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Accounting for complex flow-acoustic interactions in a 3D thermo-acoustic
Helmholtz solver

by

Abstract in English

Environmental concerns have motivated turbine engine manufacturers to create new com-
bustor designs with reduced fuel consumption and pollutant emissions. These designs are
however more sensitive to a mechanism known as combustion instabilities, a coupling be-
tween flame and acoustics that can generate dangerous levels of heat release and pressure
fluctuations. Combustion instabilities can be predicted at an attractive cost by Helmholtz
solvers. These solvers describe the acoustic behavior of an inviscid fluid at rest with a
thermoacoustic Helmholtz equation, that can be solved in the frequency domain as an
eigenvalue problem. The flame/acoustics coupling is modeled, often with a first order
transfer function relating heat release fluctuations to the acoustic velocity at a reference
point. One limitation of Helmholtz solvers is that they cannot account for the interaction
between acoustics and vorticity at sharp edges. Indeed, this interaction relies on viscous
processes at the tip of the edge and is suspected to play a strong damping role in a com-
bustor. Neglecting it results in overly pessimistic stability predictions but can also affect
the spatial structure of the unstable modes. In this thesis, a methodology was developed
to include the effect of complex flow-acoustic interactions into a Helmholtz solver. It takes
advantage of the compactness of these interactions and models them as 2-port matrices,
introduced in the Helmholtz solver as a pair of coupled boundary conditions: the Ma-
trix Boundary Conditions. This methodology correctly predicts the frequencies and mode
shapes of a non-reactive academic configuration with either an orifice or a swirler, two
elements where flow-acoustic interactions are important. For industrial combustors, the
matrix methodology must be extended for two reasons. First, industrial geometries are
complex, and the Matrix Boundary Conditions must be applied to non-plane surfaces.
This limitation is overcome thanks to an adjustment procedure. The matrix data on
non-plane surfaces is obtained from the well-defined data on plane surfaces, by applying
non-dissipative transformations determined either analytically or from an acoustics prop-
agation solver. Second, the reference point of the flame/acoustics model is often chosen
inside the injector and a new reference location must be defined if the injector is removed
and replaced by its equivalent matrix. In this work, the reference point is replaced by a
reference surface, chosen as the upstream matrix surface of the injector. The extended
matrix methodology is successfully validated on academic configurations. It is then ap-
plied to study the stability of an annular combustor from Safran. Compared to standard
Helmholtz computations, it is found that complex flow-acoustic features at dilution holes
and injectors play an important role on the combustor stability and mode shapes. First
encouraging results are obtained with surface-based flame models.

Résumé en français

Afin de répondre aux enjeux environnementaux, les fabricants de turbine à gaz ont mis
au point de nouveaux concepts de chambre de combustion plus propres et moins consom-
mateurs. Ces technologies sont cependant plus sensibles aux instabilités de combustion,
un couplage entre acoustique et flamme pouvant conduire à des niveaux dangereux de
fluctuations de pression et de dégagement de chaleur. Les solveurs de Helmholtz sont une
méthode numérique efficace pour prédire ces instabilités de combustion. Ils reposent sur
la description d’un fluide non visqueux au repos, dont le comportement acoustique est
régi par une équation d’Helmholtz thermoacoustique, résolue dans le domaine fréquentiel
comme un problème aux valeurs propres. Le couplage flamme/acoustique est modélisé
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par une fonction de transfert du premier ordre entre les perturbations de dégagement
de chaleur et la vitesse acoustique en un point de référence. Bien que performants, les
solveurs de Helmholtz négligent l’interaction entre acoustique et vorticité aux coins, car
celle-ci dépend d’effets visqueux. Cette interaction pourrait fortement amortir l’acoustique
d’une chambre de combustion et la négliger revient à faire des prédictions trop pessimistes
voire erronées. Par conséquent, une méthodologie a été mise au point afin d’inclure dans
un solveur de Helmholtz l’effet d’interactions complexes entre acoustique et écoulement.
Ces interactions étant compactes, elles sont modélisées par des matrices 2× 2 et ajoutées
au solveur comme des paires de conditions limites : les conditions limites de matrice.
Grâce à cette méthodologie, les fréquences et modes d’une configuration académique non-
réactive sont correctement calculées en présence de deux éléments où une telle interaction
est forte: un orifice et un tourbilloneur. Afin d’être applicable aux chambres industrielles,
deux extensions sont nécessaires. Premièrement, les surfaces de matrices doivent pouvoir
être non-planes, afin de s’adapter aux géométries industrielles complexes. Pour cela, une
procédure d’ajustement a été mise en place. La matrice est mesurée sur des surfaces
planes et des transformations non-dissipatives lui sont appliquées afin de la déplacer sur
les surfaces non planes. Ces transformations peuvent être déterminées analytiquement
ou calculées avec un solveur de propagation acoustique. Le deuxième point concerne le
point de référence du modèle de flamme. En effet, celui-ci est souvent choisi à l’intérieur
de l’injecteur ce qui pose problème si celui-ci est retiré du domaine de calcul et remplacé
par sa matrice. Dans cette thèse, le point de référence est remplacé par une surface de
référence. La méthodologie étendue est validée sur des configurations académiques puis
appliquée à une chambre annulaire de Safran. Cette nouvelle méthodologie permet de
constater que l’interaction écoulement/acoustique au niveau des trous de dilution et des
injecteurs joue un effet important sur la stabilité de la chambre mais aussi sur la struc-
ture des modes. Les premiers résultats avec une surface de référence pour la flamme sont
encourageants.
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n Local Flame Transfer Function interaction index J/m−4

p Pressure Pa
R Reflection coefficient -
r Ratio of specific heat capacities for ideal air -
S Surface m2

s Specific entropy J/(K · kg)
St Strouhal number ωa/c -
T Acoustic period s
t Time s
V Volume m3

W,F Acoustic flux W/m2

Z Acoustic impedance -

Superscripts
+/− Upstream / downstream propagation direction

Subscripts
† Hermitian transpose
m, a Quantities measured on plane surfaces (m) / applied on complex surfaces (a)
u, d Upstream / downstream quantities
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Chapter 1

Introduction

This thesis revolves around a central question:

What is the impact of acoustic-mean flow interactions on combustion
instabilities ?

In acoustic analysis indeed, these interactions are often neglected because the fluid is
assumed inviscid and at rest. However, the interaction between the mean flow can be
the source of important acoustic damping, especially at section changes. From this point
of view, a combustor is full of potential dampers as will be shown in this chapter. The
impact of these elements on the structure of combustion instabilities can be important but
is usually not assessed.

Before starting to answer the central question, it is important to understand the mo-
tivations behind this topic and the state of the art. This first chapter will therefore
explain:

• What combustion instabilities are and why the industry is interested in them (Sec-
tions 1.1 and 1.2),

• How combustion instabilities can be predicted numerically and the limitations of the
numerical solvers available in the litterature (Sections 1.3 and 1.4),

• What kind of acoustic-flow interaction is examined in this work and why it is im-
portant for the numerical prediction of combustion instabilities (Section 1.5)

This chapter ends with the presentation of the thesis objectives and the outline of this
manuscript, where the strategy followed to answer the central question is detailed (Sec-
tion 1.6).

1.1 New challenges for turbine engines

Air transportation has experienced a high growth rate since the 1970s, (Fig. 1.1). This
raises a number of issues, in particular regarding the impact of the ever-increasing traffic
on people and climate. For this reason, strict environmental objectives have been set for
civil aviation. In Europe for example, the Advisory Council for Aeronautics Research
(ACARE) requires that by 2020:

• Fuel consumption and CO2 emissions per passenger kilometer are reduced by 50%,

• Nitrogen oxides (NOx) emissions are reduced by 80%,

• Perceived noise is reduced by 50%.
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Figure 1.1: Air traffic volume from 1950 to 2015. Source : IATA.

These targets can be met mainly by improving the engines, and especially the combustion
process in the case of pollutants. A key parameter in the formation of NOx and CO is the
flame temperature. Indeed, different chemical mechanisms are active for different flame
temperatures, and produce more or less pollutants. At first order, the flame temperature,
and consequently NOx and CO emissions, is driven by the equivalence ratio (Fig. 1.2). As
Fig. 1.2 shows, the equivalence ratio shoud be located in a lean range in order to reduce
both NOx and CO emissions.

Figure 1.2: Typical NO, HC and CO trends with equivalence ratio in a
spark-ignition engine, adapted from [1]

In modern turbine engines, this is achieved by using Lean Premixed Prevaporized (LPP)
technologies, which rely on enhanced fuel injection and mixing to achieve efficient and clean
combustion. Examples can be found in [21]. However, such combustors operate close to
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the Lean Blow Out (LBO) limit and are prone to a phenomenon known as combustion
instabilities (Fig. 1.3).

Figure 1.3: General behavior as the equivalence ratio is reduced near the
lean blowout limit (T. Rosfjord, UTRC; published in AGARD Report 820,

Schadow et al. 1997).

1.2 Combustion instabilities

A flame is characterized by an important heat release, leading to a gradient of temperature
and density across the flame front. If the heat release starts to fluctuate (due to air or fuel
flow rate variations for example), perturbations of density are created, and act as a source
of sound. When the flame is enclosed, this sound is reflected back and generates new heat
release fluctuations by modulating the air mass flow rate, and new sound waves, initiating
a new cycle. This is the thermoacoustic coupling as illustrated in Fig. 1.4. When acoustic
perturbations are in phase with heat release fluctuations, an instability, called combustion
or thermoacoustic instability, is created [2, 22, 23, 24].

The phenomenon is not new and was observed experimentally since the 19th century [25].
Lord Rayleigh was one of the first to provide a detailed analysis of the coupling mechanism
[24], which can be condensed into a simple criterion:

∫
V
p′q′dV > 0 (1.1)

where p′ and q′ are the fluctuations of pressure and heat release. The Rayleigh criterion
indicates that an instability can exist only if pressure and heat release fluctuations are in
phase. When such an instability is triggered, the acoustic signals, for example the pressure
(Fig. 1.5), follow a typical evolution with three phases:
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Figure 1.4: Combustion instabilities are based on a coupling between heat
release and acoustics. When a mean flow is present, hydrodynamic effects

also play a role in this coupling.

1. Linear regime : In the first instants of the instability, acoustic and heat release fluc-
tuations are related to each other by a constant proportionality factor, and increase
at an exponential rate.

2. Non-linear transition : At some point, saturation effects come into play and slow
down the growth rate. An over-shoot is often observed at this stage.

3. Limit cycle : When the growth rate becomes equal to the global damping rate of
the combustor, the amplitude of the fluctuations reaches a constant value.

Figure 1.5: Typical pressure signal when a combustion instability grows
and reaches a limit cycle (from [2]).

From an industrial perspective, combustion instabilities should be avoided since the large
pressure and heat release fluctuations associated can cause great damage to the engine
(Figs 1.6 - 1.7). First observed in rocket engines [23], combustion instabilities are now also
a problem for turbine engines, since the low equivalence ratio of LPP technologies makes
the flame more sensitive to flow fluctuations [23, 26].

Control of combustion instabilities a priori is possible although difficult. Some solutions
include the use of fuel staging, acoustic dampers, improvement of the mixing system, a
modification of the injector and/or chamber design, and even the introduction of active
control devices [21, 27]. However, none of the above solutions ensures an absolute absence
of instabilities at all operating points. Each specific configuration should ultimately be
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Figure 1.6: Rocket engines of the Apollo Space Program damaged by
combustion instabilities

Figure 1.7: The injector of an LPP design jet combustor, after a combus-
tion instability.

tested experimentally but this can be difficult and very expensive. An alternative or
complement is to check the stability of the combustor at the design stage, with the use of
cost-effective numerical tools.

1.3 Numerical prediction of combustion instabilities

In the field of combustion instabilities (and in general), numerical solvers can complement
experiments in two ways:

Detailed measurements Measurements in a combustor are generally difficult and costly,
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because of the high temperature (and pressure), not to mention the destructive ef-
fects of the instability itself. Therefore, the experimenter only has access to global
quantities and a few local probes, while a numerical computation easily provides
the structure of the instability at any point in the chamber, at any time. This
additional data is of great help in the understanding and analysis of combustion in-
stabilities. However, meaningful data is obtained only if the numerical computation
is performed with accurate models and schemes, and for long computational times.
Accuracy takes precedence over CPU cost in this case.

Fast and cheap results In the highly competitive energy and transport industries, be-
ing able to predict the stability of a combustor in the shortest time and at the lowest
cost is critical. If so, CPU cost must be reduced by retaining only the key parameters
and physics in the numerical tool. Thanks to the gain of CPU time, this type of
tool can be used for sensitivity analysis for example, where a baseline setup is run
several times while varying the input parameters, or even the geometry.

At one end of the spectrum lies Large Eddy Simulation. It is a high-fidelity representation
of thermoacoustic instabilities, but requires heavy computational capacities. At the other
end, analytical models based on a drastically simplified representation of flame and acous-
tics are able to provide stability results on a regular laptop within minutes. In between,
there is a wide range of descriptions of intermediate accuracy and CPU cost (Fig. 1.8).
The 3D Helmholtz approach is one of them and is favored in this thesis. This section
explains why, by reviewing some of the most important numerical tools of Fig. 1.8.

ANALYTICAL 
MODELS	



LOW-ORDER 
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Figure 1.8: Some numerical approaches for combustion instabilities. The
illustrations on top are from (from left to right): [3],[4],[5],[6],[7],[8]

Among these tools, time domain and frequency domain methods are distinguished. Time
domain simulations attempt to reproduce the instability chronologically, from triggering
to limit cycle. These solvers have the advantages of providing an intuitive "what you see is
what you get" type of solution, and are well suited to describe all phases of the instability,
from the linear regime to the limit cycle. However, they provide a partial description
of instabilities. Only the most amplified mode for the chosen operating point is visible.



1.3. Numerical prediction of combustion instabilities 7

Latent unstable modes (i.e. modes that could be unstable for other operating conditions)
are dominated and may not appear at all [28].

In order to have information on all modes, frequency-domain tools can be used. Assuming
that all fluctuations are periodic, these tools provide the frequency, shape and amplification
rate of all unstable modes compatible with the combustor configuration. In addition,
acoustic boundary conditions are easier to take into account in the frequency domain [29].
On the other hand, frequency-domain tools are often limited to the linear regime, although
extensions to the non-linear regime have been developed [30].

1.3.1 Large Eddy Simulation

Of all the numerical tools presented in Fig. 1.8 Large Eddy Simulation methods are the
most accurate. LES methods rely on the Navier-Stokes equations of mass, momentum
and energy, describing a compressible, viscous, reactive flow in time domain. The Navier-
Stokes equations are the starting point of all the models presented here and are provided
in Appendix A. They constitute an excellent model of turbulent fluids. However, they
cannot be solved analytically, because of the nonlinear term uiuj

1. Even the numerical
resolution of Navier-Stokes equations, also known as Direct Numerical Simulation (DNS)
involves heavy computational capacities as it requires very small mesh sizes and time steps
in order to solve for the finest scales of the flow.

The mesh and time step requirements can be greatly decreased if all quantities f are
decomposed into an average (steady) part f̄ and a turbulent fluctuation f ′. Instead of
looking at f as in DNS, the behaviour of the smoother, large-scale averaged quantities f̄ is
analyzed by solving the averaged Navier-Stokes equations. This is the approach followed in
Reynolds Averaged Navier-Stokes (RANS) techniques. RANS techniques have a few draw-
backs though. First, unclosed quantities, linked to the unresolved components f ′, appear
during the averaging procedure and must be closed. This is done using empirical models
that are often case dependent. Second, fully unsteady flows such as combustion instabili-
ties cannot be studied with RANS because only averaged quantities are resolved.

An intermediate approach consists in filtering the Navier-Stokes equations. All quantities
are now decomposed into a filtered and an unfiltered component, f = f̆ + f ′′.

f̆(x) =
∫
f(x′)F∆(x− x′)dx′ (1.2)

where F∆ is the LES filter. The filter can be defined in space, time or spectral domain,
with different shapes (box, gaussian, etc.) but it always has a cut-off nature, aimed at
removing the smallest scales of the flow. If defined in space for example, F discards all
scales smaller than a threshold ∆, the mesh size in practical computations.

The filtered quantities are therefore smoother than the original ones, but retain the charac-
teristics of the largest structures. This filtering operation is not as simple as it may seem.
For example, the filtered value of an LES perturbation is not zero f̆ ′′ 6= 0. Similarly, the
filtering operator is not idempotent ˘̆

f 6= f̆ . Moreover, filtering and derivative operators
do not commute if the filter size varies in space or in time. Assuming commutativity can
be the source of errors as discussed by [31]. This is an issue to keep in mind but most
LES rely on the commutativity assumption nonetheless. The filtered equations presented

1This is actually one of the seven most important open problems in mathematics of the Clay Institute
and any significant progress towards an analytical resolution is rewarded a US$1,000,000 prize.
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below in the mass, momentum and energy form are no exception. In these equations,
Favre filtering is introduced as:

f̃ =

︸ ︸
(ρf)
f̆

(1.3)

Conservation of mass
∂

∂t
ρ̆+ ∂

∂xi
ρ̆ũi = 0 (1.4)

Conservation of species

∂

∂t
(ρ̆Ỹk) + ∂

∂xj
(ρ̆Ỹkũj) = − ∂

∂xj
[J̆j,k + J̆ tj,k] + ˘̇ωk (1.5)

Conservation of momentum

∂

∂t
(ρ̆ũi) + ∂

∂xi
(ρ̆ũiũj) = − ∂

∂xj
[p̆δij − τ̆ij − τ̆ij t] (1.6)

Conservation of energy

∂

∂t
(ρ̆Ẽ) + ∂

∂xj
(ρ̆Ẽũj) = − ∂

∂xj
[
︸ ︸
ui(pδij − τij) +q̆j + q̆j

t] + ω̇T (1.7)

In equations (1.4) to (1.7), many unclosed terms appear due to the filtering process. Some
terms are directly related to unfiltered quantities such as the subgrid scale stress tensor
τ̆ tij , diffusion flux J̆ tj,k and heat flux q̆ti (their expression is not given here but can be found
in [2] for example). But even some filtered quantities must be closed, the most important
one being the resolved reaction rates ˘̇ωk.

As with RANS, closure is provided by models and a large variety is available (some of
them are listed in [2]). Their choice has an impact on the final LES result. For example,
Bauerheim et al. [5] showed that the flame response to acoustic forcing is modified when
changing the model for the subgrid stress tensor. Compared to RANS however, closure
models in LES can rely on the information about the resolved scales and be formulated
so as to be completely solution dependent.

While there is room for improvement, LES has shown its capability to correctly predict
thermo-acoustic instabilities, in academic setups [11, 9, 32, 33, 8] and industrial gas turbine
burners [10, 34]. The interaction between the flame and the flow can be analyzed in great
detail with unrivaled visualizations (Fig. 1.9), for longitudinal instabilities [11], but also
transverse ones [8] and even in a complete industrial annular chamber [10]. LES can be
used to study the impact of imperfect fuel mixing [34] or heat transfer [35] on the flame
dynamics or conversely the effect of combustion instability on the production of pollutants
[9].

However, LES is still an expensive tool that requires fine meshes and long computational
times and is not suited for sensitivity analysis for example. For this purpose, simpler tools
are derived by progressively simplifying the Navier-Stokes equations. These simplifications
are indicated in the text by sentences in bold font starting with a star symbol F.
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a)	



b)	


c)	



Figure 1.9: Examples of LES visualizations of combustion instabilities in
a) a scaled industrial single burner [9], b) an annular helicopter combustor

[10] c) an academic burner [11]

1.3.2 Linearized Navier-Stokes Equations

Another way to reduce the complexity of the Navier-Stokes equations is to examine them
from an acoustical perspective. The details of the flame chemistry are completely ignored.
All species are assumed to have the same molecular weight and heat capacities. The
heat release ω̇T is modeled with simple acoustic models presented in Section 1.3.7. Heat
diffusion is also neglected as it usually has little impact on acoustics. This already greatly
simplifies the expressions of Eq. (1.4) to (1.7).

Further simplification is obtained by performing first order linearization around a steady
state. For this, all variables are decomposed into an average and a fluctuating component.
This fluctuating component is different from the turbulent one defined in RANS. It is
linked to acoustics and since acoustics are periodic, it can be written as harmonic.

f(xi, t) = fo(xi) + <[f̂(xi) exp(−iωt)] (1.8)

with ω = 2πf the angular frequency. In order to avoid confusion with the angular fre-
quency, the heat release ω̇T is from now on refered to as q̇. Heat diffusion is discarded
from all the following models and q̇ should not be mistaken with q the heat flux.

f̂ is the complex amplitude of the fluctuation and its module is assumed small compared
to f̄ . Another good property of f̂ is that its characteristic scale (the acoustic wavelength)
is generally much larger than that of the flow. This means that f̂ can be solved on much
coarser grids, with a reduced computational cost.

The final set of assumptions is the following.

F Simplification 0: All species have the same molecular weight and heat
capacities.
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F Simplification 1: The flame is modeled as an acoustic element.

F Simplification 2: No heat diffusion.

F Simplification 3: Acoustic perturbations are small enough to linearize
the equations at first order.

With these assumptions, the Linearized Navier-Stokes Equations can be derived and are
given below in the frequency domain. In order to avoid confusion with the angular fre-
quency ω, the notation for the heat release is switched from ω̇T to q̇ in all frequency
formulations. Also note that ω is a complex quantity. Its real part determine the period
of the oscillation while the imaginary part corresponds to an amplification rate. With
the convention of Eq. (1.8), a positive imaginary part leads a growing fluctuation and a
negative imaginary part damps the oscillation.

Conservation of mass

−iωρ̂+ ∂

∂xi
(uo,iρ̂+ ρoûi) = 0 (1.9)

Conservation of momentum

−iωρoûi + ∂

∂xj
(ρouo,j ûi) + (ρoûj + uo,j ρ̂)∂uo,i

∂xj
= − ∂p̂

∂xi
+ ∂τ̂ij
∂xj

(1.10)

With τ̂ij = −2
3µ

∂ûk
∂xk

δij + µ
(
∂ûi
∂xj

+ ∂ûj
∂xi

)
Conservation of energy

Non reactive, low Mach number flows can be assumed isentropic [36, 37]. In this case,
the energy equation is decoupled from the mass and momentum equations and can be
replaced by the isentropic relationship:

p̂ = ρ̂c2
o (1.11)

This is often used in aeroacoustics. In the field of combustion instabilities, the flow is
reactive and the isentropic assumption is not valid anymore. An equation for the conser-
vation of energy or entropy must be included. Traditionally, the equation of entropy is
preferred. Both are equivalent and can be derived from one another using thermodynamic
relationships.

−iωŝ+ uo,i
∂ŝ

∂xi
+ ûi

∂so
∂xi

= r

po

[(
ˆ̇q − p̂

po
¯̇qT
)

+
(
τo,ij

(
∂ûi
∂xj
− p̂

po

∂uo,i
∂xj

)
+ τ̂ij

∂uo,i
∂xj

)]
(1.12)

The entropy is related to the fluctuations of pressure and density thanks to the linearized
equation of state for an ideal gas.

ŝ = cv
p̂

po
− cp

ρ̂

ρo
(1.13)
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In equations (1.9) to (1.13), the average quantities (index o) are inputs, extracted for
example from a RANS or LES computation. There are seven unknowns (in three dimen-
sions), ρ̂, ûi, p̂, ŝ and ˆ̇ωT , but only six equations. The seventh relationship is obtained as
an acoustic model for the unsteady heat release ˆ̇ωT and is presented in Section 1.3.7.

The solution of equations (1.9) to (1.13) describes the propagation of three modes of
fluctuations: acoustics, vorticity and entropy, in the presence of a heat release source term
and a turbulent mean flow. In particular, it accounts for mean flow effects such as

• the generation of acoustics due to the acceleration of entropy waves [38], a key
mechanism for "convective-type" instabilities [23]

• the conversion of acoustics into vorticity at sharp edges [39], known to be an impor-
tant source of acoustic damping in gas turbine combustors.

As noted by [40, 41], the LNSE equations presented in this manuscript do not account
for the impact of turbulent fluctuations on acoustic ones. In the studies of [40, 41], the
authors derived a new set of LNSE equations for non reactive flows by performing a triple
decomposition. All variables are separated into an average steady part, a coherent fluctu-
ation corresponding to acoustics, and a non-coherent fluctuation associated to turbulence.
The three contributions can be isolated by combining phase averaging (to remove turbu-
lence) and time averaging (which removes all fluctuations). Phase averaging is applied
to the Navier-Stokes equations before linearizing the result around the steady state up to
first order. With this procedure, an unclosed stress tensor representing the effect of tur-
bulent fluctuations on acoustics appears and is modeled with an eddy viscosity approach.
The main effect of this tensor is to damp some spurious hydrodynamic instabilities not
observed in experiments.

The analysis for reactive flows is much less advanced, and applications to combustion
instabilities are still rare but LNSE appear as a promising tool. Successful results were
obtained in two academic configurations: a 2D Rijke tube [42, 43], and more interestingly,
a 3D academic burner composed of two cylindrical tubes joined by a swirled injector [12].
For this last case, the eigenfrequencies were measured experimentally and LNSE results
compare well with them (Fig. 1.10).

Figure 1.10: Eigenfrequencies of a 3D burner with swirled injector from
[12]. Experiments: o. LNSE: x.

1.3.3 Linearized Euler Equations

Viscous effects can usually by neglected in the description of an acoustic problem, espe-
cially at low frequencies. In this case, the Linearized Euler Equations (LEE) can be used
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instead of the Linearized Navier-Stokes. Only the equation of momentum and entropy
are different and provided here. The conservation of mass (1.9) and the equation of state
(1.13) are still applicable.

F Simplification 3: Inviscid fluid.

Conservation of momentum

−iωρoûi + ∂

∂xj
(ρouo,j ûi) + (ρoûj + uo,j ρ̂)∂uo,i

∂xj
= − ∂p̂

∂xi
(1.14)

Conservation of entropy

−iωŝ+ uo,i
∂ŝ

∂xi
+ ûi

∂so
∂xi

= r

po

(
ˆ̇q − p̂

po
q̇o

)
(1.15)

Because they account for mean flow fields, LEE equations can capture the effect of the
steady shear layer on acoustics, and the associated damping at sharp edges. However,
the damping mechanism in LEE is not complete as the retroaction of acoustics on the
mean flow is neglected (unless the unsteady vorticity is reintroduced in the equations
and computed by applying a Kutta condition on the edge for example, see section 1.5.3).
From an hydro-acoustic damping point of view, LEE methods are part of the quasi-
steady approaches discussed in Section 1.5.3. In situations where the retroaction is not
important, LEE methods provide the same results as LNSE, as was shown for orifices and
area expansions in the thesis of Gikadi [12].

Other mechanisms well simulated by LEE solvers include:

• the impact of mean flow on acoustic propagation (refraction),

• the acoustic flux at boundaries due to a non-zero mean flow,

• the generation of acoustics due to the acceleration of entropy waves (convective
effects).

As in the case of LNSE, thermo-acoustic applications with LEE solvers are quite rare. The
main studies of [13, 44] are rather theoretical and focus on the impact of a non-zero mean
flow on the stability of simple quasi 1D geometries (Fig. 1.11). In particular, it is shown
in [13] that in the presence of a nozzle, even a small mean flow (M < 0.1) can greatly
modify the stability of a combustor compared to the zero Mach number situation.

Despite these good results, solving the LEE system requires a careful treatment to avoid
numerical instabilities, for example with the use of artificial viscosity [6]. This limits the
practicality of LEE for industrial combustors.

1.3.4 Helmholtz solvers

The mean flow velocity in most gas turbine combustors is relatively low (M . 0.1) and
has little impact on acoustic modes, for which entropy conversion is not involved. In this
case, Linearized Euler Equations can be simplified by settingM = 0 to obtain the classical
acoustics equations.

F Simplification 4: Zero mean flow.
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Figure 1.11: From [13]. Evolution of eigenfrequencies with increasing
mean flow (indicated by thick dashed arrows) predicted by an LEE solver

(white circles) for a 1D tube with flame.

Conservation of mass
−iωρ̂+ ûi

∂ρo
∂xi

+ ρo
∂ûi
∂xi

= 0 (1.16)

Conservation of momentum

−iωûi = − 1
ρo

∂p̂

∂xi
(1.17)

Conservation of energy

When M̄ = 0, the momentum and entropy conservation equation for stationary quantities
show that

ρ̄
∂uo,i
∂t

= −∂po
∂xi

= 0 (1.18)

∂so
∂t

= rq̇o
po

= 0 (1.19)

Equation (1.19) is inserted into the conservation of entropy (1.15) that is now expressed
as:

−iωŝ+ ûi
∂so
∂xi

= r ˆ̇q
po

(1.20)

The fluctuation of entropy ŝ can be obtained from the fluctuation of pressure p̂ and density
ρ̂ with Eq. (1.13). For an ideal gas, the gradient of mean entropy can be related to
the gradient of mean density, by combining the equation of state of an ideal gas with
Eq. (1.18).

∂so
∂xi

= cv
po

∂po
∂xi
− cp
ρo

∂ρo
∂xi

= − cp
ρo

∂ρo
∂xi

(1.21)
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With Eqs. (1.13) and (1.21), the conservation of entropy is reformulated as:

ûi
∂ρo
∂xi

= −ˆ̇q ρo(γ − 1)
poγ

− iω
(
p̂

c2
o

− ρ̂
)

(1.22)

Helmholtz equation

The conservation of mass (1.16), momentum (1.17) and entropy (1.22) can be combined
into a non-homogeneous Helmholtz equation (i.e. wave equation in frequency domain)
describing the propagation of acoustics in the presence of a flame. For this, (1.22) is first
injected into (1.16).

−iω p̂

γp̄
+ ∂ûi
∂xi

= γ − 1
γpo

ˆ̇q (1.23)

The time derivative of Eq. (1.23) (i.e. multiplication by −iω) is then substracted from the
space derivative of Eq. (1.17) to provide a Helmholtz equation for pressure.

∂

∂xi

( 1
ρo

∂p̂

∂xi

)
+ ω2 p̂

γpo
= iω

γ − 1
γpo

ˆ̇q (1.24)

In the absence of flame or complex impedance boundary conditions, the discretization of
the Helmholtz equation leads to a linear sparse eigenvalue problem that can be solved
by efficient, well-known algorithms (for example: [45, 46, 47]). If a flame or a complex
impedance boundary is present, the eigenproblem becomes nonlinear with respect to fre-
quency. This issue can be treated with the use of a fixed point [29] which increases a bit
the cost of the computation (see Appendix C). Even in this case, the Helmholtz problem
is much simpler to solve than the LEE system and was used successfully on many 3D in-
dustrial configurations [48, 29, 10, 49]. A very successful example is the work of Wolf [10]
where the stability of an helicopter annular combustor computed with an LES is correctly
retrieved by the AVSP Helmholtz solver (Fig. 1.12).

Helmholtz solvers are usually used for linear stability prediction. But combined to a
non-linear description of the flame, they can also provide information about nonlinear
thermoacoustic coupling. In the work of Silva et al. [30] for example, the AVSP Helmholtz
solver combined to an experimental Flame Describing Function (defined in Section 1.3.7)
is able to retrieve the amplitude of limit cycles.

A feature of Helmholtz solvers (and frequency-domain solvers in general) is their ability
to manage complex impedances. The complex impedance Z defines the ratio of pressure
over normal velocity at a boundary (Fig. 1.13).

Z = p̂

ρocoû · n
(1.25)

with n the local boundary normal.

Therefore, even if the baseline equation of Helmholtz solvers is simple and relies on many
simplifications, it is possible to reincorporate some of the neglected mechanisms into the
solver with adequate boundary conditions. Mechanisms modeled with this strategy in-
clude:

• the acoustic damping due to vorticity shedding at perforated plates [50],
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Helmholtz solution	



Pressure fluctuations in LES	
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Figure 1.12: Example of Helmholtz solver application from [10]. Left:
Mode structure predicted by the Helmholtz solver and amplification rate as
a function of the FTF time delay. Right, pressure fluctuations from the LES
for two time delays, leading to an unstable (solid lines) and stable (dotted

lines) combustor.

n
Ŝ

ȡRFRû

Figure 1.13: Acoustic quantities involved in the definition of the
impedance.

• the convective effects due to the propagation of acoustic and entropy waves in a
nozzle with mean flow [51]

The present work fits into this type of strategy as will be explained later.

