of a Kelvin-Voigt model in finite strain leads to numerical
instability [162]. To our knowledge, this result has not been proved yet. However,
to avoid numerical instability, the classical way for the few models present in the
literature is to implement a more versatile model that is enabled to converge to a
Kelvin-Voigt behavior under some conditions. The classic implemented model that
is a fully generalized Maxwell model in a finite strain framework that converges
to a Skalak behavior law once the viscous stress is relaxed and uses Maxwell
viscoelastic branch combining a finite strain Hooke spring and linear viscosity.
The finite strain Hooke law is defined as Eq. (2.11):

σ11 = GH

1− νH
[λ2

1 − 1 + νH(λ2
2 − 1)]

σ22 = GH

1− νH
[λ2

2 − 1 + νH(λ2
1 − 1)]

σ12 = σ21 = 0

(2.11)

with GH the Young modulus of the Hooke behavior law and µH the Poisson
coefficient. However, the Maxwell generalized model was used is this study only to
converge in a Kelvin-Voigt model. To do that, the model was defined with only one
viscoelastic branch, as seen in Fig. 2.5, with G∞ the Skalak shear modulus of the
membrane. Put a big enough GH leads the model to converge in a Kelvin-Voigt
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(a) (b)

Figure 2.5: Rheological model of the behavior law used in this study. The curved
springs represent the Skalak hyperelastic law and the straight spring the Hooke
law. Rheological model for the deviatoric (a) and the hydrostatic part (b).

model with only the curved spring and the viscous damper in parallel. That
result has only been empirically tested and no rules has been found for now. Now
that all parameters were presented, the final tools present in the RBC framework
to describe RBC behavior are non-dimensional numbers obtained thanks to the
model parameters. It is presented in the next part.

2.6 Non dimensional numbers

In this part, the main goal is to present the different non-dimensional numbers
used to describe the configurations of RBCs under flow. First, some parameters
are linked to the fluid nature: the density of the internal and external fluids, ρint
and ρext (in kg.m−3) and µint and µext, in Pa.s, viscosity values of the internal
and external fluids, respectively. This leads to two non-dimensional numbers,
the density ratio ρint

ρext
, which is set to 1.0, the density differences between the

cytoplasm and the external medium being neglected, and the viscosity ratio:

λ = µint
µext

. (2.12)

The viscosity ratio is classically considered to be of the order of 5.0-10.0 in vivo,
but in vitro experiments may involve the resuspension of the cells in a different
medium, like phosphate-buffered saline (PBS) or dextran solutions, that have a
viscosity different from that of plasma. Consequently, the viscosity ratio λ will be
one the the variable parameters in the study.

By introducing characteristic scales linked to the flow itself, such as fluid
velocity V (in m.s−1) or shear rate γ̇ or strain rate ε̇ (both in s−1), the Reynolds
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number Re can be defined as previously by Eq. (2.13). It represents the ratio
between the forces of convection and the forces of diffusion of the fluids, and is
calculated as:

Re = ργ̇a2

ν
;Re = ρε̇a2

ν
. (2.13)

Re number is generally low in the context of studies of phenomena at RBC scale.
Then, the other parameters are related to the RBC itself. First, single cells

will be considered, so that the volume fraction will always be negligible. Then the
geometry of the RBC is associated a volume of V of 94µm3 and a surface area
S of 135µm2. One can also introduce a characteristic size of the red blood cell,
denoted by a, which is a few microns. Typically, a is the radius of the sphere
having the same volume as the RBC, which lead to a = 2.82µm.

Then, there are parameters linked to the RBC’s non-dissipative behavior.
The membrane bending resistance introduces the curvature modulus Eb (in J).
Then the hyperelastic behavior of the RBC introduces the shear modulus Gs and
the area modulus Earea (both in Pa). These parameters allow the construction
of several dimensionless numbers. Let’s first introduce C = Eb

Earea
, the number

comparing the shear modulus and the area change modulus.
Similarly, a relevant number within the RBC study framework is the Föppl-von
Karman number α. This number is calculated as α = a2Gs

Eb
. This number makes

it possible to know, at the RBC scale, which forces dominate the behavior of the
RBC between the in-plane forces and the bending forces [103]. In the cases that
we present in this study, α is of the order of 500, showing that it is the forces in
the plane that dominate.
A dimensionless number particularly used in the study of RBCs is the capillary
number Ca. Ca define the ratio between the viscous stresses applied by the fluid
to the membrane and the membrane response to stress. It is expressed as:

Ca = µextγ̇a

Gs

. (2.14)

Finally, this work introduces a dissipative behavior in the membrane repre-
sented by a membrane viscosity model. This model introduces two parameters:
the branch shear modulus GH (in Pa) and the membrane viscosity modulus η (in
Pa.s.m). We can use the ratio GH

Gs

to control the behavior of the model. Thus, if
this ratio is large, then the model will tend towards the behavior of a Kelvin-Voigt
model. Conversely, a very small ratio will tend to minimize the impact of viscosity
on commonly observed phenomena. The membrane viscosity parameter η enables
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the introduction of a new non dimensional number known as the Boussinesq
number Bq. This number represents the ratio of viscosity between a fluid and the
membrane and is expressed as:

Bq = η

aµfluid
. (2.15)

In our case, the Boussinesq number may be expressed either using the internal
fluid viscosity (Bqint) or the external fluid viscosity, (Bqext). In this study, we
choose to use Bqint because it does not depend of the external environment and is
thus viewed as an intrinsic number characterizing the RBC itself. However, both
Boussinesq numbers are used in the literature [68].
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3.1 Introduction

There is a multitude of studies of the mechanical behavior of RBC through
numerical simulation. However, these studies have not yet made it possible to
establish an ideal numerical framework for the study of such a problem, each
method offering its own set of pros and cons. It is therefore necessary for a
numerical study of RBCs to present in detail the different methods used to
represent the RBC as well as its environment.
As part of this study, the modeling choices were to model both the fluid and the
membrane in the form of two distinct meshes. Thus, the fluid is modeled in the
form of a volume mesh. The RBC, on the other hand, is represented only by its
surface, meshed by 2D triangles. The method used is a one-fluid method with
variable properties: inside the 2D surface, the fluid elements have the properties
of the cytosol; outside, they have the properties of the suspending medium. It
is necessary to introduce the methods to solve the fluid flow, the calculation of
the stresses and the mechanical deformations of the membrane, as well as the
communication between the 2 meshes. This is the purpose of this part.
To do this, we will first present the methods used which constitute the fluid solver
used in this study. Next, the method of solving the Navier Stokes equations, the
bases concerning the Finite Volume Method, and the method used to consider
the internal viscosity of the RBC used in this study will be presented.
Subsequently, we will present the fluid-structure coupling methods used. This will
detail the coupling method used in this study, namely the Immersed Boundary
Method. These first two parts have already been widely presented in previous
studies and have not been developed specifically in the context of this thesis. The
third part here aims to present the approach for implementing membrane viscosity
within the calculation methods already presented. Being specifically developed
during this thesis work, the implementation and the validation process will be
presented.

All the numerical simulation work present in this study was carried out
using the YALES2BIO computer code. YALES2BIO is a multiphysics numerical
calculation software based on the massively parallel code YALES2. Its purpose
is to be a tool allowing the physical study of blood at different scales, ranging
from thrombosis phenomena to blood flow on a macroscopic scale. It is mainly
composed of a fluid solver solving the Navier-Stokes equations. In the context of
RBC simulations, the fluid-structure interaction is carried out using the Immersed
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Boundary Method (IBM). This computer code has already been the subject of
numerous publications [106]. The tools presented are therefore an integral part of
this computer code. Most non-viscosity modeling aspects were present before this
work. Thus, the fluid solver, the fluid structure interaction and the membrane
viscosity implementation are presented separately.

3.2 Flow solver

3.2.1 The Navier-Stokes equations and their time
advancement

The purpose of this section is to present the resolution method used in our study
to solve the Navier-Stokes equations. For the sake of reading comfort, although
already present Eq. (2.1), we will recall them briefly. The Navier-Stokes equations
can be written as follows:

∂u

∂t
+∇.(u⊗ u) = −1

ρ
∇P +∇.(ν∇u) +∇.(ν(∇u)T )

∇ · u = 0

(3.1)

with ρ the fluid density in kg.m−3, u the velocity of the fluid in m.s−1, p the
pressure in Pa, ∇ the gradient operator, P the pressure in Pa and ν the fluid
kinematic viscosity in m2.s−1. Note that although high-Reynolds number flows
are not considered in this study, RBCs may face extreme stresses leading to
non-zero Reynolds number flows even at the scale of the RBC, so that the full
incompressible Navier-Stokes equations need to be solved [153].

In our case, these equations are advanced using a so-called prediction-correction
method developed by Chorin in 1968 [26]. From the velocity known at the time
tn,the idea is to first calculate a velocity that does not necessarily satisfy the
zero-divergence condition, by just advancing the momentum equation. Then, in a
second step, pressure P is used to impose a corrective term making it possible to
calculate a speed un+1, satisfying the zero divergence condition.
to represent the time derivative term, YALES2BIO uses a Runge-Kutta scheme
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of order 4. However, this part having a purely didactic purpose, for the sake of
simplicity, we use the explicit Euler scheme in the equations to illustrate Chorin’s
solution method.
Semi-discretizing equation Eq. (3.1) in time leads to the following equation relating
that the velocity at times tn and tn+1:

un+1 − un

∆t = −∇.(un ⊗ un)− 1
ρ
∇P n+1 +∇.(ν∇un) +∇.(ν(∇un)T ) (3.2)

with un+1,un the velocity at a time of tn+1 and tn, respectively, and P n+1 the
pressure at the time tn+1.
It is not possible to solve both velocity and pressure as it is. Chorin’s method
consists in advancing the velocity field in time without the pressure term to
calculate a prediction velocity u∗ which is not necessarily divergence-free:

u∗ − un

∆t = −∇.(un ⊗ un) +∇.(ν∇un) +∇.(ν(∇un)T ) (3.3)

Subtracting Eq. (3.3) to Eq. (3.2) leads to:

un+1 − u∗

∆t = −1
ρ
∇P n+1 (3.4)

We can then apply the divergence operator on each side of Eq. (3.4):

∇.u
n+1

∆t −∇.
u∗

∆t = −∇.
(

1
ρ
∇P n+1

)

= −1
ρ
∇. (∇P n+1)

(3.5)

We can now use the divergence-free property of un+1 to obtain an equation between
the predicted velocity and the pressure at time tn+1. It is a Poisson equation for
pressure:

1
ρ
∇. (∇P n+1) = 1

∆t∇u
∗ (3.6)

This system can now be solved using an iterative solver of the type of conju-
gate gradient (CG). The method used in the YALES2BIO code is the Deflated
Preconditioned Conjugate Gradient method (DPCG) [5, 99].

3.2.2 Space discretization method: Finite Volume
Method
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The Finite-Volume Method (FVM) used for the spatial discretization of the
equations is the subject of this part.
This method consists in defining the fluid domain as the sum of different control
volumes Ωi. Each volume is enclosed by a surface composed of several faces
between control volumes. Si,j is the face separating Ωi and Ωj. We note δΩi the
outer boundary of Ωi, representing the union of these faces Si,j. The values of
the macroscopic quantities to be calculated, namely P and u are located at the
center of mass xi, vector position relative to the global reference of the center of
mass of the control volume Ωi.
The FVM principle thus consists in expressing all the interesting physical quantities
in the form of volume integral over each control volume Ωi.
As a reminder, the time discretization yields a set of 3 equations (Eq. (3.3), Eq. (3.4)
and Eq. (3.6)) allowing us to determine the quantities un+1 and P n+1, withu∗ as
an intermediate velocity. To express these equations in the FVM formalism, each
of them is integrated over a control volume Ωi, of boundary δΩi. First, integrating
Eq. (3.3) results in:

1
∆t

∫
Ωi

(u∗ − un)dV =
∫

Ωi

(
−∇.(un ⊗ un) +∇.(ν∇un) +∇.(ν(∇un)T )

)
dV

↔ 1
∆t

(∫
Ωi
u∗dV −

∫
Ωi
undV

)
= −

∫
Ωi

(∇.(un ⊗ un)) dV +
∫

Ωi
(∇.(ν∇un)) dV

+
∫

Ωi

(
∇.(ν(∇un)T )

)
dV

(3.7)
Using the Green-Ostrogradski formula, it is possible to express Eq. (3.7) by

involving surface integrals over boundaries:

1
∆t

(∫
Ωi
u∗dV −

∫
Ωi
undV

)
= −

∫
δΩi

(un ⊗ un) dS +
∫
δΩi

(ν∇un) dS

+
∫
δΩi

(
ν(∇un)T

)
dS

↔ 1
∆t

(∫
Ωi
u∗dV −

∫
Ωi
undV

)
= −

∑
j

∫
Si,j

(un ⊗ un) dS +
∑
j

∫
Si,j

(ν∇un) dS

+
∑
j

∫
Si,j

(
ν(∇un)T

)
dS

(3.8)

51



CHAPTER 3. NUMERICAL FRAMEWORK

with dS the area element times the normal vector to Si,j.
Similarly integrating Eq. (3.4) and Eq. (3.6) yields Eq. (3.9) and Eq. (3.10), respec-
tively:

1
∆t

∫
Ωi

(
un+1 − u∗

)
dV = −1

ρ

∑
j

∫
Si,j

P n+1dS (3.9)

1
ρ

∑
j

∫
Si,j
∇P n+1dS = 1

∆t
∑
j

∫
Si,j
u∗.dS. (3.10)

It is seen that Eq. (3.8), Eq. (3.9) and Eq. (3.10) involve sums over the sub-surfaces
of the boundary of the control volumes. We will rename these terms for better
readability, as well as to more easily relate them to their meaning. We therefore
define the following operators:

C(u,u) =
∑
j

∫
Si,j

(un ⊗ un) dS (3.11)

G(P ) =
∑
j

∫
Si,j

PdS (3.12)

D(u) =
∑
j

∫
Si,j
u.dS (3.13)

L(P ) =
∑
j

∫
Si,j
∇P.dS (3.14)