1.3.5 Galerkin methods

Just as Helmholtz solvers, Galerkin methods start with a wave equation featuring a source
term h and a set of complex boundary conditions symbolized by the function f .

∇2p′ − 1
c2
o

∂2p′

∂t2
= h (1.26)

∇p′ · n = −f (1.27)

The expressions of h and f can be obtained from the analysis of the Linearized Navier-
Stokes Equations in the most general case, and contains all the complexity of the flow /
flame / acoustics interaction, including the effect of fluid or solid particles if the equations
of a multi-phase fluid are used. The principle of Galerkin method is to project the solution
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of Eqs. (1.26)-(1.27) on a family of simpler orthogonal modes ψm(x) [52, 53], solution of
the homogeneous problem with solid walls (h = f = 0).

p′(x, t) ≈
M∑
m=1

ηm(t)ψm(x) (1.28)

Each mode is associated to its angular eigenfrequency ωn. The coefficients of the projection
ηm(t) are time-dependent and contain the amplification rate. When inserted in (1.26) and
(1.27), and after spatial averaging over the combustor domain, expression (1.28) transforms
the wave problem (1.26) into a collection of oscillator equations.

η̈m(t) + ω2
mηm(t) = Fm m = 1, . . . ,M (1.29)

The effect of h and m is included in the term Fm. System (1.29) can be further simplified
into a system of first order differential equations by assuming that the amplitude of the
unstable oscillations changes slowly during one period. This last system, not shown here,
is fairly easy to solve. It can be found in [23]

Galerkin methods provide linear stability results [52, 54] but they are especially powerful
for the study of non-linear flame-acoustics mechanisms in time domain, such as:

Limit cycles The transition from the linear regime to the limit cycle, as well as the
amplitude of the limit cycle fluctuations can be computed with this type of approach
[55, 56].

Nonlinear stability and triggering When nonlinear flame dynamics are considered, a
linearly stable system can become unstable if the amplitude of the initial disturbance
is larger than a certain threshold. This mechanism, known as a subcritical Hopf
bifurcation can be explored with Galerkin methods [57].

Transient growth Thermoacoustic eigenmodes are known to be non-orthogonal [29].
The non-orthogonality can have unexpected consequences. An initial state of low
acoustic amplitude (or the order of the background noise), composed solely of linearly
stable modes, can actually lead to temporarily growing fluctuations that eventually
transition to nonlinear instability if the triggering threshold is reached. This issue
is examined in [58, 59].

One drawback of Galerkin method lies in the projection procedure. Indeed, artificial
constraints are imposed on the solution of Eq. (1.26) and (1.27) through the choice of
the basis function. For example, the Galerkin solution of a burner with f 6= 0 will not
reproduce the mode structure correctly at the boundaries. The error can be minimized in
practice by projecting onto a sufficiently large family. If truncation is performed after too
few terms however, significant errors can be observed [60, 61, 62].

1.3.6 Network models

For low frequency modes, where the acoustic waves propagate only in the duct axial
direction, one-dimensional network approaches can be used. Network models start from
the solution of the convective wave equation, recalled below. This wave equation is able to
capture the effect of a uniform mean flow uo on the speed of acoustic propagation.
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Figure 1.14: A compact acoustic element can be represented as a pair of
jump conditions. If the jump conditions are linear, they are equivalent to a

matrix.

(
∂

∂t
+ uo · ∇

)2
p′ − c2

o∇2p′ = 0 (1.30)

In a 1D configuration and for a uniform flow (constant mean velocity uo, density ρo and
speed of sound co), the solution of Eq. (1.30) is the sum of two plane waves g+ and g−

traveling in opposite directions, at co + uo and co − uo respectively. In thermoacoustic
applications, the low Mach number assumption is often applied to obtain the following
expressions of g+ and g−:

g+(x, t) = A+ exp
[
−iω

(
t− x

co

)]
(1.31)

g−(x, t) = A− exp
[
−iω

(
t+ x

co

)]
(1.32)

The pressure and velocity fluctuations in the 1D pipe are:

p′(x, t) = <[p̂(x) exp(−iωt)] with p̂(x) = A+ exp(ikx) +A− exp(−ikx) (1.33)

u′(x, t) = <[û(x) exp(−iωt)] with û(x) = 1
ρoco

[A+ exp(ikx)−A− exp(−ikx)] (1.34)

Of course, in a real configuration, the geometry is not 1D, nor are ρo and co uniform.
However, if these changes are compact with respect to the acoustic wavelength, they can
be modeled as a set of jump conditions (Fig. 1.14). For example, the connection between
two tubes can be represented by a set of two jump conditions, also called acoustic 2-
port.

A+
d = φ(A+

u , A
−
u ) (1.35)

A−d = ψ(A+
u , A

−
u ) (1.36)

The configuration of interest can therefore be described as a series of 1D uniform pipes,
linked by jump conditions. When boundary conditions are supplemented, the complete
system is described by a matrix including the impedances and the jump conditions. The
resonances of the system are determined by solving the dispersion relation, i.e. finding the
complex frequencies for which the determinant of the matrix is null.
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Acoustic network models usually belong to one of the following two categories. They either
work in frequency domain and assume a linear flame regime [63, 14, 64], or in time domain
with non-linear flame dynamics [65, 66, 67]. The transition from frequency to time domain
is possible thanks to a Laplace transform.

This approach is very efficient and provides good estimations of the eigenfrequencies and
eigenmodes on simple longitudinal [14, 67] and annular combustors [65, 66, 64]. An inter-
esting application on an industrial annular combustor was also performed by Kruger et
al. [63]. However, the choice of the 1D representation in this case is probably not unique
and is part of the art of applying the method, as illustrated in Fig. 1.15. In the work of
Kruger et al. [63] for example, a 3D FEM solver was used to tune the parameters of the
acoustic network.

?	



Real design	



Quasi 1D approximation	



Figure 1.15: Example of acoustic network representation for a realistic
combustor (adapted from [14]).

1.3.7 Flame models

In LES, the flame is described as accurately as possible, by including the information
from a chemical scheme in the unsteady Navier-Stokes equations. In acoustic models
(LNSE, LEE, Helmholtz, Galerkin and network approaches), a model is still required for
the perturbation of heat release ˆ̇q in equations (1.12), (1.15), (1.24) and (1.26) but the
complexity of the true chemical mechanism is not kept.

Instead, the flame is described as a simple acoustic element. In the linear regime, the total
heat release fluctuation ˆ̇Q =

∫ ˆ̇qdV can be related to the velocity fluctuation û upstream
of the flame through a first order Flame Transfer Function (FTF), characterized by a gain
N and a delay τ . In frequency domain, it is expressed as:
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û

ˆ̇4 = 1 exp(LȦĲ)û

Figure 1.16: Flame Transfer Function model.

FTF (ω) =
ˆ̇Q
û

= N(ω) exp(iωτ(ω)) (1.37)

with ˆ̇Q and û the complex amplitudes of the total heat release fluctuations and velocity
fluctuations (Fig. 1.16). The analytical prediction of N and τ is a difficult task because
it requires an adequate knowledge of the flame/acoustics interaction, achievable only in
simple academic configurations [68, 69, 70]. They can however be measured experimentally
or numerically [3, 71, 72, 73].

The FTF formalism was extended by [74] to nonlinear regimes with the Flame Describing
Function (FDF). The FDF is in fact a collection of FTF obtained for different acoustic
amplitudes, quantified by |û| for example.

FDF (ω, |û|) = Q̂

û
= N(ω, |û|) exp(iωτ(ω, |û|)) (1.38)

Another popular model, especially for acoustic network models, is the Flame Transfer
Matrix (FTM). With the FTM approach, the flame is considered as a compact interface,
characterized by a set of linear jump conditions, i.e. an acoustic matrix (Fig. 1.17). Due
to the linearity assumption, this formalism is reserved for linear stability prediction. It
could be extended to nonlinear analysis with an approach similar to the FDF.

(
p̂d

ρo,dco,dûd

)
= Tflame

(
p̂u

ρo,uco,uûu

)
(1.39)

Just as n and τ , the coefficients of Tflame can be derived from first principles only for
academic flames and are usually measured experimentally or numerically [75, 4, 76, 77].
FTF and FTM models are equivalent provided that the acoustic velocity used in the FTF
is measured close enough to the flame compared to the acoustic wavelength [78]. In this
case, it is possible to construct matrix Tflame in (1.39), from Eq. (1.37) and vice versa
[78].

1.3.8 Dissipation models

In thermo-acoustic instabilities, the flame acts as the main source term of acoustic energy.
It is therefore an important contribution when assessing the stability of a combustor but
it is not the only one. The total stability of the combustor is governed by the balance
between the flame source term and mechanisms leading to a dissipation of the acoustic
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Figure 1.17: Flame Transfer Matrix model.

energy. The nature of these mechanisms is quite varied but can be divided into two
categories. Acoustic energy can be dissipated either in the bulk of the flow, by volumic
processes, or for a closed system, at boundaries. Some of these mechanisms are now briefly
reviewed.

For a viscous fluid, acoustic energy can be lost through shear stress and heat losses at walls
[79, 80, 81]. Indeed, acoustic waves can be viewed as velocity and enthalpy fluctuations.
If the velocity and enthalpy are set to a constant value at walls, momentum and thermal
diffusion will act so as to minimize these fluctuations, which translates into a dissipation
of acoustic energy. This thermo-viscous damping term scales as the square root of the
frequency and is usually very small for the low frequencies observed in gas turbines [82].
If necessary, the damping rate associated to thermo-viscous dissipation can be recovered
for any solution of an inviscid Helmholtz computation following the method of Searby et
al. [82].

For an inviscid fluid, acoustic energy can still be lost at boundaries if these are not perfectly
reflecting (i.e. more energy is going out of the system than into it). This type of dissipation
is easy to include in an acoustic solver (such as the Helmholtz solver) when the associated
boundary impedance is known. Boundaries can be non-perfectly reflecting for a number
of reasons.

• Some absorbent material can be installed there (the nature of these materials is not
discussed here). This is often used in experiments when an anechoic termination is
required for example.

• If the system is open to the atmosphere, acoustic energy can be lost through radiation
[83]. The associated impedance was derived by Levine [83] and can easily be plugged
in an acoustic solver.

• If the mean flow at a boundary is non zero, acoustic energy can be convected in/away
of the system. Notably, this mechanism leads to dissipation when a nozzle is con-
nected to the domain [84, 85, 86, 13, 51]. The dissipating effect of nozzles has been
explored in Helmholtz studies by [13, 51].

Acoustic energy can also be dissipated directly in the bulk of the fluid.

By homogeneous diffusive processes. Dissipation by thermal and viscous diffusion
also acts in the fluid volume. This term is however extremely small and can usually
be neglected [87, 88].

By fluid/structure coupling. If walls are allowed to vibrate, the coupling between fluid
and structural acoustics must be considered as it can lead to a dissipation of acoustic
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energy [88, 89]. The coupling problem is quite complex and the associated damping
is therefore neglected in this study.

By particles Acoustic energy can be dissipated through drag and heat exchange with
particles [90, 88]. For linear flow instabilities, the effect of particles depends on their
Stokes number (the ratio between the kinetic energy of the particle and the energy
dissipated by friction with the fluid). Particles with a large Stokes number tend to
stabilize the flow (due to drag), while particles with a small Stokes number destabilize
the flow by increasing the inertia of the fluid-particles mixture [91]. This mechanism
is important in rocket engines because of the strong interaction between acoustics
and flow instabilities [23]. The effect on pure acoustic fluctuations is however not
well documented, to the author’s knowledge. In this study, particles are neglected
based on the fact that the spray volume is small compared to the combustor volume
in most gas turbines.

By vorticity shedding This is the main source of dissipation examined in this work and
is examined in details in Section 1.5. At sharp edges, acoustics can be converted
into vorticity. Acoustic energy is therefore transferred to the mean flow in the form
of vortices. This energy is ultimately lost as the vortices are destroyed by viscosity.
It is suspected that this mechanism is a great source of dissipation in modern gas
turbines.

The important point of this quick review is that while dissipation at boundaries is quite
easy to include in an acoustic solver (provided the associated impedance is known), dissi-
pation in the fluid bulk is based on mechanisms that cannot be described by simple linear
acoustics. This probably explains why the latter is neglected in most thermo-acoustic
studies. However, as already mentioned in the beginning of this section, dissipation terms
should be considered more carefully as they too contribute to the global stability of a
combustor. Out of the four bulk dissipation mechanisms listed above, this work will focus
on the one relying on vorticity shedding. Indeed, as will be explained in Section 1.5), the
latter is compact enough to be considered as a boundary process and represented by an
impedance-type model.

1.4 The choice of the Helmholtz solver

For gas turbine applications, a Helmholtz solver complemented with FTF (Section 1.3.7)
is a good trade-off betweeen physical accuracy and computational cost. It is the numerical
approach favored in this thesis because:

• It is adapted to complex 3D geometries [48, 29, 10, 49], and the real combustor
geometry can be solved directly contrary to acoustic network models.

• It solves a much easier equation than LNSE and LEE thanks to the zero Mach
number assumption, which is justified in most cases.

• It is much faster than LES and thus appropriate for sensitivity analysis at the design
stage.

• It can easily account for complex impedance boundaries.

• It can be coupled to an FTF/FTM or an FDF to predict respectively linear ampli-
fication [29, 49], or limit cycle amplitude [30].
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Figure 1.18: A typical turbojet combustor design. The zero Mach number
assumption is valid in between the dashed lines. Non-acoustic effects are
expected at the perforated plates, dilution holes, swirler, due to the pres-
ence of a shear layer. Spray droplets, heat transfer at walls and structural

vibrations also interact with acoustics, but are not studied here.

Helmholtz solvers are consequently of great interest for jet engine manufacturers and
Safran Aircraft Engines, who funded this thesis, is no exception. However, the simplicity
of Helmholtz solvers relies on a set of assumptions that restrict the domain of validity of
the tool. While the assumption of inviscid fluid at zero Mach number is acceptable in
most of the combustor domain (with a Mach number of M . 0.1 and Reynolds number
of Re & 104), it discards many local mechanisms that have an important impact on the
global combustor acoustics.

An inviscid mean flow can modify the propagation speed of acoustic waves and hence the
structure and frequencies of acoustic modes. In the absence of a flame, this effect scales
as the square of the Mach number and is therefore minor in jet engine combustors (but
it is not for rocket engines !). In the presence of an acoustically active flame however,
even a small mean flow can have an important impact on the combustor stability [13, 42],
due to convective effects. This problem can be tackled with the Delayed Entropy-Coupled
Boundary Condition developed by [51].

Conversely, the presence of viscosity (without mean flow) leads to acoustic dissipation at
solid walls (and to a much lesser extent in the bulk), due to the creation of an acoustic
boundary layer (the Stokes layer). However, the associated dissipation effects are usually
negligible in jet engine combustors. If necessary, they can be assessed by post-processing
Helmholtz solutions, following the method described in [82].

Another mechanism depends on both the presence of a small mean flow and of viscosity:
the interaction between acoustics and vorticity. As will be explained in the next section,
this phenomenon can appear at trailing edges and is suspected to play an important role
in the acoustics of a combustor. Indeed, an industrial combustor is full of trailing-edge
like geometrical details (Fig. 1.18).
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1.5 Hydro-acoustic interactions in thermo-acoustic studies

1.5.1 Hydro-acoustic interactions

The interaction between vorticity and acoustic fields, grouped here under the term "hydro-
acoustic interactions", is complex and is the flow-acoustic interaction of interest in this
study. Indeed, it is suspected to be an important counterpart to the flame/acoustics
coupling but has not been often studied in the field of combustion instabilities. Three
types of hydro-acoustic interaction are often encountered (Fig. 1.19). The first two can
lead to an increase of acoustic energy while the third one can only dissipate this energy
and is the major topic studied here.

Case 1 In unbounded flows, vorticity acts as quadrupole source of sound. In a low Mach
number flow, this source of sound is usually small enough to be neglected [92, 93].

Case 2 When a vortex hits a rigid boundary, it emits sound as a dipole, a much more
efficient source of sound than a quadrupole. Whistling effects, often encountered in
corrugated pipes, are based on this mechanism [94, 95, 96].

Case 3 At a sudden expansion, or any trailing edge in the presence of mean flow, a
shear layer is created. When subject to an acoustic forcing, a hydrodynamic insta-
bility can develop in the shear layer [15, 97], visible in the form of shed vortices
(Fig. 1.21). The vortex shedding process extracts acoustic energy and therefore acts
as an acoustic damping term [98], as was observed experimentally [99, 100, 101, 102]
and numerically [103, 104]. This damping term might be important in jet engine
combustors, since the combustor geometry is full of "trailing-edge" like details [99].
For example, perforated plates sometimes exploit this hydro-acoustic damping for
the passive control of combustion instabilities [105, 50, 106]

1	

 2	

3	



Figure 1.19: Three types of hydro-acoustic interactions: 1) Vortex sound
in unbounded flows, 2) Vortex sound at rigid boundaries, 3) Conversion of

acoustics into vorticity at trailing edges.

Case 3, the interaction between acoustics and shear layer at a sharp edge, is the case
of interest in this thesis. Figure 1.21 shows an experimental visualisation of the vortex
shedding process at the exit of a pipe with sharp edges in the presence of mean flow [16].
When the acoustic velocity flows inward, the associated velocity perturbation causes the
shear layer to roll up into a vortex. After half a period, the acoustic velocity changes sign.
The vortex detaches from the edge and is convected downstream by the mean flow, where
it can no longer interact efficiently with acoustics. As Fig. 1.20 shows for the shear layer of
a cylinder, the interaction between acoustics and vorticity definitely leads to some energy
transfer in favor of the vorticity field. Fig. 1.20 also shows that this energy transfer is not
simple and depends on the frequency of the acoustic forcing.
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Figure 1.20: Comparison of the growth of the maximum fluctuating ve-
locity u′ for a cylinder shear layer, without and with acoustic perturbation

at 410 Hz and 490 Hz. From [15]

An interesting feature of this process is that it is independent of the acoustic amplitude as
long as the latter is "small enough"2. In this case, the damping regime is qualified as linear
because acoustic quantities on both sides are connected by linear relationships. At higher
acoustic amplitudes (or for a low mean flow), the shear layer is created mainly by the
acoustic velocity and is not related to the mean flow anymore. In this case, the acoustic
damping is proportional to the acoustic amplitude and the damping regime is qualified as
nonlinear. In this thesis, only the linear damping regime is examined.

No matter linear or nonlinear, the interaction between shear layers and acoustic waves
is governed by viscous effects close to the trailing edge [109]. Therefore this effect can
be reproduced by LES or LNSE codes, but is discarded from simple models without vis-
cosity, such as Helmholtz solvers. Fortunately, models are available to compensate this,
by taking advantage of the fact that viscous effects are important only in a very limited
region of space. This will be developed in Section 1.5.3 but an interesting visualization
from Noiray et al. [110] is provided in Fig. 1.22. In this experiment, Noiray et al. examine
the acoustics-vorticity mode conversion at a diaphragm. They decomposed the centerline
velocity fluctuation into a convective component (vorticity) and an acoustic part. At the
location of the diaphragm z/D = 0, mode conversion happens and is visible by a simulta-
neous increase of the convective velocity and drop of the acoustic velocity. The change is
sudden and confirms that conversion takes place very close to the diaphragm.

1.5.2 Characteristic quantities for hydro-acoustic damping

Before introducing the models, some usual quantities used in the estimation of hydro-
acoustic damping are presented here, for the general damping system of Fig. 1.23. The
damping properties are usually measured by imposing an acoustic forcing in a plane-wave
configuration as shown in Fig. 1.23. The acoustics of the test rig can be characterized
by:

• Upstream and downstream wave amplitudes (A+
u , A

−
u ) and (A+

d , A
−
d ) respectively.

Equivalently, acoustic pressure and velocities can be reconstructed from Eq. (1.33)
and (1.34).

2This has been quantified differently depending on authors. Some compare the unsteady pressure
loading to the same steady quantity [107]. Others prefer to examine the ratio of acoustic velocity over
mean flow velocity [108].
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Figure 1.21: From [16]: flow field near the sharp edge of a pulsed tube.
The pictures (a) - (f) are at t/T = 0, 0.25, 0.41, 0.53, 0.65 and 0.90.

Figure 1.22: Acoustic u′ac (squares) and convective (circles) velocity fluc-
tuations u′cv along the centerline of a diaphragm with mean flow, forced

acoustically at 400 Hz, 600 Hz and 1000 Hz.

• Upstream Wu and downstream Wd acoustic fluxes defined as (for M = 0):

Wu = 1
2<(p̂uû∗u) = 1

2(|A+
u |2 − |A−u |2) (1.40)

Wd = 1
2<(p̂dû∗d) = 1

2(|A+
d |

2 − |A−d |
2) (1.41)
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If the outlet is anechoic (A−d = 0), the acoustic fluxes can be decomposed into an
incident Wi, reflected Wr and transmitted Wt contribution.

Wi = 1
2 |A

+
u |2 (1.42)

Wr = 1
2 |A

−
u |2 (1.43)

Wt = 1
2 |A

+
d |

2 (1.44)

Damping 
system	
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Figure 1.23: General damping system in a plane-wave test rig

The damping properties can be divided into two categories: configuration-dependent quan-
tities and intrinsic quantities.

Configuration-dependent quantities

Configuration-dependent quantities refer to quantities that, as the name indicates, depend
not only on the damping system of interest, but also on the surrounding measurement rig.
For the analysis of mufflers for example, it is common to assume that the downstream
reflection coefficient is zero (i.e. anechoic outlet) [111]. The Transmission Loss (TL)
and its variants follow this convention. The Transmission Loss shown below quantifies
how much acoustic energy is transmitted through the system, compared to what was
injected.

Transmission Loss: TL = 10 log
(
WiSu
WtSd

)
(1.45)

Another quantity frequently used to qualify the damping properties of a system is the
absorption coefficient. It describes the acoustic flux lost in the system.

Absorption coefficient: ∆ = WinSu −WoutSd
WinSu

(1.46)

where the ingoing flux Win and outgoing flux Wout are defined as:

Win = 1
2(|A+

u |2 + |A−d |
2) (1.47)

Wout = 1
2(|A+

d |
2 + |A−u |2) (1.48)

Definition (1.46) depends on the downstream boundary condition through the wave am-
plitude A−d . Of course, the transmission loss and absorption coefficient are not the
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only configuration-dependent quantities used for the measurement of damping properties.
Many variants can be derived, usually based on acoustic fluxes.

Intrinsic quantities

Configuration-dependent quantities have one issue: they cannot be reused in another
configuration. In this case, intrinsic quantities should be derived. For orifices for example,
the Rayleigh conductivity KR is such a quantity. It is based on the fact that the acoustic
velocity is conserved through the orifice, but not the acoustic pressure. The Rayleigh
conductivity provides the ratio between the jump of acoustic pressure and the acoustic
velocity (more precisely the acoustic volume flow rate) through the orifice.

Rayleigh conductivity: KR = iρoωĜ

[p̂u − p̂d]
with Ĝ = Suûu = Sdûd (1.49)

The jump of acoustic impedance of the orifice is directly related to the Rayleigh conduc-
tivity and is expressed as:

Jump of impedance: Z = p̂u − p̂d
ρocoûu

= iωSu
coKR

(1.50)

The Rayleigh conductivity is a particularly interesting property of simple damping ele-
ments such as orifices, slits and sudden area expansions, that can be computed analytically.
For general elements with more complex geometries (a swirler say), the Rayleigh conduc-
tivity or the jump impedance can be measured experimentally or computed numerically,
provided the acoustic volume flux is conserved through the system of interest.

If this assumption is not verified, the complete matrix of the system must be determined,
as described in Chapter 2. The matrix formalism is the most general and can also be
applied when the acoustic volume flux is conserved. In this case, the expression of the
matrix can be derived from the knowledge of KR or Z (see Appendix D).

The three intrinsic quantities described here all have an important quality. They are easy
to transcribe into an impedance boundary condition and can consequently be implemented
in a Helmholtz solver.

1.5.3 Models for hydro-acoustic interactions

Vortex sound theory

Hydro-acoustic interactions in a low Mach number confined flow are best described by the
vortex sound analogy developed by Powell [39] and later extended by Howe [112].

The key idea of the vortex sound approach is to describe the acoustic field in terms of
total enthalpy. For a homentropic, non conductive, frictionless fluid at low Mach number,
a non-homogeneous wave equation for the fluctuation of total enthalpy B′ = p′/ρo+uo ·u′
can be derived [112, 94]:

1
c2
o

D2
oB
′

Dt2
−∇2B′ = ∇ · (Ω× u) (1.51)
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with co the speed of sound, u = uo + u′ the velocity decomposed into an average part ū
and a fluctuating part u′. The material derivative is defined as Do

Dt
= ∂

∂t
+ uo · ∇ and

Ω = ∇ × u the total vorticity. In equation (1.51), the RHS explicitly shows that the
vorticity Ω is responsible for the generation / damping of sound. Alternatively, Howe also
obtained an expression for the rate of dissipation of acoustic energy due to the interaction
with vorticity.

P = − 1
T

∫
T

∫
V
ρo[Ω× u) · u′]dV dt (1.52)

where T is the characteristic time of interest, a period of the acoustic signal for example.
With the knowledge of the vorticity distribution Ω, expression (1.52) can be used to eval-
uate a posteriori the dissipation / amplification of sound due to vorticity in experiments
or LES computations [113]. For a priori predictions of hydro-acoustic damping, eq. (1.51)
should be solved. To do this, the dependency of vorticity to the acoustic field must be
known. As said earlier, the conversion of acoustic waves into vorticity shedding is ruled
by viscous effects near the trailing edge. The role of viscosity is to "smooth" the acoustic
field, which is otherwise singular close to the trailing edge [109]. To approximate this,
an unsteady Kutta condition is often applied at the trailing edge [99, 98, 114]. This con-
dition provides the strength of the vorticity field required to keep pressure and velocity
bounded.

The last step required to solve equation (1.51) is to assume a shape for the vorticity
distribution. In the literature, two types of models are often found:

Vortex sheet Shed vortices are represented by an infinitely thin sheet where vorticity of
constant strength is convected at the velocity of the mean flow in the jet [19, 110].
The strength of the vortex sheet is determined by application of the Kutta condition.
Due to its simplicity, the vortex sheet model has enjoyed a great popularity and was
used to derive the impedance of orifices, perforated plates, slits or sudden area
expansions in the linear regime [19, 100, 92, 115, 101, 114]. For simple elements,
the impedance can be expressed analytically and this is a strong point of the vortex
sheet model. As an example, the expression of the Rayleigh conductivity derived by
Howe [19] for an orifice with bias flow can be found in Appendix D.

Discrete vortex model In this refinement, the sheet is decomposed into discrete vor-
tices of varying strengths. The trajectory of the vortices is obtained by applying
Kelvin theorem and their strength is determined by the Kutta condition. This model
provides more accurate results than the vortex sheet model, in particular for high
amplitude regimes, but requires to solve numerically the vortices [16, 116, 117, 118].
The vorticity field obtained with this method is very close to the real one, at least
in the proximity of the dissipating edge (Fig. 1.25).

Both vorticity distributions lead to good predictions of the damping properties, as the
examples of Fig. 1.26 show. The good agreement is another proof that the role of viscosity
in hydro-acoustic damping is confined to a very small region, since a Kutta condition is
able to capture it so well.
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Jet	
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Vortex sheet	
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Figure 1.24: Vortex sound models are divided into two categories de-
pending on the vorticity representation: vortex sheet (bottom) or discrete

vortices (top)

Figure 1.25: Experimental visualization of vorticity vs vorticity field com-
puted with discrete vortex model. From [17]
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(a) Absorption coefficient of an array of
slit, predicted with an analytical expression
(lines) and measured experimentally (sym-

bols) at two Mach numbers. From [92].

(b) Normalized acoustic impedance of a
diaphragm with sound pressure amplitude.

From [119].

Figure 1.26: Example of damping properties retrieved with vortex sound
theory assuming a) a vortex sheet, b) a discrete vortex field.
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Quasi-steady models

Models derived from the vortex sound analogy have the advantage of representing the
feedback of acoustics on hydrodynamics. In cases where this feedback is not important
(at low frequencies), another class of models assumes that the shear layer is steady. In
this case, the damping properties of sharp edges (e.g. orifices and sudden section changes)
in mean flow is due to the absence of pressure recovery in the downstream jet and can be
derived from the Bernoulli equation for linear and nonlinear regimes [120, 121, 18, 107,
122].

Quasi-steady jet	



Constant vorticity	



Constant vorticity	



U	



Ŝ+H�LȦW Ŝ�H�LȦW

Figure 1.27: Quasi-steady jet models

With this approach, Durrieu et al. [18] was able to predict correctly the evolution of
the matrix of confined Borda tube with the mean flow velocity, from simple conservation
equations. The model compares well with experiments, even for non vanishing frequencies
(Fig. 1.28).
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Figure 1.28: Left: Modulus of scattering matrix coefficients from experi-
ments and the quasi-steady model of [18] at M=0.045. Right: Overview of

the test rig and damping element of interest.

Black-box approach

Quasi-steady and vortex sound models provide excellent results for simple configurations,
easily solved analytically or with simple numerical tools. However, they are not suited to
predict the hydro-acoustic behaviour of complex geometries such as swirlers. In this case,
a black-box approach can be used. Again, this is possible because hydro-acoustic damping
is a local, compact mechanism that is well represented by acoustic jump conditions. The
element of interest is computed with a solver of high accuracy (LES for example) and
modeled as an acoustic n-port. It was shown that this acoustic n-port correctly captures
the hydro-acoustic coupling for a number of configurations, with LES, LNSE or even
Lattice-Boltzmann solvers [123, 124, 7, 96, 104, 41]. This black-box approach is in fact
similar to the Flame Transfer Matrix method. The acoustic n-port can be plugged into
a simpler acoustic tool, so as to combine the accuracy of an LES-type solver with the
simplicity of an acoustic solver. First results were obtained for a Helmholtz computation
with an analytical matrix model of the flame and the injector [49]. Because the matrix
parameters are very easy to change, Laera et al. [49] were able to analyse the effect of a
change in the flame and injector parameters. To the authors’ knowledge, similar results
have not yet been performed with a matrix containing the hydro-acoustic losses from
experiments or LES.

1.5.4 Hydro-acoustic damping in thermo-acoustic studies

The key points of the quick review on hydro-acoustic conversion can be summarized as
follows:

• Energy can be transferred from acoustics to the mean flow via vorticity shedding,
at any kind of trailing edge (orifice, sudden section change, obstacle. . . ).
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Figure 1.29: Black box matrix models

• This process depends on viscosity but only in a very limited region of space. The
flow can be considered inviscid everywhere and the viscous effects represented by a
Kutta condition at the edge.

• Based on this assumption, models with different levels of complexity have been
developed. They rely either on a vortex sound analogy or a quasi-steady assumption.

• From these models, the damping behavior of simple elements such as orifices or
sudden section change can be studied analytically or semi-analytically.

• More complex geometries are not tractable analytically, but can be analyzed with a
black-box, matrix approach.

For the numerical prediction of combustion instabilities with acoustic tools, these points
have several implications.

1. A combustor contains many potentially damping elements as Fig. 1.18 shows. Di-
lution holes, perforated plates and the swirled injector are all good candidates for
hydro-acoustic damping.

2. These sources of damping have an important impact on combustion instabilities but
have rarely been addressed by numerical prediction tools. Either an LES or LNSE
solver is used and the hydro-acoustic damping is naturally included in the prediction,
or an acoustic tool is used and hydro-acoustic damping is assumed negligible. Some
exceptions are the work of Gullaud [50] who implemented a model based on vortex
sound theory to account for the damping of perforated plates in a Helmholtz solver,
and the work of Yang and Morgans who studied the impact of Helmholtz resonators
on thermoacoustic instabilities by implementing a nonlinear quasi-steady model in
an acoustic network code [125].

One reason behind this lack of studies is that the damping behaviour of complex geometries
is not easy to evaluate. It can be assessed nonetheless with a black-box matrix approach
which is compatible with many acoustic solvers, in particular Helmholtz solvers.

1.6 Thesis objectives and outline

Going back to the central question,
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What is the impact of acoustic-mean flow interactions on combustion
instabilities ?