Lcv(ν,u) =
∑
j

∫
Si,j

ν∇udS (3.15)

LTcv(ν,u) =
∑
j

∫
Si,j

ν (∇u)T dS. (3.16)

C represents the convective term of the Navier-Stokes equations, G the pressure
gradient term in the right-hand side of Eq. (3.4) and D the divergence operator.
L is the laplacian operator. Lcv and LTcv are involved in the viscous part of the
Navier-Stokes equations Eq. (3.1).
These notations allow Eq. (3.8),Eq. (3.9) and Eq. (3.10) to be rewritten as Eq. (3.17),
Eq. (3.18) and Eq. (3.19), respectively:

1
∆t

(∫
Ωi
u∗dV −

∫
Ωi
undV

)
= −C(un,un) + Lcv(ν,un) + LTcv(ν,un) (3.17)
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1
∆t

∫
Ωi

(
un+1 − u∗

)
dV = −1

ρ
G(P n+1) (3.18)

1
ρ
L(P n+1) = 1

∆tD(u∗) (3.19)

One can approximate the volume integrals present on the left-hand side of Eq. (3.17)
and Eq. (3.18) using a Taylor expansion:

∫
Ωi
udV =

∫
Ωi

(
ui +∇u|i(x− xi) +O(||x− xi||2)

)
dV (3.20)

Using the fact that, as mentioned before, xi represents the center of mass of Ωi,
we only get the following result, with second-order precision:

∫
Ωi
udV =

∫
Ωi

(
ui +O(||x− xi||2)

)
dV

↔
∫

Ωi
udV = uiVi

(3.21)

with Vi the volume of Ωi.
By using Eq. (3.21) within the equations Eq. (3.17), Eq. (3.18), we can rewrite
Eq. (3.17), Eq. (3.18) and Eq. (3.19) one last time:

Vi
∆t (u∗i − uni ) = −C(un,un) + Lcv(ν,un) + LTcv(ν,un) (3.22)

Vi
∆t

(
un+1
i − u∗i

)
= −1

ρ
G(P n+1) (3.23)

1
ρ
L(P n+1) = 1

∆tD(u∗) (3.24)

It is this set of equations that are solved in YALES2BIO. Each operator previously
defined is discretized to obtain the quantities u∗, P n+1 and un + 1. YALES2BIO
includes 2nd-order and 4th-order schemes in space. The 4th-order scheme is used
in this thesis. The case of the second-order discretization is available in appendix
Section (6.1) as an illustration.

Concerning the boundary conditions, more information is contained in the
article of Kim and Moin 1985 [85]. In the present work, simple boundary conditions
are used. In periodic boundaries, the nodes on the periodic boundaries are
supposed to be shared by the boundary conditions. They are considered as part
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of an internal boundary, and the treatment is identical as for nodes shared by
multiple processors.

Non-slipping walls are used in this work, where the fluid velocity is set to
that of the wall velocity, using Dirichlet boundary conditions. Wall velocity is
either set to zero or to a tangential velocity when shear flows are studied. The
shear is maintained by the boundaries. At inlets boundary conditions, Dirichlet
boundary conditions are imposed. Dirichlet boundary conditions are imposed
at the node velocity, between the prediction and the correction steps. At the
outlets, convective boundary conditions are imposed [85]. Homogeneous Neumann
boundary conditions are imposed on pressure when solving the Poisson equation.

3.2.3 Variable viscosity

Throughout this presentation, we have treated the fluid with a unique viscosity
throughout the field. In the case of our application, it is important to be able to
account for viscosity variations in space. Indeed, in general, the RBC is suspended
in a medium with a viscosity different from its internal viscosity.
Let us therefore note νin and νext the viscosity values of the internal and external
fluids, respectively. The method implemented in YALES2BIO is based on the
front-tracking method of Unverdi and Tryggvason 1992 [156]. The idea is to use
an indicator function, allowing to determine if each node i of the fluid mesh is
located inside or outside the globule. Thus, the viscosity νi is calculated as follows:

νi = νext + (νin − νext)Ii (3.25)

with Ii the indicator function at point i such thatIi = 0 if node i is outside the
RBC and Ii = 1 if i is inside.
The indicator function is calculated by solving the following Poisson equation:

∇. (∇I) = −∇.G (3.26)

where G informs about the normal to the membrane surface close to fluid node
i. It is zero far enough for the membrane. More detail on G is given in the
Section (3.3.2) (for the sake of precision, G is the regularized field of outward
surface normal vector). Basically, this equation states that I should vary when
we cross the membrane.
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The discretization of the equation Eq. (3.26) is done as before thanks to the finite
volumes and results in the following linear system:

L(I)|i = −D(G)|i (3.27)

with L and D the operators defined above. This linear system is solved thanks to
the DPCG method present in the article by Malandain et al.. [99].

3.3 Fluid-structure interaction: Immersed
Boundary Method

3.3.1 Coupling: General algorithm

The numerical framework used in this work is the YALES2BIO solver (https:
//imag.umontpellier.fr/~YALES2BIO/), dedicated to the simulation of RBC
dynamics under flow et al.ready used in several publications in the recent years
[87, 103, 104, 105, 146, 153]. It is based on a continuum framework both for the
fluid and the membrane. The membrane is supposed to be massless and may be
viewed as an interface with specific surface tension that depends on its state of
deformation. The fluid and the membrane are coupled by the Immersed Boundary
Method (IBM) [129]. This technique enables the communication between two
meshes, one for the fluid and one for the membrane. Inside the temporal loop,
the main YALES2BIO algorithm can be reduced to four main steps:

1. For a given state of deformation of the membrane and using the material
behavior law, the membrane stress field is computed. Nodal forces are then
calculated under the massless membrane assumption.

2. The forces at the nodes are regularized to the fluid mesh to act as a
source term for the Navier-Stokes equations, representing the action of the
membrane on the fluid.

3. The next step consists in solving explicitly the incompressible Navier-Stokes
equations in a finite-volume framework with the membrane forcing, thanks
to a pressure projection technique [26, 99, 114] for imposing fluid incom-
pressibility. This results in an updated fluid velocity field.
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4. The fluid velocity is then interpolated to the membrane vertices, with the
assumption that the membrane is displaced at the same velocity as the
local fluid velocity. The membrane position is then updated with an explicit
Euler scheme, which provides the deformation state for the next iteration. A
volume conservation algorithm is used to guarantee that the volume inside
the membrane does not change during the simulation [107, 145]. In case of a
viscosity contrast between the cytoplasm and the suspending fluid, the fluid
viscosity is then updated from the new membrane position, with different
values inside and outside the membrane.

This algorithm has been presented and validated in several publications [87, 107,
145, 146].
In the previous part, we presented the different steps to obtain the calculation
of the velocity and the pressure within a fluid domain. The next step is the
communication between the fluid and the membrane. This step is necessary to
allow the displacement of the various points constituting the RBC membrane,
generating the deformations. This communication step is detailed in the next
section.

3.3.2 Coupling: Interpolation and Spreading

The fluid resolution has been featured in previous parts. Within the framework
of the problem study dealing with the modeling of red blood cells, the simple
representation of the fluid is obviously not sufficient. Indeed, the idea is to
represent the RBC in its environment, as well as the interactions between the
RBC membrane and the fluid.
The interaction between the fluid and the membrane is possible in this study
thanks to the IBM method, originally developed by Peskin [129]. This model
is devoted to the interactions between a fluid domain and an infinitely thin
and massless deformable membrane in this domain. The idea here will be to
make a Lagrangian representation of the membrane coexist with an Eulerian
representation of the fluid: the Eulerian grid is fixed and the Lagrangian grid
follows the structure (ie the RBC membrane). The method is non-conformal.
Thus, the position vector of a point i belonging to the fluid mesh will be noted
xi and will use the coordinate system (ex, ey, ez), while a point belonging to the
mesh of the membrane (also called marker) will be noted Xi and will use a system
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(es, er, eq), with (es, er) tangential to the membrane and eq oriented along the
outward normal to the membrane. Since we assume the membrane to be infinitely
thin, the coordinate q will not be used, so we are only in 2D from the Lagrangian
point of view.
The fluid equations when taking into account the presence of a RBC in our
framework is modified by a forcing source term fv. They are written as follows:

∂u

∂t
+∇.(u⊗ u) = −1

ρ
∇P +∇.(ν∇u) +∇.(ν(∇u)T ) + 1

ρ
fv

∇ · u = 0.

(3.28)

The term fv represents a volumetric version of the forces exerted by the membrane
on the fluid. As the problem is modeled in our study, behind this term hides the
forces linked to different behaviors in the deformation of the membrane such as
the elastic behavior of the membrane, the resistance to curvature, and this is what
is the heart of this study, the viscoelasticity of the membrane. It is important
to note that fv is an Eulerian term. It is directly related to the quantity FTOT ,
representing the forces generated by the internal stress of the membrane in the
Lagrangian formalism.
Similarly, the fluid also acts on the solid, through the kinematic coupling condition:
a non-slipping condition is imposed on the membrane, so that the membrane
velocity is set to be equal to the fluid velocity. Indeed, the fluid velocity field
u will thus move the different markers which will generate deformations on the
membrane. In the Lagrangian formalism, the velocity of the membrane is denoted
U = dX

dt
, and is related to u.

The coupling is therefore a matter of communicating these different Lagrangian
and Eulerian quantities together, which is not straightforward as the meshes are
not conformal. In our framework, calculating a Lagrangian quantity from an
Eulerian quantity (so here a membrane quantity from a fluid quantity) is called
the interpolation step. The membrane velocity needs to be interpolated from the
fluid. Formally, the non-slipping condition at the membrane reads:

dX

dt
=
∫

Ωf
uδ(x−X)dx (3.29)

with Ωf the fluid volume in our case, δ represents the Dirac function (which is
1 when x = X and 0 otherwise) and dx the infinitesimal quantity related to
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(ex, ey, ez).

Moreover, calculating an Eulerian quantity from a Lagrangian quantity, here
a fluid quantity from a membrane quantity is called the spreading (also called
regularisation) step. This is what is done to compute the term fv as follows:

fv(x) =
∫

Ωs
FTOT (X)δ(x−X)drds (3.30)

with Ωs the surface of the membrane in our case, δ the Dirac function and dr and
ds respectively the infinitesimal quantities related to er and es.
Regularization is also necessary in the calculation of the viscosity field, by spreading
the normal n to the membrane on the domain, to allow the calculation of the
indicator function I mentioned Section (3.2.3) . So, G is calculated as:

G =
∫

Ωs
nδ(x−X)drds (3.31)

with n the outward membrane normal.
However, as the grids are not conformal, interpolation and regularization are not
perfectly local. In other words, the Dirac function needs to be approximated,
using and appropriate window function [129]. Let N be the number of volumes
making up the fluid domain and M the number of markers on the surface mesh of
the membrane. We obtain for the equations Eq. (3.29), Eq. (3.30) and Eq. (3.31)
respectively:

dXj

dt
=

N∑
i=1
uiδh(xi −Xj)Vi (3.32)

fv(xi) =
M∑
j=1
FTOT |jδh(xi −Xj)Smj (3.33)

G(xi, t) =
M∑
j=1
n|jδh(x−X)Smj (3.34)

with Vi the volume of the control volume Ωi and Smj the surface surrounding the
marker m. δh is an approximation of the analytical Dirac function δ. The shape of
the window function depends, among other things, on the desired properties [139],
but also on the meshes (regular or not). The construction of these functions in
the regular mesh framework is treated in Peskin’s work [128, 139]. Extensions on
irregular meshes have been proposed by Liu et al. [93, 94, 96] using the so-called
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Reproducing Kernel Particle Method and adapted by Pinelli et al. [131] and
Mendez et al. [107] to our framework.
In conclusion, we presented the interpolation and spreading tools allowing the
coupling of fluid models and RBC membrane models. The method to solve the
fluid equation has been presented in Section (3.2). It yields the fluid velocity field
u, which is then interpolated on the membrane markers, and these are therefore
moved accordingly, using a first-order Euler approximation. To allow the complete
presentation of the calculation process in our framework, it remains to present
the calculation of the different quantities constituting FTOT .

3.3.3 In-plane stress: Hyperelasticity

As presented Section (2.4.1), the hyperelastic model used to represent the hypere-
lastic behavior of the membrane is based on Skalak’s law [149]. This law leads to
the following expressions:

σ11 = Gs

λ1λ2
[λ2

1(λ2
1 − 1) + C(λ1λ2)2 [(λ1λ2)2 − 1]]

σ22 = Gs

λ1λ2
[λ2

2(λ2
2 − 1) + C(λ1λ2)2 [(λ1λ2)2 − 1]]

σ12 = σ21 = 0

(3.35)

with σij the components of the Cauchy stress tensor σ on the surface (in Pa.m),
λi the eigenvalues of the transformation gradient tensor F expressed as F = ∂x(t)

∂x(0) ,
with x(t) the current state and x(0) denotes the stress-free state. Gs is the Skalak
shear modulus (in Pa.m) and C the ratio between the area change modulus and
the shear modulus.
to calculate the λi, it is possible to express them as a function of the Cauchy-Green
strain tensor G. Let’s first recall the expression of G as a function of the tensor
transformation F :

G = F TF =
(
I + ∂U

∂s

)T (
I + ∂U

∂s

)
(3.36)

with I the identity matrix and U the displacement field on the membrane.
This tensor is symmetric, and of dimension two in our problem. This allows to
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define the following expression of the square of the eigenvalues λ1 and λ2:

λ2
1 = 1

2
(
G11 +G22 +

√
(G11 −G22)2 + 4G2

12

)

λ2
2 = 1

2
(
G11 +G22 −

√
(G11 −G22)2 + 4G2

12

) (3.37)

with Gij the components of G. The transition of this expression to the forces at
the solid nodes which is added to FTOT is detailed in the next part.

3.3.4 From element stress to nodal forces

In YALES2BIO, a first-order finite-element method is used. The computation
of the nodal forces from the stress in the element is detailed in what follows.
We use only triangular elements, which are assumed to remain flat during the
deformation of the membrane. Thus, in the element basis, deformations are
two-dimensional, and each displacement can be split into X and Y components,
respectively horizontal and vertical axis in the element basis. Noting u1, u2, u3

and v1, v2, v3 the X and Y displacements, respectively, of the nodes 1, 2, 3 of any
triangular element, and assuming linear interpolation between the three nodes,
displacements on the element can be written as:

u = N1u1 +N2u2 +N3u3,

v = N1v1 +N2v2 +N3v3,

(3.38)

with N1, N2, N3 linear shape functions of the element, that can be computed as:

N1 = (y2 − y3)x+ (x3 − x2)y + (x2y3 − x3y2)
2A0

= a1x+ b1y + c1

2A0
,

N2 = (y3 − y1)x+ (x1 − x3)y + (x3y1 − x1y3)
2A0

= a2x+ b2y + c2

2A0
,

N3 = (y1 − y2)x+ (x2 − x1)y + (x1y2 − x2y1)
2A0

= a3x+ b3y + c3

2A0
,

(3.39)

with A0 the element area at t=0. ai, bi and ci are the coefficients of the shape
functions, only determined by the shape of the element at rest. Since displacements
can be fully expressed as a function of known parameters following Eq. (3.39), the
displacement can be used to express the two-dimensional transformation gradient
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F = ∂x(t)
∂x(0). It can also be expressed as Fij = δij + ∂ui

∂xj
. Using Eq. (3.38) and

Eq. (3.39), F becomes:

F = 1
2A0


2A0 +

3∑
i=0

aiui
3∑
i=0

biui

3∑
i=0

aivi 2A0 +
3∑
i=0

bivi

 (3.40)

Eq. (3.40) will be used when writing the principle of virtual work to obtain the
nodal forces. Because we are neglecting inertial effects, equilibrium of forces and
moment equations can be written as:

div(σ) = ~0; σT = σ (3.41)

The virtual work principle is just a weak formulation of the following equilibrium
equations. It is obtained by integrating stress Cauchy tensor σ contracted to a
virtual arbitrary displacement vector ~δu, with δu and δv its components, over the
element’s area. This leads to this formulation:∫

S
div(σ) · ~δu ds = 0 (3.42)

Using the divergence theorem, it leads to:∫
S
σ : grad( ~δu) ds−

∫
ΩS

~S · ~δu dl = 0 (3.43)

with ΩS the element’s boundary, ~δu the virtual displacement vector, dl the
integration variable representing an infinitesimal part of the element’s boundary
and ~S the traction vector ~S = σ~n, with ~n the outward unit normal vector of the
element’s boundary. The gradient term can be written as:

grad( ~δu) = ∂δu

∂x(t) = ∂δu

∂x(0)
∂x(0)
∂x(t) = δFF0(t)−1 (3.44)

As for Eq. (3.40), by using Eq. (3.38), δF ,the variation of F associate with the
virtual displacement ~δu, can be identified as:

δF = 1
2A0


3∑
i=0

aiδui
3∑
i=0

biδui

3∑
i=0

aiδvi
3∑
i=0

biδvi

 (3.45)
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with δui, δvi the virtual X and Y nodal displacements, respectively. The second
term of Eq. (3.43) is then developed to identify nodal forces. As previously, ~δu
can be identified thanks to Eq. (3.38) in:

~δu =


N1δu1 +N2δu2 +N3δu3

N1δv1 +N2δv2 +N3δv3

 (3.46)

Defining ~δuN and ~PN respectively the nodal displacement vector and the nodal
force vector, expressed as:

~δuN =



δu1

δv1

δu2

δv2

δu3

δv3



, ~PN =



∫
ΩS
SXN1dl

∫
ΩS
SYN1dl

∫
ΩS
SXN2dl

∫
ΩS
SYN2dl

∫
ΩS
SXN3dl

∫
ΩS
SYN3dl



, (3.47)

and assuming stress and deformation gradient constant on the element, it leads
that Eq. (3.43) is equivalent to:

tr(δFF−1
0 (t)σ)A− ~δuN · ~PN = 0 (3.48)

with A the area of the current (deformed) element. Using the fact that this
relation is true for every virtual displacement, the components of ~PN can be
directly identified by splitting the equality with respect to the ~δu components,
leading to an equality for each ~PN component.

3.3.5 Curvature forces

As defined in Section (2.4.2) Eq. (2.5), in this model the force coming from the
curvature of the RBC follow the Helfrich energy:

Wb = Eb
2
∫

ΩS(2κ− c0)2dS (3.49)
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κ corresponds to the mean curvature, Eb to the modulus of curvature and c0 to
the spontaneous curvature.
During most of this work, the calculations were carried out thanks to a model
developed thanks to the work of Zhong-can et al. and Farutin et al. [48, 167]. By
taking the functional derivative of the curvature energy, the expression of FO

b , the
surface density of force due to the bending at marker O, is obtained:

FO
b = Eb

(
(2κO − c0)(2(κO)2 − 2κ0

s + κOc0) + 2∇sκO
)
nO. (3.50)

κs represents the Gaussian curvatures and ∇s the Laplace Beltrami operator. It is
seen that this expression features a 4th-order derivative of the membrane surface
(the Laplacian operator applied to the mean curvature).
The calculation of the different curvatures and of the surface Laplacian of the
mean curvature was based on the work of Farutin et al [48]. Basically, the principle
is to express the field of local coordinates of the membrane vertices as a quadratic
approximation in the tangential coordinates, then use differential geometry formula
to calculate the mean and Gaussian curvatures. The same method is then applied
to calculate the surface Laplacian of the mean curvature.

3.4 Implementation of the membrane viscosity

3.4.1 Implementation

The calculation of the purely hyperelastic RBC membrane forces is based on a
first-order finite-element framework that has often been used in RBC modeling
[21]. It has already been validated in numerous cases [104, 107, 145]. To compute
forces applied on the fluid from a hyperelastic membrane, λi, the eigenvalues
of the transformation gradient, are first calculated for the membrane elements.
Then, the membrane stress is computed thanks to Eq. (2.4). The stress is then
used to compute nodal forces using the virtual work principle as in Shrivastava
and Tang’s work [144]. Details about the methodology to obtain nodal forces are
provided in Appendix.

Steps for implementation of viscoelastic behavior are similar, except that
membrane viscous stress is a priori a function of the whole history of deformation
of the membrane, so that some preliminary work is needed to express it as a
function of the last time step only. Because only shear viscosity is considered here,
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the expression of the membrane viscoelastic behavior can be written as:

σ(t) = σd + σh(t)I =
∫ t

0
2G(t− s)ε̇dds+ σh(t)I, (3.51)

with t the time, σ the Cauchy stress tensor, G(t − s) the relaxation modulus
of the viscoelastic model (in Pa.m) at time t − s, ε̇d the time derivative of the
deviatoric part of the strain tensor ε, σh the mean normal of the Cauchy stress
tensor, calculated as σh = tr(σ)

DIM(σ) and I the identity matrix. This expression
is just another form of the Eq. (2.10), split using the hypothesis of separation
of deviatoric and spherical part of the stress tensor, and neglect the hydrostatic
viscosity.

The first hypothesis is that we assume additivity between the Hooke spring
and the viscous damper (see Fig. 2.5). This leads to the following formulation of
the relaxation modulus:

G(t) = G∞ +GHe
− t
tc , (3.52)

with G∞ the Skalak shear modulus from the pure hyperelastic branch (in Pa.m),
GH the Hooke shear modulus from the viscoelastic branch (in Pa.m), and tc the
Maxwell characteristic time of the viscoelastic branch computed as tc = η

GH
with

η the membrane viscosity (in Pa.s.m).
With the aforementioned hypotheses, Simo [147] obtained an expression for the

Kirchhoff stress tensor τ = det(F )σ, with σ the Cauchy stress tensor and F the
deformation gradient tensor. We will thus keep the formulation with the Kirchhoff
stress tensor until the end of the derivation, which simplifies the reading and the
comparison with existing literature, where the Kirchhoff tensor is classically used.
Using integration by part in Eq. (3.51) enables to apply the derivation in time on
the relaxation modulus:

τ (t) = τ d0 (t) + SYM

[∫ t

0

Ġ(s)
G0

F−1
t (t− s) · τ d0 (t− s) · Ft(t− s)ds

]
+ τh(t)I,

(3.53)
with τ d0 the deviatoric part of the instantaneous Kirchhoff stress computed with
G0 = G(0) = G∞ +GH and τh(t) the mean normal Kirchhoff stress. The SYM
is the operator that ensure the symmetry of the resulting tensor. It appears to
be needed and is used in the literature [162]. Explanation on why this term is
necessary was not in the scale of this work, but would be interesting. Finally,
Ft(t− s) represents the deformation gradient computed between time t and time
t− s. Also called shifter, its expression is:

Ft1(t2) = ∂x(t2)
∂x(t1) , (3.54)
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with x(t) the Lagrangian position of the solid particle at the time t. It is important
to note that the main role of the shifter is to enable the stress sum. Indeed, for
finite strains, it makes no sense to add stresses from different strain configurations.
Shifters Ft(t− s) transport the stress at time t− s to the time t, for every s value
between 0 and t. Now, simply combining Eq. (3.52) with Eq. (3.53) leads to:

τ (t) = τ d0 (t)− τvisc(t), (3.55)

with τvisc(t) expressed as:

τvisc(t) = GH

tcG0
SYM

[∫ t

0
F−1
t (t− s) · τ d0 (t− s) · Ft(t− s)e−

s
tc ds

]
. (3.56)

From this expression, we can see that an integration between t = 0 and t is
needed to compute the stress. The next step consists in modifying this expression
to make it depend on times t and t−∆t only. To do so, Eq. (3.54) allows expressing
Ft(t− s) as a function of Ft(t−∆t):

Ft(t− s) = Ft−∆t(t− s) · Ft(t−∆t). (3.57)

Consequently, we have also:

F−1
t (t− s) = F−1

t (t−∆t) · F−1
t−∆t(t− s). (3.58)

By substituting Eq. (3.57) and Eq. (3.58) into Eq. (3.56), and by doing a variable
change from s to s+ ∆t, Eq. (3.56) can be split in two terms as follows:

(3.59) :
τvisc(t) = GH

tcG0
SYM

[
F−1
t (t−∆t)·

∫ 0
−∆t F

−1
t−∆t(t−∆t−s)·τd0 (t−∆t−s)·Ft−∆t(t−∆t−s)e−

s+∆t
tc ds·Ft(t−∆t)

]
+ GH

tcG0
SYM

[
F−1
t (t−∆t)·

∫ t−∆t
0 F−1

t−∆t(t−∆t−s)·τd0 (t−∆t−s)·Ft−∆t(t−∆t−s)e−
s+∆t
tc ds·Ft(t−∆t)

]
.

We can use Eq. (3.56) to identify the integral from 0 to t −∆t as a known
term depending on τvisc(t−∆t) , which results from the previous time step. To
compute the final integral term, we will assume that τ d0 varies linearly over one
time step. Finally, we obtain the following expression that can be implemented
for the computation of τvisc(t):

τvisc(t) = α
GH

G0
τ d0 (t) + β

GH

G0
τ̂ d0 (t−∆t) + τ̂ d(t−∆t)× e−

∆t
tc , (3.59)
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with:

tc = η
GH

α = 1− tc
∆t(1− e

−∆t
tc )

β = tc
∆t(1− e

−∆t
tc )− e−

∆t
tc

τ̂ d0 (t−∆t) = SYM
[
F−1
t (t−∆t) · τ d0 (t−∆t) · Ft(t−∆t)

]

τ̂ d(t−∆t) = SYM
[
F−1
t (t−∆t) · τvisc(t−∆t) · Ft(t−∆t)

]

(3.60)

Once the stress tensor computed, we use the principle of virtual work [144]
to compute the associated nodal forces at the vertices of the element (see in
Section (3.3.4)). The contribution of one element to the nodal force ~fn of one of
its vertices n is:

~fn(t) = Velem(t)F−1
0 (t)σ(t)~ϕn (3.61)

with Velem the deformed element area and ~ϕn the vector of the shape function
corresponding to node n. The final force for each node of the membrane is obtained
by accumulating of the nodal forces associated with all the elements which contain
that node.

3.4.2 Validation: small strain cases

In this section, verification test cases are presented.
It is important to note that cases presented are not sufficient to ensure the

good implementation of the viscoelastic model presented here. However, they
allowed to debug during implementation and ensure a certain number of elementary
consistency behaviors of the implemented version. They are quick to compute,
and they enabled us to understand a lot on the mechanics behind the viscoelastic
behavior. A more involved validation test cases is proposed in the next section.

Local verification test cases are important to validate the good functioning
of the subroutines. Three local test cases were computed. Two cases outside the
fluid with imposed strain: an homothety Fig. 3.1 and a pure shear Fig. 3.3. The
third one is a strain relaxation inside the fluid from a deformed configuration.
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The homotethy case enables to check that the viscosity has no impact on the
hydrostatic part of the stress tensor.

The pure shear enables to validate the viscoelastic behavior (value of instanta-
neous and relaxed stress and the characteristic time). Finally, the relaxation inside
the fluid checks the compatibility of the viscoelastic behavior with the immersed
boundary method (IBM) [129], which is used in YALES2BIO to compute the fluid
structure interaction [107].

Imposed strain : homothety

Figure 3.1: homothety test case, with reference configuration (left) and deformed
one (right).

The main goal of this case is to ensure that the viscous behavior has only an
effect on the deviatoric part of the stress tensor. By imposing the strain on our
mesh and comparing stress obtained by using only the hyperelastic behavior to the
viscoelastic computation, we can check the good implementation of the viscosity
on the deviatoric part of the stress tensor. Indeed, because such a configuration
does not involve any shear, then pure hyperelastic and our viscoelastic model
should behave the same. We obtained the same stress between Skalak hyperelastic
law and the viscoelastic one (see Fig. 3.2), which verifies this elementary aspect of
the implementation.
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Figure 3.2: Comparison of the stress during time obtained by simulation and the
analytical hyperelastic solution. The imposed strain starts at t = 0s

Imposed strain: pure shear

Figure 3.3: Schematic of the pure shear test case, with reference configuration
(left) and deformed one (right). The deformation is exaggerated in the figure. The
simulation is performed on a single element, without fluid. Thus, the deformation
is imposed, and the stress response is studied.