The majority of studies on thermoacoustics focus on the source term (the Rayleigh term)
of the acoustic energy, linked to the RHS of Eq. (1.24), but very few are dedicated to the
loss term (the acoustic dissipation, mainly due to hydro-acoustic interaction), forgetting
that it is the difference between the two terms which control stability. In many cases, for
example in zero Mach number solvers, this dissipation term is even simply set to zero.
Analytical models for the hydro-acoustic behaviour of simple elements are available but
only partially solve the problem. Indeed, more complicated elements such as swirlers
cannot be modeled analytically.

Consequently, the objectives of the present thesis are:

• To develop a methodology that includes the hydro-acoustic damping behaviour of
any type of element in a frequency-domain acoustic solver.

• To apply this methodology for the thermoacoustic analysis of an industrial combustor
and assess the impact of hydro-acoustic damping on a realistic combustion instability.

Because of the industrial application, the hydroacoustic damping effects will be represented
with a matrix approach combined to a Helmholtz solver as the latter provides a good
trade-off between accuracy and cost for complex geometries.

The first aspect of this thesis was to implement an approach to plug acoustic matrices
into a Helmholtz solver. For this purpose, a Matrix Boundary Condition was developed
and presented in Chapter 2. This chapter also explains how to obtain the hydro-acoustic
damping matrices.

The second part of this work is dedicated to the validation of the matrix methodology. In
Chapter 3, the Matrix Boundary Condition is introduced in the Helmholtz computation
of an academic test rig, with experimental and LES matrices. The comparison between
Helmholtz results and measurements from experiments and LES shows an excellent agree-
ment, confirming that combining the matrix data with the Helmholtz solver does capture
hydro-acoustic conversion.

The simple methodology introduced in Chapters 2 and 3 proved to be inoperable as such
for industrial geometries. The reasons are exposed in Chapter 4. Extensions are proposed
and successfully applied to simple test cases.

Finally, the extended methodology is applied to a Safran industrial burner in Chapter 5.
An acoustic analysis including acoustic energy balance is performed on the Helmholtz
solutions with and without Matrix Boundary Condition, so as to assess the impact of
hydro-acoustic damping on a realistic instability.
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Chapter 2

A methodology to account for
hydro-acoustic interaction in a
Helmholtz solver

The first objective of this thesis is to introduce hydro-acoustic damping into a Helmholtz
solver, by modeling this mechanism with an equivalent matrix. In this chapter, the basic
theory behind the acoustic matrix representation is recalled (Section 2.1), as well as the
methods to measure it (Section 2.2). The matrix is included in the Helmholtz solver with
a new boundary condition, described in Section 2.3. Finally, a code validation of the
boundary condition on a simple case is performed in Section 2.4

2.1 Matrix representation for hydro-acoustic coupling

In a 1D tube, the general solution of the acoustic wave equation consists in the superpo-
sition of two plane waves travelling in opposite directions at the speed of sound co. The
expression of the plane waves and associated acoustic pressure and velocity has been given
in Eqs. (1.31) to (1.34). In a straight uniform tube without any losses, the waves propa-
gate unchanged and their amplitudes A+ and A− remain constant in the tube. However,
when the flow properties change or in the presence of losses, propagation is affected and
so are A+ and A−. The modification can be continuous. For example, the presence of a
viscous boundary layer at the walls tends to damp the wave amplitudes as they travel in
the tube [80, 126].

When the modification is located in a limited region of space as is the case for hydrody-
namic damping, its effect on A+ and A− can be represented as a pair of jump conditions
(Fig. 1.14), as expressed in Eq. 1.36. If the jump conditions φ and ψ are linear, they can
be written as a 2 × 2 matrix, also called acoustic 2-port. This linearity assumption is
important. In practice, it is verified for hydro-acoustic coupling at low acoustic level (i.e.
in the linear regime). At higher acoustic levels, i.e. in the nonlinear regime, this is not
true anymore and the matrix representation is not adapted.

Depending on the acoustic quantities used as inputs and outputs, different matrix for-
mulations can be defined and some of them are listed in Tab. 2.1. All formulations are
essentially equivalent and it is possible to switch from one formulation to another with
the expressions of Appendix B.

As said earlier, this matrix representation is well-suited for hydro-acoustic damping be-
cause the latter is compact with respect to the acoustic wavelength. Moreover, in cases
where the matrix cannot be determined analytically, its coefficients can still be measured



36 Chapter 2. A methodology to account for hydro-acoustic interaction in a Helmholtz
solver

Name State variables Defining equation

Acoustic transfer matrix p′, u′
(

p′d
ρo,dco,du

′
d

)
≡ Ta

(
p′u

ρo,uco,uu
′

)

Wave transfer matrix A+, A−
(
A+
d

A−d

)
≡ Tw

(
A+
u

A−u

)

Scattering matrix A+, A−
(
A+
d

A−u

)
≡ S

(
A+
u

A−d

)

Mobility matrix p′, u′
(
ρo,uco,uu

′
u

ρo,dco,du
′
d

)
≡M

(
p′u
p′d

)

Table 2.1: Examples of acoustic 2-ports formulation [20].

experimentally or numerically, with the methods detailed in the next section. The ma-
trix formalism has been used successfully to predict the damping behavior of a variety
of elements (orifices [18, 127, 128], sudden section changes [129, 123, 128], swirlers [20],
T-junctions [130, 40]), with a variety of numerical solvers (LES [127, 130, 123], LNSE
[128, 40] or even Lattice Boltzmann methods [104]).

In fact, the matrix formalism extends beyond hydro-acoustic damping, and can also be
applied to the prediction of whistling [96], flame-acoustics coupling [131] or even to model
the acoustic behaviour of a heat exchanger [132].

2.2 Matrix measurement methods

No matter whether experimental or numerical, matrix estimation methods are essentially
the same and rely on measuring the response of the element of interest to an acoustical
forcing. In order to easily quantify this response, the element is usually encased in a
long tube in order to have plane acoustics far from the perturbating element. To the
author’s knowledge, only two methods are used in the litterature and differ in the type of
forcing and the system inverted to obtain the matrix. These two methods are presented
below.

2.2.1 Discrete harmonic forcing with direct matrix inversion

In this technique, a source of acoustic fluctuations is introduced in the test rig. In ex-
periments, this could be a loudspeaker or a siren. Numerically, this source term can be
directly introduced as a source point in the volume, or at the boundaries, using an inlet
with a fluctuating velocity for example. The fluctuation is assumed to be composed of a
finite, discrete set of frequencies.

The acoustic forcing creates a particular acoustic state in the test rig, characterized by
a pair of plane wave amplitudes (A+

u , A
−
u ) and (A+

d , A
−
d ). These wave amplitudes are
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related by the matrix coefficients of the system of interest, expressed in with the scattering
formalism for example:

A+
2 = S11(ω)A+

1 + S12(ω)A−2 (2.1)
A−1 = S21(ω)A+

1 + S22(ω)A−2 (2.2)

Equations (2.1) and (2.2) contain four unknowns S11, S12, S21, S22, the matrix coefficients.
In order to determine them, at least another pair of equations is required and obtained
by creating a new, different acoustic state (Fig. 2.1). This can be done either by changing
the location of the acoustic forcing (two-source method) or by modifying the boundary
conditions (two-load method).
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Figure 2.1: Illustration of the direct matrix inversion with discrete har-
monic forcing method. At least two acoustic states are required and ob-

tained here by changing the forcing location.

With N ≥ 2 acoustic states:



A+
u,1 A−d,1 0 0
0 0 A+

u,1 A−d,1
...

...
...

...
A+
u,j A−d,j 0 0
0 0 A+

u,j A−d,j
...

...
...

...
A+
u,N A−d,N 0 0
0 0 A+

u,N A−d,N


︸ ︷︷ ︸

H


S11
S12
S21
S22


︸ ︷︷ ︸

s

=



A+
d,1

A−u,1
...

A+
d,j

A−u,j
...

A+
d,N

A−u,N


︸ ︷︷ ︸

a

(2.3)

This system can be inverted with a least-square inversion, and the error on the inversion
can also be estimated.

s̃ = (H†H)−1H†a , errrelative = ||Hs̃− a||/||a|| (2.4)

where † denotes the hermitian transpose. One last question is how to obtain the plane
wave amplitudes. For this, the pressure and/or velocity temporal signals must be available
at different locations of the test rig. These signals are first filtered in order to extract only
the frequencies of interest, with a Fourier Transform, or a Dynamic Mode Decomposition
[133] for example. The wave amplitudes can then be retrieved with the multi-microphone
method [134, 76], privileged in this thesis, or with the Characteristics Based Filter of
[135].
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The discrete harmonic forcing technique is probably the simplest and the oldest one, but
it is still used today [136, 76, 78]. It is easy to set up experimentally and to implement
numerically in an LES code such as AVBP, where fluctuating boundary conditions are
already available. Moreover, the results are straightforward to interpret and check.

2.2.2 White noise forcing with System Identification

The coefficients of the scattering matrix can be seen as transfer functions between the
ingoing (A+

u , A
−
d ) and the outgoing wave amplitudes (A+

d , A
−
u ), similar to the transfer

functions found in signal processing. Therefore, System Identification (SI) techniques from
communication engineering can also be applied to the estimation of the matrix coefficients,
as noted by [4]. The principle is only briefly recalled here. More details can be found in
[4, 137].

Instead of directly computing the matrix coefficients in frequency domain, SI methods
work in temporal domain. The equivalent of a transfer function in temporal domain is
the Unit Impulse Response, sometimes abridged as Impulse Response (IR). For a single
input single output, linear, time invariant, causal system, the discrete Impulse Response
h is defined as:

ri =
L∑
k=0

hksi−k for i = L, .., N (2.5)

with

si = s(i∆t), i = 0, . . . , N, the discrete input signal of length N, (2.6)
ri = r(i∆t) i = 0, . . . , N the discrete output signal of length N, (2.7)
hk = h(k∆t) k = 0, . . . , L the discrete IR of length L (2.8)

The Impulse Response h is directly related to the transfer function F :

F (ω) =
L∑
k=0

hk exp(−iω∆tk) (2.9)

The Impulse response (and therefore the transfer function) can be estimated by inverting
the Wiener-Hopf relationship (2.10). In this equation, Γ and c are respectively approx-
imations for the autocorrelation matrix of the input signal s, and the cross-correlation
matrix between s and r. Their exact expression is not important here and can be found
in [4]. What is important however is that Γ and c can be built as soon as all input and
output signals for one acoustic state are known. In the case of a system with multiple
inputs, this acoustic state is obtained by forcing all inputs simultaneously.

Γh = c (2.10)

If Γ is invertible then:

h = Γ−1c (2.11)
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In order to have good invertibility properties for Γ, the acoustic forcing needs to satisfy a
few criteria:

• all excitation signals should be uncorrelated with themselves.

• the excitation signals should have a broadband, low-pass filtered spectrum with
constant amplitude in the frequency range of interest.

• the statistical independence of the different excitation signals for a multiple inputs
system should be maximal.

This can be achieved with several uncorrelated white noise signals (although more optimal
signals exist, see [137]), and the procedure to obtain the matrix is the following:

1. Impose a white noise acoustic forcing on all input ports of the matrix, for instance
A+
u and A−d in the scattering matrix case (Fig. 2.2).

2. Measure the response signals (A+
d and A−u ).

3. Compute the auto-correlation Γ and cross-correlation c arrays.

4. Obtain the Impulse Responses with eq. (2.11). For the matrix, four impulse responses
are obtained.

5. Compute the transfer functions in frequency domain with eq. (2.9) to obtain S11,
S12, S21 and S22.
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Figure 2.2: Illustration of the system identification with white noise forc-
ing method.

From a numerical point of view, a great advantage of the System Identification method is
that only one acoustic state and consequently only one CFD computation is required to
obtain the full matrix over a large range of frequencies. On the other hand, the method
raises a certain number of numerical issues that should be treated carefully. For example,
the reflection at boundaries needs to be minimized in order to avoid pollution of the
excitation signal by resonances. and this cannot be done over a broad frequency spectrum
with conventional NSCBC boundaries. Moreover, the quality of the result is not as easy
to check as with the direct matrix inversion of Sec. 2.2.1. An excellent review of these
issues is given in [137].

For these reasons, discrete harmonic forcing with direct matrix inversion was preferred
over System Identification with white noise forcing. A careful implementation of System
Identification methods would however provide notable CPU cost reductions for future
works with the matrix approach.

2.3 Including a network matrix in a Helmholtz solver : the
Matrix Boundary Condition

Now, assume that the matrix of an element is known for acoustic quantities located at
two planes u and d and that we want to replace this zone in the Helmholtz solver by its
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Figure 2.3: Helmholtz computation with Matrix Boundary Condition ap-
proach.

matrix. The simplest example is a swirler connecting two large domains. In each domain,
the Helmholtz solver can be used but in the swirler the zero mean flow inviscid fluid
assumption fails and it is preferable to replace it by its matrix either measured or computed
with LES. How can this data be included in a Helmholtz computation ? The idea is to cut
the geometry into two domains where the Helmholtz equation is solved separately. The
matrix data, measured from a time domain experiment or CFD computation, is then used
to link the two domains (Fig. 2.3), thanks to an adequate pair of boundary conditions, the
Matrix Boundary Conditions (MBC). While acoustic losses at the boundaries are captured
with regular boundary conditions, the Matrix Boundary Condition accounts for damping
mechanisms located inside the combustor.

This boundary condition was implemented in the AVSP Helmholtz solver developed at
CERFACS [29]. The AVSP solver discretizes the Helmholtz equation for pressure (1.24)
into an eigenvalue problem, with a finite volume approach presented in Appendix C.
The eigenfrequencies of this problem are complex and provide the oscillation frequency
and growth/damping rate of the non-evanescent acoustic modes in the combustor. The
pressure fields of these modes are described by the eigenvectors.

At boundaries (Fig. C.3), if a Dirichlet condition is not prescribed (p̂ = 0), information
about the pressure gradient is necessary to fully solve the Helmholtz problem. For exam-
ple, a Neumann boundary condition can be imposed by setting ∇p̂ · n (this is actually
equivalent to setting û · n = 0). Dirichlet and Neumann boundaries provide some simple
approximations to respectively walls/inlets, and outlets.

General boundaries can be represented by their acoustic impedance (2.12), which can be
imposed with a Robin boundary condition (C.12). In the impedance definition (2.12), an
inward convention is chosen for the surface normal n in AVSP.

Z = p̂

ρocoû · n
(2.12)

∇p̂ · n = i
ω

coZ
p̂ (2.13)

For acoustic matrices, a pair of Robin relationships can be derived for the up and down-
stream gradients of pressure, thanks to the mobility matrix coefficients.
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
∇p̂u · nu = M11

iω

co,u
p̂u +M12

iω

co,d

ρo,u
ρo,d

p̂d

∇p̂d · nd = M22
iω

co,d
p̂d +M21

iω

co,u

ρo,d
ρo,u

p̂u

(2.14)

For the truncated geometry of Fig. 2.3, the Matrix Boundary Conditions (MBC) defined
by (2.14) is imposed on the up- and downstream surfaces of the truncation. The quantities
p̂u and p̂d can be either computed point-wise, or spatially averaged over the corresponding
patch. For point-wise computation, an interpolation step, presented in [138], is required
to accommodate for non-coincident meshes between patch u and patch d. If p̂u and p̂d are
uniform, both choices lead to the same result, but p̂u and p̂d are not always uniform as
will be shown in Chapter 3.

The Helmholtz computation with Matrix Boundary condition (referred to as HMBC in
the rest of the manuscript) corresponds to a nonlinear eigenvalue problem with respect to
the eigenvalue. Indeed, the matrix coefficients depend on the frequency, an unknown of
the eigenproblem, and so will the MBC operator. Since the frequency dependency is not
known a priori, there is no general algorithm to solve the nonlinear eigenvalue problem
at the present time. This issue is treated in AVSP with an iterative fixed point approach
[29], detailed in Appendix C.

The matrix data is usually available for a set of real frequencies. At each fixed point
iteration, the matrix coefficients could be updated with a simple linear interpolation at
the real part of the new frequency guess. This is suitable when the eigenfrequencies of
interest have a small imaginary part. When the imaginary part becomes larger however,
the matrix should also be known along the imaginary axis. This can be done from the
values at real frequencies, provided that the matrix coefficients are holomorphic functions
of the frequency (as they usually are). In this case, each coefficient can be interpolated in
the real domain with a known holomorphic function, that has the interesting property of
remaining valid in the entire complex plane [139]. In AVSP, the matrix data can therefore
be provided either as a table of values at real frequencies, or as a polynom valid in the
complex plane.

2.4 Code validation of the Matrix Boundary Condition
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Figure 2.4: Quarter-wave tube configuration for validation of the MBC
code

The newly developed Matrix Boundary Condition is first tested on the configuration of
Fig. 2.4. It consists of a 1D tube of constant cross-section filled with air (perfect gas
constant equal to R = 287J ·kg−1 ·K−1), divided by a pair of Matrix Boundary Conditions.
The length of the upstream portion is L1 and the length of downstream portion is L2.
The gas is at T1 = T2 = 300 K corresponding to a speed of sound of co = 347.4 m/s.
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n Theory Standard Helmholtz HMBC
0 86.8 Hz 86.8 Hz 86.8 Hz
1 260.5 Hz 260.5 Hz 260.5 Hz
2 434.2 Hz 434.2 Hz 434.2 Hz
3 607.9 Hz 607.9 Hz 607.9 Hz
4 781.6 Hz 781.5 Hz 781.5 Hz

Table 2.2: First five eigenfrequencies (in Hz) of the quarter-wave tube
with Ls+ L1 + L2 = 1.0 m.

A fixed-velocity boundary condition is used at the inlet and fixed-pressure one at the
outlet. For this first test, a simple propagation matrix is imposed at the Matrix Boundary
Conditions:

T =
(

cos(kL) i sin(kL)
i sin(kL) cos(kL)

)
(2.15)

with L an arbitrary length. This configuration corresponds to a simple quarter-wave tube
and has infinite discrete eigenfrequencies given by:

fn = (2n+ 1)) co
4(L1 + L2 + L) n ∈ N (2.16)

For L1 = 0.4 m, L2 = 0.5 m and L = 0.1 m, the eigenfrequencies of the quarter-wave tube
are listed in Tab. 2.2. The corresponding eigenmodes can be reconstructed as:

p̂n(x) = cos(knx) with kn = 2πfn
co

(2.17)

Alternatively, the eigenfrequencies and eigenmodes can be computed with a standard
Helmholtz solver, on the 3D parallelepipedic mesh of Fig. 2.5. These two reference solu-
tions are compared to an HMBC computation, on the mesh of Fig. 2.6.

As Tab. 2.2 (eigenfrequencies) and Fig. 2.7 (eigenmodes), both the standard Helmholtz
computation and the HMBC one correctly reproduce the frequencies and mode structures
of the quarter-wave tube. Identical results are obtained for 1 processor and for 24. These
results validate the code of the Matrix Boundary Condition in the AVSP Helmholtz solver
at least in a simple 1D case where the analytical solution is known. The next chapter
addresses a more complex case: a non reactive swirler installed at IMFT.

Figure 2.5: Mesh for the standard Helmholtz computation of the quarter-
wave tube.
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Figure 2.6: Mesh for the Helmholtz computation with MBC of the
quarter-wave tube.
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Chapter 3

Application of the HMBC
approach to an academic test
rig.

In Chapter 2, a methodology was developed to include the matrix of acoustically dissi-
pative elements into a Helmholtz solver. In this chapter, this methodology is now tested
on an academic test rig, for which numerical and experimental acoustic measurements are
available. The experiment is non reacting and the goal of the chapter is to perform an
HMBC computation using the matrices obtained from the acoustic measurements. The
results of the HMBC computations show that the dissipative behaviour of orifices and
swirlers is indeed captured by the matrices, whether numerical or experimental. Including
the matrix data in an HMBC computation thus improves the estimation of the damp-
ing rates and mode structures, compared to a standard Helmholtz solution. The results
presented in this chapter are adapted from an article accepted by AIAA Journal [?].

3.1 Target setup: the PRELINTRIG experiment

The configuration of interest is the experimental test rig PRELINTRIG from IMFT. This
test rig is composed of cylindrical ducts of different lengths, that can be connected by
a dissipative element (Fig. 3.1). Two dissipative elements are considered in this study:
a diaphragm (Fig. 3.2a) and a swirler (Fig. 3.2b). The experiments are run at ambient
temperature To = 299 K and ambient pressure Po = 101550 Pa with air (specific ratio of
γ = 1.4 and molecular mass of W = 28.97 g/mol). All measurements were performed at
Institut de Mécanique des Fluides de Toulouse (IMFT) by Maxence Brebion.

Air flow is driven by eight uniformly distributed radial injectors. In order to perform
acoustic measurements, the rig air flow is excited by a loudspeaker (Focal ISN 100) fixed
in a PVC air tight module. Six microphones (Bruel & Kjaer 1/4” Type 4954B) measure
the acoustic pressure in the rig: three upstream and three downstream of the dissipative
element. Three PVC tubes (T1, T2, T3) with the same cross-section but different lengths
are used in the experimental studies. Their inner radius is R = 0.04 m and lengths are
l1 = 0.26, l2 = 0.34, l3 = 0.56 m respectively.

End corrections of δin = 0.010 m and δout = 0.025 m are used to match the experimental
and Helmholtz solver eigenfrequencies, in absence of mean flow. The value of the correction
length at the outlet corresponds to the correlation of Levine and Schwinger [83] δout =
0.6R. The inlet correction length includes the effect of the loudspeaker and injection tubes
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(a) Configuration for matrix measurement. The downstream part is composed
of T2 only or T2 and T1, to obtain the four configurations of Fig. 3.5.
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(b) Configuration for acoustic modes measurement

Figure 3.1: Sketch of the experimental setup. The junction may contain
either a diaphragm or a swirler. Three microphones are placed upstream and
downstream of the element. The loudspeaker position changes depending
on the type of measurement (top figure: matrices, bottom figure: acoustic

modes).

(a) Diaphragm (b) Swirler

Figure 3.2: Acoustic elements: (a) Diaphragm, (b) Swirler.

and no correlation is available for this geometry. The value of δin = 0.010 m was chosen
because it allows to fit the the experimental frequencies in an optimal way.

Two types of acoustic measurements can be performed on this test rig: the acquisition
of 2-port matrices (Fig. 3.1a) and the acquisition of the eigenmodes and eigenfrequencies
(Fig. 3.1b). For matrix measurement, T1, T2 and T3 are combined to obtain four inde-
pendent configurations (Fig. 3.5), as explained in Section 3.3.1. For the measurement of
acoustic modes and frequencies, only tubes T3 and T2 are used and are placed upstream
and downstream of the element of interest respectively (Fig. 3.1b). In this case, the loud-
speaker is placed on the side of the tube to minimize the coupling between the loudspeaker
cavity and the main rig.

Acoustic matrices and modes are determined for three different flow rates characterized
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by their bulk velocities: U = 0.0 ; 0.17 ; 0.34 m/s. These bulk velocities, imposed by a
mass-flow meter, are controlled with a precision of 2% by using hot-wire based velocity
profile measurements. In every case, the Mach number is lower than 0.001 and Mach
number effects in the inviscid zones can be neglected.

The acquisition system is based on the Labview software and its associated multichannel
acquisition board. Measurements are performed with harmonic excitations, for frequencies
ranging from 50 up to 1000 Hz, well below the cut-off frequency of 2500 Hz. This ensures
that only plane waves exist in the ducts. For each frequency and configuration, samples
of 2 s are recorded at a sampling rate of 10 kHz.

3.2 Description of the validation strategy

For the PRELINTRIG test rig, matrix data and reference eigenmodes are measured exper-
imentally (M. Brebion) and numerically, with methods detailed in Section 3.3. Standard
and MBC Helmholtz computations are then performed, following the procedure described
in Section 3.4.

To check the validity of the MBC methodology, four types of comparisons, called C1,
C2-LES, C2-EXP and C3 in Fig. 3.3, are performed:

C1 Matrices obtained from the experiments and from the LES are compared, to check
their validity and robustness to either numerical or experimental artefacts.

C2-LES The LES matrix data is used as an input of the Helmholtz solver with MBC.
The resulting eigenfrequencies and eigenmodes are compared with the LES values,
and with the results of the Helmholtz solver without MBC.

C2-EXP The experimental matrix data is used as an input of the Helmholtz solver
with MBC. The resulting eigenfrequencies and eigenmodes are compared with the
experimental values and with the results of the Helmholtz solver without MBC.

C3 The MBC Helmholtz solver results from the LES matrix and from the experimental
matrix are compared to check the sensitivity of the results to the input data used to
model the non-acoustic element.

3.3 Measurement methods

3.3.1 Experimental matrices and modes

In order to perform comparison C2-EXP (Fig. 3.3), the acoustic modes and acoustic
matrices are measured experimentally.

Frequencies and dissipation of acoustic modes in the experiment

The first step is to measure the frequencies and damping rates of the acoustic modes in
the experiment (Fig. 3.1b). To do this, the test rig is excited by a loudspeaker producing
a monochromatic harmonic signal at a constant voltage, and the resulting pressure waves
are measured by microphones for a discrete set of frequencies. Under the plane wave
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Figure 3.3: MBC validation strategy with the four axes of comparison.
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assumption, the complex acoustic pressure amplitude at location zj can be expressed
as:

p̂(zj) = aje
iφj = A+eik

+zj +A−e−ik−zj (3.1)
ρoco û(zj) = A+eik

+zj −A−e−ik−zj (3.2)

where A+ and A− are the amplitudes of the right and left traveling waves respectively.
zj is the axial coordinate in the duct, with the origin z = 0 chosen at the center of the
acoustic element (diaphragm or swirler).

By measuring the complex acoustic pressure at different locations, the wave amplitudes
are retrieved at each frequency thanks to the multi-microphones technique [134, 76].

eik
+z1 e−ik

−z1

... ...

eik
+zJ e−ik

−zJ


︸ ︷︷ ︸

D

(
A+

A−

)
︸ ︷︷ ︸

x

=

a1e
iφ1

...
aJe

iφJ


︸ ︷︷ ︸

b

(3.3)

x̃ = (D†D)−1D†b (3.4)

System (3.3) is overdetermined when more than two microphones are used and is inverted
with a least-square approach as done in Eq. (3.4).

The wave amplitudes are combined to reconstruct E , the period-averaged acoustic energy
integrated over the volume V of the rig, as defined in Eq. (5.20).

E =
∫
V

( 1
4ρoc2

o

|p̂(z)|2 + 1
4ρo|û(z)|2

)
dV (3.5)
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For plane waves at low Mach number in a forced harmonic regime, the wave amplitudes
are constant in each inviscid rig portion and the term in the integral of Eq. (5.20) is
independent of the coordinate z. The integration can thus be performed separately over
the upstream and downstream volumes Vu and Vd to obtain Eq. (3.6).

E (ω) = Vu

[ 1
2ρoc2

o

(
|A+

u (ω)|2 + |A−u (ω)|2
)]

+ Vd

[ 1
2ρoc2

o

(
|A+

d (ω)|2 + |A−d (ω)|2
)]

(3.6)

The spectrum of acoustic energy E(ω) contains information about the eigenfrequencies of
the system, in the form of resonance peaks (Fig. 3.4). A fit is performed on these peaks to
retrieve the complex eigenfrequencies [140, 30], based on the idea that the complex wave
amplitudes A+ and A− in the system are solutions of a damped oscillator equation of the
form:

η̈(t)− 2ω0i η̇(t) + ω2
0r η(t) = F (3.7)

where F = F̂ e−iωt is the harmonic forcing term and η(t) is to be replaced by A+e−iωt

or A−e−iωt. The forcing angular frequency ω is to be distinguished from the unknown
complex angular eigenfrequency ω0 = 2πf0 = ω0r + i ω0i, whose imaginary part ω0i is
the growth rate. Equation (3.7) is valid only for negative values of ω0i, corresponding to
purely damped acoustics, as is the case here. Transposing Eq. (3.7) in the Fourier domain
gives an expression for A+ and A− as a function of ω0r and ω0i, which is combined with
Eq. (3.6) to yield an expression for E(ω):

Etheo(ω) = 1
2π

G

(ω2
0r − ω2)2 + 4ω2

0i ω
2 (3.8)

with G = |F̂ |2 Vup+Vdown
2ρoc2o

. This is the form used to fit E(ω). The three parameters G, ω0r,
ω0i are tuned so that Eq. 3.8 produces the best possible match of the measured spectrum
E(ω). This method is equivalent to but more precise than measuring the width at half-
height of the peaks [141, 30]. The adequation of the fit is assessed by computing the
uncertainty on f0 = (ω0r + iω0i)/(2π) with a 95% confidence interval. This uncertainty is
low when the data is well-fitted (Fig. 3.4a) and increases as soon as the quality of the fit
deteriorates, when the signal is noisy for example (Fig. 3.4b).

Once the eigenfrequencies are estimated, the associated eigenmodes and acoustic fields
can easily be reconstructed using Eq. 3.1 and Eq. 3.2.

Experimental 2-port matrices

The 2-port matrix is reconstructed following [142], with the scattering matrix formalism
(see Tab. 2.1). This requires at least two linearly independent configurations. More
robust results are obtained by using four independent configurations. In this study, this
is achieved by combining the three ducts T1, T2, T3 and switching the outlet impedance
from open to closed (Fig. 3.5). For each configuration, the wave amplitudes are measured
upstream and downstream of the acoustic element of interest with the multi-microphone
technique exposed previously. As explained in Section 2.2.1, an over-determined system
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Figure 3.4: E(ω) spectra for the diaphragm at U = 0.17 m/s, normalized
by the fitted value at ω0. Two modes are displayed with the best fit for f0
indicated in the title, and the uncertainty estimated with a 95% confidence

interval.

(2.3) is defined from the four independent configurations of Fig. 3.5 with the matrix

coefficients S =
(
tu rd
ru td

)
as unknowns, and inverted with a least-square approach.

JUNCTION
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T1

PRESSURE TAP

MREF
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Figure 3.5: Description of the four configurations used in this study. For
example, the second configuration is composed of the 3 ducts while the
acoustic element is located in the junction between ducts 2 and 3 ; the

outlet is open.

Eq. (2.4) provides the scattering matrix coefficients, as well as an estimation of the least-
square error. The second index j runs from 1 to N = 4 and denotes the i-th independent
state. This scattering matrix is easily converted into the mobility matrix required for the
Matrix Boundary Condition.

3.3.2 LES matrices and modes

The 2-port matrices and acoustic eigenmodes can also be determined through LES compu-
tations performed with the AVBP solver, co-developed by CERFACS and IFP-EN [143].
This solver is widely used and has been validated in numerous situations [144, 145, 122, 10,
146, 147, 8], to cite a few. The results will serve to check the experiments in comparison
C1 and to perform comparisons C2-LES (Fig. 3.3). This section presents the methodology
used to obtain the numerical matrices and eigenmodes.
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In order to obtain acoustic matrices and eigenmodes, acoustic forcing must be introduced
in a computation of the domain of interest in which the mean flow is well-established.
These preliminary non acoustically forced computations were done at CERFACS by An-
thony Misdariis. In what follows, only the acoustically forced computations are pre-
sented.

These computations are performed with the numerical scheme TTGC which is third order
accurate in time and space and was specifically designed to properly represent unsteady
compressible flows with or without combustion [148]. The σ-model [149, 150] is used to
model the subgrid scale stress tensor accurately.

The diaphragm and swirler parts are modelled as adiabatic no-slip walls, while the duct
walls are represented with adiabatic slip conditions. The acoustic losses due to shear stress
or thermal diffusion in the main duct are therefore neglected. This is because this effect
is small compared to hydro-acoustic damping in the low frequency range.

Characteristic Navier-Stokes inlet and outlet boundary conditions [151] are used for pulsed
computations. For AMT computations, the inlet and outlet are switched to completely
reflecting boundaries unless stated otherwise, so as to measure the damping rate associated
with the diaphragm or swirler, and not the one due to losses at boundaries.

LES matrices

To compute the 2-port matrix from LES data, two independent harmonic forcing states
are used [152, 142]. In state 1, the acoustic element is excited from the inlet, with a non-
reflective condition prescribed at the outlet. In state 2, the acoustic element is excited
from the outlet, with a non-reflective inlet. This is the only difference with the approach
used in the experiments, where the independent states were obtained by changing the
outlet impedance, while always forcing at the inlet.