The main goal here is to verify that the law implemented follows the generalized
Maxwell viscoelastic model on the deviatoric part of the stress. To verify the
implementation, a small strain is applied, so that the hyperelastic law is well
represented by a Hooke’s law [9], which enables to derive an analytical solution.
For a Zener model on which an instantaneous strain ε0 is imposed, the stress
response, known analytically, is as follows:

σ(t) = G1ε0e
−G1t

η +G∞ε0
(3.62)

withG1 andG∞ respectively the elastic modulus of the viscous and elastic branches
of the Zener model and η the viscosity modulus.
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Figure 3.4: Stress responses as a function of time for a Zener model for a strain-
imposed case.

In this test case, we consider a one-branch generalized Maxwell model, also
named Zener model, with G∞ = G1 = 3.0× 10−6 Pa.m, and a membrane viscosity
of η1 = 3.0 × 10−15 Pa.m.s. This configuration enabled us to check that the
instantaneous stress is equal to the theoretical one and that the relaxed stress
is equal to the Skalak hyperelastic one Fig. 3.4. Moreover, we also checked that
the characteristic time of the implemented model is the stress relaxation of the
Zener model, given by the branch viscoelastic characteristic time tc = η1

G1
. We did

similar verifications for multiple-branch models and obtained valid results.

3.4.3 Convergence Zener to Kelvin-Voigt

The modeling choice (represented in Fig. 2.5) made is that the implemented model
must behave like a Kelvin-Voigt model. The behavior of a Zener model converges
to a behavior like a Kelvin-Voigt model provided that the elastic modulus of the
viscous branch is high enough. This can be shown by using the analytical results
concerning the response of these models to an imposed stress test. Consider a
Kelvin-Voigt model with viscosity η and elastic modulus G. Consider a Zener
model with parameters G, Gbranch and η. We impose σ(t) = σ0H(t) with H(t)
the function which equals 0 if t ≤ 0 and 1 otherwise. The analytical solutions of
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Figure 3.5: Analytical results of strain responses as a function of time for a
Kelvin-Voigt and Zener models for an imposed stress. K represents the ratio
between the elastic modulus of the viscous branch of a Zener model and the elastic
modulus from the purely elastic branch.

these models to such a mechanical load are respectively:

εKV (t) = σ0

G

(
1− e

Gt
η

)

εZener(t) = σ0

G

(
1− Gbranch

G+Gbranch

e
GGbrancht

η(G+Gbranch)

)
.

(3.63)

Thanks to these results, we can verify the convergence when the branch
modulus increases. An expanded case is shown for illustration in Fig. 3.5. By
defining the parameter K such as K = Gbranch

G
, we can observe the convergence of

the Zener model for K = 50 in this case. It is important to specify that the value
of K to ensure good convergence of the model depends on the parameters of the
problem. Indeed, the convergence towards a Kelvin-Voigt model will be less and
less true at K = 50 as the viscosity increases for example. Thus, we verified the
good convergence of the behavior empirically for each simulation. In the range of
this work, a value of K of 50 is enough to have convergence of the behavior.

3.5 Validation: capsule under shear flow

to validate the implementation of the viscoelastic model in the regime of large
deformations, we take advantage of recent publications reporting the dynamics of
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(a) (b)

Figure 3.6: Representation of a capsule under shear flow. (a) Undeformed capsule
at t = 0 (b) deformed capsule at t > 0 due to the shear flow, enabling the
measurement of Dcaps = L−l

L+l .

viscoelastic capsules [68, 90]. Data for the deformation of spherical capsules in a
pure shear flow are available for different values of the membrane viscosity. The
principle of the configuration is presented in Fig. 3.6. In addition, the viscoelastic
model used in these two studies [68, 90] relies on the same assumptions as those
used in the present paper and described in the former section. It leads to model
the capsule membrane as a Kelvin-Voigt material, obtained as the limit of a Zener
model with GH >> G∞. When a spherical capsule is sheared, it deforms with a
shape similar to an ellipsoid. The maximum elongation is of course in the quadrant
of extension (x and y of the same sign), with a certain angle with respect to the
flow direction x. The capsule is compressed in the perpendicular direction in the
shear plane. To quantify the deformation, a deformation index may be calculated,
defined as Dcaps = L−l

L+l , with L and l the large and small lengths (in the shear
plane), respectively, of the ellipsoid having the same inertia tensor as the capsule
(see Fig. 3.6b).

The capsule is initially a 3D sphere of radius a described by a triangular mesh
of 2890 elements. The typical edge length of this surface mesh is initially of
Lelem ≈ a

10 . The capsule is in a cubic fluid domain of size 20a, discretized by a
Cartesian mesh of 2003 cubic elements, of the same size as Lelem. The domain is
large enough to minimize the effects of the boundary conditions on the results
[68, 90]. Two moving walls are imposed as boundary conditions at the top and
bottom of the domain to impose the shear rate (see Fig. 3.6), so that the velocity
field in the absence of capsule reads ~u = γ̇y ~ex. Periodic boundary conditions are
imposed in the x and z directions.

The non-dimensional numbers involved in this case are the Reynolds number
Re, the capillary number Ca, the viscosity ratio λ and the external Boussinesq
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Figure 3.7: Deformation index as a function of non-dimensional time γ̇t for
spherical capsules under shear with different Bqext, at Ca = 0.3 and λ = 1.
Comparison of present results (YALES2BIO) with those from Li and Zhang [90]
and Guglietta et al. [68].

number Bqext. There are defined as follows:

Re = ργ̇a2

µext
; Ca = µextγ̇a

G∞
; λ = µint

µext
; Bqext = η

aµext
(3.64)

with ρ the constant density, µint and µext the internal and external fluid dynamic
viscosities (in Pa.s), respectively, η the membrane viscosity (in Pa.m.s). All the
following computations are done at Re = 0.2 to avoid having important inertial
effects while keeping the computational cost moderate, Ca = 0.3 and λ = 1. Only
Bqext is changed between the different cases. Results are displayed in Fig. 3.7.

Fig. 3.7 shows that the simulations from the different groups (including ours)
predict the same trends regarding the effect of membrane viscosity on the dynamics
of a spherical membrane. When no membrane viscosity is considered, a steady-state
is rapidly reached, with an asymptotic deformation of Dcaps ≈ 0.44. Deformations
are then reduced when Bqext is small. For higher values, oscillations in the
deformation appear, with a relative frequency increasing with Bqext. Finally, note
that the present computations are very close to the results by Guglietta et al. [68],
which is the closest method to ours in terms of membrane modeling. Despite major
differences in the general algorithm with the previous studies [68, 90], results align
very well, so that the implementation of the viscoelastic model is validated.
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Note also that a similar test case has been computed by Yazdani and Bagchi
(2013) [162] with similar trends in the general behavior. However, we could not
reproduce their results. The agreement with other studies [68, 90] make us assume
that results from Yazdani and Bagchi (2013) are singular and may not be perfectly
trustworthy.
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4.1 Introduction

Internal dissipation and membrane dissipation cannot be controlled individually
in an experiment. This confusion has been reinforced by some modeling works.
Keller and Skalak have notably developed a theoretical model for the dynamics of
RBCs in shear flow [84], which has been extended to more complex cases later
[1, 39, 104, 105, 150], in which internal viscosity and membrane viscosity act in
the exact same manner, the two being combined in an effective RBC viscosity.
Membrane viscosity has sometimes been used to account for the whole viscosity
of the system. For example, Mancuso and Ristenpart [100] fit experimental data
of RBCs stretched in a sudden contraction to extract the membrane viscosity of
the RBC thanks to a model neglecting internal viscosity. Are internal viscosity
and membrane viscosity equivalent? Do they contribute in the same way to the
dissipation in the system? These questions are open, but numerical simulation of
RBC dynamics can contribute to answering them, as we show in this study. The
main goal of this part is to assess the impact of the membrane viscoelasticity on the
whole RBC’s behavior, for two canonical configurations. The first configuration is
that of a single RBC in pure shear flow. While RBCs may exhibit different types of
motion depending on the applied shear stress and external viscosity [103], we focus
here on the specific dynamics obtained when the RBC is suspended in a viscous
fluid (typically more than 3 times the viscosity of plasma) at moderate and high
shear stresses. This configuration has been extensively studied experimentally,
which enables to have numerous reference measurements from the literature to
compare with. We are interested in the impact of membrane viscosity on the tank-
treading regime. This study enables to highlight the lack of membrane viscosity in
the classical numerical model. Moreover, thanks to the implemented viscoelastic
model, it enables the reproduction of experimentally measured behavior. Finally,
some conclusion about the shear thinning aspect of the membrane has been made.
This work resulted in the publication of an article in Physical Review Fluids [102].

The second study concerns the deformation of the red blood cell placed in
an extensional flow. It illustrates the interest of having a model considering the
membrane viscosity to design relevant experimental devices for the measurement of
this behavior. We will detail the design of the experimental device, the simulation
devices as well as the first results obtained.
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4.2 Effect of membrane viscosity on
tank-treading red blood cells

4.2.1 Introduction

To compare the effect of internal viscosity and membrane viscosity, a relevant
configuration is that of an RBC tank-treading in a shear flow, which has already
been extensively studied experimentally [1, 56, 59], and numerically [30, 36, 37,
123, 125, 126, 163]. In a shear flow, when the suspending medium is viscous
enough and for high enough shear stresses, the membrane circulates around the
cell like the tread of a tank [84]. The RBC lengthens in the direction of the flow
and adopts an almost constant angle with respect to the flow direction [1]. Tank-
treading results are generally characterized in terms of RBC elongation, inclination
angle and tank-treading frequency, measured experimentally by attaching a bead
to the RBC membrane to track its circulation [54].

While simulations generally compare favorably with experiments in terms of
elongation and inclination, tank-treading frequencies are overestimated in the
absence of membrane viscosity in the model, as shown by Dodson and Dimi-
trakopoulos [36]. Because membrane viscosity contributes to internal friction in
the membrane, it always opposes to the load. Moreover, it adds a delay between
the load and the response. Implementation of an internal membrane dissipation
is expected to slow down tank-treading motion, thus to decrease tank-treading
frequencies.

The purpose of this study is to compare the dissipative sources in an RBC
and to study their impact on the tank-treading behavior. Numerical simulations
with and without membrane viscosity were performed to systematically assess its
effect. The tank-treading configuration of interest is presented before detailing
the results, focusing on the comparison between internal viscosity and membrane
viscosity. A comparison with existing experimental results is also shown. Finally,
experiments and simulation results are combined to infer the effective value of
membrane shear viscosity in this configuration of tank-treading RBCs.

4.2.2 Numerical setup and operating points

Simulations of single red blood cells under pure shear are performed. The configu-
ration is represented in Fig. 4.1. An external shear flow ~u = γ̇y ~ex is imposed in
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(a) (b)

Figure 4.1: Representation of the tank-treading behavior. (a) Side view, enabling
the measurement of the inclination angle θ. Translating walls are located at the
top and bottom boundaries. (b) Top view, for the measurement of the deformation
index D = Lp−W

Lp+W .

a periodic domain closed by moving walls. The domain is a cube of edge 30 µm.
The fluid inside and outside the membrane may have different values of viscosity.
The RBC is biconcave at rest, with diameter 7.6 µm. Its volume is 93.9 µm3 and
its surface area 135 µm2. Concerning the internal fluid viscosity, the literature
does not provide very precise values at ambient temperature. Viscosity values
between 7 cP and 15 cP are reported for hemoglobin solutions [22, 112, 113] for
temperatures between 20◦C and 25◦C, for a hemoglobin concentration between
330 g l−1 and 360 g l−1. In this work, a value close to 11 cP will be used where
dimensional results are presented (sections 4.2.4 and 4.2.5).

In this study, the RBC without membrane viscosity and with fixed mechanical
properties is chosen as a reference to highlight the impact of the lack of dissipation
in the model. For every simulated RBC presented in this study, the Skalak shear
modulus value is fixed to G∞ = 2.5× 10−6 Pa.m [88, 103]. The bending modulus
Eb is fixed to 6.0× 10−19 J, which allows to slightly extend the upper bound in
Ca for which stable results can be obtained without membrane viscosity. This
value is higher than the classically measured value (around 2.0 × 10−19 J), but
such values of increased bending modulus are regularly used in the literature
[27, 28, 30]. In the capillary range used in this study, we found no impact of
Eb on the deformation index D and the tank-treading frequencies. Using those
parameter values, the initial biconcave shape is obtained by defining the stress-free
shape of the RBC as an oblate ellipsoid[30] with an axis ratio of 0.9 and the same
surface area as the RBC at equilibrium and by deflating the stress-free shape to
the RBC volume of 93.9 µm3 to obtain the equilibrium shape [30, 124]. Finally,
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regarding the viscoelastic RBCs, the viscoelastic branch shear modulus is set to
GH = 50 × G∞, so that the model behaves almost like a Kelvin-Voigt model,
which is often done in numerical simulations [68, 78, 124].

The RBC membrane is discretized with 3919 triangles with a characteristic
element size of 0.3 µm. To ensure the accuracy of the immersed boundary method,
the characteristic size of the fluid mesh is the same [131]. The RBC, initially at
rest, is subjected to the shear flow at t = 0. After a brief transient phase, the
shape of the RBC and its inclination angle θ reach a quasi-steady state, with
small oscillations due to the circulation of the stress-free shape of the membrane
[1, 104]. The deformation is characterized with a deformation index calculated
from the top view (in the (x,z) plane) D = Lp−W

Lp+W (see Fig. 4.1). The tank-treading
frequency fTT (in s−1) is also extracted. Simulations are performed for a total of
150 t∗ with t∗ = γ̇t the non-dimensional time. D, θ and fTT are computed over
the last 120 t∗.

In this study, we vary the external shear rate γ̇, the external viscosity µext,
the internal viscosity µint and the membrane viscosity η. The other parameters
of the model (geometry, mechanical properties) are considered fixed and are
representative of an average value for RBCs. We thus ignore natural variability
or the effect of age on these RBC characteristics [15, 88]. On the other hand, a
systematic study of the effects of membrane viscosity and internal viscosity is
performed.