The geometry and overview of the mesh are shown in Fig. 3.6 for the diaphragm and
Fig. 3.7 for the swirler. The duct lengths used in the LES do not have to correspond
to the experimental tubes. They were chosen long enough to let acoustic waves become
one dimensional away from the dissipative elements, and short enough to minimize com-
putational times. The swirler vanes are discretized with 18 points along the smallest
dimension, and the diaphragm is meshed with 40 points in the diameter. Both meshes
contain a few million nodes (2.5 million points for the swirler and 1 million points for the
diaphragm).

The pressure is measured at probes equi-distributed along the pipe circumference for sev-
eral axial locations. For the diaphragm, 7 upstream stations and 11 downstream stations
are used. For the swirler, only 4 upstream stations and 5 downstream stations are used
because the hydrodynamic fluctuations created by the swirler extend further than in the
diaphragm case. The wave amplitudes and the scattering matrix are then reconstructed
with the same method as for the experimental data.
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Figure 3.6: Geometry for the pulsed computations of the diaphragm, and
zoom of the mesh near the diaphragm aperture.
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Figure 3.7: Geometry for the pulsed computations of the swirler, and
zoom of the mesh near the swirler.
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LES eigenmodes and damping rates

The experimental data provides references for the real eigenfrequencies and the associated
mode structure. This was obtained by forcing the experiment at hundreds of frequencies
and constructing the E(f) curve of Fig. 3.4, which is not practical in LES. Therefore a
different method is used to obtain the dissipation rates from LES: the Acoustic Mode
Triggering (AMT) approach [153].

The idea of AMT is to superimpose at a given instant an acoustic mode (computed from
a Helmholtz solver, say), to the mean flow fields computed by a non-disturbed LES [153].
The resulting disturbed solution is used to initialize a new LES computation, where the
initial acoustic perturbations are damped by the presence of the diaphragm or swirler.
No forcing is applied after the simulation starts. The acoustic system is simply initially
displaced from equilibrium. As for a damped oscillator, this results in decaying acoustic
oscillations, whose decay rate and frequency are captured by the LES (Fig. 3.9).

The geometries used in the AMT computations are basically the same as those used for
the pulsed computations (Fig. 3.6 and 3.7), but the duct lengths are modified to match
the experimental duct lengths, plus the end corrections. The mesh refinement is the same
as for the pulsed computations. A velocity-imposed, fully reflective boundary condition
is enforced at the inlet. For the outlet, a pressure-imposed characteristic condition with
relaxation towards a target value was tuned to obtain a reflection coefficient with radiation
losses [83] Rrad(ω) = −

1
4 (ka)2−1
1
4 (ka)2+1 (where a is the pipe radius). The formulation of the outlet

boundary condition is an extension of the one described in the work of Selle et al. [144].
With their notation, the incoming wave amplitude L1 is set to L1 = K(P − P∞)−RKL5
and the associated reflection coefficient is (Fig. 3.8):

RLES(ω) = −RK −
1−RK
1− 2iω

K

(3.9)

with K the relaxation coefficient and RK the value of the reflection coefficient when
K → 0. For the diaphragm, K is fixed to ensure no pressure drift, while RK is adjusted
to set |RLES |(ω0) = |Rrad(ω0)| at the desired angular frequency ω0 (Tab. 3.1). For the
swirler, K is fixed to the highest value allowed in the LES code to obtain a fully-reflective
boundary as will be recalled later.

To measure the real frequency and damping rate, Dynamic Mode Decomposition (DMD)
[133] is performed on the pressure and velocity signals measured at upstream and down-
stream probes. DMD is able to isolate the frequency of the excited mode and its decay

Frequency [Hz] Rrad |RLES| arg(RLES) [rad]
77 - 0.9984 1.0063 3.1408
269 - 0.9803 0.9847 3.1413
387 - 0.9596 0.9597 3.1727
604 - 0.9039 0.9029 3.1551
757 - 0.8534 0.8500 3.1438
894 - 0.8012 0.8022 3.1414

Table 3.1: Reflection coefficient RLES effectively measured in the di-
aphragm AMT computations, vs theoretical values with radiation losses

Rrad
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rate (Fig. 3.9). It also provides the amplitude and phase of the acoustic fluctuations for
each frequency. This information could be used directly to reconstruct the eigenmode,
but an additional least-square fit was performed to determine the acoustic quantities as a
sum of plane wave amplitudes, as done for the experiments in Section 3.3.1. The pressure
signals at LES probes are used to construct system (3.3), that is inverted using Eq. (3.4).
This procedure smoothes the acoustic fields and helps separating them from noise or hy-
drodynamic fluctuations (Fig. 3.10).
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Figure 3.9: Typical LES temporal signals and DMD reconstruction for
pressure (left) and axial velocity (right) (swirler mode at f = (284.9 - 13.2i)

Hz and U = 0.34 m/s).
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Figure 3.10: Acoustic mode with a swirler as acoustic element, f = (284.9
- 13.2i) Hz, at U = 0.34 m/s. Fit of a DMD complex pressure field as a

sum of plane waves.

3.4 Setup for standard andMBCHelmoltz computations

Once the experimental (3.3.1) and LES (3.3.2) matrices are measured, they can be used
in the Helmholtz solver with MBC. To use MBC, the setup geometry has to be modified.
As explained in section 2.3, the acoustic element is not meshed anymore. Instead, the
upstream and downstream tubes are cut so as to remove completely the acoustic element.
The matrices constructed in Section 3.3.1 and 3.3.2 are used to represent adequately the
transition between up- and downstream cuts (Fig. 3.11b).

At the test rig ends, the boundary conditions are similar for both swirler and diaphragm
cases (Fig. 3.11b). The inlet and outlet patches are defined respectively as a “u’=0”
boundary condition with an end correction of δin = 1cm and a “p’=0” boundary condition
with an end correction of δout = 2.5cm (see Section 3.1). With k = ω/c being the wave
number, the inlet and outlet reduced impedances p̂/(ρocoû) are then:

Zin = − i

tan(kδin) (3.10)

Zout = i tan(kδout)−
1
4α(ka)2 (3.11)

When comparing the Helmholtz eigenmodes with experiments or LES runs with a partially
reflective outlet (C2-EXP and C2-LES in Fig. 3.3), α is set to 1 and the term −1

4ka
2

accounts for radiation losses [83]. For the diaphragm study, α is therefore fixed to 1. In
the swirler case, Helmholtz solutions are compared only to LES data with a fully reflective
outlet, so that no radiation loss is added in the Helmholtz computation (α = 0).

The mean thermodynamic properties are the same as the experimental ones, given in
Section 3.1.

Additionally, Helmholtz computations on the complete geometry (i.e. with same duct
lengths as the experimental setup and with a discretized diaphragm/swirler, see Fig. 3.11a
for the diaphragm case) are performed for two reasons:

• To get acoustic fluctuations for LES eigenmode runs with the AMT approach,
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Figure 3.11: Boundary conditions for (a) the AVSP complete runs, where
the acoustic element is meshed and wall boundary conditions are applied
and (b) MBC runs, where the acoustic element is replaced by its 2-port

representation.

• To compare the result of a conventional Helmholtz solution (i.e. assuming the
Helmholtz equation holds within the diaphragm and the swirler) with one obtained
thanks to the MBC methodology in comparisons C2-LES and C2-EXP (Fig. 3.3).

The meshes for the complete geometries and MBC geometries are optimized for the
Helmholtz solver and are consequently coarser and more uniform than the LES ones.
All but one meshes contain around 100 000 nodes and 500 000 cells, with a typical cell
size of 3.6 mm. The exception is the complete swirler mesh which contains 300 000 nodes
and 1 500 000 cells necessary to discretize the fine swirler vanes. The typical cell size for
the latter mesh varies from 1 mm in the vanes to 8.2 mm in the pipes.

3.5 Application to a diaphragm

The methodology is first validated on the diaphragm configuration of IMFT (Fig. 3.2a). It
was checked that the chosen boundary conditions provide values of eigenfrequencies close
to the experiment when computing the complete geometry with the Helmholtz solver,
see Tab. 3.2. Taking into account the radiation losses at the outlet only introduces a
small damping rate. For the first mode however, a 10Hz discrepancy is observed. This is
most probably due to acoustic coupling between the test rig and the loudspeaker casing
at low frequencies. It was checked but not shown here that the first eigenfrequency is
better predicted (around 90 Hz) when including the loudspeaker casing in the Helmholtz
geometry. For higher order modes, the coupling between the rig and the loudspeaker
cavity is negligible. In order to simplify the LES and Helmholtz computations, we decided
to remove the loudspeaker casing from all geometries, keeping in mind that this makes
comparison with the first experimental mode unappropriate.

For the diaphragm case, the quality of the results and the subsequent conclusions are the
same for U = 0.17 m/s and U = 0.34 m/s. Therefore, all results shown here are valid
for U = 0.34 m/s if nothing is mentioned. The scattering matrix coefficients acquired
experimentally for the diaphragm of Fig. 3.2a, as well as the values obtained numerically
are plotted on Fig. 3.12. The agreement between experimental, numerical and theoretical



3.5. Application to a diaphragm 57

Experiment Standard Helmholtz
(α = 0)

Standard Helmholtz with
end losses (α = 1)

87.5 78.1 - 0.0i 78.1 - 0.0i
267.2 268.1 - 0.0i 268.1 - 0.8i
372.3 375.4 - 0.0i 375.4 - 1.0i
605.2 604.9 - 0.0i 604.9 - 0.6i
751.4 760.1 - 0.0i 759.8 - 9.7i
898.7 897.0 - 0.0i 896.7 - 0.9i

Table 3.2: Eigenfrequencies (in Hz) for the U = 0 m/s, in the experi-
ments and the AVSP computation of the complete geometry with no matrix
dissipation. The inlet and outlet impedances are given in Eq. (3.10) and
Eq. (3.11) and include the end corrections plus radiation losses if α = 1.

(Howe’s model1 [19]) results is good: the numerical coefficients match almost exactly the
experimental ones, confirming that LES is suitable to compute acoustic matrices.

The S matrix already contains information relevant to dissipation. For example, an acous-
tic flux balance criterion [154] based on the eigenvalues λmin, λmax of the real-valued matrix
I−S†S, with S† the hermitian form (complex conjugate transpose) of S, states that:

• If λmin > 0 and λmax > 0, S dissipates acoustic energy,

• If λmin < 0 and λmax < 0, S produces acoustic energy,

• If λmin < 0 and λmax > 0, S can produce or dissipate acoustic energy. Nothing can
be said a priori. The sign of the acoustic flux balance can change depending on the
inlet acoustic variables, which are not known before connecting the matrix to the
Helmholtz solver.

Fig. 3.13 confirms the dissipative behaviour of experimental and numerical matrices, al-
though numerical matrices seem to dissipate slightly less than experimental matrices. For
reference, the criterion is also computed for Howe’s model2 on Fig. 3.13.

This dissipative behaviour is fairly well captured in the eigenfrequencies computed with
Helmholtz-MBC, compared to the ones measured in the experiment and in the LES
(Fig. 3.14). The exception is the first experimental mode as expected and explained
earlier. The agreement is much better when comparing MBC with LES, since the LES
and Helmholtz solver geometries were the same in this case. Compared to the standard
Helmholtz approach, the introduction of MBC improves the damping rate prediction for
all modes computed. It also provides the correct evolution of the eigenfrequencies with a
flow rate increase, as shown for the first four modes in Figs. 3.15 - 3.16.

To further evaluate the impact of the dissipative diaphragm on the surrounding acoustics,
the structure of the second eigenmode is now compared between experiments, LES and
Helmholtz solver computations. This is done by plotting the modulus and phase of p̂,
normalized at x = −0.58m. Both experiments (Fig. 3.17) and LES (Fig. 3.18) show that

1The matrix associated to Howe’s model is defined as S(ω) = 1
1−ξ(ω)

(
1 −ξ(ω)

−ξ(ω) 1

)
with ξ(ω) =

iωd2

2c0KR
for a plate of size d and Rayleigh conductivity KR.

2The eigenvalues λmin, λmax can be computed analytically for Howe’s model as λmin(ω) = 0 and
λmax(ω) = − 4<[ξ(ω)]

|1−ξ(ω)|2 . The quantity <[ξ(ω)] = − ωd2∆(ω)
4c0a(Γ(ω)2+∆(ω)2) depends on the real-valued functions

Γ(ω) and ∆(ω) defined in [19]. Since ∆(ω) is positive for all ω, λmax(ω) is always positive. According to
Howe’s model, the perforated plate always dissipates acoustic energy.
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Figure 3.12: Diaphragm case - Comparison C1 in Fig. 3.3. Scattering ma-
trix coefficients for U = 0.34 m/s. Experimental coefficients (from IMFT)
are plotted as white circles with error bars and LES data is denoted by
black squares. Howe’s model [19] coefficients are also shown for reference

(dashed lines).

the presence of a mean flow through the diaphragm modifies the pressure jump accross
the orifice, which is a direct indication of acoustic losses. This effect is captured by the
Helmholtz solver with MBC but not by a standard Helmholtz computation (Figs. 3.17 -
3.18). These good results support our initial assumption that at first order, the impact
of mean flow is important only at locations where damping through vortex shedding is
present, and can be neglected elsewhere, so that acoustics are well-represented by the zero
mean flow Helmholtz equation (1.24).
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Figure 3.17: Diaphragm case. Comparison of the second eigenmode ex-
perimental structures at U = 0.34 m/s with the mode structures obtained
from a standard Helmholtz computation and with the MBC approach (C2-

EXP in Fig. 3.3).
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3.6 Application to a helicopter swirler

In the diaphragm configuration, the flow was laminar and fairly simple: the only com-
plexity was the shear layer created at the downstream lips of the diaphragm. Moreover,
the analytical model of Howe [19] was available for comparison. Now, the methodology
is applied to the more challenging swirler element of IMFT (Fig. 3.2b) for which there is
no theoretical formula. Downstream of the swirler, the flow features complex phenomena
such as recirculation zones or Precessing Vortex Cores (PVC). Since the comparison with
the LES (C2-LES in Fig. 3.3) gave the best results for the diaphragm, it is the only com-
parison performed for the swirler. The LES computations were performed for the highest
bulk velocity U = 0.34 m/s in order to maximize the acoustic-hydrodynamic coupling.
Compared to the diaphragm case, the outlet is fully reflective both in the LES and in the
Helmholtz solver. Two modes are studied here: mode A and mode B with frequencies
around 285 Hz and 590 Hz respectively at U = 0.34 m/s (as assessed by LES, Tab. 3.4).
The swirler matrix coefficients were computed at 280 Hz, 290 Hz, 370 Hz and 590 Hz and
are listed in Tab. 3.3, and linear interpolation is used to obtain the effective coefficients
at the Helmholtz solver frequency. With the exception of 370 Hz, which is used later to
assess the error made if the matrix is not measured at the correct frequency, the other
frequencies were chosen close to the frequencies of mode A and mode B.

In Tab. 3.4, the results of the Helmholtz solver are compared to the LES for mode A and
mode B. In terms of damping rates, the MBC methodology captures the correct order of
magnitude, contrary to the standard Helmholtz solver which leads to ωi = 0, as expected.
The relative error on the frequencies, computed as |fHelmholtz−fLES

fLES
| remains around 1% for

both modes. The eigenmode structures are also well retrieved by the MBC approach, as
illustrated in Figs. 3.19-3.20.

In a general case with turbulent complex flow, as is the case with the swirler, it can
be difficult to properly separate acoustic fluctuations from hydrodynamic ones. This
results in uncertainties in the acoustic matrix coefficients. Moreover, the frequencies of
the modes of interest are not always available beforehand. In this case, the matrix can
be measured for a chosen set of frequencies, and linearly interpolation applied to retrieve
the coefficients at the desired frequency, as was done here. This introduces an additional
uncertainty. To assess the effect of these uncertainties on the result of the MBC-Helmholtz
methodology, 50 additional Helmholtz computations are performed for mode A by varying
the coefficients of the scattering matrix as follows. Each coefficient can have 5 different
values: the nominal value, the nominal value plus ∆S , the nominal value minus ∆S , the
nominal value plus j∆S , and the nominal value minus j∆S . The total number of matrix
combinations amounts to 695, among which 50 combinations are sampled randomly. ∆S is
a real number chosen arbitrarily to 0.03, and accounts for the uncertainty on the matrix due

280 Hz 290 Hz 370 Hz 590 Hz
tu 0.189 + 0.002j 0.268 - 0.054j 0.465 + 0.043j 0.043 + 0.117j
rd 0.833 + 0.099j 0.775 + 0.076j 0.568 + 0.203j 0.946 + 0.012j
ru 0.806 + 0.079j 0.712 + 0.094j 0.538 + 0.033j 0.955 + 0.001j
td 0.170 - 0.014j 0.217 + 0.005j 0.392 - 0.079j 0.034 + 0.196j
λmin -0.006 0.016 0.003 -0.038
λmax 0.582 0.741 0.965 0.176

Table 3.3: Swirler case. Scattering matrix coefficients from LES for U =
0.34 m/s and eigenvalues of I− S†S
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Figure 3.19: Swirler case. Structure of mode A at U = 0.34 m/s: Standard
Helmholtz (black circles), Helmholtz solver with MBC (white squares) and

LES results (grey triangles).
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Figure 3.20: Swirler case. Structure of mode B at U = 0.34 m/s: Standard
Helmholtz (black circles), Helmholtz solver with MBC (white squares) and

LES results (grey triangles).

to the measurement method, but also on the frequency at which measurements are taken.
Variations of the order of ∆S on the scattering matrix were observed when interpolating
the matrix between 280 Hz and 290 Hz instead of 280 Hz and 370 Hz (Tab. 3.3).

Figure 3.21 shows that the complex eigenfrequency computed with MBC-Helmholtz is
indeed sensitive to the value of the matrix coefficients. In particular, the variations of the
imaginary part of the frequency can reach up to 3.5 Hz, corresponding to approximately
25% of the nominal value. The eigenmode structure is also greatly impacted (Fig. 3.22).
In Fig. 3.22, the normalisation is different from that used in Fig. 3.19, since fixing p̂ = 1 at
x= −0.58 m would force all modes to collapse in the upstream section. To better see the
changes in both upstream and downstream mode structures, p̂ is fixed to 1 at x = 0, the
matrix location. The great dispersion of mode shapes suggests that the matrices should
be carefully measured to obtain satisfying results with the MBC methodology. In our
experience, the biggest source of error is the frequency of measurement, which should
ideally be chosen as close as possible to the frequency of the mode found by AVSP.
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Mode A Mode B
Standard Helmholtz 317.4 - 0.0i 591.2 - 0.0i
LES 284.9 - 13.2i 589.1 - 3.2i
Helmholtz with LES
matrix 287.5 - 13.7i 597.7 - 1.3i

Relative error 0.9% 1.5%

Table 3.4: Complex frequencies (in Hz) of mode A and mode B with the
swirler at U = 0.34 m/s, from LES, Helmholtz solver with LES matrix and
standard Helmholtz solver. The relative difference between Helmholtz and

LES results is also displayed.
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Figure 3.21: Swirler case, mode A. Frequencies obtained from 50 ad-
ditional Helmholtz computations where the coefficients were "randomly"
varied (see body text). The nominal result is recalled as a white square.

−0.6 −0.4 −0.2 0.0 0.2 0.4
X coordinate [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ab
s(

p̂)

−0.6 −0.4 −0.2 0.0 0.2 0.4
X coordinate [m]

−4

−3

−2

−1

0

1

ar
g(

p̂)

Figure 3.22: Swirler case. Structure of mode A when varying the scat-
tering matrix coefficients (grey curves). The nominal result of Fig. 3.19
is recalled in black. The modified matrix coefficient is indicated for the

outermost curves.



65

Chapter 4

Extending the Matrix Boundary
Condition to industrial
configurations

4.1 Introduction

In Chapter 3, the acoustic behaviour of elements characterized by a strong hydro-acoustic
interaction was successfully captured in the Helmholtz computation of a simple quasi
1D rig, using a Matrix Boundary Condition (MBC) with matrix data measured from the
experiments and the LES. The methodology presented in Chapter 3 is however not flexible
enough to be applied to industrial configurations.

Uo	
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Complex MBC 

surfaces	



Section 4.2 – 4.3	


Adjusting matrices to 

complex MBC 
surfaces	



Section 4.4	


Surface FTF 

compatible with 
MBC	

x 

Figure 4.1: Extensions of the HMBC methodology required for an indus-
trial combustor.

Indeed, compared to the simple case of Chapter 3, the use of HMBC for an industrial
configuration raises a few issues (Fig. 4.1):
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1. Where should the Matrix Boundary Condition be applied ? The simple
geometry of Chapter 3 was essentially 1D. The MBC surfaces could be imposed at
any cross-section far enough from the disturbing element, with the guarantee of plane
acoustics. In a complex geometry such as the one of Fig. 1.18, it is very difficult and
even impossible to define plane surfaces with plane normal acoustics. MBC surfaces
are rather chosen so as to fit into the combustor geometry (Fig. 1.18). Since the
plane wave assumption is not necessarily satisfied anymore, the validity of this type
of surfaces is investigated in Section 4.2.

Upstream matrix patch

Downstream matrix patch

To turbine

0 � �
To compressor

Actual combustor 
geometry	



HMBC geometry	



Figure 4.2: MBC surfaces chosen in this thesis for a complex combustor
geometry

2. For the choice of Fig. 4.2, it is still desirable to obtain the matrices of damping
elements from a clean, 1D plane wave configuration such as the one of Chapter 3.
This reference matrix should however be adjusted to provide the correct result when
applied to the set of surfaces of Fig. 4.2. How can this adjustment be performed
? And does it still provide the correct results ? These two questions are
investigated in Section 4.3.

3. Ultimately, the HMBC methodology will be used to improve the prediction of com-
bustion instabilities. Therefore, it should be compatible with a flame response model.
In AVSP, the Flame Transfer Function is used to relate the unsteady heat release
to the acoustic velocity at a reference point. Ideally, this reference point should be
located in a zone of low turbulence, upstream of but not too far from the flame [78].
In industrial combustors, the flame is sometimes anchored very close to the injector,
and the reference point is consequently chosen within it [29, 155, 147]. This is a
problem if the injector is to be replaced by its equivalent matrix, since all acoustic
information inside the element is lost ! For this reason, an alternative formation of
the FTF was derived in this thesis, with the reference point replaced by a reference
surface, on which MBC is imposed. An additional reason motivating the use of an
FTF with a reference surface is that the acoustic velocity averaged over a surface



4.2. The validity of complex MBC surfaces 67

should be more robust to turbulent fluctuations (i.e. noise for acoustic analysis) than
the velocity measured at a probe. The new surface FTF is explored in Section 4.5.

4.2 The validity of complex MBC surfaces

The first point to check is the validity of the HMBC approach when non-plane, non-
coincident matrix surfaces with a non uniform pressure and velocity are used. This is a
requirement for the matrix surfaces of the injector in the choice of Fig. 4.2. In this thesis,
a distinction is made between:

• Plane surfaces. They refer to surfaces that are not only plane but also characterized
by uniform acoustic quantities.

• Complex surfaces. These surfaces have a 3D geometry with potentially non-uniform
acoustic quantities.

For complex, non coincident matrix surfaces, the pointwise Robin condition derived in
system (2.14), Chapter 2 is not valid anymore. The pointwise pressure, sound speed and
density are replaced by surface averaged values.


∇p̂u · nu = M11

iω

< co,u >
< p̂u > +M12

iω

< co,d >

< ρo,u >

< ρo,d >
< p̂d >

∇p̂d · nd = M22
iω

< co,d >
< p̂d > +M21

iω

< co,u >

< ρo,d >

< ρo,u >
< p̂u >

(4.1)

where < • >= 1
S

∫
S • dS is the average over a surface S. The corresponding matrix could

be measured likewise by inverting a least square system whose coefficients depend on the
surface averaged pressure and velocity.1 This new implementation is called 3D-HMBC
because it is associated with complex 3D surfaces with non uniform acoustic quantities.
By opposition, the previous implementation is now referred to as 1D-HMBC since it is
truly applicable only in 1D geometries. It was checked that on 1D cases, 3D-HMBC and
1D-HMBC computations provide the same results as expected.

To test if the surface averaged implementation of HMBC provides adequate results, it is
applied to the geometry of the swirler in a tube of Chapter 3 (Fig. 4.3, middle), with
a purely acoustic matrix. The swirler matrix is measured every 10 Hz with two forced
computations of the acoustic propagation code AVSP-f [156]. The technique is essentially
the same as the one presented in Chapter 3. An acoustic forcing is imposed, first at the
tube inlet, then at the outlet, while an anechoic boundary condition is set at the other end.
The only difference is that acoustics are propagated in an inviscid zero mean flow fluid so
that the corresponding matrix does not contain losses. It simply mimics the behaviour of
the swirler in a standard Helmholtz computation.

Two matrices are measured (Fig. 4.4) on the complete swirler mesh (Fig. 4.5, top):

• Matrix 1 is measured at plane, coincident surfaces (Fig. 4.3a).

• Matrix 2 is obtained with the pressure and velocity averaged over a cylinder up-
stream, and a disk downstream (Fig. 4.3b).

1An alternative, presented in the next section, consists in obtaining the matrix for a simple plane-wave
matrix and adjust it to the desired set of MBC surfaces. This is explained in details in Section 4.3
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Figure 4.3: Validation of complex MBC surfaces on the swirler in a tube
configuration. Two HMBC computations are performed : one with plane
coincident MBC surfaces (top) and one with complex MBC surfaces (bot-
tom). Both are compared to a reference standard Helmholtz computation

where the complete geometry is discretized.

RUN # Matrix type Geometry
1 None Discretized swirler in a tube.
2 Matrix 1 Geometry truncated at plane coincident surfaces (Fig. 4.3, bottom).
3 Matrix 2 Geometry truncated at complex surfaces (Fig. 4.3, top).
4 None Plain tube.

Table 4.1: Helmholtz computations for the validation of complex MBC
surfaces.

Four Helmholtz computations are performed and compared (Tab. 4.1), with a velocity
imposed inlet and a pressure imposed outlet. Two computations are done with MBC: one
with Matrix 1 and the other with Matrix 2. Two others are performed with the standard
solver on a completely discretized geometry. The corresponding meshes are provided
in Fig. 4.5. Note that the mesh used for the 3D-HMBC computation should have the
same resolution as the one on which the matrix is measured, at least in the vicinity of
the complex MBC surfaces. This is not necessary for the 1D-HMBC run since acoustic
quantities are uniform over the plane MBC surfaces.

The swirler matrix used in both HMBC runs is purely acoustic. Including it in an HMBC
computation should be equivalent to running a standard Helmholtz computation with a
discretized swirler. The two HMBC runs should therefore provide the same results as the
standard Helmholtz computation on the complete geometry. This is indeed the case, both
in terms of eigenfrequencies (Tab. 4.2) and eigenmode structures (Fig. 4.6), even if the
mode structure with the two matrices is different close to the matrix surfaces (Fig. 4.7).
The use of complex MBC surfaces is therefore justified.
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Figure 4.4: Matrix 1 and Matrix 2 coefficients.

RUN 1 RUN2 RUN3 RUN4
58.0 58.8 59.6 93.5
259.6 259.9 259.5 280.6
317.4 317.3 318.6 467.5
591.2 590.6 591.3 654.4

Table 4.2: Eigenfrequencies (in Hz) of the Helmholtz computations of
Tab. 4.1
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Figure 4.5: Overview of the meshes used in the Helmholtz computations
of Tab. 4.1. From top to bottom : runs 1, 2, 3, and 4.
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Figure 4.6: First four eigenmodes for the computations of Tab. 4.1. The
modulus and argument of pressure is plotted as a function of the axial

coordinate.
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Figure 4.7: Modulus of axial acoustic velocity amplitude for the first mode
of run 2 and run 3.
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4.3 Adjusting plane-wave matrices to complex MBC sur-
faces

4.3.1 Principle

Measuring the matrix with dissipation effects is a critical step of the HMBC methodology
because it is the most time consuming (especially if done by LES) and its accuracy deter-
mines the quality of the final result, as the sensitivity analysis of Section 3.6, Chapter 3
showed.

6PX 6PG
LES / Experiments	



TP

Helmholtz solver 	


(complex MBC)	



6DG
6DX

6PX 6PG
TDAcoustic domain	

 Acoustic domain	



TP
Figure 4.8: How can the matrix measured at plane transverse cuts in LES

be used in a Helmholtz computation with complex MBC surfaces ?

If a matrix on complex MBC surfaces is required but only the data for a matrix on plane
coincident surfaces is available, is there a way to use this data instead of computing a
new matrix altogether (Fig. 4.8) ? Concerning the accuracy of the matrix data, it is
also probably better to measure it on plane surfaces in a tube like geometry, rather than
directly on the complex MBC surfaces as done in the previous section. In this section, a
method is presented to adjust matrices, i.e. obtain the matrix at complex MBC surfaces
from the data at plane, coincident surfaces.

6PX 6PG

6DG6DX

TP

TD

TX TG

Figure 4.9: The matrix data measured at surfaces Sm cannot be applied
directly to the surfaces Sa and provide the correct results. For this, the

matrix needs to be adjusted from Sm to Sa.

The basic principle of this adjustment is to apply some compensation matrices Tu and
Td to displace the initial matrix Tm measured at sections Smu and Smd, to the matrix
required for the Helmholtz geometry Ta, applied at sections Sau and Sad (Fig. 4.9). In
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what precedes, indices u and d stand for "upstream" and "downstream" respectively, while
indices m and a stand for "measured" and "applied".

The matrices Tu and Td are defined as follows, using the acoustic variables p̂ and û:

(
p̂

ρocoû

)
Sau

= Tu

(
p̂

ρocoû

)
Smu

(4.2)

(
p̂

ρocoû

)
Sad

= Td

(
p̂

ρocoû

)
Smd

(4.3)

If Tu and Td are known, the transfer matrix Ta can be derived from Tm. If Tm is defined
as

(
p̂

ρocoû

)
Smd

= Tm

(
p̂

ρocoû

)
Smu

(4.4)

Then it is straightforward to show that

(
p̂

ρocoû

)
Sad

= TdTmT −1
u︸ ︷︷ ︸

Ta

(
p̂

ρocoû

)
Sau

(4.5)

Note that the compensations Tu and Td are purely acoustic and should not introduce any
parasite dissipation or amplification. Their only role is to displace the matrix on the
adequate set of surfaces in the Helmholtz solver.

4.3.2 Measuring Tu and Td

The adjustment matrices Tu and Td can be measured numerically with an acoustics prop-
agation solver such as AVSP-f [156]. The principle is the same as the one presented in
Section 2.2.1. Two acoustically forced computations are performed for each matrix, with
a monochromatic excitation at the frequency of interest. The first computation is excited
at the inlet, and an anechoic boundary condition is set at the outlet. The second compu-
tation is excited at the outlet, with an anechoic inlet. The advantage of using AVSP-f for
the determination of Tu and Td is that it uses the same discretization as in AVSP.

The acoustic quantities on Sau and Sad must be measured with some care. For example,
one might be tempted to use the acoustic pressure and acoustic velocity averaged over the
nodes of Sau and Sad. However, the acoustic velocity can be strongly underestimated with
this method, in the case where the MBC patch shares a common edge with a hard wall.
To illustrate this phenomenon, the three setups of Fig. 4.10 are examined. These setups
are composed of two tubes, linked by a plane MBC surface upstream and a complex MBC
surface downstream (a disk for the first two geometries, and a half-sphere for the last one).
All geometries are meshed with two uniform mesh sizes dx1 = 0.0036 m and dx2 = 0.0018
m (this corresponds to approximately 5 and 10 cells per hole diameter respectively).

The identity matrix I is imposed between both MBC surfaces, but the same conclusions
still hold for any other matrix. The idea is to test if I is well retrieved with the surface
averages of pressure and velocity over the downstream MBC patch. On the upstream
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Figure 4.10: Geometries used for the error assessment of MBC surface
averaged quantities. From top to bottom : geometry 1, 2 and 3. MBC

surfaces are represented in red and blue.

patch, pressure and velocity are uniform and their surface average corresponds to the
acoustic quantities effectively seen by the matrix condition. Therefore, any error in the
identity matrix retrieval comes from the measure on the downstream MBC surface. The
matrix effectively retrieved from the surface averages of pressure and velocity is refered to
as Tsurface.