Parameters for the simulations will be expressed in terms of non-dimensional
numbers. As for the case with capsules, the non-dimensional numbers of the
problem are the Reynolds number Re, the capillary number Ca, the viscosity ratio
λ and a Boussinesq number characterizing the membrane viscosity. Concerning
RBCs, we chose to use the internal Boussinesq number Bqint = η

aµint
, with

a =2.82 µm the radius of a sphere of the same volume as that of the RBC,
93.9 µm3. This non-dimensional number compares the membrane viscosity with
the internal fluid viscosity. Here, it is preferred to the external Boussinesq number,
as Bqint characterizes the RBC only, independently of its environment. As for
capsules, the Reynolds number was fixed to a small value of 0.2 to shorten the
computation times without introducing fluid inertia effects. However, this choice
may lead to a slight overestimation of the tank treading frequencies.

The purpose of this study is to highlight the impact of both λ and Bqint on
the dynamics of tank-treading RBCs, for different values of Ca. Increasing either
λ or Bqint is expected to produce similar effects associated with an increase of
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Name λ Bqint Ca Figure
L02B0 0.2 0.0 0.6, 1.8, 4.0, 7.2 Fig. 4.4(a,b)

0.6, 2.0, 4.0 Fig. 4.2(a-c)
L05B0 0.5 0.0 0.5, 1.6, 2.4, 4.0, 7.2 Fig. 4.4(a)

0.6, 2.0, 4.0 Fig. 4.2(a,c)
L1B0 1.0 0.0 0.6, 1.6, 2.4, 4.0, 7.2 Fig. 4.4(a)

0.6, 2.0, 4.0 Fig. 4.2(a-c)
L02B1 0.2 1.0 0.6, 1.8, 4.0, 8.5 Fig. 4.4(b)

0.6, 2.0, 3.0, 4.0 Fig. 4.2(a-c)
L02B3 0.2 3.0 0.6, 1.8, 4.0, 8.5 Fig. 4.4(b)

0.6, 2.0, 3.0, 4.0 Fig. 4.2(a-c)
L02B5 0.2 5.0 0.6, 2.0, 3.0, 4.0 Fig. 4.2(a-c)
L084B0 0.84 0.0 0.6, 1.0, 2.0, 3.8 Fig. 4.4(c)
L084B1 0.84 1.0 0.6, 1.0, 2.0, 3.8 Fig. 4.4(c)
L084B3 0.84 3.0 0.6, 1.0, 2.0, 3.8 Fig. 4.4(c)

Table 4.1: Recap of the simulations used in the non-dimensional and dimensional
studies.

the total dissipation in the RBC. A recap of the computations done in this study
can be found in Tab. 4.1.

The numerical results are presented in two different ways: first, in a non-
dimensional framework to present the impact of the membrane viscosity on the
characteristics of a tank-treading RBC and to highlight the difference between
the effects of internal and membrane viscosities. Then, results are presented
in a dimensional way to enable the comparison with experimental data on the
tank-treading frequency.

4.2.3 Non-dimensional study

In this non-dimensional study, results are presented in terms of the inclination angle
θ, deformation index D and non-dimensional frequency f ∗TT = 4πfTT

γ̇
[162, 163],

as a function of Ca. We will highlight how the characteristics of tank-treading
depend on λ and Bqint, i.e. of the internal viscosity and the membrane viscosity.
To do so, the following ranges of non-dimensional parameters were considered.
The range of Ca is from 0.3 to 2.0, in particular to avoid the low-Ca region, where
tank-treading is not stable and out-of-plane motions and deformations are possible
[40, 105]. In addition, high values of the capillary number yield sharp shapes of
RBCs [54] which may be unstable at the tip. Concerning the range of λ, it is
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well known that the tank-treading behavior is not stable anymore for λ values
greater than 2.5-3.0 [3, 87, 103, 105]. In addition, experimental studies of the
tank-treading behavior are generally performed in dextran solutions, with a high
external viscosity [56]. As a consequence, the range of λ was chosen to be between
0.2 and 1.0. Finally, Bqint values were chosen between 0 (no membrane viscosity)
and 5.0, for which the tank-treading frequency is largely decreased (see further).

Computational results from the L02B0, L05B0, L1B0, L02B1, L02B3 and
L02B5 series are displayed in Fig. 4.2. First, the deformation index is not very
sensitive to the value of λ and Bqint (see Fig. 4.2b), in particular at low values
of Ca. At higher values of Ca, both λ and Bqint have the same effect of slightly
decreasing the deformation. However, Fig. 4.2(a,c) show a different effect of λ and
Bqint on the tank-treading frequency and on the inclination angle. In particular,
differences are more pronounced on the frequency (Fig. 4.2c). Fig. 4.2(c) first
shows that the non-dimensional frequency decreases when Ca increases: the
tank-treading frequency is not linear with respect to Ca (a linear dependency
would correspond to constant f ∗TT in Fig. 4.2c). This has also been obtained
in simulations without membrane viscosity [163]. Fig. 4.2(c) also highlights the
differences between an increase in internal viscosity or in membrane viscosity.
While both lead to a decrease of f ∗TT , this decrease is rather uniform when
increasing λ, but not increasing Bqint. Membrane viscosity has a mild effect at low
shear stresses, but its influence increases with shear stress. The same comments
can be made on the effect of λ and Bqint on the inclination angle (Fig. 4.2a).

From the modeling point of view, the consequence is that membrane viscosity
and internal viscosity are not interchangeable. For instance, for tank-treading,
one cannot properly mimic membrane viscosity by increasing internal viscosity,
contrary to what may be suggested in low-order models and in specific situations
[84, 100]. As a matter of fact, it is possible to obtain similar tank-treading
frequencies from two different RBCs, as illustrated by comparing L1B0 and L02B3
at Ca = 2.0. Even the shapes are pretty similar, despite little differences that can
be seen in Fig. 4.3. However, the similarity is only possible for a given Ca and
does not hold for a whole range of Ca (see how the L1B0 and L02B3 trajectories
differ with varying Ca in Fig. 4.2c). In other words, it is not possible to infer
internal viscosity value or membrane viscosity value using only one RBC and only
one value of Ca.

The difference between the impacts of the internal viscosity and of the mem-
brane viscosity has been highlighted in the non-dimensional analysis. Now, it
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Figure 4.2: Impact of the internal viscosity and the membrane viscosity on the
tank-treading characteristics of a single RBC in shear flow as a function of Ca.
(a) Inclination of the RBC, (b) deformation index and (c) the non-dimensional
frequency. Only chosen data are represented on (b) to improve clarity.

is interesting to study the consequences of those differences in comparison with
experimental data in a dimensional framework. To do so, we will make the
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(a) (b)

Figure 4.3: RBC shape comparison at Ca = 2 for L1B0 (a) and L02B3 (b).
Corresponding values of D are 0.48 for L1B0 and 0.46 for L02B3. Corresponding
f ∗TT is about 0.38 for both. Shape differences can mostly be seen on the extremities
of the RBC. Different combinations of λ and Bqint yield almost identical cells,
but for a given value of Ca only.

non-dimensional data (Tab. 4.1) dimensional to match experimental operating
conditions.

4.2.4 Dimensional study

As previously explained, tank-treading is classically characterized by three main
parameters: the tank-treading frequency fTT , the deformation of the RBC repre-
sented by its deformation index D = Lp−W

Lp+W and the inclination angle between the
RBC and the flow direction θ. Here we specifically compare simulation results
with experiments in terms of frequency, for which differences between the impacts
of internal and membrane viscosities have been emphasized, and for which data is
available in the literature. Experimental data for tank-treading frequencies are
extracted from Fischer’s work [56]. In this study, tank-treading experiments are
performed with three different blood samples, for multiple external fluid viscosities
and different shear rates, at a room temperature of 23◦C. We selected cases with
external fluid viscosity of 12.9 cP and 53.9 cP. Assuming that the internal viscosity
of the RBC is µint = 10.78 cP, which is an acceptable value at ambient temperature
(see section 4.2.2), such values of external viscosity correspond to λ = 0.84 and
λ = 0.2, respectively. Results are presented in Fig. 4.4(a-c). Experimental results
are presented in terms of average and error bars from Fischer’s data [56]. Blood
samples used in this study come from three different donors. As experimental
data are dispersed both in terms of tank-treading frequency and shear rate at
which it is measured, mean values and standard deviation were computed for each
cloud of data and reported in Fig. 4.4.

First, it is seen in all subfigures that for the cases without membrane viscosity,
the tank-treading frequency is overestimated with respect to the experimental
data. This is consistent with existing results from the literature [36]. Then, an
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Figure 4.4: Comparison between computational and experimental results. (a)
Impact of the internal fluid viscosity on tank-treading frequencies for an external
viscosity of µext = 53.9 cP. (b) and (c) Impact of the membrane viscosity on
frequencies for two different external viscosities (µext = 53.9 cP (b) and µext =
12.9 cP (c)). Error bars represent two times the standard deviation observed
experimentally.
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increase either in the internal viscosity or in the membrane viscosity leads to a
decrease in the tank-treading frequencies, as shown for the case with µext = 53.9
cP (Fig. 4.4a,b): additional dissipation in the RBC slows down the membrane
circulation, whatever the source for this extra dissipation. It is interesting to
comment the value of the internal viscosity and membrane viscosity needed to get
results close to the experiments: Fig. 4.4(a) shows that, to obtain simulation results
comparable with experimental measurements, we have to increase the internal
viscosity up to a value of 53.9 cP. This value is typically five times the expected
value of the internal viscosity, which is unrealistic: even if some uncertainties exist
on the value of internal viscosity, this value is not consistent with the expected
range. In addition, if such a high value of internal viscosity is used with µext = 12.9
cP, tank-treading is not obtained anymore as the viscosity contrast is too high
[87, 103]. As a consequence, we do not present results increasing the internal
viscosity with µext = 12.9 cP. Indeed, results at µext = 12.9 cP Fig. 4.4(c) shows
that the same range of membrane viscosity yields favorable comparison with
experiments. Consequently, membrane viscosity seems indispensable to explain
the behavior RBCs during tank-treading.

Fig. 4.4(b,c) allow detailing the impact of the membrane viscosity on tank-
treading frequency. Interestingly, the effect of membrane viscosity is not uniform
with different shear rates, as reported in the non-dimensional analysis. At low
shear rates, the tank-treading frequencies seem relatively unaffected by membrane
viscosity. The effect of membrane viscosity is all the more important that shear
rate (and thus tank-treading frequency) increases. This is true for both µext = 53.9
cP (Fig. 4.4(b)) and µext = 12.9 cP (Fig. 4.4(c)).

In the series of simulations presented in Fig. 4.4, we have fixed the ratio between
the membrane viscosity and the internal viscosity (in other terms, the internal
Boussinesq number Bqint) to three different values: Bqint = 0.0, 1.0 and 3.0. It
leads to three different η values, 0.0 cP.m, 3.04 × 10−5 cP.m and 9.11 × 10−5

cP.m, respectively. Clearly, η = 3.04× 10−5 cP.m and η = 9.11× 10−5 cP.m yield
better results than η = 0.0cP.m, and this range of membrane viscosity yields
fair comparisons with the experiment. However, the evolution with shear rate
of the relative impact of the membrane viscosity on the results makes results
at η = 3.04× 10−5 cP.m (pink curve in Fig. 4.4(b,c)) better at high shear rates
and results at η = 9.11 × 10−5 cP.m (red curve in Fig. 4.4(b,c)) better at low
shear rates. Note that this statement seems independent of the value of external
viscosity.
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To conclude, even if imposing a large value of internal viscosity can reproduce
experimental tank-treading frequencies in some cases, membrane viscosity is the
only source for dissipation enabling a consistent improvement of the agreement
between simulations and experiments for a large range of operating conditions.
Indeed, the values of membrane viscosity that yield a satisfactory comparison
with experiments are similar to those extracted by Tran-Son Tay [155]. However,
they are higher than the values used by Guglietta et al. [68] to predict relaxation
experiments. However, a constant membrane viscosity does not lead to a perfect
agreement between experiments and simulations. This result suggests that a
viscoelastic modeling of the membrane with a constant shear viscosity is not enough,
and that a more complex membrane viscosity behavior should be accounted for.
The idea of a shear-thinning behavior for the RBC membrane is not new. Chien
et al. [24] reported a shear-thinning behavior of the membrane from micropipette
experiments. Tran-Son Tay et al. [155] studied the shear-thinning behavior of
the RBC’s membrane in the case of tank-treading RBCs and studied differences
of viscosity for young and old cells using the analytical model from Keller and
Skalak [84]. The variation of the apparent membrane viscosity with the shear is
discussed from our results in the next section.

4.2.5 Shear-thinning model

Results obtained with a constant membrane viscosity suggest that higher values of
membrane viscosity are needed for low shear rates to reproduce experimental tank-
treading frequencies. This is in line with previous experimental works pointing
out the shear-thinning behavior of the membrane [24, 155].

In this section, the value of membrane viscosity is inferred from the comparison
between numerical predictions of the tank-treading frequency and experimental
data[56] already reported in Fig. 4.4, at different values of the external viscosity.
We use a unique red blood cells with fixed characteristics except for the membrane
viscosity. For each experimental cloud (at approximatively 15, 35, 65, 130 and
260 s−1, see Fig. 4.4), we use the ensemble average of the shear rate as a reference.
For that shear rate, simulations with different values of the membrane viscosity are
performed and the tank-treading frequency is compared to the ensemble average
of each cloud (this data is plotted as blue dots in Fig. 4.4). By dichotomy, we
converge to an inferred value of membrane viscosity. The value was considered
to be accurate if the difference between the numerical and the experimental
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frequencies was less than 5%. The results of this process in terms of frequencies
are displayed in Fig. 4.5(a,b). Fig. 4.5(c) shows the inferred values of membrane
viscosity as a function of the shear rate, for µext = 12.9 cP and µext = 53.9 cP. In
addition to the value of membrane viscosity yielding a good comparison with the
average frequency in the experiment, we use simulations to extract a dispersion
on the values of membrane viscosity (displayed in bars in Fig. 4.5c) from the
dispersion of the experimental data. Experimental dispersion is measured using
the standard deviation of the data ∆fTT . In simulations, we calculate how a
change in membrane viscosity changes the resulting tank-treading frequency: this
means calculating ∂fTT/∂η at the inferred membrane viscosity. We define the
dispersion in membrane viscosity as ∆η = ∆fTT × ∂η/∂fTT .

Fig. 4.5(c) leads to confirm the shear thinning behavior of the membrane, with
a factor of 10 between maximum and minimum viscosity values. Moreover, error
bars are bigger as the shear rate decrease. It leads to highlight that the membrane
viscosity seems to be a more sensitive parameter as the shear rate increase. Finally,
Fig. 4.5(c) also shows that the external fluid viscosity does not seem to have a
major impact on the shear thinning curve. Note that at low shear rates, a large
change in the membrane viscosity is needed to change the resulting tank-treading
frequency, which may explain the largest differences seen at γ̇ ≈ 30 s −1.

Tran-Son Tay [155] made a similar effort to extract membrane viscosity from
experimental data and a model. The corresponding results are also displayed
in Fig. 4.5(c). Even if differences exist between Tran-Son Tay’s results and our
results, the trends are similar, even using very different methods to obtain those
shear-thinning curves. In comparison, values of membrane viscosities computed
with YALES2BIO seem closer to the values for young cells, at high shear rates.
The values of membrane viscosity of Fig. 4.5(c) also seem to be consistent with
the one used by Guglietta et al. [68] in their simulations of RBC relaxation
(η = 3.18 × 10−4 cP.m), which could then be interpreted as a value relevant to
slow deformations of the membrane. Finally, using values obtained thanks to the
tank-treading behavior to compute relaxation time, it leads to characteristic times
between 0.1 s and 0.01 s, which is in accordance with literature values [68].
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Figure 4.5: Comparison between the experimental frequencies[56] and the sim-
ulation frequencies obtained from the inferred membrane viscosity values. (a)
Comparison with data at µext = 53.9 cP, (b) comparison with data at µext = 12.9
cP. (c) Inferred shear-thinning behavior of the membrane viscosity; values from
Tran-Son Tay[155] are included for comparison. Bars in (a) and (b) represent
the standard deviation of the experimental data. Bars in (c) represent the range
of value of membrane viscosity to reproduce the dispersion of the experimental
frequencies.
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4.3 Strain experiment: RBCs in an extensional
flow

4.3.1 Introduction

The goal of this part is to do the same kind of work as in the previous part
concerning tank-treading, but on another configuration. Indeed, to improve our
knowledge on the viscous behavior of the membrane, it is important to compare
the current model to different configurations of RBCs in flow. Here the idea
is to design an extensional flow to make a comparison between simulation and
experimental results in a simple configuration of uniaxial extension. The study of
the impact of membrane viscosity in strained RBC configurations has also recently
appeared in the literature thanks to the work of Guglietta et al. (2021) [69].

The objective of the work initiated here is to study the response of an RBC
stretched in one direction and without avoiding membrane circulation. This
situation is obtained in purely extensional flows. A possibility to create a strain
and, at a given flow, to reduce the size of the channel. This will accelerate the fluid
creating a strain as it passes through the reduced section [100]. The advantage of
this type of configuration is to be able to transport the RBC without major shape
shift of the RBC upstream. However, the strain is brought to change throughout
the passage of the RBC in the channel which is reduced. Another way to create
purely extensional flow is by slowing down the flow.

One way to get such a flow is to use a kind of experimental device called
crossflow devices [47, 63, 72, 119, 141]. The idea is to use crossing channels and
an imposed inflow to produce a constant strain rate area at the center of the
device.

This type of device has multiple advantages, in particular the fact of not
requiring the addition of a new player to impose the force, as in the context of
optical tweezers (the bead). Thus, the stress is controlled thanks to the parameters
of the external fluids such as the viscosity or the inlet flow. On the other hand,
unlike optical tweezers, it is not possible to solicit a resting RBC (in its discocyte
form). Indeed, the delivery of the globule in the traction zone involves the
deformation of the RBCs in the channel. Finally, it is also not possible to precisely
center the red blood cells in the device. As a result, the RBCs undergo a stress
which depends on their trajectory within the stretching zone. The challenge of
this type of measurement is therefore to considering the arrival configuration of
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the globule as well as its trajectory within the stretching zone.
The advantage of simulation is to be able to overcome experimental constraints

and to allow the study of ideal cases. Therefore, it is completely possible to
consider the case of the elongation of a RBC in its discocyte form perfectly
centered in the extension zone.

We will therefore detail the design of the experimental device and present
the flow inside the device. Then, different idealized configuration computed are
presented to obtain a better understanding of the dynamics inside the device.
Finally, we will present the preliminary results of simulations as well as the
experimental results.

4.3.2 Design of the extensional flow

(a) (b)

(c)

x

y

+z

Figure 4.6: Visualization of the crossflow device with in (a) a top view with arrow
representing inlets and outlets of the device, (b) a 80% threshold of the max
strain rate and (c) a three dimensional view of the device showing the rectangular
section of the channels.
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We will present here the design of the experimental device used in this work.
The issues are multiple. The centering of the RBC in the channel is not perfect
experimentally. Therefore, we seek to generate a flow in which the region of
uniform strain is as large as possible, so that slight changes in the trajectory would
not have a major impact on the strain experienced by the cells. At the same time,
we seek to have a sizing of the channels allowing to better center the blood cells
arriving in the extensional zone. All these constraints naturally led us to design
the experimental device to allow the implementation of an extensional flow with a
stagnation point, also called crossflow.

It consists in two opposite inflows that encountered themselves in a middle
area and that are evacuated using two other channels. The four channels are
forming a cross, which gives the name to those kinds of flows. Those kinds of
experimental devices have already been extensively studied during the 2010s, so
the chosen design is based on those works [63, 72].

The geometry is displayed in Fig. 4.9. Channels sections are rectangular and
measure 50µm of width by 40µm in depth. The choice of the channel size is linked
to the issue of centering of the RBCs inside the device. Indeed, we seek to have
RBCs as centered as possible so that they remain long enough in the uniform
strain region. However, Iss et al. in 2019 suggest that, in confined channel, RBCs
are self-centering [81]. It is to use this phenomenon, inside the upstream channel
that leads RBCs inside the crossing part of the device, to maximize the number
of centered RBCs that this channel section was designed. The crossing geometry
was found by Galindo Rosales et al., who suggest to replace angle of the cross
by a rounded geometry. In this study, the rounded geometry come from circle
of 100µm of radius. Finally, the crossing area measures 250µm of length and its
diagonal measures 150µm.

Because the microfluidic system is only operated at low Reynolds numbers,
the velocity field (and the strain rates) inside the device is linear with the inflow.
The values are displayed in Fig. 4.8. One of the interests of the device is to create
a large region of quasi-uniform strain. By showing different threshold filters on
the strain rate parameter on the flow field inside the device, the constant strain
area can be highlighted as in Fig. 4.9(c). Putting a threshold of 80% of the strain
maximum value leads to obtain a region of 220µm of width by 15µm of depth.
Setting a threshold to 90% leads to a region of width 150µm and of depth 5µm.

to visualize values of the strain rate that the RBC will undergo and residence
time of the RBC inside the strain area, streamlines are extracted and quantities
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Figure 4.7: Relationship between the input flow rate and the strain ε̇ (a), and the
maximum velocity in straigth channels (b). The input flow rate represent the sum
between the two channel inflows of the device, the velocity is maximum inside the
inlets channels and the strain reported is the maximum value of the strain inside
the strain area (at the center of the device).
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Figure 4.8: Information concerning the flow along a centered streamline and a
streamline with 5 µm of shift in the showed plane inside the crossflow device for
an imposed strain at 100 s−1. (a) Strain rate ε̇ as a function of time along the
streamlines and (b) the crossflow device with in black the centered streamline, in
green the shifted one and in red a threshold of 80% of the maximum strain rate.

of interest plotted against time, under the assumption that the RBCs perfectly
follow the streamlines (Fig. 4.8). The two streamlines inspected are the perfectly
centered streamline and the resulting streamline of an initial shift of 5µm. Fig. 4.8a
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highlights that the residence time of a RBC inside the strain area is highly
dependent on the streamline that the RBC follows. This means that centering
of the RBC is critical in terms of applied stress and resulting deformation. This
leads the RBC to undergo the same value of strain for approximately 10t∗, with
t∗ = t× ε̇ the dimensionless time, knowing that the rise time is negligible compared
to this total time.

Note also that RBCs will undergo maximum deformation if they are centered
in the depth (z direction). Consequently, it is important to combine numerical
simulations and experiments to carefully select centered RBCs, using both their
position in the (x,y) plane (the imaging plane) and their velocity, which informs
on their centering in the z direction.

Finally, a choice had to be made as to the viscosity of the external fluid used.
We knew that the more viscous the external fluid, the less the effect of membrane
viscosity would be apparent. This is because the external fluid will dissipate too
much energy compared to the membrane viscosity. Thus, a pre-study, consisting
in calculating some simplified cases at different external viscosities and different
membrane viscosities, allowed us to note that from λ = 1, the effects of the
membrane viscosity are visible. This leads this study to be done at λ = 1.

To conclude, let us recapitulate the advantages and limitations of this system
with respect to our objectives. First, it is a purely fluidic system where RBCs will
be stretched by a purely extensional flow. The RBC should undergo a constant
strain during a relatively long time (several of non-dimensional time units). The
application of this strain is relatively sudden, as the RBC enters the uniform strain
region at high speed, which allows comparisons with simulations performed under
constant strain. However, the RBCs need to be as centered as possible, otherwise
they are subject to a lower strain rate and for a shorter time. A second difficulty
is also inherent to the system: RBCs enter already stretched in the strain region.
The numerical simulation of this configuration is treated in the next section. First,
ideal cases are presented to gain a better understanding of the dynamics present
when the RBC is stretched. The consideration of the deformed RBC before the
arrival in the strain section is discussed at the end of the chapter as well as the
experimental results.
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4.3.3 Numerical setup and operating points

In numerical simulation, the problem of optimization of the computation time is
always in the foreground. In our present case, a problem of scale difference between
the fluid domain and the simulated red blood cell led us to think differently about
our simulations. Indeed, to optimize IBM, it needs similar mesh size for the
fluid and the solid. However, the size fluid domain that is needed to model a
representative fluid domain in the experiment is simply too big in comparison
to a RBC typical size. For example, streamlines shown in Fig. 4.8(c) are 500µm
long, a good agreement for the RBC mesh size is 0.3µm. This scale problem
quickly results in a unnecessary large mesh. The objective is therefore to faithfully
represent the stresses undergone by the RBCs passing through the experimental
device, without however reproducing the complete geometry of the device. To do
that, two steps must be modelled to reproduce the experiment.

The first step consists of the generating the initial configuration of the RBC
inside the entering channel. To do so, we use tank-treading RBC solutions from
the simulations presented in the previous part of the chapter.

Now the RBC shape inside the entering channel is obtained, the strain that
the RBC undergoes inside the center of the crossflow must be simulated too. To
do that, we proceed in a similar way than before except that instead of using a
fixed shear rate to compute the velocity field, we use a fixed strain rate. Thanks
to the incompressibility of the fluid it leads to the calculation of the velocity field
of the cubic domain as:

−→
U =


Ux

Uy

Uz

 =


∂Ux
∂x
× x

∂Uy
∂y
× y

0

 =


ε̇× x
−ε̇× y

0

 . (4.1)

As already mentioned, this step is relevant when the reproduction of experimental
observed RBCs is wanted. However, because the study is just starting out, it
has not been possible during this thesis. Presented results in this section are
preliminary results and illustrate outcomes of this study. Presentation of the
different tools that had to be put in place to be representative of the experimental
configuration are presented here to illustrate the difficulty to deal with simulations
of RBCs. Simulations presented here are done with the same starting configuration
and are here to help to identify dynamics that can be observed experimentally.
This shape was chosen because it has a deformation index of 0.3, which is like the
deformation indices observed experimentally in close regimes.
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Concerning RBC’s membrane mechanical parameters, except for the membrane
viscosity, they are fixed thanks to the literature. The idea is to represent an RBC
with average properties. By only distinguishing RBCs thanks to their membrane
viscosity, it enables to highlight the impact of this behavior on the membrane
deformability. Hence, the membrane elastic part of the behavior follows a Skalak
behavior law. The corresponding shear modulus G∞ is fixed to a value of 2.5×10−6
Pa.m. The curvature modulus Eb is fixed to 2.0×10−19 J. Finally, to ensure that
the viscoelastic membrane model is a Kelvin-Voigt model as presented earlier, the
branch shear modulus Gbranch is fixed to 50 times G∞ (see Section (3.4.3) for more
information on the subject). The RBC’s membrane is a surfacing triangular mesh,
and the fluid domain is a volumetric cartesian mesh. Concerning external fluid
viscosity, in every simulation presented in this work we are considering that it is
equal to the internal viscosity of the RBC. This leads to have the viscosity ratio
number λ = µint

µext
= 1. All the simulations presented in this work were carried out

with similar mesh parameters. The characteristic size of fluid and solid meshes is
0.25µm. Each simulation took between 1 and 2 full days depending on the strain
applied (low strains requiring 2 days).

Most of the parameters are constant between each simulation and follows
the value given earlier. Only the starting configuration of the RBC, the value
of the strain applied as well as the viscosity of the membrane varies between
simulations. Three starting configurations are explored during this study as well
as three different Ca and three different Bqint. The first configuration considers
the starting shape as a discocyte with the lobes along the z axis. The second
orientation is a discocyte with the lobes along the y axis (please refer to Fig. 4.8
for the representation of the axis in the device flow). Finally, the last configuration
is a RBC in a tank treading shape close to the arrival configuration of the RBC
observed experimentally. The different values of Ca used are 0.085, 0.17 and
0.25. Finally, the three values of Bqint studied are 0, 1 and 5 for the most viscous
configuration. The observed parameter is the deformation index D, computed
using only a projected image of the RBC following the axis orthogonal of the flow
plan. Indeed, experimentally, only this side of the RBC can be observed. Using
this projection, D is computed as D = L−l

L+l with L the length in the strain axis
and l the length in the compressed axis (respectively the x and y axis presented
Fig. 4.8). The evolution of D as a function of t∗ = ε̇ t, with ε̇ the strain at the
center of the device.
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Figure 4.9: Visualization of the three simulated configurations in this work. The
x axis representing the strain axis and y axis the compression axis. The first and
the second orientation of the ideal cases are respectively represented on (a) and
(b). (c) represents the configuration with a RBC in tank-treading shape.