(
< p̂ >d

< ρocoû >d

)
= Tsurface

(
< p̂ >u

< ρocoû >u

)
(4.6)

where < • >u= 1
Su

∫
Su
• dS and < • >d=

1
Sd

∫
Sd

• dS denote the surface average on the
upstream and downstream surface respectively. As Fig. 4.11 shows for geometry 1 with
mesh size dx1, there is indeed a strong error on the transfer matrix linking the surface-
averaged pressure and velocity over the MBC patches. This error involves mainly the
coefficient relating the acoustic velocities (T22). Its value is much lower than the target of
which is unity. This was observed on all geometries for both mesh sizes (Tab. 4.3).

The misprediction of T22 with surface averages is due to the discretization used in AVSP.
As shown in Appendix C, the term ∇ ·

(
1

ρo(x)∇p̂(x)
)
is computed at each node using

the value of pressure at the closest neighbors. Therefore, points in the vicinity of an
edge shared by two different boundary conditions will receive a contribution from the two
boundary conditions. As a consequence, the theoretical velocity discontinuity at an edge
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Figure 4.11: Matrix linking surface averaged value of p̂ and ρocoû on
MBC patches. Geometry 1 with mesh size dx1. (Top: modulus, Bottom:

phase).

shared by a hard wall and another boundary condition with non-zero acoustic velocity is
smoothed out in AVSP and AVSP-f (Fig. 4.12). This is indeed what we observe in the
AVSP-f solution of Fig. 4.13 and it explains why the value of T22 measured only with the
MBC nodes is lower than the target of 1.

u’= 0	

 u’= 0	

u’≠ 0 	



Theory	



AVSP discretization	



Figure 4.12: 1D velocity discontinuity : theory versus AVSP discretiza-
tion.

If the smoothing is assumed to occur over one cell size (as Fig. 4.13 suggests), the velocity
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Geometry Mesh size Theoretical T22 Measured T22 Prediction of measured T22
1 dx1 1.0 0.581 0.550
1 dx2 1.0 0.748 0.710
2 dx1 1.0 0.387 0.398
2 dx2 1.0 0.582 0.579
3 dx1 1.0 0.648 0.712
3 dx2 1.0 0.809 0.833

Table 4.3: Error on T22 in Tsurface. The effectively measured value can be
predicted with Eqs. E.1 and E.2

Figure 4.13: Absolute value of axial velocity at the downstream MBC
surface (black lines) and surrounding wall. Geometry 1 with dx1.

integrated over MBC nodes neglects a surface of the order of Cdx with the notation
of Fig. 4.14. The associated value of coefficient T22 is therefore reduced by a factor
α = 1

1 + Cdx
S

compared to the imposed value. For the simple geometries of Fig. 4.10,

α can be estimated analytically with the expressions of Appendix E. The agreement
with numerical values is good (Tab. 4.3), providing support to the explanation proposed
here.

S
C

G[

Figure 4.14: Real MBC surface S (in dark grey) versus effective MBC
surface, approximately extended by Cdx (in light grey).

It is now clear that Tu and Td cannot be computed numerically with a direct surface average
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Figure 4.15: Measurement method for Tu and Td without error on T22.

on complex MBC patches, because of boundaries mixing. Instead, Tu and Td should be
measured on geometries similar to that of Fig. 4.15. These geometries are composed of
two pipes linked by MBC surfaces. One of the surfaces is plane which results in plane
acoustics in the corresponding pipe. The other is the complex MBC surface of interest.
The principle, illustrated in Fig. 4.15, consists in the following steps:

1. Measure the acoustic quantities p̂u and ûu on the upstream plane MBC patch, either
by performing a plane-wave decomposition with several pressure and velocity probes
in the upstream tube, or directly by using surface averages. The two are equivalent
since this upstream tube is designed to contain purely plane acoustics.

2. Obtain the non-plane acoustic quantities p̂MBC and ûMBC on the downstream com-
plex MBC patch Sad, by imposing for example an identity matrix between both
MBC surfaces (identity is convenient but any matrix would do).

3. Obtain the plane acoustic quantities p̂d and ûd downstream at the LES measurement
plane Smd by measuring acoustic quantities far from the complex MBC surface.

4. Compute the matrix Td relating p̂MBC and ûMBC to p̂d and ûd.

With this technique, the matrix Td can be measured without any error on the value of
T22, as opposed to the method where surface averages on MBC patches are used. As an
example, the value of coefficient T22 for Td is measured on the coarse mesh of geometry
1 with MBC surface averages and the present method (Fig. 4.16). The expected value of
T22 is purely real and corresponds to the section ratio between Smd and Sad, equal to 4.1
for geometry 1 with mesh size dx1.

4.3.3 Application to the IMFT swirler

The adjustment procedure is now tested for the IMFT swirler of Chapter 3. Its matrix
Tm was already measured with LES at plane locations for four frequencies (see Chapter 3,
Tab. 3.3) and needs to be adapted to the 3D-HMBC setup of Fig. 4.3b. The corresponding
mesh is displayed in Fig. 4.5 (third from the top). The adjustment matrices Tu and Td,
provided in Fig. 4.17, are computed on the meshes of Fig. 4.18.
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Figure 4.16: Coefficient T22 for Td measured on geometry 1 with mesh
size dx1, using surface averages (crosses) or an intermediate MBC surface
as presented in the main text (circles). The expected value is recalled in

solid lines.

It was noticed that the results with the adjusted matrix Ta are better if the evolution of
Tu and Td with frequency is sufficiently sampled. If Tu, Td are simple propagation matrices
for example, it is important to perform the ajdustment with a frequency resolution high
enough to maintain the cosine and sine behavior of Tu and Td. For the IMFT swirler, Tu and
Td were measured every 10 Hz between 280 Hz and 600 Hz and the adjustment is performed
at the same frequencies, with linearly interpolated values of Tm. The original and adjusted
matrices are plotted in Fig. 4.19. Ta is then introduced in a 3D-HMBC computation with
complex matrix surfaces (Fig. 4.5, third image from the top) and compared to:

• a 1D-HMBC solution with plane, coincident matrix surfaces. The latter is used as a
reference since it agrees well with the LES modes, as shown in Chapter 3, Section 3.6,

• a 3D-HMBC solution with Tm (without adjustment),

• a standard Helmholtz solution (complete geometry discretized).

Although some accuracy is lost in the adjustment process, the 3D-HMBC compu-
tation with Ta provides a good agreement with the 1D-HMBC results, in terms of
eigenfrequencies (Tab. 4.4) and eigenmodes (Fig. 4.20), and a major improvement
compared to the standard Helmholtz solution and to the 3D-HMBC computation
without adjustment.

Mode 3 Mode 4
Standard Helmholtz 317.4 - 0.0i Hz 591.2 - 0.0i Hz
1D-HMBC with Tm 287.7 - 13.8i Hz 598.2 - 1.3i Hz
3D-HMBC with Tm 267.8 - 12.1 Hz 583.8 - 1.9i Hz
3D-HMBC with Ta 287.7 - 14.9i Hz 597.4 - 0.9i Hz

Table 4.4: Eigenfrequencies of the HMBC computations with Tm and the
adjusted matrix Ta. The solutions of a standard Helmholtz computation

are also recalled
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(a) Mesh for Tu

(b) Mesh for Td

Figure 4.18: Mesh for the measure of Tu (top) and Td (bottom) for the
IMFT swirler (complex MBC in red, plane MBC in blue).
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Figure 4.20: Third and fourth eigenmode structures from HMBC compu-
tations with Tm, Ta and from a standard Helmholtz computation.
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4.4 The case of dilution holes

4.4.1 Analytical derivation of Tu and Td

A specificity of combustion chambers is the existence of numerous dilution holes
which are likely to induce dissipation and are good candidates for the MBC method.
In this case, the MBC surfaces are imposed on the upstream and downstream surfaces
of the hole. If the orifice matrix is measured in a cylindrical rig, then the matrix at
orifice surfaces can be determined from the matrix at plane surfaces thanks to the
adjustment matrices Tu and Td (Fig. 4.21).

6PX 6PG

6DG6DX

/X /G

TP

TD

TX TG

Figure 4.21: Orifice matrix measured at plane surfaces (dashed lines) and
at orifice surfaces (dotted lines).

For this choice, matrices Tu and Td can actually be determined analytically with the
acoustic network analysis of Fig. 4.22. These networks model the propagation of an
acoustic wave from Sm to Sa in three steps:

– First, the acoustic wave propagates in a portion of 1D tube of length Lu or Ld.

– Then it encounters a compact section change. The first effect of the section
change is to multiply the acoustic velocity by the ratio of cross-sections.

– In reality, the section change introduces evanescent higher order modes that
have an impact on the acoustic pressure (even for a zero-mean flow inviscid
fluid). This impact can be modelled as a correction length, also called equivalent
length leq in this manuscript.

In terms of equations, Tu and Td can be expressed as:

Tu =
(

1 ikleq
0 1

)1 0

0 Smu
Sau

( cos(kLu) i sin(kLu)
i sin(kLu) cos(kLu)

)
(4.7)

Td =
(

1 −ikleq
0 1

)1 0

0 Smd
Sad

( cos(kLd) −i sin(kLd)
−i sin(kLd) cos(kLd)

)
(4.8)
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Figure 4.22: 1D acoustic network decomposition of domains (a) between
Smu and Sau, (b) between Smd and Sad

While Smu/Sau and Smd/Sad are geometrical parameters, leq is an acoustic quantity
and in a real configuration with mean flow, it is a function of:

– The orifice radius a.

– The porosity or confinement parameter σ. In the case of a multiperforated
plate, σ is the ratio of perforated surface over total surface. In the case of a
single orifice in a confinement tube, σ is defined as the ratio of the orifice surface
Sa = πa2 over the confinement tube cross-section Sm. The two situations are
similar in that they both curb the flow and the acoustics, in one case because
of the walls, in the other case because of the interaction with the other orifices.

– The bias flow velocity in the orifice Uori.

– The acoustic velocity in the orifice uac.

Because the adjustment procedure is carried out within the framework of linear
acoustics, the dependency of leq with U and uac is dropped. The value of leq can be
determined from analytical models [157] or correlations [158, 159], for given values
of a and σ, but it can also be computed numerically.

If computed numerically, one method is to measure the plane-wave quantities up-
and downstream of the element introducing non plane acoustic fields, in an acousti-
cally forced computation (with AVSP-f for example). In theory, this element should
simply be the section changes upstream and downstream of the orifice. However, the
correction length leq measured this way is not exactly the one seen by the HMBC
computation, because of the absence of corners in the MBC geometry (the orifice
tube is removed from the geometry in Fig. 4.21). Therefore, leq is rather measured
on the configuration of Fig. 4.23.
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Figure 4.23: Measurement of leq for the adjustment procedure of orifices.

Once the plane wave amplitudes are obtained, they are combined to reconstruct the
fictive plane-wave pressures and velocity (p̂u, ûu) and (p̂d, ûd at x = 0− and x = 0+

in Fig. 4.23. There is a pressure discontinuity at x = 0 and the pressure jump is
related to ûu by the correction length:

p̂d − p̂u
ρocoûu

= ikleq (4.9)

The value of leq can then be retrieved by measuring the quantity p̂d − p̂u
ρocoûu

for several
frequencies and fitting it with a linear function. The correlation coefficient between
the numerical data and a linear fit is always excellent (> 0.99) in the AVSP-f com-
putations of this work.

Remark

The quantities leq and Sm/Sa must be treated carefully because they are mesh de-
pendent. The dependency of Sm/Sa is easy to understand since the mesh used in
the Helmholtz computation is only an approximation of the geometry of interest.
For example, the surface of a disk of radius a, discretized with a uniform mesh size
of dx is slightly smaller than πa2. It can be approximated by a regular polygon of
side length dx, inscribed in a circle of radius a, with a surface S of:

S(a, η) = πa2

√
1−

(1
2η
)2

1
2η

sin−1
(1

2η
) (4.10)
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Coarse Fine
Area Sm [m2] 5.27561·10−3 5.27544·10−3

Area Sa [m2] 2.47979·10−4 2.54303·10−4

Orifice radius a =
√
Sa/π [mm] 8.88 9.00

Section change Sm/Sa 21.274 20.745
Mesh resolution η = dx/a 0.4 0.05

Table 4.5: Properties of the meshes used for the numerical computation
of Tu and Td.

with η = dx

a
. This expression can be used to compute Smu/Sau and Smd/Sad for

circular orifices in cylindrical tubes. For general geometries, Sm/Sa can simply be
measured directly on the mesh. This is the method used here, and Eq. (4.10) is
only used to illustrate the dependency of the ratios Smu/Sau, Smd/Sad on the mesh
resolution η.

The quantity leq is also sensitive to the mesh size, since it strongly depends on the
discretization of the locally non-plane acoustic fields at the section change. This
dependency has been observed by Komkin et al. [160] but is rarely accounted for
in the literature. However, in the Helmholtz computations of industrial geometries,
the mesh size at dilution holes is often quite important and this effect needs to be
assessed. For this purpose, leq was determined numerically for different values of σ
and η, with the AVSP-f solver. From this database, a correlation of leq(σ, η) is then
proposed in Appendix F.

4.4.2 Comparison of numerical and analytical values of Tu and Td

The matrices Tu and Td are now computed numerically with AVSP-f for the orifice
geometry of Chapter 3, for Lu → 0 and Ld → 02. Since the cross-section of the
outer tube is constant in this case, Tu and Td are complex conjugates and can be
determined on the same configuration. The section ratios Smu/Sau and Smd/Sad are
identical and noted Sm/Sa in the following.

The methodology of Section 4.3.2 is used, on a coarse and a fine mesh (Fig. 4.24).
The characteristics of the meshes are provided in Tab. 4.5. The numerical values are
compared to the analytical ones with Sm/Sa from Tab. 4.5 and leq obtained with
Kang’s correlation [159] (see Appendix F) with again the parameters of Tab. 4.5.
The comparison for T −1

d is plotted in Fig. 4.25 and Fig. 4.26. The advantage of
plotting T −1

d over Td directly is that the values of leq and Sm/Sa can be visualized
directly as the slope of T12 and the value of T22 respectively.

The agreement between the analytical and numerical values of T −1
d is good on both

meshes. Very small errors can be observed on coefficients T11 and T21, and the value
of T22 is an excellent match of the section ratio Sa/Sm. The correlation of Kang et
al. predicts the slope of coefficient T12 quite well, although it gives a larger value
than the numerical one for the coarse mesh, and a smaller value for the fine mesh.
The variation of the slope of T12 with the mesh size was expected since it is related
to leq.

2These matrices are actually measured at transverse sections far from the orifice (Lu > 0 and Ld > 0),
and reconstructed at Lu = Ld = 0 with 1D propagation matrices.
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Figure 4.24: Overview of the meshes for the numerical computation of
Tu and Td for the IMFT orifice (top: coarse, botom: fine). MBC surfaces

linked by an identity matrix are displayed in red and blue.

The numerical values of Td and Tu (complex conjugate of Td) are used to adjust the
LES matrix of the orifice of Chapter 3. The adjusted matrix is plugged in a 3D-
HMBC computation on a coarse and a fine mesh with the same characteristics as the
ones of Fig. 4.24. This computation, refered to as R1, is compared to the reference
1D-HMBC solution of Chapter 3 (R0) (Tab. 4.6). The agreement between R0 and
R1 is good on both meshes, in terms of eigenfrequencies (Fig. 4.27) and eigenmode
structure (the poorest agreement is obtained for mode 1, displayed in Fig. 4.28).
Additionally, the result of a 3D-HMBC computation without adjustment (R2) is
also provided for the coarse mesh. As Fig. 4.27 and Fig. 4.28 show, performing
the adequate matrix adjustment substantially improves the results of the 3D-HMBC
computation.
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Figure 4.25: Numerical and analytical values of T −1
d on coarse mesh

It was checked, but not shown here that the small errors on T11, T21 and T22 have
no impact on the frequencies and modes of a 3D-HMBC computation. Setting these
coefficients to respectively 1, 0 and Sa/Sm (measured on the 3D-HMBC mesh) for
T −1
d instead of using the numerical values does not change the Helmholtz solution.

The impact of coefficient T12 on the 3D-HMBC computation is now examined more
closely, because the correction length leq can be obtained in many different ways.
In addition to the numerical value of leq, four models/correlations are used. The
3D-HMBC computations associated to each leq model are listed in Tab. 4.6.

1. The model of Rayleigh [157]. It is valid for an orifice in an infinite plate of zero
thickness.

2. The correlation of Kang et al. [159] valid for a section change of ratio σ.

3. The correlation of Bellucci et al. [158]. It is similar to the correlation of Kang
but with slightly different coefficients, and depends weakly on the frequency
through the Helmholtz number ka.
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Figure 4.26: Numerical and analytical values of T −1
d on fine mesh

4. The η-correlation proposed in Appendix F, Eq. (F.5). It depends on σ and on
η = dx/R.

The value of leq as a function of the Helmholtz number and the confinement σ =
Sa/Sm is plotted in Fig. 4.29. The model of Rayleigh is valid only for σ = 0 and
its value is recalled in dashed lines in Fig. 4.29b. The value of σ for the orifice
of Chapter 3 is also recalled as a vertical grey line. It is interesting to note that
the η−correlation decreases linearly with

√
σ with a slope similar to the one of the

correlation of Kang et al., but different from the one of Bellucci et al.

The reference result R0 is compared to R3, R4, R5 and R6, on the fine and the
coarse meshes. On the fine mesh, all leq models provide acceptable estimations of the
eigenfrequencies (Fig. 4.30b) and fairly similar mode structures at low frequencies
(such as mode 3 in Fig. 4.32). However, there is more variability for modes at
higher frequencies and only our correlation is able to capture the correct structure
(Fig. 4.32).

On the coarse mesh, all models except the η-correlation overpredict the damping rate
for mode 3 (Fig. 4.30a). The worst results are obtained with the model of Rayleigh
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Figure 4.27: Eigenfrequencies of a 3D-HMBC computation of the orifice
of Chapter 3 with numerical Tu and Td (black triangles). The frequencies

found with a 1D-HMBC computation are recalled as black crosses.
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Figure 4.28: Influence of the model for leq on the eigenfrequencies of the
3D-HMBC computation (see Tab. 4.6).

(R5) as expected, since it should work only for orifices in an infinite plate of zero
thickness. Concerning the eigenmode structures, the observations on the fine mesh
also apply here (Fig. 4.31).

This comparison shows how important it is to have a good estimation of leq when
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Figure 4.29: Correction length leq from various models.

Run HMBC type Model for leq
R0 1D-HMBC -
R1 3D-HMBC Numerical
R2 3D-HMBC -
R3 3D-HMBC Kang et al. [159]
R4 3D-HMBC Bellucci et al. [158]
R5 3D-HMBC Rayleigh [157]
R6 3D-HMBC η-correlation (F.5)

Table 4.6: List of HMBC computations with different values of leq.

Tu and Td in our tube-like geometry, especially on coarser meshes. On an industrial
configuration however, the impact of leq will probably be less important. Indeed, it
modifies the acoustics in a direction normal to the dilution holes, and should not
influence much the azimuthal modes we are most of the time interested in.
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Figure 4.30: Influence of the model for leq on the eigenfrequencies of the
3D-HMBC computation (see Tab. 4.6).

To summarize, Tu and Td can be determined analytically for orifices, in the case
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Figure 4.31: Third and fifth mode for the 3D-HMBC computations on
the coarse mesh (see Tab. 4.6).
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Figure 4.32: Third and fifth mode for the 3D-HMBC computations on
the fine mesh (see Tab. 4.6).

where MBC is imposed at the orifice surfaces. This analytical expression involves
two key quantities:

– the area ratio Sm/Sa between the cross-section of the measurement tube and
the section of the orifice

– the correction length leq
The area ratio Sm/Sa to consider is the one of the discretized mesh and can be
slightly different from the theoretical one if the mesh is coarse. Similarly, the cor-
rection length leq is also mesh dependent and taking into account this dependency
greatly improves the accuracy of the 3D-HMBC computations. The correlation of
Appendix F provides an easy way to estimate leq correctly as a function of the mesh
size and the confinement σ.
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4.4.3 Towards an intrinsic formulation of the dilution hole

Our choice of matrix surfaces for an orifice is unique and depends only on the orifice
geometry. A legitimate question is therefore to check if an intrinsic matrix can be
defined for an orifice. This matrix would depend only on the orifice properties :
radius and bias flow velocity. The question is not only of theoretical interest. For an
industrial combustor, it is quite difficult to define the confinement parameter σ of a
dilution hole, as illustrated in Fig. 4.33. The existence of an intrinsic matrix would
make it possible to apply the HMBC procedure without worrying about σ.

Figure 4.33: Outer casing of a real annular combustor (courtesy of Safran
Helicopter Engines) showing the difficulty to define the confinement of a

dilution hole in a real geometry.

To investigate this problem, the semi-analytical model of Bellucci for an orifice of
radius a in a tube of cross-section S is used [158]. This model relies on Howe’s
analytical expression of the Rayleigh conductivity for the resistance of the orifice in
the presence of a bias flow velocity [19], but uses empirical correlations to obtain the
reactance. The transfer matrix associated to both Howe’s and Bellucci’s model are
provided in Appendix D. For the reactance, Bellucci et al. define a new correction
length noted ` that differs from the previously defined leq on two aspects:

– It takes into account the presence of a non-zero bias flow, i.e. Uori 6= 0.

– Contrary to leq, ` is not a numerical adjustment parameter but has a true
physical meaning. It should come either from an analytical model or from
a well-resolved CFD computation. The key word here is well-resolved, i.e.
η = dx/a� 1.

The expression of ` proposed by Bellucci et al. is recalled in Appendix D. However,
it was shown in Section 4.4.2 that the value of ` for St←∞ is not the one observed
in our Helmholtz computations. Therefore, the model of Bellucci et al. is modified
to include the η-correlation. The expressions of φ(He) and χ(σ) in Eq. (D.10)
and (D.11) are replaced by:

φ(He) = 0.875087a
(

1 + (0.77He)2

1 + 0.77He

)−1

(4.11)

χ(σ, η) = 1− 1.239825σ − 0.240636η = 1−Aσ −Bη (4.12)
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The nonlinear behaviour of the orifice is neglected so that θ = 1 in Eq. D.13. The
modified model of Bellucci provides a good agreement with LES matrix measure-
ments (see Appendix D). In particular, the impact of confinement on ξ is correctly
retrieved when increasing the section of the outer tube.

The adjustment matrices Tu and Td defined in equations (4.7) and (4.8) are applied
to the analytical orifice matrix of (D.2) to obtain its value at the orifice surfaces,
with the correlation of Appendix F. In order to simplify the problem, it was assumed
that σ is independent of the mesh.3 The resulting matrix Ta is:

Ta =
(

1 Ra + iXa

0 1

)
(4.13)

with
Ra = πa2

S
R = <

( iωπa2

coKR

)
, (4.14)

and
Xa = k(h+ 2(`− leq)). (4.15)

The expressions of Ra and Xa are compared with numerical and experimental ma-
trices of the orifice of Chapter 3, characterized by a = 0.009m and Uori = 7.1m/s, in
two confinement tubes of radius 0.041 m and 0.082 m. These matrices were adjusted
with a correction length determined from Eq. (F.5) with η = 0 and the section ratios
σ = 0.048 (for an outer radius of 0.041 m) and σ = 0.012 (for an outer radius of 0.082
m). Fig. 4.34 show that the resistance Ra does not vary much with σ as predicted
by Eq. (4.14). Surprisingly, the reactance Xa is also little modified by σ, whereas
Eq. 4.15 predicts a larger difference. For now, we don’t have any explanation for
this and will simply note that Eq. (4.14) and (4.15) provide a fair approximation of
the LES and experiments for a first analysis.

For Ta to be intrinsic, its dependency with the outer tube cross-section S should be
removed. As already said, this is indeed the case for the resistance Ra, but not for
the reactance Xa according to Eq. (4.15) because of the term `− leq. This difference
can be expressed as:

`− leq = φ(He)[χ(σ, ηfine)ψ(St)− χ(σ, ηcoarse)] (4.16)
= φ(He)[(1−Aσ)(ψ(St)− 1)−B(ηfineψ(St)− ηcoarse)] (4.17)

where ηfine is the orifice resolution in the setup where the matrix is measured (for
example the LES mesh) and ηcoarse is the orifice resolution in the Helmholtz com-
putation and is a priori bigger than ηfine. Here we assume that the matrix data
perfectly captures the acoustic behaviour of the orifice so that ηfine = 0 and ηcoarse
can simply be noted η. This simplifies Eq. 4.17 without changing much the conclu-
sions of this section.

As Eq. (4.17) shows, ` − leq is independent of σ if ψ(St) = 1 i.e. St � 1 and
M � 1. Unfortunately, Strouhal numbers for dilution holes in industrial combustors

3In practice, the error associated with this assumption is small for reasonably fine meshes. For example,
if the outer tube cross-section is perfectly discretized (η = 0), but the mesh resolution at the orifice is of
η = 0.4, the error on σ, estimated with Eq. (4.10), is of 3% only.
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Figure 4.34: Comparison of Ra and Xa with LES and experiments, for
σ = 0.048 and σ = 0.012.

are rather close to 1, leading to a non zero value of ` − leq. This is clearly visible
in Fig. 4.35, where the difference `− leq is plotted against the Strouhal number for
a typical dilution hole of radius a = 0.005 m, bias flow velocity Uori = 50 m/s, and
speed of sound c = 385 m/s for different values of σ and η. Fig. 4.36 shows the
associated variation of Ra and Xa.
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Figure 4.35: ` − leq against Strouhal number, for η = 0.0, 0.4, 1.0 and
σ = 0.0, 0.0625, 0.2.

In order to test the effect of σ on the 3D-HMBC solution of an orifice, the geometry
of Fig. 4.37 is examined. This geometry is characterized by a value of σo = 0.0625,
and η = 0.4. The value of σ is an estimation of the maximum confinement of
a dilution hole in a combustion chamber, obtained by considering the minimum
distance between two dilution holes in an industrial geometry. On this configuration,
four HMBC runs are performed:
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Figure 4.36: Ra and Xa against Strouhal number, for η = 0.0, 0.4, 1.0 and
σ = 0.0, 0.0625, 0.2.

– A reference 1D-HMBC computation with σ = 0.0625.

– A 3D-HMBC computation with σ = 0.0625 and η = 0.4. This computation
should reproduce perfectly the 1D-HMBC solutions.

– A 3D-HMBC computation with σ = 0.0 and η = 0.4.

– A 3D-HMBC computation with σ = 0.2 and η = 0.4.

The first four modes are computed for each setup. The eigenfrequencies (Fig. 4.38)
display large negative imaginary parts (partly due to the high orifice velocity). As
expected, the 3D-HMBC result with σ = 0.0625 is closer to the reference 1D-HMBC
solution than the 3D-HMBC result with σ = 0.0. However, even for the fourth
mode, the relative error on the frequency when using σ = 0.0 is only of 1%. This
observation, added to the fact the the eigenmode structures of the 3D-HMBC com-
putations are similar for σ = 0.0, 0.2 and 0.0625 suggests that a rough estimation of
σ is suitable for a first order estimation of the eigenmodes and eigenfrequencies. For
industrial applications, σ can therefore be set to 0 for all dilution holes, in a first
step, then varied to check the sensitivity of the Helmholtz solution to this parameter.

Of course, the result would be more accurate if the real interaction between the
dilution hole and its surrounding elements (other holes or walls) was accounted for,
but this interaction is not trivial. Moreover, little has been done in the literature
to the author’s knowledge. A first track would be the paper of [161] but it is only
valid for an inviscid fluid in the absence of mean flow. The topic should be further
investigated in future works if more precise 3D-HMBC computations are required.
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(a) Geometry

(b) Mesh preview

Figure 4.37: Orifice geometry on which the effect of σ on the HMBC
solution is assessed. The 3D-HMBC surface is displayed in red.
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Figure 4.38: Eigenfrequencies of the HMBC computations with Bellucci
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Figure 4.39: Eigenmodes of the HMBC computation with the Bellucci
model.
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4.5 An FTF formulation based on a reference surface

4.5.1 Principle and implementation in the Helmholtz solver

xref

nref

T̂ = Q exp(LȦĲ)û(xref ) · nref

(a) Point-based FTF

6UHIn(x)

T̂ = Q exp(LȦĲ)

�
6UHI û(x) · n(x) G6

6UHI

0%& 0%&

(b) Surface-based FTF

Figure 4.40: Reference point vs reference surface in the FTF definition.

As explained in Section 4.1, replacing the swirler by its equivalent matrix in the
Helmholtz computation can be a problem for the Flame Transfer Function if the
reference point is located inside the swirler. For this purpose, a surface based FTF
is developed in this thesis. The principle is very simple: a reference surface replaces
the reference point (Fig. 4.40). In order to obtain the heat release fluctuations,
Eq. (C.1) is replaced by:

q̂(x) = nlocal(x, ω)eiωτlocal(x,ω)

∫
Sref û(x) · n(x)dS

Sref
(4.18)

with the notation of Fig. 4.40. In the Helmholtz solver AVSP, this surface based
FTF was implemented, only for boundary surfaces for now (this is enough to use
it with Matrix Boundary Conditions). The reference velocity is simply obtained by
looping over all nodes of the reference surface, performing the dot product of the
acoustic velocity with the surface normal, then summing this quantity and dividing
it by the total surface.

Remarks

– The surface dS in the implementation of Eq. (4.18) is the nodal surface.

– The surface FTF was implemented within the parallel computing framework of
AVSP.

4.5.2 Validation of the implementation on single flame configura-
tion

The implementation of the surface FTF in the AVSP solver is tested for a Rijke
tube configuration: a 1D tube of constant temperature To = 300 K, starting at
xo = −0.198 m and ending at xf = 0.409 m with an active flame located between
x1 = 0.115 m and x2 = 0.225m. The reference geometry and a mesh overview are
depicted in Fig. 4.41. For the flame, a local interaction index of nlocal = 2×107 J/m4

and a time delay of τ = 0.2 ms were chosen arbitrarily. The reference point is chosen
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Figure 4.41: Reference setup of the Rijke tube (top: mesh, bottom: flame
zone in grey with reference point and reference vector).

at xref = 0.102 m, at a small distance upstream of the flame. The pressure is imposed
at the outlet and the velocity at the inlet. The eigenfrequencies and eigenmodes of
this configuration can be obtained very easily with the standard AVSP solver with
a point based FTF (Tab. 4.7).
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Figure 4.42: MBC setup of the Rijke tube (top: mesh, bottom: flame
zone in grey with reference surface visualized with surface normals).

A second setup of the same Rijke tube, with Matrix Boundary Conditions, is pre-
sented in Fig. 4.42. The 1D tube was cut in half and a portion of length l = 0.0076
m was removed from the geometry, defining two plane MBC surfaces linked by a
propagation matrix of length l. The upstream plane is located at xref = 0.102 m,
just like the reference point in the reference geometry. This surface is used to define
a surface based FTF for the HMBC computation. The time delay is kept identical.
Because only plane acoustics are present in the reference geometry and in the MBC
geometry, the HMBC solution should be identical to the standard Helmholtz one.
This is indeed the case, both in terms of eigenfrequencies (Tab. 4.7), and eigenmodes
(Fig. 4.43). Both point-based and surface-based FTF computations are performed
with 24 processors.
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Mode 1 Mode 3
Point based FTF 137.1 - 3.0i 779.7 - 13.4i
Surface based FTF 137.2 - 3.0i 779.9 - 13.2i

Table 4.7: Eigenfrequencies of the Rijke tube with a point-based FTF
(reference geometry) and surface-based FTF (MBC geometry).
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Figure 4.43: Eigenmodes of the Rijke tube with point-based FTF and
surface-based FTF

4.5.3 Validation of the implementation on a multi-flame configura-
tion

The code is now verified on a simple annular geometry, composed of two cylindrical
tori connected by four small cylinders (Fig. 4.44). This configuration, studied in
[64] is a simple representation of an annular combustor composed of a plenum and
a chamber connected by burners, refered to as PBC (Plenum Burners Chamber).
Simplified mean flow fields are considered, with hot gases in the chamber and colder
ones in the plenum and burners. A thin and plane flame zone with constant n and
τ parameters is located between x = −0.03 and x = 0 (Fig. 4.45). The mean flow
field, thermodynamic and flame parameters are listed in Tab. 4.8, as well as the
dimensions of the geometry.

As for the Rijke tube, two configurations are compared: 1) the full configuration
with a traditional reference point, and 2) a truncated geometry with a pair of MBC
surfaces whose upstream patch also serves as a reference for the FTF (Fig. 4.45). The
average acoustic quantities on the two MBC surfaces are linked by a simple prop-
agation matrix over a distance δx = 0.01, corresponding to the portion of burner
removed from the full geometry. The length of the removed portion is arbitrary and
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Figure 4.44: Annular PBC geometry with four burners.
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Figure 4.45: Transverse representation of the PBC configuration with
reference point (left) and reference surface (right).
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Dimensions
Chamber/Plenum inner radius 1.9 m
Chamber/Plenum outer radius 2.3 m

Chamber/Plenum length 1.5 m
Burner radius 0.0975 m
Burner length 0.6 m

Mean flow fields
Average temperature for x ≤ 0.0 m 700 K
Average temperature for x ≥ 0.0 m 1800 K

Average pressure 20 bars
Heat capacity ratio 2.7

Flame parameters
Flame location -0.03 m ≤ x ≤ 0.0m

Global interaction index 762 353
Time delay 11.07 ms

Reference point/surface x= −0.05m

Table 4.8: Dimensions, mean flow fields and flame parameters for the 4
burners PBC configuration.

it was chosen to make it as small as possible in order to minimize the differences
between reference point / surface geometries. Zero acoustic velocity boundary con-
ditions are imposed on all walls and at the inlet of the plenum. The pressure is set
to zero at the outlet4.

Four reference points and four reference surfaces are defined, one for each burner.
As an example, one quarter of configuration 1 and of configuration 2 are shown in
Fig. 4.46. The reference point in configuration 1 is located in the middle of the
burner, at the same axial coordinate x as the reference surface in configuration 2.
One mode is examined in this section : the first azimuthal mode of the plenum,
refered to as mode P1. The conclusions can however be generalized to the rest of
the modes.

Figure 4.46: One sector of configuration 1 (left) and configuration 2
(right). The reference point / surface is highlighted in red.

In the absence of a flame, mode P1 has a frequency of 58.8 Hz that is correctly re-
trieved with configuration 1 and 2. The mode structure is almost identical (Fig. 4.47),

4Note that this differs from the work of [64] where a zero-velocity outlet is imposed.
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but the amplitude of pressure fluctuations are lower in the plenum for configuration
2.

Figure 4.47: Structure of mode P1 with no FTF (top: configuration
1, bottom: configuration 2). The color field and lines correspond to

|p̂| cos[arg(p̂)].

When adding the flame, the frequency of P1 for configuration 1 and 2 is provided
in Tab. 4.9. As Tab. 4.9 shows, the evolution of the real and imaginary parts with
configuration 2 matches quite well the result of configuration 1. However, as in
the case without flame, the mode structure differs (Fig. 4.49), and exhibits a lower
acoustic pressure in the plenum in configuration 2 than in configuration 1.

This is due to the fact that the acoustics of the burners are different in configuration
1 and 2, thus modifying the reference velocity, the unsteady heat release and ulti-
mately the eigenfrequencies. Indeed, the acoustic velocity is not perfectly plane in
configuration 1, but is forced to adopt a plane behavior in configuration 2 because
of the MBC boundaries.

To illustrate this effect, the modulus of axial and transverse acoustic velocity are
plotted along the axis of one burner for the case with flame in Fig. 4.48. The
transverse velocities are completely removed upstream of the reference surface (at
x= −0.05m) in configuration 2, while they progressively go to zero in configuration
1. The axial acoustic velocity at x = −0.05 m that directly rules the unsteady heat
release is also impacted and this explains the difference in the imaginary part of the
frequency. Overall these modifications of the burner acoustics lead to different mode
structures, as seen in Fig. 4.47 and Fig. 4.49.
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Despite the small differences in mode structure and frequency, the main objective
of this test case, which was to prove the operability of the surface FTF code for
multi-burners combustors, is satisfied.

Real part Imaginary part
Configuration 1 58.3 Hz 1.6 Hz
Configuration 2 58.9 Hz 1.7 Hz

Relative difference 1% 6 %

Table 4.9: Complex eigenfrequencies for the first azimuthal mode of the
chamber with FTF. The relative difference is normalized using the values

of configuration 1.
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Figure 4.48: Modulus of axial and transverse velocity along a burner
centerline, close to the reference location (red vertical line) for configuration

1 (solid lines) and configuration 2 (dotted lines).
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Figure 4.49: Structure of mode P1 with point-wise FTF (top) and surface
FTF (bottom). The color field and lines correspond to |p̂| cos[arg(p̂)].
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Chapter 5

Application of the MBC
methodology to an industrial
combustor

There are strong presumptions that neglecting the complex flow-acoustic interactions
when using a Helmholtz solver at zero Mach number might lead to inaccuracies in
terms of acoustic mode structure and frequencies. As explained in Chapter 1, this
mechanism should be important for industrial combustors where the mean flow can
interact with the acoustics at many places : perforated plates, dilution holes or
swirled injector. Up to now, the effects of this interaction have never been assessed
in a realistic turbine combustor.

The objective of the present chapter is therefore to evaluate the impact of complex
flow-acoustic features in an industrial combustor with the extended Helmholtz MBC
methodology presented in Chapter 4. Unfortunately, the amount of experimental
or numerical data on the combustor of interest is very limited so the results of the
3D-HMBC methodology on this configuration will need validation in the future.

This chapter is organized as follows. It starts in Section 5.1 with a quick description
of the combustor which was chosen, and explains what parts of it will be modeled
with the matrix approach and how. From then on, 3D-HMBC computations are
performed by adding progressively the perforated plates (Section 5.3), dilution holes
(Section 5.4), swirled injectors (Section 5.5) and finally surface-based Flame Transfer
Functions (Section 5.6). Finally, an energy balance analysis is performed in order to
better understand the contribution of complex flow elements (Section 5.7).

5.1 Description of the configuration of interest

5.1.1 Geometry

The case considered in this study is an annular combustor developed by the SAFRAN
group for aero-engine applications (Fig. 5.1). The combustor is composed of X
identical sectors1, with X a confidential number. The design is quite typical of
SAFRAN combustors (Fig. 5.2). The air flows from the compressor and is slowed
down at the inlet of the combustor by a diffuser. Inside the combustor, the air
separates into two streams. The primary air flow is mixed to kerosene and injected

1This is not exact. In fact, igniters are placed on some sectors, but not all, thus breaking the sector
periodicity. These igniters are neglected here.
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thanks to a swirler into the flame tube, where combustion takes place. The exhaust
gas then go through a high pressure distributor and proceed to the high pressure
turbine stages. In the LES simulations performed by SAFRAN, the high pressure
distributor at the chamber outlet is modelled as a simple converging nozzle (Fig. 5.2).
The combustion zone is encased by liners, where secondary air at the temperature of
the combustor inlet is injected through perforated plates and dilution holes to cool
the walls and control the size of the flame.

Figure 5.1: Annular combustor of interest. Front (left), side (middle) and
rear (right) views.

Figure 5.2: Design of the combustor of interest. The high-pressure dis-
tributor is replaced by a converging nozzle. For confidentiality reasons, this

image is rescaled and some geometrical details are hidden.

5.1.2 Mode of interest

Two main instabilities were observed experimentally on the SAFRAN combustor,
both with frequencies around 300 Hz. By measuring the phase of the pressure fluctu-
ations for different azimuthal angles, it was determined that one mode is longitudinal
while the other one is azimuthal.
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On this combustor, Large Eddy Simulations of the complete annular geometry are
also available and exhibit the same two instabilities, with again frequencies close to
300 Hz. While the nature of the longitudinal mode is not very clear and could be
related to the conversion of entropy into acoustics in the high-pressure turbine stage,
the azimuthal mode is a very classic acoustic mode and the mode of interest in this
study.

In azimuthal instabilities, it has been shown in previous studies [10] that the main
mechanism for heat release fluctuations is often associated to longitudinal velocity
fluctuations through the fluctuations of mass flow rate. The transverse fluctuations
of the flame, although impressive-looking have an overall small contribution to the
unsteady heat release.

In order to minimize the CPU cost, the flame dynamics are therefore examined in an
LES of a single sector of the combustor, excited by the longitudinal instability. This
instability triggers itself after the flow is established in the domain, and is visible in
the Fourier spectra of the heat release and velocity signals (Fig. 5.3).
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Figure 5.3: Top: Time samples of the global heat release (black) and
velocity in the injector (grey) from a mono-sector reactive LES. Both sig-
nals are normalized by their time average. Bottom: FFT amplitudes of
the normalized heat release (black) and velocity (grey). The amplitude

corresponding to 0 Hz was removed to improve clarity.

5.2 Helmholtz computations

The first azimuthal mode can be retrieved with a standard Helmholtz representation
where the interaction of dilution holes and swirler with the mean flow is neglected
and unsteady heat release is modelled with a point-based Flame Transfer Function
(Fig. 5.4a). The configuration is truncated downstream at M ≈ 0.3. In a first
configuration, the complete geometry is represented and fixed-velocity boundary
conditions are set on all patches. This very simplified representation is often used
in industry, in order to get a first idea of the combustor acoustics.
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This simplified representation will be compared with one where the dilution holes
and swirler are replaced by their equivalent matrix and perforated plates are mod-
eled with a homogeneous dissipative boundary (Fig. 5.4b). The matrix data for
the dilution holes is obtained from models, while it is extracted from LES compu-
tations for the swirler. In the latter case, the element of interest is isolated in a
tube configuration, with approximately the same confinement as in the combustion
chamber, with non reactive air flowing at the same mass flow rate. The non reactive
assumption is strong but it greatly simplifies the problem.

(a) Standard

(b) 3D-HMBC. The swirler and dilution holes are modeled with a matrix ap-
proach, applied on the yellow and red surfaces respectively. The perforated
plates, in blue, are represented by a homogeneous boundary condition based

on Howe’s model.

Figure 5.4: Standard and HMBC geometries for the Helmholtz computa-
tions.
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In the following sections, the perforated plates, dilution holes, swirler and surface-
based Flame Transfer Function will be progressively included in the Helmholtz com-
putation (Tab. 5.1). These Helmholtz computations all rely on the average mean
flow fields presented in Fig. 5.5 that were extracted from the reactive LES of a single
sector with periodic boundaries, performed by Safran. For confidentiality reasons,
the minimum (white) and maximum (black) of the scales are not displayed.

Run
name

Perforated
plate model

Dilution holes
model

Swirled
injector model

Flame
representation

R0 Zero normal
velocity Resolved Resolved No unsteady

flame

R1 Uniform model of
Howe, Eq. (D.6) Resolved Resolved No unsteady

flame

R2 Uniform model of
Howe, Eq. (D.6)

Modified Bellucci
model at orifice
cross-sections,
Eqs. (4.14)-(4.15)

Resolved No unsteady
flame

R3 Uniform model of
Howe, Eq. (D.6)

Modified Bellucci
model at orifice
cross-sections,
Eqs. (4.14)-(4.15)

Active matrix
(from LES) on
complex MBC
surfaces

No unsteady
flame

R4 Zero normal
velocity Resolved

Passive matrix
(from AVSP-f) on
complex MBC
surfaces

Point-based and
surface-based
FTF

R5 Uniform model of
Howe, Eq. (D.6)

Modified Bellucci
model at orifice
cross-sections,
Eqs. (4.14)-(4.15)

Active matrix
(from LES) on
complex MBC
surfaces

Surface-based
FTF

R6 Uniform model of
Howe, Eq. (D.6)

Modified Bellucci
model at orifice
cross-sections,
Eqs. (4.14)-(4.15)

Resolved Point-based FTF

Table 5.1: Helmholtz computations performed on the industrial setup and
their characteristics. Elements can be either "resolved" elements, i.e. dis-
cretized in the geometry and computed by the Helmholtz solver, or modeled
with a matrix model. For the swirler, two matrices are measured: a "pas-
sive" one, representing the acoustic behaviour in the absence of mean flow
and viscosity, and an "active" one, containing the flow-acoustic interaction.

A baseline Helmholtz computation is performed, with the mean flow fields of Fig. 5.5,
wall boundary conditions everywhere and no unsteady heat release (R0). Two de-
generated azimuthal modes at f ≈ 293 Hz are found by the Helmholtz solver. The
two modes are normal and feature a similar azimuthal structure displayed in Fig. 5.6.
One can be obtained from the other with a rotation of π/2 around the combustor
axis.
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(a) Sound speed (b) Heat capacity ratio

(c) Density (d) Ideal gas constant

Figure 5.5: Mean flow fields for the Helmholtz computations of the in-
dustrial combustor.
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(a) Modulus of pressure - Front. (b) Modulus of pressure - Back.

(c) Phase of pressure - Front. (d) Phase of pressure - Back.

(e) Modulus of pressure in a transverse cut (indicated on Fig. 5.6a).

Figure 5.6: First azimuthal mode at f = 292.7− 0.0i Hz for R0.
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5.3 Multiperforated plates

The combustor liners are composed of multiperforated plates. An example is visible
on the helicopter chamber of Fig. 4.33. Originally, the perforated plates have a
cooling purpose: cold air is blown through the tiny holes and form a protective
film on the liner. However, as already mentioned, these plates also have an impact
on the acoustics of the combustor, that can be accounted for with a homogeneous
boundary condition based on Howe’s model, with a correction for the plate thickness
[19, 115, 50].

This model, described in Appendix D.1, assumes that all orifices have a circular
cross-section, an axis normal to the plate, and are evenly distributed. It requires the
knowledge of four quantities (see Fig. D.1):

– The radius of the perforates a.

– The average distance between perforations d.

– The bias flow velocity through the perforations Uori.

– The thickness of the plate h.

If the average distance between perforations d and the bias flow velocity Uori are not
directly available, they can be retrieved from

– the mass flow rate across the plate ṁ,

– the porosity σ, defined as the ratio between the perforated surface and the total
surface of the plate,

– the sum of the cross-sections of all perforates Sb = Nπa2 with N the number
of perforates.

In addition, perforations in industrial combustors are not normal to the plate. They
are characterized by two angles : a streamwise angle α1 and a compound angle α2
(Fig. 5.7). The streamwise angle introduces a tilt compared to the plate normal but
no azimuthal component with respect to the axis of the motor t1 (i.e. gyration).
The azimuthal component is controlled by the compound angle. The projection of
the perforate axis m and the plate normal n is:

m · n = cos(α1) cos(α2) (5.1)

And the angle α between n and m can be defined as :

α = cos−1(cos(α1) cos(α2)) (5.2)

If N is the number of perforations, the total perforated surface Sperf is therefore not
equal to the sum of the cross-sections Sb = Nπa2 anymore (Fig. 5.8). The two are
related by:

Sperf = Sb
cos(α) (5.3)
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Figure 5.8: Straightened perforate used for the analysis of perforated
plates

If the density of the flow is assumed constant in the orifice and equal to its upstream
value ρup, the bias flow velocity Uori is given by :

Uori = ṁ cos(α)
ρupSperf

= ṁ

ρupSb
(5.4)

The upstream density is measured from an average solution of a reactive LES of the
combustor.

The average distance between apertures can be derived from the porosity, aperture
angle and aperture radius as:

d =
√
Stotπa2

Sb
=

√
πa2 cos(α)

σ
(5.5)

Finally, the plate thickness is recovered by considering the straightened orifices of
Fig. 5.8. The flow is assumed to travel a distance h equal to the length of the longest
cylinder fitting in the perforation. If e is the thickness of the plate, then
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h = e

cos(α) −
4a

tan(α) (5.6)

The inner and outer liners of the combustor are divided into 10 zones characterized by
constant plate properties (Fig. 5.4b). For confidentiality reasons, these parameters
are not provided here. For all the plates however, the Strouhal number for the first
azimuthal mode is close to 0.01, so the damping effect is expected to be small.

This is indeed what is observed on the solution of the Helmholtz computation with
perforated plate boundaries (R1). The mode structure (Fig. 5.9) is nearly identical
to R0 and the frequency, found at 293.0 − 0.90i Hz is also very close to the one of
mode 0. The main effect of the perforated plates is to introduce a small damping
rate.
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(a) Modulus of pressure - Front. (b) Modulus of pressure - Back.

(c) Phase of pressure - Front. (d) Phase of pressure - Back.

(e) Modulus of pressure in a transverse cut (indicated on Fig. 5.9a).

Figure 5.9: First azimuthal mode at f = 293.0− 0.90i Hz for R1.

5.4 Dilution holes

Eleven dilution holes per sector are drilled in the liners of the combustor of interest
(Fig. 5.4b). In order to account for hydro-acoustic interaction at their location, a
new mesh is considered.The geometry of Fig. 5.4a is modified: the side walls of the
dilution holes are removed and the upstream and downstream sections of the holes
are filled in order to apply the Matrix Boundary Condition. This new geometry is
meshed with an identical mesh size to R0 and R1, but with a fixed resolution of
η = 0.2 at dilution holes, thanks to spherical sources slightly bigger than the holes.
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RUN Dilution hole model
R2a Modified Bellucci model (σ = 0.0)
R2b Modified Bellucci model (σ = 0.1)
R2c Modified Bellucci model (σ = 0.5)
R2d Propagation over length e

Table 5.2: List of R2x computations.

The quantity η was defined in Chapter 4 as the ratio between the mesh size and the
orifice radius.

The matrix data is obtained from the modified Bellucci model of Section 4.4.3. As
for Howe’s model, the radius of the dilution holes, the bias flow velocity through
them and the length (thickness) of the hole are required and are retrieved in the
same way as for perforated plates. This time, the dilution hole is perforated normal
to the plate (to check) so that α1 = α2 = 0. Two additional quantities must be
provided : the mesh resolution at the orifice η, and the confinement / porosity ratio
σ.

As explained in Sec. 4.4.3, the exact value of σ is not well-defined. Three compu-
tations are performed with σ = 0, σ = 0.1 and σ = 0.5 for all dilution holes. In
reality, different values of σ should be used for each dilution hole. But these three
computations are a first step to check the impact of σ on the acoustics of an annular
chamber.

Additionally, a fourth computation is run with a 1D propagation matrix over e the
thickness of the plate (represented on the left side of Fig. 5.8), in order to control that
the change of mesh and geometry has only a minor effect on the combustor acoustics.
In this run, the matrix associated to the modified Bellucci model is replaced by:

(
cos(ke) i sin(ke)
i sin(ke) cos(ke)

)
(5.7)

with k the wavenumber. Matrix (5.7) describes the propagation of acoustics in
the resolved holes, and the associated run is expected to provide results similar to
R1. The characteristics of these four runs, named R2a, R2b, R2c and R2d are
summarized in Tab. 5.2.

The density and speed of sound are different upstream and downstream of the di-
lution holes (Fig. 5.10). In all the R2 runs, this is treated by assuming that the
density and speed of sound are constant, equal to their upstream value over the
whole length of the hole. The cold hole is then followed by a compact temperature
jump. If Tcold is the matrix of the cold hole, then the final matrix applied in the
Helmholtz computation T is:

T =
(

1 0
0 ρo,dco,d

ρo,uco,u

)
Tcold (5.8)

with ρo,u, ρo,d the densities up- and downstream, co,u, co,d the speeds of sound up-
and downstream of the hole. The values of T for R2a to R2d are plotted in Fig. 5.11
for one dilution hole. As for the perforated plates, the parameters of the dilution



5.4. Dilution holes 119

Figure 5.10: Density and speed of sound in the transverse cut of a dilution
hole (from an average LES solution). The color scale is the same as in

Fig. 5.5.

holes cannot be provided for confidentiality reasons. For the geometry and operating
point of interest, they correspond to a Strouhal number of St ≈ 0.1.
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Figure 5.11: Matrix of one dilution hole in R2a, R2b, R2c and R2d.
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The azimuthal mode of R2d is examined first (Fig. 5.12). With the new dilution hole
geometry, the Helmholtz solver finds a pair of rotating modes, instead of standing
modes as in R0 and R1. Indeed, the module of the pressure is constant Fig. 5.12
while the phase varies azimuthally. This is not a problem as standing modes and
rotating modes can be obtained from one another with simple linear combinations.
The structure in one transverse section seems similar to the one found in R0 and
R1, with higher pressure amplitudes in the cavity, intermediate values in the bypass,
and a minimum in the flame tube. The frequency, f = 292.5− 1.01i Hz is very close
to the value found in R1.

(a) Modulus of pressure - Front. (b) Modulus of pressure - Back.

(c) Phase of pressure - Front. (d) Phase of pressure - Back.

(e) Modulus of pressure in a transverse cut (indicated on Fig. 5.9a).

Figure 5.12: First azimuthal mode at f = 292.5− 1.01i Hz for R1.
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RUN First azimuthal mode frequency [Hz]
R2a 291.7 - 9.83i
R2b 291.6 - 9.78i
R2c 291.6 - 9.72i
R2d 292.5 - 1.01i
R1 293.0 - 0.90i

Table 5.3: Frequencies of the first azimuthal mode for R2x computations.
The result of R1 is also recalled.

When introducing the modified Bellucci model, an immediate change is visible in
the frequencies of R2a, R2b and R2c (Tab. 5.3). With this model, the dilution holes
have a strong damping effect on the first azimuthal mode and the damping rate goes
from 1 s−1 in R2d to ≈ 10 s−1 in R2a, R2b and R2c. Interestingly, the value of σ
does not change much the frequency result, and this is also the case for the mode
structure. Hence, only the solution of R2a is plotted in Fig. 5.13. Compared to
R2d, an azimuthal phase delay appears between the bypass sections and the flame
tube when introducing the modified Bellucci model. In a transverse cut however,
the pressure amplitudes are almost identical to R2d.

The R2x computations show that including the interaction between acoustics and
mean flow at dilution holes is important for the prediction of combustion instabilities.
Indeed it can greatly modify the damping rate and to some extent, the structure of
the combustor modes. The effect could be even more important for other geometries
and operating points where the Strouhal number is closer to 1 (since maximum
dissipation is observed for orifices at this value). In the configuration studied here,
the Strouhal number is only of 0.1 but the impact on the Helmholtz solution is
already sensible.

At first order, the confinement parameter of each orifice can be set very loosely as no
major difference was observed for σ = 0, 0.1 and 0.5 for this case. In the following
Helmholtz computations, σ will be set to 0. As explained in Section 4.4.3, this
conclusion might not hold when the Strouhal number gets closer to 1 and new tests
should be performed in this case.



122 Chapter 5. Application of the MBC methodology to an industrial combustor

(a) Modulus of pressure - Front. (b) Modulus of pressure - Back.

(c) Phase of pressure - Front. (d) Phase of pressure - Back.

(e) Modulus of pressure in a transverse cut (indicated on Fig. 5.9a).

Figure 5.13: First azimuthal mode at f = 291.7− 9.83i Hz for R2a.

5.5 Swirler

5.5.1 LES computation of the swirler matrix

Unlike dilution holes, swirled injectors feature complex interactions between flow
and acoustics. These interactions can be accounted for by measuring the equivalent
matrix of the swirler, with the same methodology as in Chapter 3. One major
difference with Chapter 3 however is that the flow is reactive in the final Helmholtz
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computation. Ideally, the swirler matrix should therefore be computed in a similar
reactive flow, but this would defeat the purpose of the modular 3D-HMBC approach.

To keep the modularity, it is assumed that the swirler matrix is identical for the
reactive and the non reactive flow. This is a strong assumption but it greatly sim-
plifies the problem. One possible justification is the following: as for orifices, hydro-
acoustic coupling should be located in a very small area close to the outlet of the
swirler vanes. At this location, the flow is not fully heated by the flame and the
temperature remains close to its value at the inlet.

It is also assumed that the effect of confinement on the swirler matrix is marginal
and the matrix is measured in a parallelepipedic box of approximately the same size
as one sector of the chamber (Fig. 5.14). The associated mesh is shown in Fig. 5.15.

Figure 5.14: Geometry and boundary conditions for the LES computation
of the industrial swirler matrix.

The length of the tube is arbitrary and chosen long enough to have plane acoustics
at the frequency of interest. The cross-section dimensions are set as the average
of the lengths displayed in Fig. 5.16, but not given here for confidentiality reasons.
The difference in confinement is not expected to have a strong impact on the final
matrix, especially after adjusting it to fit the MBC surfaces of Fig. 5.21.

The boundary conditions are indicated on Fig. 5.14. Adherence is imposed on all
swirler walls, while slip conditions are set on the tube walls to prevent acoustic losses
in the boundary layer there. No wall law is used and the mesh refinement leads to
maximum y+ values of 60 at the swirler outlet. At the inlet, air is injected at the
temperature of the combustor inlet. The mass flow rate going through the swirler is
determined from a Safran 1D tool that computes the distribution of the flow in the
different elements of the combustor, based on the Bernoulli equation with discharge
coefficients obtained from correlations. At the outlet, the pressure is set equal to
the average pressure in a plane downstream of the swirler in the reactive combustor
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Figure 5.15: Overview of the mesh for the LES of the swirler in a tube
(12 millions of nodes).

(a) Width L (b) Height H

Figure 5.16: Lengths used to define the size of the tube cross-section in
Fig. 5.14.The combustor miniatures indicate the location of the cut. In each
cut, the average of the two lengths displayed is used to define the matrix

configuration.

LES (Fig. 5.17). Since slip conditions are enforced on the tube walls, the pressure
downstream of the swirler should be close to the pressure at the outlet.

The LES is performed with the Two-step Taylor Galerkin C (TTGC) scheme devel-
oped by [162], which is third order accurate in time and space. The sigma model
developed by [149] is used for the subgrid stress tensor. A first computation is run
without acoustic forcing in order to establish the flow displayed in Fig. 5.18.

When the stationary flow is well established, acoustic forcing is introduced in two
ways : by the inlet or by the outlet. In both cases, the acoustic forcing is monochro-
matic at the frequency of 290 Hz. When pulsating by the inlet, a velocity fluctuation
u′ of 20% the value of the average inlet velocity is introduced. When pulsating by the
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(a) View 1 (b) View 2

Figure 5.17: Reference plane from which the target pressure at the outlet
of Fig. 5.14 is extracted. The color scale corresponds to the pressure field

(blue : low, red : high).

Value Uncertainty
tu 0.145-0.014i 0.008
rd 0.732-0.066i 0.004
ru 0.929-0.220i 0.008
td 0.113+0.027i 0.005
λmin -0.028 0.012
λmax 0.542 0.004

Table 5.4: Scattering matrix coefficients and eigenvalues of I−S†S of the
swirler of the industrial configuration at 290 Hz. The notation is the same

as for Tab. 3.3.

outlet, a pressure fluctuation is imposed instead, with an amplitude of p′ = ρocou
′.

As in Chapter 3, Dynamic Mode Decomposition is used to filter the signals at the
forcing frequency.

Fig. 5.19 show some examples of pressure and velocity signals up- and downstream
of the swirler, for the two computations. For the computation excited at the outlet,
all signals are amplified because the outlet is too reflecting. Decreasing the value
of the relaxation parameter destroys this amplification but this was performed too
late to obtain enough signal for the DMD analysis. The amplified signals are used
instead even though this is not optimal.

The two-source method of Section 3.3.2 is applied to recover the matrix data, using
pressure and velocity probes regularly arranged along the tube walls. The plane-wave
fit along the axis of the configuration is displayed in Fig. 5.20. The industrial swirler
matrix coefficients at 290 Hz are provided in Tab. 5.4, as well as the eigenvalues of
I−S†S. These eigenvalues show that the swirler has an almost completely damping
effect at 290 Hz.
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Figure 5.18: Flow fields of the non-reactive swirler computation with-
out acoustic forcing. All variables except for the axial Mach number are

normalized by their spatial average.

RUN Swirler model
R3a Non-dissipative matrix (from AVSP-f) on S1
R3b Dissipative matrix (from LES) on S1
R3c Dissipative matrix (from LES) on S2
R3d Dissipative matrix (from LES) on S3

Table 5.5: List of R3x computations

5.5.2 Helmholtz computation with swirler matrices

Helmholtz computations with matrix data for the swirler are performed on the con-
figuration of Fig. 5.4b. The swirler matrix is applied on three sets of MBC surfaces
of similar shape but different size (Fig. 5.21): an intermediate surface S1, a small
surface S2 and a big surface S3. On this configuration, four Helmholtz computations
are performed (Tab. 5.5).

In the first one (R3a), the impact of the change of geometry is assessed by substitut-
ing the discretized swirler with its non-dissipative, purely acoustic matrix, measured
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Figure 5.19: Pressure and velocity signals up- and downstream of the
swirler. Each signal is normalized by the time average and plotted with the
fit from the DMD (sum of the carrier at 0 Hz and fluctuation at 290 Hz).
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(b) Outlet forcing

Figure 5.20: Pressure amplitude and phase from DMD (points) and plane-
wave fit (lines). The grey zone represents the swirler location.

with AVSP-f on the tube geometry of Fig. 5.14 with non-reactive flow and adjusted
on surface S1. In R3b, R3c and R3d, the LES dissipative matrix is used instead and
is adjusted on surfaces S1, S2 and S3 respectively.
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Figure 5.21: Left: example of matrix surfaces for the swirler. The up-
stream surface is a portion of cylinder enclosing the swirler. The down-
stream surface is a disk. Right: Three sets of matrix surfaces S1, S2 and
S3, shown in the transverse cut of one sector. The downstream surface is

common to S1, S2 and S3.

All matrices (dissipative and non-dissipative) describe the acoustic behaviour of
a cold non-reactive discretized swirler, with nearly constant mean flow properties
(Fig. 5.18). In the combustor however, the flow inside the swirler is progressively
heated by the flame as it progresses towards the swirler exhaust. This effect is
partially accounted for by applying the adequate temperature jumps to the swirler
matrix, as illustrated in Fig. 5.23. This procedure assumes however that the temper-
ature inside the swirler is the same in the reactive combustor and in the non-reactive
tube configuration, which is not verified in practice.

Before examining the results of the Helmholtz computations with dissipative matrix,
the impact of the change of geometry is assessed by comparing R3a and R2a. In
R2a, the swirlers are discretized and computed by the Helmholtz solver directly. In
R3a, the swirlers are replaced by their equivalent purely acoustic (non-dissipative)
matrices and the results are expected to be the same as in R2a. As Table 5.6 shows,
this is not exactly the case as the real part in R3a is lowered by about 1% and the
imaginary part by 15%. This could be due to the fact that a quasi-uniform cold mean
flow was used to obtain the swirler matrix, while the mean flow in the discretized
swirler is progressively heated by the flame and therefore not constant. Another
reason behind this difference is that the acoustic matrix and adjustment matrices
(not shown here) are measured numerically with small errors leading to a non-zero
acoustic flux balance. This is shown in Appendix G by computing the criterion
of Auregan and Starobinski [154]. On the mode structure, no major difference is
observed and it is hence not provided here.

In a second Helmholtz computation called R3b, the LES coefficients are introduced
and the associated change of frequency and mode structure is assessed. As Fig. 5.22
shows, these coefficients greatly differ from the purely acoustic (non-dissipative)
matrix which justifies the approach adopted here. The behaviour of the swirler
is far from being purely acoustic. The dissipative effect of the meanflow-acoustics
interaction is clearly visible as the damping rate (i.e. opposite of imaginary part)
increases (Tab. 5.6).

A good point of the adjustment procedure for the swirler is that it seems quite
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Figure 5.22: Swirler of the industrial combustor: non-dissipative plane
matrix measured with AVSP-f (lines) and dissipative plane matrix from the

LES (crosses). Top: modules. Bottom: phases.

robust to the change of matrix surface. Runs R3b, R3c and R3d provide the same
frequency and the same mode structure (with slight differences close to the injector).
This mode structure is similar to the solution of R3a and R2 (Fig. 5.24). The biggest
modification lies in the phase difference between the inner bypass and flame tube.
It is greater on R3a than on R2a and on R3b than on R3a.

To conclude this section, the overall effect of the hydro-acoustic interaction in a
swirler was succesfully accounted for in the Helmholtz simulation of an annular in-
dustrial combustor, with a matrix extracted from two forced LES. The solution is
shown to be robust to the choice of matrix surfaces. On this configuration, this
operating point, and for the first azimuthal mode, the effect of the swirler is three-
fold. First, it increases the damping rate, linked to the conversion of acoustics into
vorticity at the swirler. Second, it modifies the real frequency, probably because
the propagation of acoustics is modified in the presence of a mean flow. Third, it
introduces a phase delay between the flame tube and the inner bypass.
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Figure 5.23: Procedure to readjust the speed of sound and density when
using the matrix of a non-reactive LES with a mean flow field from a reactive

LES.