Ideal cases: First orientation

In this first RBC orientation, the lobes are in the unconstrained direction, i.e.
normal to the plane of the flow. Results are presented in Fig. 4.10. First, the
membrane viscosity does not modify the asymptotic deformation of the RBC.
However, the addition of the membrane viscosity delays the membrane deformation
in comparison with the pure elastic case, as expected. The impact of the membrane
viscosity seems to be more important as a function of the strain rate increases.

Note that the deformation index curves exhibit multiple regimes. This is due
to a geometrical effect displayed in Fig. 4.11. Thanks to this visualization, it is
now possible to have a better understanding of the shape of the D curves. Indeed,
a phenomenon like buckling is happening, with an inversion of the curvatures near
the two initial lobes. The impact of the viscosity on this peculiar phenomenon is
not clear yet, although the whole phenomenon seems delayed due to the viscosity.

to quantify the additional delay between applied stress and resulting strain
due to membrane viscosity, we use an exponential fit of the type D(t∗) = D∞(1−
exp(−t∗/t∗s)), with t∗s a non-dimensional stretching characteristic time and D∞ an
asymptotic value. This fit is used on the initial part of the curve, for t∗ ≤ 2.0,
which is necessary to avoid having the fit spoiled by the second regime of buckling
of the shape. As D never reaches the asymptotic value of the first deformation
regime, D∞ is a free parameter. The only constraint is that it has the same value
for the cases at the same Ca (same strain rate), whatever the value of Bqint (ie of
membrane viscosity). The values of characteristic time are reported in Table 4.2.
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(a) (b)

(c)
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Figure 4.10: Deformation index as a function of the dimensionless time for three
different Ca values obtained by simulation of a discocyte in the first orientation
configuration. (a) Ca=0.084, (b) Ca=0.17 and (c) Ca=0.25.

t∗=0

t∗=1

t∗=10

Figure 4.11: Visualization of the RBC shape at different t∗ for the first orientation
computation, at Ca = 0.25 for a pure elastic membrane, Bqint = 0.

To conclude, this case highlights the fact that membrane viscosity may have a
major impact on the response to stretching. One can observe the clear lengthening
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Bqint = 0.0 Bqint = 1.0 Bqint = 5.0
Ca = 0.085 t∗s = 0.55 t∗s = 0.62 t∗s = 0.91
Ca = 0.17 t∗s = 0.55 t∗s = 0.68 t∗s = 1.08
Ca = 0.25 t∗s = 0.56 t∗s = 0.72 t∗s = 1.30

Table 4.2: Non-dimensional characteristic time ts obtained thanks to an exponen-
tial fit on the initial part of the deformation dynamics (t∗ ≤ 2.0).

of the characteristic times, typical of the effects of dissipation and delay introduced
by the addition of a membrane viscosity Tab. 4.2. The values of Bqint chosen
however to remain within the reasonable range, much larger values having already
been used in the previous study on the tank-treading behavior as well as in the
literature [68]. In the elastic case, the characteristic time does not depend on
the capillary number. On the contrary, it is seen to increase with the capillary
number when the membrane is viscoelastic. However, this ideal case also displays
complex geometrical effects due to the buckling of the RBC. Those effects lead
the interpretation of the local impact of the membrane on the RBC’s membrane
complex. to limit the influence of buckling on the results, we also perform another
set of simulations with a different orientation: the RBC small axis (the thickness
direction) is along the compression axis of the extensional flow.

Ideal cases: Second orientation

In this orientation, the lobes of the RBC are oriented in the direction of compression.
The purpose of this choice is to limit the impact of the effects observed previously,
namely the inversion of the lobes, on the deformation curves. The same operating
points are simulated. The results obtained are visible in Fig. 4.12. The deformation
parameter is calculated in the shear plane, so that it is not zero initially.

What we notice is, first of all, the same obvious impact of membrane viscosity
on the rate of deformation over time. The shapes of the curves are also very
different compared to the first orientation. As for the previous case, however,
several regimes are visible, due to the buckling of the RBC dimples, displayed in
Fig. 4.13.

The study of these ideal cases confirmed the relevance of the study of such a
configuration to study the impact of the membrane viscosity.
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(a) (b)

(c)
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Figure 4.12: Deformation index as a function of the dimensionless time for three
different Ca values obtained by simulation of a discocyte in the second orientation
configuration. (a) Ca=0.084, (b) Ca=0.17 and (c) Ca=0.25.

t∗=0

t∗=1

t∗=10

Figure 4.13: Visualization of the RBC shape at different t∗ for the second orienta-
tion computation, at Ca = 0.25 and Bqint = 0.

4.3.4 Initial state of the RBC in the crossflow device

Ideally, one would want to perform stretching tests starting from a non-deformed
state. This is the case in simulations, where an RBC can be deposited instan-
taneously in a constant strain flow. Experimentally, because it is not possible
yet to just directly inject the RBCs in the straining zone, the RBCs have to
come to the crossing section by the entering channel. Indeed, Fig. 4.7 shows that
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Figure 4.14: Photo of the crossflow device in operation. The horizontal channel is
the input channel for the RBCs, a RBC is visible in the channel to the left of the
image. An RBC after passing through the strain zone is visible at the bottom of
the image, towards the exit channel.

to apply strain rates of the order of 100 s−1, the maximum velocity inside the
incoming channel is of the order of 10 mm s−1, which yield shear rates in the
channels of the same order as the strain rates targeted in the device. Indeed,
when RBC are suspended in a viscous fluid, they arrive in the device in a tank
treading configuration, which means that they are stretched in the flow direction
and slightly tilted with respect to the flow direction. This means that compared
to an ideal case where the RBC is studied initially at rest and perfectly oriented
in the strain plane, in the experiments, the RBC is initially deformed and has
an unknown orientation with respect to the flow. It will thus be necessary to
quantify the effects of these elements on the RBC response.

4.3.5 Experimental case’s preliminary results using tank
treading initial shape and outcomes

As for the ideal case, results are presented using non-dimensional framework.
Values of capillary number and internal Boussinesq number are the same that
the values used for the ideal cases. Results are shown in Fig. 4.15. First, some
similarities are observed between the ideal case results and the results obtained
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(a) (b)

(c)
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Figure 4.15: Absolute value of the deformation index as a function of the dimen-
sionless time for three different Ca values obtained by simulating the experimental
case configurations. (a) Ca=0.084, (b) Ca=0.17 and (c) Ca=0.25.

in this configuration. Indeed, the viscosity impacts the deformation index in a
similar way than in the ideal case. Cases at Bqint = 1.0 are similar to the inviscid
cases, while a much larger delay is obtained at Bqint = 5.0. For all cases, the final
level of deformation corresponds to a side view of the RBC.
Finally, as before, the membrane viscosity greatly impacts the dynamics. One
way to visualize this impact is to plot the dimensionless characteristic time t∗c
corresponding to the increased time it takes RBC to reach a stable configuration
(at ±5%) as a function of the capillary number Ca Fig. 4.16.
We can emphasize the non-linear character of the impact of the membrane

viscosity as a function of the capillary number. As well as the nonlinearity of
the impact of membrane viscosity on the characteristic time as the viscosity
increases. To ensure the validity of the D values observed numerically with the
reality of the experiment, we compared numerical values with the first values
obtained experimentally on different RBC’s samples. Experimental results are
shown Fig. 4.17. These results were obtained thanks to the measurements carried
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t∗ c

Ca

Figure 4.16: Nondimensional characteristic time t∗c for RBCs , with different
membrane viscosity values, in tank treading shape to reach its final stable shape
(at ±5%), as a function of the capillary number Ca.

out by Ramadier, G. and Abkarian M. and we thank them for their collaboration
in this work.
Because the study is really at its beginning, it is difficult to have a robust

Q (in µL.hr−1)

D
m
a
x

Figure 4.17: Maximum deformation index Dmax observed experimentally for
different flow rates Q for three different samples of RBCs, healthy and sick. The
Ca range of values represented here is from values near 0.045 to 3.4. Experiment
done at the CBS laboratory by Ramadier and Abkarian.

102



CHAPTER 4. APPLICATION

interpretation and to compare in detail those results. But we can observe that D
values obtained numerically are in accordance with the range measured experi-
mentally. However, we notice that our simulations all result with a D close to
0.6, which is not found experimentally. This suggests that the RBCs have turned.
Experimentally, we seem to have two regimes. A regime with reorientation and
another where the RBCs remain in the plane and deform without buckling. In
the range of Ca values computed numerically, only the diabetic RBCs seem to
reach D values observed experimentally.

Finally, when comparing the numerical results obtained here with results
obtained in the ideal case, we observe that, unlike in the ideal case, here no
buckling phenomenon is observed. It is certainly since are present on the initial
RBC shape. However, as mentioned before, the initial angle of the cell with respect
to the flow induces a rotation of the cell. This rotation is not clearly apparent on
the deformation curves but can be seen by looking directly at the RBC during
the simulation, as shown Fig. 4.19. It is important to note that this effect can be
difficult to observe only experimentally and that it becomes reachable only by
using numerical simulation combined with experimental work. The impact of the
membrane viscosity on this rotation phenomenon still needs to be quantified.

To conclude, this study highlights the fact that the behavior of the RBC inside
such a device is more complex than a simple stretching experiment. Indeed, the
rotation effect due to the shape of the RBC inside the entering canal for example
highlights the fact that the deformation index is not, in this case, only linked
to the RBC deformation, but linked to its apparent deformation (see Fig. 4.18).
This apparent deformation can contain solid movement such as the rotation
observed in Fig. 4.19. However, this study also highlights the fact that thanks
to numerical simulation and a membrane RBC model, all those complexities can
be studied which leads this experiment to become richer. Also, thanks to the
viscoelastic model in the membrane, the major impact of this behavior on the
RBC deformability in this experiment has been highlighted. This study is a good
example of the great synergy between experiments and numerical simulation.
However, because this study is just at its beginning and cannot be finished during
this thesis, more conclusions on the viscoelastic behavior of the RBC’s membrane
cannot be made.
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t∗=0

t∗=0.5

t∗=1

t∗=10

Figure 4.18: Visualization of the RBC shape at different t∗ for initial tank treading
shape, at Ca = 0.25. Visualization oriented along the z axis, and therefore
following the experimentally observable plane.
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t∗=0

t∗=0.5

t∗=1

t∗=10

Figure 4.19: Visualization of the RBC shape at different t∗ for initial tank treading
shape, at Ca = 0.25. Visualization oriented along the extension axis (x axis), not
reachable experimentally, to show the rotation of the RBC.
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5.1 Main Results

This work presents the implementation and the study of one characteristic of the
membrane of the RBC, usually not considered at the time when this work begins,
namely the viscosity of the membrane, in an existing computer code, YALES2BIO.
This study was therefore based on an existing state-of-the-art RBC model, and
aimed to improve this model, while learning more about the behavior of the RBC
membrane itself.
This work was therefore first focused on the search for a relevant membrane
viscosity model. This research led to the theoretical model based on the work
of Simo in 1984 [148]. The implementation of this model could be validated
thanks to the simulations of capsule under shear presented in Section (3.5). This
therefore resulted in having a state-of-the-art model of membrane viscoelasticity.
This model was then used to study the impact of the intra-membrane dissipation
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on different RBC dynamics. Two configurations have mainly been studied: the
tank-treading configuration and the crossflow configuration, in which isolated
RBCs are subjected to pure shear and pure strain, respectively. These two studies
first shed light on the major impact of membrane viscosity on the different RBC
dynamics.

The study of tank-treading RBCs was chosen because models of RBCs with
inviscid membranes were shown to overestimate the tank-treading frequency, which
led Dodson and Dimitrakopoulos [36] to hypothesize that membrane viscosity
would provide the additional dissipation needed to reach a good agreement be-
tween simulations and experiments. The present study confirmed this hypothesis.
We were able to show by means of parametric studies that the effect of internal
viscosity and the effect of membrane viscosity are not the same and leads to two
distinct impacts on the RBC dynamics. Moreover, this study made it possible to
show that the model developed in YALES2BIO allowed the exact modeling of the
frequencies of tank treading measured experimentally if a shear-thinning behavior
of the membrane, visible in Fig. 4.5 is assumed. This confirmed some estimates
using simpler modeling reported in the literature [155].

The second study enabled the establishment of an experimental device allowing,
among other things, the study of membrane viscosity on different blood samples.
It also allowed the development of all the digital simulation protocols allowing
the optimization of the exploitation of the experimental measurement and giving
access to information inaccessible without the simulation.
The purpose of this study and to proceed with a similar approach as for the
study of tank-treading behavior but within the framework of RBC under strain.
The question to which we aspire to answer thanks to this study is: can we make
an estimate of the viscosity of the membrane of a RBC by studying its strain
deformation? Moreover, if this is the case, do we observe the same type of
behavior of the membrane viscosity as in the case of the study of the tank-treading
behavior? This will allow us to say whether the shear-thinning membrane model
is robust to different RBC dynamics or whether it is a phenomenon specific to
the tank-treading behavior. This study also resulted in the manufacture of a
dedicated chip to observe dynamics to study membrane viscosity. Experimental
conditions were determined thanks to the numerical simulation of the flow device
and the dynamics of a RBC with a viscous membrane, to highlight the impact of
the membrane viscosity.
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This study was also able to show that the configuration of an RBC during a strain
is a more complex configuration than it looks. Indeed, the results strongly depend
on the orientation of the RBCs as well as the reorientation due to the flow in our
device. Buckling phenomena are observed and complicate the analysis. The origin
of this phenomenon, whether numerical or not, remains to be determined. This
work, therefore, makes it possible to support the importance of considering the
viscoelastic behavior of the membrane in the reproduction of certain dynamics.
Currently, multiple studies on the subject are beginning to emerge in the [68]
literature. Nevertheless, we hope that this work will encourage to continue these
studies to deepen the understanding of this behavior of the RBC membrane. In
the next part, we detail various avenues for improving this study, which will allow
us to deepen our knowledge of RBC membrane mechanics.