RUN First azimuthal mode frequency [Hz]
R3a 287.4 - 11.3i
R3b 281.7 -14.4i
R3c 281.9 -14.4i
R3d 281.2 -14.5i
R2a 291.7 - 9.83 i

Table 5.6: First azimuthal mode frequency for R3x computations. The
result of R2a is also recalled.
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(a) Modulus of pressure - Front. (b) Modulus of pressure - Back.

(c) Phase of pressure - Front. (d) Phase of pressure - Back.

(e) Modulus of pressure in a transverse cut (indicated on Fig. 5.9a).

Figure 5.24: First azimuthal mode at f = 281.7 − 14.4i Hz for R3b
computation. The mode structure for R3a is similar.
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5.6 Flame representation

Until now, only dissipative elements have been introduced in the Helmholtz com-
putation, leading to modes which are all damped (i.e. with negative growth rates).
Now the source term associated to the unsteady heat release will be included with
the Flame Transfer Function (FTF) formalism. This FTF links the total heat release
fluctuation per sector (integrated over the flame region associated to each swirler) to
a reference acoustic velocity. As explained in Section 4.5, the reference velocity can
be point-based (i.e. measured at discrete probes) or surface-based (i.e. integrated
over a reference surface). The two formalisms will be tested here. These FTF are
measured on the reactive LES of a single sector provided by Safran, which naturally
features an instability at 290 Hz.

When using the global heat release, and assuming that all flames share the same
response, only one value of the gain N and time delay τ is required for the complete
combustor. They are defined as follows.

Q̂ =

N exp(iωτ)
∑Nprobes
i=1 û(xi,ref ) · ni,ref for point-based FTFs

N exp(iωτ)
∫
Sref

û(x) · n(x)dS for surface-based FTFs
(5.9)

with Q̂ the total heat release, û the acoustic velocity, xi,ref the reference points,
ni,ref the reference vectors, Sref the reference surface, and n the surface normal.
The field of heat release fluctuations is accordingly modeled in a simple way. The
flame zone is delimited by a heat release contour (extracted from an average LES
solution). Inside the contour, constant values of the volumic gain n and the time
delay τ are applied. The value of the volumic gain n is chosen so as to recover the
total gain N when integrating over the flame volume.

N =
∫
Vf

ndV (5.10)

with Vf the volume of the flame (i.e. the volume inside the threshold heat release
contour) and N defined in Eq. (1.37). Outside of the flame zone, n and τ are set
to zero. The flame zone used in the present Helmholtz computations is shown in
Fig. 5.25.

5.6.1 Description of the LES computation

The FTF for the first azimuthal mode of the industrial combustor are measured
on the reactive mono-sector configuration of Fig. 5.2 with axi-symmetric periodic
boundary conditions. An overview of the mesh is presented in Fig. 5.26.

Air is injected at the main inlet with a relaxed characteristic boundary condition
where the mass flow rate, temperature and composition are set. Some additional
air is also injected with non-characteristic boundaries at films and at the swirler.
Perforated plates are modeled with a pair of suction/injection patches with the
model of [163]. Other walls are assumed adiabatic, and the velocity at the wall
is imposed through a classical wall law. At periodic boundaries, an axi-symmetric



5.6. Flame representation 133

Figure 5.25: Flame zone in red (with non zero FTF parameters) for R4x
and R5x computations.

Figure 5.26: Transverse cut of the mesh used in the reactive LES of the
industrial combustor.

boundary condition is applied: all scalar quantities at one side are replicated on the
other and vector quantities at one side are reinjected on the other side after rotating
them by the sector angle.
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The combustion process is represented by a reduced two-step mechanism for pre-
mixed kerosene-air flames called 2S_KERO_BFER [164]. The scheme is composed
of two reactions corresponding to the fuel oxidation into CO and H2O and the
CO−CO2 equilibrium, for a surrogate of kerosene. The correct 1D flame properties
are recovered by tuning the Arrhenius pre-exponential constants. The flame front is
thickened, following the approach of [162].

The fuel is injected as a dispersed continuous phase that obeys to the same filtered
Navier-Stokes equations as the gas (Euler-Euler approach). The dispersed and gas
phase are coupled through two terms : a two-way drag force and an evaporation
source term. The injection profile is a hollow cone whose shape is determined from
global and geometrical parameters [165]. A new set of boundary conditions is defined
for the dispersed phase, composed of characteristic inlets and slip walls.

Both dispersed and gas phase are solved with the Two-step Taylor Galerkin 4A
scheme (TTG4A) [148]. This scheme is third-order accurate in space and fourth
order accurate in time but diffuses more medium wave numbers than the TTGC
scheme. Finally, the subgrid stress tensor is computed with the Smagorinsky model
[166]. This reactive LES naturally features an instability at a frequency close to 290
Hz, the frequency of the first azimuthal mode found in R0, R1, R2 and R3 (Fig. 5.3).
It was chosen not to force the LES and rather use the fluctuations already present
in the combustor to determine the Flame Transfer Functions, assuming that the
flame/acoustics coupling remains linear.

5.6.2 Reference signals for the FTF

In the next sections, point-based and surface-based FTF will be included in the
Helmholtz computations. As explained in Section 5.1.2, these FTFs are measured on
an LES of a single sector, based on the assumption that the flames are sensitive to the
fluctuations of mass flow rate, and therefore to the longitudinal velocity fluctuations
at first order. The acoustic excitation is provided by a longitudinal instability that
is naturally triggered at the same frequency as the azimuthal mode of interest. In
order to remain in the linear regime of the flame/acoustics interaction, low levels of
heat release and acoustic fluctuations are maintained by using a downstream nozzle
geometry associated to a low level of acoustic reflection.

For both formalisms, a legitimate question is where to choose the reference point/surface.
Ideally, the Helmholtz solution should be robust to this choice so that any reference
location with a relevant velocity signal can be used. In order to check this, different
probe sets (Fig. 5.27) and surfaces (Fig. 5.21) are used. In the case of probes, this ro-
bustness check is almost certain to fail with only one probe, especially if it is located
close to the swirler outlet, because the acoustic velocity can be mixed with turbulent
fluctuations. For this reason, an average over a dozen of probes revolving around
the swirler axis is used to compute the FTF instead and Fig. 5.27 only shows one
element of the set. The reference vectors for sets A, B and C are radially directed
towards the swirler axis. The reference vector for sets D and E is chosen constant
and parallel to the swirler axis. When a surface of reference is used instead of a
point of reference, the local normal is used as a vector of erference.

The reference velocities obtained from the reference points and surfaces are plotted
in Fig. 5.28. In this plot, all velocities are normalized by their time average. Fig. 5.28
shows that there is a great variability in the shape and amplitude of fluctuations in
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Figure 5.27: Points (each set of probe is represented with only one probe)

the point-based velocities. On the contrary, surface-based velocities have very similar
shapes and normalized amplitudes and this tends to prove that surface averaging is
more robust to the choice of reference location than probe averaging. Additionally,
the surface average velocities seem smoother than the velocities from probes.
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Figure 5.28: Reference velocities from probes (top) and surface averaging
(bottom). All signals are normalized by their time average.

In order to compute the Flame Transfer Functions, the velocity and heat release
signals must be filtered at the frequency of the instability and this can be done
either with a Fast Fourier Transform (FFT) or with a Dynamic Mode Decomposition
(DMD). Fourier Transform is used for both point-based and surface-based signals.
The comparison between Fourier Transform and DMD is performed only for surface-
based signals. The gains and delays obtained with each method are provided in
Tab. 5.7.

The agreement between DMD and FFT is fairly good, although results are not iden-
tical. Contrary to the FFT, DMD does not filter the signal at a given frequency, but
rather extracts the relevant frequencies of the signal. In this case, DMD finds a main
fluctuation at 298 Hz with amplitudes different from the FFT. This is illustrated in
Fig. 5.29 where the heat release and surface-averaged velocity signals are compared
with the DMD and FFT reconstructions.
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Concerning the comparison between point-based and surface-based FTF, Tab. 5.7
shows that the two formalisms provide similar values of the FTF delay τ (around 2
ms) but drastically different values of the FTF gain N . The difference in gains is
due to the difference between the reference velocities. Probes A, B, C, D and E are
all located either in the swirler vanes or at their exit, where the velocity is extremely
high since the vanes cross-section is narrow. The reference velocities at these probes
is consequently much more important than the ones measured at surfaces S1, S2
and S3, located upstream of the swirler. In fact, the reference velocity ratio between
point-based and surface-based measurements corresponds the ratio of FTF gains.
For example, the reference velocity measured on surface S1 is approximately 20
times smaller than the reference velocity measured on probes A. Accordingly, the
FTF gain for surface S1 is 20 times higher than the FTF gain for probes A.

Reference location N [J/m] τ [ms] CC
FFT DMD FFT DMD FFT DMD

Probes A 2856 - 2.283 - 0.49 -
Probes B 3466 - 2.135 - 0.48 -
Probes C 5454 - 2.196 - 0.54 -
Probes D 3147 - 2.078 - 0.41 -
Probes E 3339 - 2.188 - 0.48 -
Surface S1 66467 57672 2.163 2.340 0.54 0.52
Surface S2 49024 43606 2.130 2.325 0.54 0.53
Surface S3 81013 75546 2.140 2.342 0.54 0.52

Table 5.7: FTF gain and delay, from an FFT filtering at 290 Hz and from
the DMD mode at 298 Hz. The FTF parameters N and τ are defined in

Eq. (5.9). The correlation coefficient CC is defined in Eq. (5.11).

In order to estimate the quality of the FTF, a correlation coefficient is computed
between the delayed reference velocity and the heat release signal.

CC = (Q̇(t)− Q̇(t))(u(t− τ)− u(t− τ))
σQ̇σu

(5.11)

where • denotes time average and σX =
√

(X −X)2 is the standard deviation of X.
The correlation coefficient ranges between -1 and 1. A correlation coefficient close
to 1 is an indication that the FTF representation is adequate and in particular, that
the time delay is correctly computed. These correlation coefficients are provided in
Tab. 5.7. However, the correlation coefficient does not indicate if the value of the
gain is correct or not. For this, visual checks are performed by plotting the trans-
formed velocity Nu′(t− τ) against the heat release (Fig. 5.30). Both the correlation
coefficient and the visual examination suggest that the surface-based FTFs are cor-
rectly measured with DMD and FFT. Moreover, the correlation coefficient is greater
for surface-based signals than for point-based and this is a further argument in favor
of reference surfaces.

Examining the correlation between FTF signals is one thing, but ultimately, the
quality and robustness of the FTF should be assessed by checking the result of
the Helmholtz computation. For surface-based FTFs, two points are of particular
interest.
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Figure 5.29: Heat release and surface averaged velocity signals with the
DMD and FFT reconstructions. All quantities are normalized by an arbi-

trary constant Uo.
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Figure 5.30: Heat release fluctuations Q̇′(t) against transformed velocity
fluctuations Nu′(t − τ) for surface S1, with the FTF parameters obtained

from Fourier analysis (R=0.54).

– Do surface-based FTFs and point-based FTFs provide the same stability results
when included in the Helmholtz computation ?

– Surface-based velocity signals seem more robust to the choice of reference sur-
face. The associated Helmholtz computations are therefore expected to produce
similar results. Is this indeed the case ?

These two questions are investigated in Appendix H by performing R4 type compu-
tations (Tab. 5.1) where the flame is the only source of growth/damping rate, with
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RUN Upstream swirler matrix surface
R5a S1
R5b S2
R5c S3

Table 5.8: R5x computations with flame, dilution holes and swirlers mod-
els.

no dissipative model for the perforated plates, swirlers and dilution holes. In these
computations, it is found that both surface-based and point-based FTFs predict the
existence of an unstable azimuthal mode of first order around 290 Hz. However, the
growth rate is much more important with surface-based FTFs than with point-based
ones, probably because the gains of surface-based FTFs are much higher. Also, the
robustness of surface-based velocity signals to the choice of reference surface does not
translate into stability robustness. The growth rate almost doubles in value when
switching from surface S2 to S3. For now, we do not have any definite explanation
for this somewhat disappointing result.

5.6.3 Helmholtz computations with active flame

Now that the effect of surface-based FTFs is better understood, three computations
associated with surfaces S1, S2 and S3 are performed, this time with a model for
the unsteady flame, dilution holes and injectors (Tab. 5.8). The introduction of an
unsteady flame in the computation creates a distinction between the two azimuthal
modes, mainly on the imaginary part. Both modes are amplified compared to the
no-flame case, but one more than the other (Tab. 5.9). However, even the most
amplified modes are still predicted stable for surfaces S1 and S2. Only surfaces S3
lead to a linearly unstable mode.

These observations are compared to R6 computation. In R6, a point-based FTF
associated to set B (defined in Fig. 5.28a) is used in conjunction with a dissipative
model for the perforated plates and dilution holes, but a resolved swirler. The first
azimuthal mode frequencies are displayed in Tab. 5.9. Even though there are less
dissipative elements in R6, the imaginary part with the point-based FTF is still
much lower than with surface-based FTFs. In this regard, reference surfaces are in
better agreement with the reactive LES, where an instability was observed at ≈ 290
Hz. However, the real frequency obtained with point-based results is closer to 290
Hz.

Concerning the mode structure, fairly similar results are obtained for both R5x
and R6 computations, but the Helmholtz solver finds spinning modes (i.e. constant
modulus and azimuthally varying phase) in R5a, R5b, R6 and standing modes (i.e.
constant phase and azimuthally varying modulus) in R5c. It could be that the
portion of geometry removed when using MBC for the swirlers is too important so
that the acoustics of the overall geometry is modified. Only the structure of the
most amplified mode of R5a (at 271.44 - 0.60i Hz) is shown in Fig. 5.31. Again, it
shares the same characteristics as R1, R2 and R3 solutions.

To conclude this part, a new formalism of the FTF, based on a reference surface, was
tested on an industrial annular combustor. The FTF was measured on a reactive LES
of a single sector that featured a thermoacoustic instability at the frequency of the
first azimuthal mode. The reference velocities measured on surfaces was compared
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RUN Least amplified mode Most amplified mode
R5a 270.52 -1.36i 271.44 - 0.60i
R5b 275.00 - 5.14i 275.50 - 4.01i
R5c 271.49 - 1.50i 272.57 + 1.99i
R6 293.43 - 7.90i 293.00 - 7.46i

Table 5.9: Frequencies of the first order azimuthal modes of R5x and R6
computations.

to the one measured at points, and were shown to be less noisy and more robust
to the choice of the reference location. However, this apparent robustness does not
translate into the Helmholtz computation. Although all FTF parameters predict an
unstable azimuthal mode at around 290 Hz in the absence of dissipative elements,
the frequency change is considerable when using a different surface. This variation
is not well understood but two mechanisms are suspected. First, the FTF gains
found with the surface-averaged velocities are very high and a small relative change
of the flame parameters (location, gain or delay) could lead to large modifications
of the acoustics of the burner. Second, the use of a truncated geometry with matrix
boundaries could remove some of the velocity fluctuation produced at the flame.
This observation was also made on the toy combustor of Section 4.5.3. The result
with reference surfaces also presents much higher growth rates and levels of pressure
than the one obtained with reference points. These issues should be investigated in
the future.

When including dissipative elements, only the largest set of surfaces (S3) provides an
unstable azimuthal mode. Other reference surfaces and points lead to linearly stable
modes, but reference surfaces provide a better agreement with the LES observations,
as the associated damping rate is lower than the one obtained with reference points.
Therefore, surface-based FTFs remain an interesting option for the prediction of
combustion instabilities on realistic annular combustors, with the HMBC methodol-
ogy. Moreover, using reference surfaces makes it possible to use simpler geometries,
lighter meshes, potentially leading to a reduction of CPU cost (but CPU cost was
not analyzed in detail here).
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(a) Modulus of pressure - Front. (b) Modulus of pressure - Back.

(c) Phase of pressure - Front. (d) Phase of pressure - Back.

(e) Modulus of pressure in a transverse cut (indicated on Fig. 5.31a).

Figure 5.31: First azimuthal mode at f = 272.6 + 2.01i Hz for R5 com-
putation.

5.7 Summary of acoustic contributions - Energy balance

Figure 5.32 summarizes the frequencies found in the previous Helmholtz solutions,
with the progressive addition of models for the perforated plates, dilution holes,
swirler and flame. In order to investigate the causes of the growth rate changes, an
acoustic energy balance is performed for runs R0, R1, R2a, R3a, R3b R5a, R5b and
R5c. For the runs with an active flame (R5a, R5b and R5c), only the most amplified
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Figure 5.32: Complex frequencies of the first azimuthal mode for the
Helmholtz computations of Tab. 5.1

mode is examined. The principle of the acoustic balance is detailed in [138] and
explained here briefly. This analysis starts from the Euler equations for mass and
momentum conservation, here recalled in time domain.

1
ρoc2

o

∂p′

∂t
+ ∂u′i
∂xi

= γ − 1
γpo

q̇′ (5.12)

∂u′i
∂t

= −1
ρ

∂p′

∂xi
(5.13)

Multiplying Eq. (5.12) by p′ and Eq. (5.13) by ρou′i2 and adding them gives

∂

∂t

(
1
2
p′2

ρoc2
o

+ 1
2ρou

′
iu
′
i

)
+ ∂

∂xi
(p′u′i) = γ − 1

ρoc2
o

p′q̇′ (5.14)

The acoustic energy E , flux F and source term S are hence defined by:

E = 1
2
p′2

ρoc2
o

+ 1
2ρou

′
iu
′
i (5.15)

Fi = p′u′i (5.16)

S = γ − 1
ρoc2

o

p′q̇′ (5.17)
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Equation (5.14) can be integrated over the volume of the combustor. After appli-
cation of the Green-Ostrogradsky theorem, the integrated energy balance equation
can be expressed as:

d

dt

∫
V
EdV︸ ︷︷ ︸
E

+
∫
∂V
FinidS︸ ︷︷ ︸
F

=
∫
V
SdV︸ ︷︷ ︸
S

(5.18)

with ni the outward surface normal. Over one period T = 2π/ωr, the total acoustic
energy in the domain E is modified by the acoustic flux leaving/entering at bound-
aries F and by the heat release source term S. This change is assessed by integrating
Eq. (5.18) over T .

E(T )− E(0) +
∫
T
Fdt =

∫
T
Sdt (5.19)

The expressions of the terms in Eq. (5.19) can all be computed from the Helmholtz
frequency and solution fields p̂ and ûi (i = 1, .., 3).

E(0) =
∫
V

(
1
2
<(p̂)2

ρoc2
o

+ 1
2ρo<(ûi)<(ûi)

)
dV (5.20)

E(T ) = exp(2ωiT )E(0) (5.21)

∫
T
Fdt =

∫
∂V

(
IA<(p̂)<(ûini)+IB=(p̂)=(ûini)+IC [<(p̂)=(ûini)+=(p̂)<(ûini)]

)
dS

(5.22)

∫
T
Sdt =

∫
V

γ − 1
ρoc2

o

(
IA<(p̂)<(q̂) + IB=(p̂)=(q̂) + IC [<(p̂)=(q̂) + =(p̂)<(q̂)]

)
dV

(5.23)

The quantities IA, IB and IC appear when performing time integration over one
acoustic period. With ω = ωr + iωi the complex pulsation, the values are:

IC =
∫
T

exp(2ωit) cos(ωrt) sin(ωrt)dt =


ωr(1− exp(2ωiT ))

4(ω2
r + ω2

i )
for ωi 6= 0

0 for ωi = 0
,

(5.24)

IA =
∫
T

exp(2ωit) cos2(ωrt)dt =


exp(2ωiT )− 1

2ωi
+ ωr
ωi

IC for ωi 6= 0
T

2 for ωi = 0
, (5.25)
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IB =
∫
T

exp(2ωit) sin2(ωrt)dt =


−ωr
ωi

IC for ωi 6= 0
T

2 for ωi = 0
. (5.26)

It is important to note that the volume integration in Eq. (5.20) is performed over
a volume of inviscid fluid only, thus excluding any dissipative elements modeled
thanks to a two-port matrix (perforated liners, dilution holes and swirlers). The
contribution of these elements on the acoustic energy budget is thus contained in
the flux term. Namely, the dissipation of each compact element corresponds to the
sum of fluxes on the two surfaces surrounding the element and connected by the
two port matrix. In Figure 5.33, all contributions to the change of acoustic energy
are plotted, in a normalized form. The four columns (indicated as 1, 2, 3 and 4 in
Fig. 5.33) are normalized forms of respectively:

−
∫
T Fdt

E(0) , the ingoing acoustic boundary flux, (5.27)

∫
T Sdt

E(0) , the energy gained in the heat release coupling, (5.28)

ε = E(T )
E(0) −1+

∫
T Fdt

E(0) −
∫
T Sdt

E(0) , the relative error on the energy balance, (5.29)

E(T )
E(0) − 1, the change of acoustic energy, (5.30)

so that Eq. (5.19) can be expressed as:

E(T )
E(0) − 1︸ ︷︷ ︸
Column 4

= −
∫
T Fdt

E(0)︸ ︷︷ ︸
Column 1

+
∫
T Sdt

E(0)︸ ︷︷ ︸
Column 2

+ ε︸︷︷︸
Column 3

(5.31)

The volume integration for the acoustic energy and heat release source terms is
performed at mesh nodes, while the surface integration for the flux computation is
obtained at boundary cells. The error term of Eq. (5.29) should be zero in theory.
This is however not the case in AVSP. One of the reasons is that most of the bound-
ary conditions (all except the Dirichlet condition) are imposed under a weak form,
thus inducing errors in the evaluation of the acoustic flux actually present in the
computation. In most cases, the error remains smaller than 6%.

In Fig. 5.33, the contributions from the walls, the dilution holes, perforated plates
and swirlers are distinguished by considering separately the cells of each type of
boundary condition. This distinction should be examined with caution. Indeed, as
already explained in Section 4.3.2, nodes and cells shared by two boundary conditions
receive a contribution from the two. In a first attempt to separate the contributions
of each type of boundary condition, the procedure of Appendix I is applied. With-
out this procedure, the acoustic flux distribution cannot be trusted. For example,
in a Helmholtz computation of the industrial geometry where the only dissipative
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Figure 5.33: Contributions to the acoustic energy balance as defined in

Eq. (5.31). The sum of the three first columns (acoustic flux −
∫

T
Fdt

E(0) , heat

release
∫

T
Sdt

E(0) , and error ε defined in Eq. (5.29)) is equal to the last one
(total energy change E(T )

E(0) − 1).

boundaries are at dilution holes, the acoustic flux distribution without correction
indicates that only 70% of the flux actually comes from the dilution holes, while the
remaining 30% are attributed to walls. With the proposed procedure, a coherent
acoustic flux distribution is obtained, with 100% of the flux coming from the dilution
holes.



5.7. Summary of acoustic contributions - Energy balance 145

The acoustic energy distributions of Fig. 5.33 are now analyzed. As expected, all
contributions are equal to zero for R0, since no damping or amplifying element is
present in the computation. In R1, approximately 6% of the acoustic energy leaves
the domain through the perforated plates. In R3b, where all damping elements are
included, the energy balance analysis shows that the top contributors to dissipation
are perforated plates and dilution holes. The damping effect of the swirlers, although
visible on the damping rate, is negligible from an acoustic energy point of view.

When including the flame with a surface-based FTF, the portion of energy dissipated
in the swirlers increases (probably because the level of acoustic fluctuation close to
the swirlers is more important when a flame is present), but remains smaller than
the one dissipated by dilution holes and perforated plates. Concerning R5a, R5b and
R5c the acoustic energy balance confirms the observations made previously on the
eigenfrequencies. The differences observed on the frequencies are mainly due to the
differences in the FTF gain. While the acoustic flux distribution remains similar for
all R5x computations, the heat release source terms varies importantly, from nearly
50% of the initial acoustic energy for R5c (highest gain) to less than 25% for R5b
(smallest gain).
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Conclusion

Complex flow-acoustic interactions can be the source of important acoustic damping
in industrial combustors, at elements such as dilution holes or swirled injectors, be-
cause of the conversion of acoustics into vorticity at sharp edges which leads to the
dissipation of acoustic energy. In this thesis, a methodology was developed in order
to assess the effect of these interactions in a zero mean-flow Helmholtz solver. The
methodology is based on an acoustic matrix formalism. Taking advantage of the
fact the hydro-acoustic damping is a very local, compact mechanism, the damping
elements are modeled by their equivalent 2×2 matrix, which accounts for dissipation
effects. For simple elements such as circular orifices, this matrix can be determined
analytically or from correlations. The strong point of the matrix approach is that
more complex systems such as swirlers can also be included in the Helmholtz com-
putation, since the matrix can be measured experimentally or numerically, with LES
for example.

The matrix is included in the Helmholtz computation by means of a Matrix Boundary
Condition. The methodology consisting in introducing matrices in the Helmholtz
solver was therefore called the HMBC approach (Helmholtz with Matrix Boundary
Condition). HMBC was successfully applied to an academic configuration : two
tubes connected by either an orifice or a swirler, in the presence of a small axial inlet
flow. With the HMBC methodology, the changes in frequency and damping rate
introduced by the flow/acoustics interaction in the orifice or swirler are correctly
captured, while a standard Helmholtz computation completely misses them.

However, the HMBC methodology with plane 1D matrices is difficult to apply on
complex industrial geometries as it requires the use of plane surfaces for the matrix
boundaries. Thus, an extended methodology is proposed. This extension makes it
possible to apply the matrix methodology on any type of surface. It relies on two
elements: 1) Average acoustic quantities are used instead of local ones. This is more
consistent with the plane-wave approach where acoustics are characterized by two
quantities, but is probably a source of error if the matrix patch is too large compared
to the wavelength of the mode of interest. 2) Matrix data is obtained from a clean,
1D configuration, on well-defined plane surfaces. The matrix can be adjusted to
suit a pair of complex surfaces by multiplying it with adjustment matrices. These
matrices establish the link between the plane measurement surfaces and the complex
surfaces of the final Helmholtz computation. They can be computed easily for any
type of surface using an acoustics propagation solver.

The extension provides satisfactory results on the academic configuration, with both
the orifice and the swirler. The correct frequencies and modes are obtained with
adjusted matrix data, while non-adjusted matrices give completely wrong solutions.
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In the case of the orifice, the adjustment matrices and the matrix data can be
derived analytically. Thanks to this analytical model of the adjusted matrix, the
existence of an intrinsic model for dilution holes was examined. Unfortunately, it
was demonstrated that if the resistance of the orifice is indeed an intrinsic quantity,
this is not the case of the reactance. The reactance depends on the confinement of
the orifice (i.e. bounding effects due to walls or other orifices) that can be measured
through a porosity or a section ratio in general. The dependency is stronger for
Strouhal numbers close to 1, which happens quite often for the dilution holes of
industrial combustors. However, first tests on a simple configuration show that the
result of the Helmholtz computation might not be too sensitive to this effect at first
order.

Another line of work was dedicated to modeling unsteady heat release for the predic-
tion of combustion instabilities with the HMBC methodology. The main motivation
behind this work is the incompatibility between the application of HMBC for a
swirler and the use of a point-based Flame Transfer Function. Indeed, on industrial
combustors, the flame is often anchored very close to the swirler and the reference
point is chosen inside of it. This poses a problem when the swirler is removed from
the geometry in HMBC. In this thesis, a variation of the Flame Transfer Function
is proposed, where the reference velocity is obtained as the average over a reference
surface. It was shown on the reactive LES of an industrial combustor that this
approach seems to provide smoother signals that are more robust to the change of
reference location.

The extended HMBC methodology with the surface-based FTF is finally applied to
a full annular industrial combustor from Safran. The perforated plates are mod-
eled with a homogeneous boundary condition that accounts for acoustic/bias flow
interaction at the perforations. The effect of dilution holes and swirlers is included
using analytical or LES matrix data. It is shown in particular that, while perforated
plates have a minor damping effect, swirlers (to some extent) and dilution holes
(more particularly), strongly dissipate acoustics in the combustor.

The application of surface-based FTF on the industrial geometry is less successful.
Indeed, the apparent robustness of the reference velocities to the choice of the refer-
ence surface does not guarantee a similar robustness of the Helmholtz results. This
issue is still under investigation and three suspects have been identified. First, the
FTF might not be correctly measured, as the input signals of heat release and ve-
locity were very noisy. Second, the FTF gain associated to reference surfaces is very
high. Hence, a small error on the flame location / acoustic velocity at the reference
surface or delay could lead to large modifications of the stability of the combustor.
Third, the matrix boundary conditions could remove some of the acoustic velocity
created at the flame, a mechanism that was also observed on a simple toy combus-
tor. Indeed, the Matrix Boundary Condition only treats acoustics normal to matrix
surfaces and discards any transverse component.

Despite these problems, it was demonstrated that the instabilities of a full annular
combustor can be predicted with the HMBC approach combined to a surface-based
FTF. The methodology therefore seems promising but a few warnings and bottle-
necks have been identified.

Cost Clearly, the most expensive step of the HMBC methodology comes from the
measurement of the matrix. It requires either long LES computations, or an
experimental facility that it is not always available. While many analytical
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models are available for dilution holes, the same cannot be said of swirlers.
The computational cost could be reduced by using less accurate but cheaper
solvers such as Lattice-Boltzmann methods or Linearized Navier-Stokes solvers.
However, a better work plan would be to develop models and correlations for
swirlers. The first step for this is to identify the key parameters controlling the
behaviour of a swirler. Nothing was done on this topic during this thesis, but
some good candidates would probably be : the mass flow rate, the number,
angle and cross-section of the inlet vanes, the section of the outlet.

Matrix dependency with confinement tube The matrix is measured on a 1D
tube of different cross-section than the final Helmholtz application. How to
choose adequately this cross-section and what the impact on the final Helmholtz
computation is remains unclear for now. The present computations indicate
that the effect should be minor but this observation might not be generic.

Matrix dependency with mixture properties In this study, the matrix is al-
ways measured with pure air at non-reactive conditions, even when combustion
is present in the final application. However, the matrix of a swirler might be
very different under reactive and non-reactive conditions. Indeed, the presence
of a flame downstream can greatly modify the flow. For example, a Precessing
Vortex Core present under non-reactive conditions can disappear when com-
bustion is introduced.

Surface-based FTF The concept of surface-based FTF was initiated in this work
but many uncertainties remain about: 1) How to assess the quality of these
FTFs ? 2) Do they really provide satisfactory results when combined to an
HMBC geometry ?

To conclude, this work proposes a simple methodology to include complex flow-
acoustic interactions into a zero mean flow Helmholtz solver. Combined with the
adequate matrix data, this methodology provides a simple and relatively fast way
of predicting combustion instabilities in the presence of hydro-acoustic damping.
Because the damping elements are removed from the geometry, the associated meshes
are lighter and simpler. For now, this does not directly translate into a reduction
of the computational cost though. FTF with reference surfaces were introduced
and could be an interesting alternative to traditional FTFs with reference points,
provided the uncertain points of the previous paragraph find an answer.
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Appendix A

Navier-Stokes Equations

The equations are written with the index notation. Summation rule is implied over
repeated indices (Einstein’s rule of summation). Indices i and j are reserved for
space coordinates while index k is reserved for species. The Navier-Stokes equations
are presented below for an ideal gas mixture composed of k = 1, . . . , N species,
characterized by

– a mass fraction Yk (or a mole fraction Xk),

– a molecular weight Wk,

– a diffusivity Dk,

– a specific sensible enthalpy hs,k
– a specific formation enthalpy ∆hof,k.

The sum of all mass fractions is equal to 1 and it is easy to show that the molecular
weight of the mix is 1

W =
∑N
k=1

1
Wk

. The medium is further assumed to act like a
calorically perfect gas.

Conservation of mass

The global mass balance is expressed as:

∂

∂t
ρ+ ∂

∂xi
ρui = 0 (A.1)

It is the sum of the conservation equations for each species k:

∂

∂t
(ρYk) + ∂

∂xj
(ρYkuj) = − ∂

∂xj
[Jj,k] + ω̇k (A.2)

In Eq. (A.2), Ji,k is the i-th component of the diffusion flux of species k. It can be
modeled with the Hirschfelder Curtis approximation, as done in AVBP.