5.2 Perspectives

The perspectives of this work are split into two topics: the first one is the under-
standing of the internal mechanisms of the membrane resulting in this membrane
viscosity.
The second part is a direct continuation of the applications studied in this work.

5.2.1 Study at the micro scale of the membrane

Consolidate the mechanical framework

One of the challenges in the viscoelasticity of RBC membrane is to combine a
model for the stresses induced by membrane viscosity to an existing hyperelastic
model for large deformations of the membrane, represented by the Skalak law
[149]. To do so, an approach detailed in [76] refers to Simo’s work [148]. From
this model, in which assumptions of additivity of the viscous and elastic potential
is made, the equations implemented in the solver are derived. However, the link
between Simo’s work and the starting equation in [76] are unclear. Indeed, Simo
presents a very different framework, and a specific work is needed to justify its
use. Due to a lack of time in this thesis, we could not perform this work, but we
think it would be important to have a better idea of the underlying assumptions
of the model.
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Moreover, the validation of the implementation of this law of behavior consists
in using the deformations capsule in shear flow, detailed Section (3.5). This case
has now been used on several studies and serves to validate the implementation
of viscosity [68, 90, 102]. Nevertheless, the validation is based on the comparison
of a global deformation index of the simulated capsules. However, the observed
dynamics are much more complex, with the appearance of membrane folds for
example.
Thus, if this case should be used as a validation protocol for future studies, a
more detailed study of this case, with indices more representative of the simulated
dynamics should be proposed. In addition, comparisons with experimental results
would be interesting.

Identification of sources of dissipation

Although the presence of internal membrane dissipation leading to membrane
viscosity is no longer a matter of debate in the community, the sources of this
dissipation have not yet been clearly identified. Thus, phenomena such as the
circulation of the lipid bilayer around transmembrane proteins would be a possible
suspect in the phenomena generating dissipation. Experimental devices like AFM
allow inspection and observation of the membrane at a more local scale than what
is typically observed [18, 33, 152].
More local simulation tools such as multi-scale models could undoubtedly be
useful to inspect these phenomena [50, 122].

5.2.2 Study at the macro scale of the membrane

Improve the viscosity model

As shown in Section (4.2), the addition of a viscosity model coupled with the
known dynamics study of the RBC, in this case the tank treading, leads to a
better understanding of the dynamics as well as the nature of the RBC. Thus, it
is by studying tank treading that we have come to an apparent shear-thinning
membrane viscosity, with membrane viscosity values ranging from 3.5 ×10−4 cP.m
to less than 0.5×10−4 cP.m.
It would be interesting to compare this model of red blood cells with this range
of values to other dynamics, with the objective to verify the robustness of this
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finding in other dynamics. It was the objective of the study of RBC in crossflow
Section (4.3). But there are a very large number of observed dynamics of the
RBC. The idea being that the more the model makes accessible a large num-
ber of configurations, the more it can be trusted to inspect new horizons of research.

Searching other dynamics

The previous part insists on the fact that the model can benefit from improvement
by studying the configurations which were already accessible beforehand. Similarly,
improving a model allows access to new configurations. Taking into account or
not taking into account the dissipation of the membrane must have an impact on
all the high-speed configurations. Such dynamics have direct applications, such as
the study of the behavior of RBCs within hydrofocused counting tanks.
Similarly, membrane viscosity should have its part to play in determining larger
scale viscosity, such as blood viscosity. Thus, if we want to be able to go up
the scales, the membrane viscosity must certainly be considered. In addition,
network effects observed in work on blood flow inside bifurcations with the transient
dynamics of RBCs that stop in the flow and leave again must certainly be impacted
by the membrane viscosity [8]. It would be interesting to study the role of the
membrane viscosity in this type of phenomenon.
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6.1 Appendix 1: Discretization of operators

6.1.1 Laplacian operators

This part is dedicated to the calculation of Laplacian operators, namely L(P ),
Lcv(ν,u) and Lcv(ν,u), thanks to spatial discretization.
First, let us use the formalism presented previously. Let’s define xi,j the position
vector defining the point of intersection between the vector linking the points xi
and xj and the interface Si,j . Similar to Eq. (3.21), using the assumption that xi,j
is the center of mass of Si,j we can apply the equation Eq. (3.14) at the position
xi,j to obtain the following equation at the order 2:

L(P )|i =
∑
j

∫
Si,j
∇P.dS =

∑
j

∇P |i,j.Si,j (6.1)

with Si,j the normal vector of Si,j having as norm the surface of Si,j.
Une approximation de ∇P |i,j est possible en exprimant les développement de
Taylor au points i et j de la quantité P :

Pi = Pi,j +∇P |i,j.(xi − xi,j) +O (||xi − xi,j||2) (6.2)

Pj = Pi,j +∇P |i,j.(xj − xi,j) +O (||xj − xi,j||2) . (6.3)

We can thus, by subtracting Eq. (6.2) from Eq. (6.3), obtain an expression of
∇P |i,j:

Pj − Pi =∇P |i,j.(xj − xi)

↔∇P |i,j = (Pj − Pi)
(xj − xi)
|xj − xi|2

.
(6.4)

Now, we identify Eq. (6.4) in Eq. (6.1). We obtain:

L(P )|i =
∑
j

(Pj − Pi)
(xj − xi)
|xj − xi|2

.Si,j. (6.5)

Proceeding similarly, one can also rewrite Lcv(ν,u) as follows:

Lcv(ν,u)|i =
∑
j

ν(uj − ui)
(

(xj − xi)
|xj − xi|2

.Si,j

)
. (6.6)

Similarly, we get an expression of LTcv(ν,u):

LTcv(ν,u)|i =
∑
j

ν
(xj − xi)
|xj − xi|2

((uj − ui).Si,j) . (6.7)
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It is important to note that this development was done assuming ν constant in the
domain. This is not necessarily the case, especially in studies within the framework
of the study of red blood cells. In this case, it suffices during development to
replace in the relations Eq. (6.6) and Eq. (6.7) ν by νi,j. Thus, using the Taylors
expansion at point i and j of the quantities νi and νj, we obtain the following
expression, with a convergence order of 2:

νi,j = νi + νj
2 . (6.8)

6.1.2 Divergence operators

This part aims to detail the spatial discretization of the operators C(u,u) and
D(u). Many points already mentioned during the development of the Laplacian
operators will be reused here. Using the same assumption as previously for
Eq. (6.1), namely that the point represented by the position vector xi,j is located
at the center of mass of the surface Si,j , we can rewrite C(u,u) calculated at point
i such that:

C|i(u,u) =
∑
j

∫
Si,j

(u⊗ u) dS =
∑
j

(ui,j ⊗ ui,j)Si,j. (6.9)

We can obtain an expression for ui,j using the Taylor expansion at point i and j, as
we did previously for νi,j Eq. (6.8). We therefore obtain the following expression:

ui,j = ui + uj
2 . (6.10)

By identifying ui,j by Eq. (6.10) in Eq. (6.9), we obtain:

C|i(u,u) =
∑
j

(
uj + ui

2 ⊗ uj + ui
2

)
Si,j. (6.11)

This expression can be rewritten using the property (a⊗ b).c = a(b.c):

C|i(u,u) =
∑
j

uj + ui
2

(
uj + ui

2 .Si,j

)
=
∑
j

uj + ui
2 Ui,j. (6.12)

The term Ui,j is identified as uj + ui
2 .Si,j and represents the flow passing through

the surface Si,j.
Finally, we can make the same reasoning for D(u)|i, using Eq. (6.8) as well as the
fact that xi,j is the center of mass of Si,j, we get:

D|i(u) =
∑
j

uj + ui
2 .Si,j =

∑
j

Ui,j. (6.13)

115



CHAPTER 6. APPENDIX

We can therefore see that D(u) represents the set of incoming and outgoing flows
of the volume Ωi, passing through the set of surfaces Si,j.

6.1.3 Gradient operator

Here, we are going to write the spatial discretization to order 2 of the operator
G(P ). We will calculate the quantity Pi,j as we did previously to calculate the
quantities νi,j Eq. (6.8) and ui,j. We therefore have the following second-order
expression:

Pi,j = Pi + Pj
2 . (6.14)

Thus, by identifying Pi,j within the equation Eq. (3.12), as well as by using the
fact that xi,j is center of mass of Si,j , we obtain the following expression of G(P )|i:

G(P )|i = ∑
j

Pj + Pi
2 Si,j. (6.15)
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Abstract

The red blood cell (RBC) is the most common cell in vertebrates. It has many vital functions for the body, the
main one being the transport of oxygen to different organs and of carbon dioxide back to the lungs. The gas exchanges
taking place in the smallest vessels of the body, the way the RBCs deform plays an essential role in most of the
functions they have to play. Indeed, RBCs have sometimes to undergo extreme deformations. An example is the passage
of RBCs in the spleen, where cells that cannot pass through micrometric slits are eliminated by the macrophages. This
deformability testing imposed by the body shows its importance for the circulation. There are also many pathologies that
alter this deformability. This is the case of malaria, sickle cell disease or spherocytosis, to name a few. This motivates
to understand how RBCs deform under flow and what alterations of the RBC deformability imply. Over the last years,
numerical simulations has been developed to support those investigations.

Among the characteristics observed experimentally and which are not traditionally taken into account in simulations,
there is the membrane viscoelasticty. Membrane viscosity is associated with internal dissipation of the membrane during
its deformation. This phenomenon has however been observed since the 70s, by performing micropipette tests and
noticeable differences in some simulations compared to experiments were attributed to the lack of membrane viscosity
in the RBC models. These elements motivated this work. This thesis therefore aims at implementing a viscosity model
in an existing inviscid RBC model as well as to study the impact of membrane viscosity on behaviors of the RBC under
flow.

In this manuscript, the physical framework as well as the numerical framework are detailed. A finite-strain version of a
generalized Maxwell model is used to represent the effect of membrane viscosity in the simulations. The implementation
and validation of the chosen model are presented before moving on to two application cases. The first application
concerns the study of the impact of viscosity on the tank-treading behavior of GRs. This work has indeed highlighted the
strong impact of membrane viscosity on the tank-treading behavior of GR. It also made it possible to show a possible
reproduction of the experimental results by imposing a taylored shear-thinning behavior for the membrane viscosity, a
hypothesis already present in the literature. The second study concerns the design of a flow experiment dedicated to
measuring the viscous behavior of the RBC membrane. This is the study of the elongation of blood cells in a cross flow
device. This work highlights the significant impact of membrane viscosity on the behavior of RBCs in this type of device.
This thesis demonstrates the essential role of membrane viscosity in RBC dynamics and opens new questions about the
relevant modeling of membrane dissipation.

Keywords : red blood cell, Computational Fluid Dynamics, Continuum mechanics, Immersed Boun-
dary Method, viscoelasticity, fluid-structure interactions.

Résumé

Le globule rouge (GR) est la cellule la plus présente chez les vertébrés. Elle assure de nombreuses fonctions vitales
pour l’organisme, la plus essentielle étant le transport de l’oxygène jusqu’aux différents organes. Pour remplir ce rôle,
les GRs doivent se déformer pour passer dans des vaisseaux plus petits que leur taille au repos. L’organisme teste même
la déformabilité des GRs dans la rate, où les globules ne pouvant pas passer au travers de fentes micrométriques sont
éliminés par les macrophages. Ainsi, la déformabilité des GRs est un aspect essentiel de leur fonction et de nombreuses
pathologies altèrent cette déformabilité. C’est le cas de la malaria, de la drépanocytose ou encore de la sphérocytose, pour
n’en nommer que quelques unes. Bien comprendre les caractéristiques de cette déformabilité et comment les pathologies
peuvent l’altérer est essentiel dans l’étude de la circulation sanguine. Depuis quelques années, la simulation numérique
de la dynamique des globules rouges a permis de contribuer à cet effort de recherche.

Toutefois, parmi les comportements observés expérimentalement et qui n’est généralement pas pris en compte dans les
simulations, il y a la viscoélasticité de la membrane, due à la dissipation interne de la membrane lors de sa déformation.
La viscoélasticité de la membrane a été montrée dès les années 70, grâce à des essais de micropipette. Des différences
notables entre certaines simulations et des expériences ont été attribuées à l’absence de viscosité de membrane dans les
modèles de GR. Ces éléments ont motivé ce travail : cette thèse a pour but l’implémentation d’un modèle de viscosité
dans un modèle de GR non-visqueux existant ainsi que l’étude de l’impact de la viscosité de membrane sur certains
comportements du GR en écoulement.

Pour ce faire, le cadre physique ainsi que le cadre numérique sont détaillés. Ensuite, l’implémentation et la validation
du modèle choisi sont présentées avant de passer à deux cas d’application. La première application concerne l’étude de
l’impact de la viscosité sur le comportement en tank-treading des GRs. Ce travail a permis la mise en lumière du fort
impact de la viscosité de membrane sur le comportement en tank-treading du GR. Elle a également permis de montrer
que la simulation peut reproduire les résultats expérimentaux en imposant un modèle de membrane rhéofluidifiante,
hypothèse déjà formulée dans la littérature. La seconde étude concerne la conception d’une expérience en flux dédié à
la mesure du comportement visqueux de la membrane des GRs. Il s’agit de l’étude de l’élongation des globules dans un
dispositif d’écoulement en croix. Ce travail permis de mettre en lumière l’impact important de la viscosité de membrane
sur le comportement des GRs dans ce type de dispositif.

Mots-clefs : Globule rouge, Mécanique des fluides numériques, Mécanique des milieux continus, Méthode des Fron-
tières Immergées, viscoélasticité, interactions fluide-structure.
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