Ji,k = −ρ
(
Dk

Wk

W

∂Xk

∂xi
− YkV c

i

)
(A.3)

with V c
i the correction velocity
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V c
i =

N∑
k=1

Dk
Wk

W

∂Xk

∂xi
(A.4)

Another term of Eq. (A.2) needs to be modeled: the reaction rate ω̇k. In CFD codes,
this information is usually provided by chemical schemes, composed of a series of
elementary reactions and the associated rate constants, expressed as a function of
pressure and temperature with the empirical Arrhenius law. Details are not provided
here but can be found in most combustion textbooks, for example [2], chapter 1. As
mentioned in Chapter 1, complete chemical schemes are too heavy to be transported
in CFD codes but greatly condition the quality of the results. Many techniques
are being developed to reduce these schemes while retaining a maximum of their
properties. A good review can be found in [167].

Conservation of momentum

∂

∂t
ρuj + ∂

∂xi
ρuiuj = − ∂p

∂xj
+ ∂τij
∂xi

+ ρfj (A.5)

with p the pressure, fj the volume force in the j-direction and τij the viscous stress
tensor. For a Newtonian isotropic fluid, τij is given by:

τij = −2
3µ

∂uk
∂xk

δij + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
(A.6)

Conservation of energy

Many equivalent formulations of the conservation of energy are available. First, the
conservation of total energy per unit mass E (sum of the internal energy and kinetic
energy) can be expressed.

∂

∂t
(ρE) + ∂

∂xj
(ρEuj) = − ∂

∂xj
[ui(pδij − τij) + qj ] + ω̇T +QR (A.7)

with qj the heat flux of species j due to heat conduction (modeled with a Fourier
Law) and species diffusion

qj = −λ ∂T
∂xi

+
N∑
k=1

Ji,khs,k, (A.8)

ω̇T is the heat released by the chemical reactions (combustion), assumed to be the
only source term in the energy equation.

ω̇T = −
N∑
k=1

ω̇k∆hof,k (A.9)

Alternatively, the energy equation can be expressed in terms of temperature:
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ρcp

(
∂T

∂t
+ ui

∂T

∂xi

)
=
(
∂p

∂t
+ ui

∂p

∂xi

)
+ ∂

∂xi

(
λ
∂T

∂xi

)
+ τij

∂ui
∂xj

+ ω̇T (A.10)

Or in terms of pressure, using the equation of state of an ideal gas γp = ρc2, with
c =
√
γrT .

∂p

∂t
+ ui

∂p

∂xi
+ ρc2∂ui

∂xi
= (γ − 1)

[
∂

∂xi

(
λ
∂T

∂xi

)
+ τij

∂ui
∂xj

+ q

]
(A.11)

Additionally, the conservation equation for energy can be replaced by the conserva-
tion equation for entropy.

∂s

∂t
+ ui

∂s

∂xi
= r

p

[
∂

∂xi

(
λ
∂T

∂xi

)
+ τij

∂ui
∂xj

+ Q̇

]
(A.12)
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Appendix B

Transition expressions between
acoustic matrix formulations

In this chapter, some transition expressions between the different acoustic matrix
formulations of Tab. 2.1 are provided. All transitions are not given here but can be
retrieved by combining the expressions below. In order to simplify the notation, five
constant matrices Jnp (n, p ∈ {1, 2}) and Ω are defined as:

J11 =
(

1 0
0 0

)

J12 =
(

0 1
0 0

)

J21 =
(

0 0
1 0

)

J22 =
(

0 0
0 1

)
(B.1)

Ω = 1
2

(
1 1
1 −1

)
= 1

2Ω−1 (B.2)

Note also that the acoustic velocities are projected on a constant reference vector
(same direction upstream and downstream) as done in most acoustic network studies.
In the Helmholtz-MBC computation, an inward normal convention is chosen at the
MBC surfaces (Fig. B.1) and the expressions below should be modified to account
for the change of sign of ûu.

GRPDLQ �
+HOPKROW]

n
nu nd

ŜX, X̂X ŜG, X̂G

GRPDLQ �
+HOPKROW]

n

0%&
Figure B.1: Inward normal convention in the Helmholtz solver, compared

with usual choice made in acoustic network analysis.
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B.1 Scattering matrix S and wave transfer matrix Tw

From scattering matrix S to wave transfer matrix Tw:

Tw =
[
J11 − SJ22

]−1 [
SJ11 − J22

]
(B.3)

Tw = 1
S22

[
S11S22 − S12S21 S12

−S21 1

]
(B.4)

From wave transfer matrix Tw to scattering matrix S:

S =
[
J11Tw + J22

] [
J22Tw + J11

]−1
(B.5)

S = 1
Tw22

(
Tw11Tw22 − Tw12Tw21 Tw12

−Tw21 1

)
(B.6)

B.2 Wave transfer matrix Tw and acoustic transfer ma-
trix Ta

From wave transfer matrix Tw to acoustic transfer matrix Ta:

Ta = Ω−1TwΩ (B.7)

Ta = 1
2

(
Tw11 + Tw12 + Tw21 + Tw22 Tw11 − Tw12 + Tw21 − Tw22

Tw11 + Tw12 − Tw21 − Tw22 Tw11 − Tw12 − Tw21 + Tw22

)
(B.8)

Since Eq. B.7 is symmetric, superscripts a and w can be switched in the above
equations to obtain the transition expressions from Ta to Tw.

B.3 Acoustic transfer matrix Ta and mobility matrix M

From acoustic transfer matrix Ta to mobility matrix M:

M =
[
J22 −TaJ21

]−1 [
TaJ11 − J12

]
(B.9)

M = 1
Ta12

(
−Ta11 1

Ta12Ta21 − Ta11Ta22 Ta22

)
(B.10)

From mobility matrix M to acoustic transfer matrix Ta;

Ta =
[
J22M + J12

] [
J21M + J11

]−1
(B.11)



B.3. Acoustic transfer matrix Ta and mobility matrix M 157

Ta = 1
M12

(
−M11 1

M12M21 −M11M22 M22

)
(B.12)
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Appendix C

Resolution of the Helmholtz
equation with the AVSP solver

C.1 The Helmholtz problem

The Helmholtz problem is defined as follows: Find p̂(x) and ω solution of (1.24) in
the bulk and satisfying the boundary conditions. In Eq. (1.24), a model is required
for the heat release fluctuation q̂. In AVSP, a distributed Flame Transfer Function is
used, where the interaction index nlocal and the time delay τlocal are space-dependent.

q̂(x) = nlocal(x, ω)eiωτlocal(x,ω)û(xref ) · nref (C.1)

Eq. 1.17 can be combined to Eq. C.1 (û is replaced by 1
ρoiω
∇p̂ ) to obtain a reactive

Helmholtz equation with only p̂ as acoustic variable.

ρo(x)co(x)2∇·
( 1
ρo(x)∇p̂(x)

)
+ω2p̂(x) = [γ(x)− 1]nlocal(x, ω)eiωτlocal(x,ω)∇p̂(xref ) · nref

ρo(xref )
(C.2)

In order to solve Eq. C.2, the gradient and divergence operators must be discretized
on the mesh for the computation p̂(xref ) and ∇ ·

(
1

ρo(x)∇p̂(x)
)
. In AVSP, this is

performed for unstructured meshes with a finite volume approach. The pressure p̂
is stored at nodes and the gradients are computed at the cells. The principle of this
discretization is recalled quickly here in 2D (3D extension is available and can be
derived in a similar way). More details are available in the thesis of P. Salas [168].

C.2 Discretization of ∇ ·
(

1
ρo(x)∇p̂(x)

)
for interior nodes

Fig. C.1 depicts a triangle element Ωe1 in 2D, defined by three nodes j, 1, 2 and
three edges L1n1, La1na1 and La2na2. The gradient of pressure p̂ is computed as
the mean value over the cell:

∇p̂
∣∣∣∣
Ωe1

= 1
SΩe1

∫
Ωe1
∇p̂dS (C.3)

Using Green-Ostrogradsky theorem, the surface integral is expressed as:
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Figure C.1: Triangle cell element in 2D

∇p̂
∣∣∣∣
Ωe1

= 1
SΩe1

∮
∂Ωe1

p̂ndL (C.4)

The line integral is computed assuming a linear evolution of the pressure on each
edge and the gradient is finally recast as:

∇p̂
∣∣∣∣
Ωe1

= 1
2SΩe1

[p̂jL1n1 + p̂1La1na1 + p̂2La2na2] (C.5)

In order to compute ∇ ·
(

1
ρo(x)∇p̂(x)

)
, the density ρo, stored at nodes, must be

estimated at the element. This is simply done by averaging over the node values:

1
ρo

∣∣∣∣
Ωe1

= 1
3

(
1
ρo,j

+ 1
ρo,1

+ 1
ρo,2

)
(C.6)
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Figure C.2: 2D interior node j with its dual cell in grey.

Now, the divergence of 1
ρo(x)∇p̂(x) must be computed at nodes. A dual cell ΩNj is

defined for this purpose and represented in Fig. C.2 for an interior node. The dual
cell is obtained by linking the centroid (intersection of medians) of each neighboring
cell Ωei (i = 1 . . . 6) to the middle of the edges passing through j. The edges of the
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1
ρo(x)∇p̂(x)

)
for boundary nodes 161

dual cell are noted lijnij (i = 1 . . . 6, j = 1, 2 in 2D). As an example, l11 and l12 are
represented in Fig. C.2.

As before, the divergence is evaluated as the mean value over the dual cell:

∇ ·
( 1
ρo(x)∇p̂(x)

) ∣∣∣∣
j

= 1
SΩNj

∫
ΩNj
∇ ·

( 1
ρo(x)∇p̂(x)

)
dS (C.7)

And the surface integral is transformed into a line integral by applying Green-
Ostrogradsky theorem:

∇ ·
( 1
ρo(x)∇p̂(x)

) ∣∣∣∣
j

= 1
SΩNj

∮
∂ΩNj

1
ρo(x)∇p̂(x) · n dS (C.8)

The gradient of pressure is assumed uniform over each element Ωei (i = 1 . . . 6) and
the line integrals over lij (i = 1 . . . 6, j = 1, 2) are straightforward.

∇ ·
( 1
ρo(x)∇p̂(x)

) ∣∣∣∣
j

= 1
SΩNj

6∑
i=1

( 1
ρo
∇p̂
) ∣∣∣∣

Ωei
· (li1ni1 + li2ni2) (C.9)

The previous relationship can be simplified with an application of Thales theorem:
li1ni1 + li2ni2 = 1

2Lini.

∇ ·
( 1
ρo(x)∇p̂(x)

) ∣∣∣∣
j

= 1
2SΩNj

6∑
i=1

( 1
ρo
∇p̂
) ∣∣∣∣

Ωei
· Lini (C.10)

Using Eq. C.5 and Eq. C.6, replacing indices 1 and 2 by i and i+ 1 respectively, the
gradient of pressure at each cell Ωei can be expressed as a function of the pressure at

nodes and can be inserted into Eq. C.10 to obtain the expression of∇·
(

1
ρo(x)∇p̂(x)

) ∣∣∣∣
j

as a function of the pressure at node j and its immediate neighbors.

C.3 Discretization of ∇·
(

1
ρo(x)∇p̂(x)

)
for boundary nodes
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Figure C.3: 2D boundary node with its dual cell in grey. The boundary
edge is represented by hatched lines.
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For a boundary node such as the one of Fig. C.3, the dual cell is truncated. The
quantity ∇ ·

(
1

ρo(x)∇p̂(x)
)
now depends on the gradient of the pressure along the

boundary edges l13n and l33n.

∇ ·
( 1
ρo(x)∇p̂(x)

) ∣∣∣∣
j

= 1
SΩNj

[ 3∑
i=1

( 1
ρo
∇p̂
) ∣∣∣∣

Ωei
· Li2 ni

+
( 1
ρo
∇p̂
) ∣∣∣∣

Ωe1
· l13n

+
( 1
ρo
∇p̂
) ∣∣∣∣

Ωe3
· l33n

]
(C.11)

Additional information is required and is provided by the boundary conditions. Un-
less a Dirichlet condition is imposed, in which case p̂j is simply set to 0, the boundary
condition can be expressed as a Robin condition.

(∇p̂ · n− α p̂+ β)
∣∣∣∣
j

= 0 (C.12)

This is used to express the gradient of pressure along n.

( 1
ρo
∇p̂
) ∣∣∣∣

Ωe1
· l13n +

( 1
ρo
∇p̂
) ∣∣∣∣

Ωe3
· l33n = 1

ρo,j
α p̂j (l13 + l33) (C.13)

For a Neumann boundary,

α = 0, β = 0 (C.14)

For a boundary of impedance Z(ω),

α = iω

coZ(ω) , β = 0 (C.15)

For the Matrix Boundary Condition, with the notation of Section 2.3:

Upstream patch:
α = M11(ω) iω

co,u
, β = M12(ω) iω

co,d

ρo,u
ρo,d

p̂d (C.16)

Downstream patch:

α = M22(ω) iω
co,d

, β = M21(ω) iω
co,u

ρo,d
ρo,u

p̂u (C.17)

C.4 Discretized Helmholtz equation and fixed point it-
eration

Once discretized, the Helmholtz equation can be written as an eigenvalue problem:
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Ap̂+ B(ω) + ω2p̂ = C(ω)p̂ (C.18)

with:

– A is a symmetric operator corresponding to the discretization of∇·
(

1
ρo(x)∇p̂(x)

)
– B(ω) is a frequency-dependent operator aggregating all boundary condition

terms. It is non-zero only for boundary nodes.

– C(ω) is another frequency-dependent operator corresponding to the flame source
term.

As Eq. (C.18) shows, this eigenvalue problem is linear when no flame or complex
impedance boundaries are present. In this case, the problem can be solved efficiently
with classical algorithms for large and sparse eigenproblems, as presented in [168].
Otherwise, the eigenproblem is nonlinear with respect to the eigenvalue and this is
solved in AVSP with the use of a fixed point iteration [29]. The principle of the fixed
point iteration is the following (Fig. C.4).

ȦQ AŜ+ B(Ȧ) + Ȧ�Ŝ = C(Ȧ)Ŝ I(ȦQ)

ȦQ�� AŜ+ B(Ȧ) + Ȧ�Ŝ = C(Ȧ)Ŝ I(ȦQ��)

I �(ȦQ)

I (ȦQ) � I (ȦQ��)
ȦQ � ȦQ��

�
�� I �(ȦQ)

ĮQ(�� ĮQ)ȦQ + ĮQ I (ȦQ)ȦQ+�|ȦQ+� � ȦQ| < İ

Converged	



Yes	



No	



Figure C.4: Fixed point iteration in AVSP. For clarity, the limiter ∆ is
not represented.

Initialization

1. Choose an initial guess ωo to initialize all frequency dependent operators.

2. Solve the linearized eigenproblem with B(ωo) and C(ωo). Only the closest
frequency to ωo is retained and is called f(ωo). The function f(ω) corresponds
to the process that associates to any complex ω the closest eigenfrequency of
the Helmholtz problem (C.18).

3. Set a new target ω1 = f(ωo)

Recurrence At the n-th iteration (n>1):

1. Solve the linearized eigenproblem with B(ωn) and C(ωn). This yields a solution
of frequency f(ωn).

2. Set a new target ωn+1 using relaxation.

ωn+1 = (1− αn)ωn + αnf(ωn) = gαn(ωn) (C.19)
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The value of the relaxation coefficient αn is optimized in order to ensure/accelerate
the convergence process. Indeed, the fixed point iteration with relaxation con-
verges only if

|g′αn | < 1 (C.20)

The value of αn is therefore chosen at each iteration so that g′αn = 0.

αn = 1
1− f ′(ωn) (C.21)

The derivative f ′ is unknown and is estimated with a simple finite difference.

f ′(ωn) ≈ f(ωn)− f(ωn−1)
ωn − ωn−1

(C.22)

In order to avoid the new guess ωn+1 to stray too far from the previous value
ωn (this could happen because of a bad estimation of f ′ for example), a limiter
∆ is set. If |ωn+1 − ωn| > ∆, ωn+1 is replaced by

ωn+1 = ωn + ∆ exp(iφ) with φ = arg(ωn+1 − ωn) (C.23)

The procedure to derive the next guess (automatic computation of the relax
coefficient and use of a limiter) was developed by M. Miguel-Brebion and E.
Courtine from Institut de Mecanique des Fluides de Toulouse.

3. Repeat step (2) and step (3) until convergence is reached, i.e. |ωn+1 − ωn| < ε
with ε the value of the tolerance.

This fixed-point approach mimics Newton’s method for the function F (ω) = f(ω)−ω
if (C.22) is exact.
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Appendix D

Analytical models for the
acoustic behaviour of an orifice
with bias flow

The acoustic behaviour of an orifice with bias flow has been studied for a long time,
experimentally [169, 19, 170, 115, 116, 158, 171] or numerically [122, 103, 104]. Many
analytical models are also available and the works of [170, 19, 115, 107, 171, 122]
is only a non exhaustive list. In this thesis, only two models were considered: the
famous model of Howe [19] and an adaption proposed by Bellucci [158]. The strong
point of Bellucci’s model is to include a simple dependency of the reactance with the
bias flow Uori and the porosity σ.

2a 

Uori 

Ŝ+, X̂

Ŝ�, X̂

d 

d 

Figure D.1: Quantities of interest for the acoustic behavior of an orifice
in bias flow.

Both of these models start from the observation that an acoustic plane wave is
modified when traveling across a perforated plate. Unlike the plane-wave velocity û,
the plane-wave pressure p̂ is discontinuous. This discontinuity is present even in the
absence of mean flow and was studied first by Lord Rayleigh [157]. He characterized
the pressure discontinuity with a quantity known as the Rayleigh conductivity KR.

KR = iρoωĜ

[p̂+ − p̂−] (D.1)

where Ĝ = d2û · n is the acoustic volume flow rate through the plate (Fig. D.1).
With this quantity, the jump conditions across an orifice can be expressed in matrix
form as:
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T =
(

1 2ξ
0 1

)
(Acoustic transfer matrix) (D.2)

S = 1
1− ξ

(
1 −ξ
−ξ 1

)
(Scattering matrix) (D.3)

with ξ = iωd2

2coKR . The real part of ξ is linked to the resistance of the orifice and its
sign determines its damping or amplifying (in the case of whistling) behaviour1. The
imaginary part of ξ is linked to the the reactance of the orifice and does not introduce
any damping or growth rate. Similarly, the imaginary part of KR determines the
damped / amplified behaviour of the orifice, while the real part of KR has no effect
on its stability. For an inviscid fluid with zero mean flow, the theoretical value of
KR for an orifice of radius a in an infinite plate of zero thickness is real and equal
to 2a [157].

D.1 The model of Howe

In the presence of a viscous mean flow, an unstable shear layer is created at the
edges of the orifice and can couple with the acoustics through viscous effects. In
the model of Howe [19], this coupling always leads to an acoustic damping and the
corresponding Rayleigh conductivity is:

KR = 2a(ΓSt − i∆St) (D.4)

ΓSt and ∆St are two real valued functions of the Strouhal number defined with the
orifice bias-speed as St = ωa

Uori
(Fig. D.2).

ΓSt − i∆St = 1 +
π
2 I1(St)e−St − iK1(St) sinh(St)

St(π2 I1(St)e−St + iK1(St) cosh(St)) (D.5)

Remarks:

– In the limit St →∞, the model of Howe degenerates into the theoretical value
of Rayleigh.

– A simpler fit of Howe’s model, derived from physical considerations, has been
provided by Luong [107].

– For a plate of finite thickness h, an acceptable approximation of KR is:

KR = 2a
( 1

ΓSt − i∆St
+ 2h
πa

)−1
(D.6)

– Howe’s model can also be used to compute the Rayleigh conductivity of one
perforation in a circular plate of finite size, if the interaction with the outer
casing is neglected (i.e. the plate if big enough compared to the orifice). In this

1This can be proved by computing the different between the upstream and downstream acoustic flux
1
2<[(p̂+ − p̂−)Ĝ∗)]
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Figure D.2: Evolution of ΓSt and ∆St with the Strouhal number.

case, the average distance between perforations d is replaced by
√
πR with R

the radius of the plate.

D.2 The model of Bellucci

In the model of Bellucci, the interaction between orifices, or with an outer casing is
considered, but only for the reactance. This is supported by their own experiments
but also by observations from Lee et al. [171]. Lee et al. noted relatively little
change in the resistance compared to the reactance, when the porosity parameter
was varied. For this reason, Bellucci et al. use the resistance of the model of Howe
[19] for the resistance R = <(2ξ), but propose a new expression for the reactance
X = =(2ξ).

R = <
(
iωd2

coKR

)
(D.7)

X = k
2`+ h

σ
(D.8)

The quantity ` accounts for the end correction at the two ends of the orifice. It is
defined by Bellucci et al. as:

` = φ(He)χ(σ)ψ(St)θ(Stac) (D.9)

with He = ka the Helmholtz number, σ the porosity, St the Strouhal number and
Stac = ωa

uac
the acoustic Strouhal number. The functions φ, χ, ψ, and θ mainly come

from experimental fits or correlations and have the following expressions:

φ(He) = 0.8216a
(

1 + (0.77He)2

1 + 0.77He

)−1

(D.10)
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χ(σ) = 1−
√
σ

2 (D.11)

ψ(St) = 0.3(6.0/St2) + 1
6.0/St2 +1

(D.12)

θ(Stac) = 1− 0.3
St0.6
ac

(D.13)

In this thesis, nonlinear hydro-acoustic damping was neglected so that Stac → ∞
and θ = 1. Fig. D.3 shows the normalized reactance σX as a function of frequency,
for Howe’s model and Bellucci’s model, for an orifice of radius a = 0.009 m, thickness
h = 0.002 m, bias flow velocity Uori = 10.0 m/s and values of σ ranging from 0.0003
to 0.8.
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Figure D.3: Reactance of an orifice with Howe’s model and Bellucci’s
model.

The validity of Bellucci’s model was tested by comparing it to LES matrices of two
configurations.

– The orifice in a tube of Chapter 3.

– The same orifice in a confinement tube of cross-section four times larger. The
bias flow velocity in the orifice is kept constant by dividing the inlet bulk velocity
by four.

As Fig. D.4 and Fig. D.5 show, Bellucci’s model provide a better estimation of the
imaginary part of T12 for both configurations and performs exactly as Howe’s model
for the other coefficients.
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Appendix E

Analytical expressions of α for
disks and half-spheres

For disks discretized by a regular inscribed polygon, α can be estimated as a function
of the disk radius a and the mesh size dx.

α(a, dx) = 1

1 +
2dx
a√

1− (1
2
dx

a
)2)

(E.1)

A simple expression can also be determined for a half-sphere if we assume that the
surface of the sphere is approximately equal to twice that of a disk of same radius.

α(a, dx) = 1

1 +

dx

a√
1− (1

2
dx

a
)2)

(E.2)
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Appendix F

Analytical models and
correlations for the correction
length leq

In this appendix, the models used in the manuscript for the acoustic correction
length of an orifice in the absence of mean flow and viscosity are recalled briefly in
Section F.1. These models assume that the orifice geometry is perfectly discretized.
As this is not the case in our Helmholtz computations, a new correlation is derived in
Section F.2. For all models, the geometry is described with the notation of Fig. F.1.

�D

6� = ʌD�

6� = ʌ5�WXE

ı =
6�
6�

Figure F.1: Typical orifice geometry.

F.1 Existing models and correlations

F.1.1 Model of Rayleigh

Rayleigh [157] derived the equivalent length of an orifice in an infinite plate of zero
thickness and found a value of π2 a. The correction length, on each side of the orifice,
is then equal to half of this value.

Rayleigh model leq
a

= π

4 (F.1)
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F.1.2 Model of Bellucci et al. at M � 1

The model of Bellucci [158], presented in Appendix D, can be used to obtain the
correction length of an orifice with zero mean flow and small acoustic amplitudes, as
is the case in our Helmholtz solver. It is actually the combination of a correlation for
the correction length of a section change with an infinite flange [172], and a model
for the interaction with walls or other orifices [161].

Bellucci model leq
a

= 0.8216
[
1 + (0.77He)2

1 + 0.77He

]−1 [
1−

√
σ

2

]
(F.2)

with He = ka, the Helmholtz number.

F.1.3 Correlation of Kang et al.

In the work of Kang et al. [159], the correction length of many section changes
with different section ratios is computed with 2D-axisymmetric FEM solver. The
correlation below is deduced from this database. Although the mesh resolution seems
fine in the spatial visualizations, no information about it is provided in the article.

Kang model leq
a

= 0.8216− 1.0795
√
σ (F.3)

F.2 Determination of a new correlation for leq

Since none of the three models/correlations above take into account the orifice mesh
resolution η = dx/a, a new correlation for leq was derived in this thesis. For this,
the acoustic matrix of geometries similar to the ones of Fig. 4.24 was measured with
AVSP-f for the acoustic quantities of Fig. 4.23, for different sizes of the confinement
tube and different mesh sizes dx (Tab. F.1). The radius of the orifice is set to 0.009
m but the effective radius is mesh dependent and estimated as

√
S/π, with S the

discretized orifice surface (Tab. F.2). The matrix should be equal to:

T =
(

1 ikleq
0 σ

)
(F.4)

√
σ

η 1.0 0.4 0.2 0.1

0.50 A0 A1 A2 A3
0.22 B0 B1 B2 B3
0.10 C0 C1 C2 C3
0.05 D0 D1 D2 D3

Table F.1: Configurations used for the determination of a new correlation
for leq

The values of leq and σ are estimated by performing respectively a linear fit and a
constant fit of coefficients T12 and T21. As an example, the matrix obtained for case
A0 is plotted in Fig. F.2, with the fits in question.
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Mesh number 0 1 2 3
η 1.0 0.4 0.2 0.1
a 0.00854 0.00888 0.00897 0.00899

Table F.2: Discretized orifice radius a for each mesh size.
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Figure F.2: Matrix of configuration A0 (crosses) and fits for leq and σ
(solid lines).

Following the correlations of Bellucci et al. [158] and Kang et al. [159], the evolution
of leq/a with

√
σ is fitted with a linear function for each mesh resolution (Fig. F.3).

Note that the value of the radius a in leq/a is the one of Tab. F.2

The coefficients A and B of the fit leq = A
√
σ+B are then plotted against the mesh

resolution η (Fig. F.4). For the constant coefficient a, no specific function seems to
fit the data. Therefore, A was set to its average value A = −1.085. Coefficient B
can be approximated by a linear function B = 0.875 − 0.211η, with a correlation
coefficient of 0.99.

These expressions of A and B are finally combined into a new correlation, called
η-correlation in the rest of the manuscript.
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√
σ for different mesh resolutions

(crosses) and associated linear fit (solid lines).
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Figure F.4: Evolution of A and B with η.

η-correlation leq
a

(η, σ) = 0.875(1− 1.240σ − 0.240η) (F.5)
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Appendix G

Acoustic flux balance criterion
for the SAFRAN swirler

G.1 Acoustic flux balance for matrix jump conditions

$+
X

$�
X $�

G

$+
G 

 
 
 

ȡR,X
FR,X

ȡR,G
FR,G

VGVX S
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Figure G.1: Acoustic two-port with different up- and downstrea thermo-
dynamic properties and sections.

Consider a set of matrix jump conditions such as the one depicted in Fig. G.1,
linking an upstream and downstream states characterized by different cross-sections,
densities and sound speeds. Assuming there is no source term in the system of
Fig. G.1, acoustic energy is lost/gained due to acoustic fluxes. The power dissipated
in the system can be derived as a function of the up- and downstream pressure and
velocity.

Pdis = su
2 <[p̂uû∗u]− sd

2 <[p̂dû∗d] (G.1)

where ∗ denotes the complex conjugate. The acoustic pressure and velocity can be
decomposed as a sum of two plane wave amplitudes:

p̂ud = A+
ud +A−ud (G.2)

ûud = 1
ρo,ud co,ud

(A+
ud −A

−
ud) (G.3)

With these plane wave amplitudes, the dissipated power is expressed as:

Pdis = su
2ρo,uco,u

(|A+
u |2 − |A−u |2)− sd

2ρo,dco,d
(|A+

d |
2 − |A−d |

2) (G.4)
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Two vectors Yin and Yout are now introduced to characterize the in- and outgoing
acoustic states.

Yin =


√

su
ρo,uco,u

A+
u√

sd
ρo,dco,d

A−d

 (G.5)

Yout =


√

sd
ρo,dco,d

A+
d√

su
ρo,uco,u

A−u

 (G.6)

These two vectors are related to each other with a variant of the scattering matrix
S̃.

Yout = S̃Yin, (G.7)

with S̃ defined as a function of the regular scattering matrix S (Tab. 2.1) as:

S̃ =


√

sd
ρo,dco,d

0

0
√

su
ρo,uco,u

S


√
ρo,uco,u
su

0

0
√
ρo,dco,d
sd

 (G.8)

When the up- and downstream sections, sound speeds and densities are equal as it
was the case in Sections 3.5 and 3.6, S̃ reduces to S. The dissipated power has a
very simple expression when introducing the vectors Yin and Yout.

∆F = Y †inYin − Y
†
outYout (G.9)

∆F = Y †in

(
I− S̃†S̃

)
Yin (G.10)

Equation (G.10) shows that the quantities of interest for the evaluation of the dissi-
pated power are indeed the eigenvalues of I− S̃†S̃. The present analysis in in fact a
simplified form of the derivation proposed by Auregan and Starobinski [154], with a
different notation and assuming that the mean flow is zero.

G.2 Eigenvalues of I− S̃†S̃ for the SAFRAN swirler

In Section 5.5.2, a Helmholtz computation of the SAFRAN combustor is performed
by replacing all swirlers by their equivalent purely acoustic (non-dissipative) matri-
ces. In contrast to what is expected, the damping rate is increased when doing so.
A plausible explanation is that the purely acoustic matrix after adjustment does not
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lead to a perfectly zero acoustic flux balance. This could be due to small errors in
the numerical measurement of the acoustic and adjustment matrices.

To check this, the criterion from [154] is applied, by plotting the eigenvalues of
S̃†S̃ − I, with S̃ defined in Eq. (G.8), for the plane cold non-dissipative matrix,
the adjusted cold non-dissipative matrix, the adjusted non-dissipative matrix with
temperature jumps (Fig. G.2). In addition, Fig. G.2 also provides the result of the
criterion for the LES plane and adjusted matrices, and the adjustment matrices. For
the plane non-dissipative matrix, the eigenvalues are very close to zero as expected
in a situation where the acoustic flux is conserved. Adjustment matrices also feature
eigenvalues reasonably close to zero. However, the eigenvalues for the non-dissipative
adjusted matrix with temperature correction move away from this ideal situation.
Since these eigenvalues are of opposite sign, the associated matrix can either amplify
or damp acoustics and this could explain the additional damping rate observed in
R3a. On way to reduce this error in future works would be to add the constraint
that I− S̃†S̃ = 0 in the least-square system of Eq. (2.3), but this was not done here
due to a lack of time.
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Figure G.2: Eigenvalues of I− S̃†S̃ for the plane matrices (left), adjusted
matrices (middle) and adjusted matrices with temperature jump (right).
On each plot, the eigenvalues of the adjustment matrices are also recalled.
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Appendix H

Helmholtz computations of the
SAFRAN combustor with active
flames only

In Section 5.6, surface-based Flame Transfer Functions (FTF) are computed in the
reactive LES of one sector of the SAFRAN combustor. In order to assess their
quality, the surface-based FTFs obtained at three different surfaces S1, S2 and S3
(Fig. 5.21) are included in a simplified Helmholtz solver setup, where the flame
is the only element impacting the growth/damping rate (setup R4 in Tab. 5.1).
No dissipative model is used for the perforated plates, dilution holes and swirlers.
Perforated plates are represented by homogeneous walls, while dilution holes and
swirlers are fully discretized. The variability of the Helmholtz solution with the
choice of reference surface and with the signal processing technique (DMD or FFT)
is assessed and the results obtained with surface-based FTFs are also compared with
those produced with regular point-based FTFs (with sets A and B in Fig. 5.27). The
associated list of runs is presented in Tab. H.1.

RUN Reference location Source of FTF parameters
R4a Probe A Fourier
R4b Probe B Fourier
R4c Surface S1 Fourier
R4d Surface S2 Fourier
R4e Surface S3 Fourier
R4f Surface S1 DMD
R4g Surface S2 DMD
R4h Surface S3 DMD

Table H.1: List of R4x computations (active flame in a simplified geometry
without dissipative elements).

With all FTF parameters, a first azimuthal mode is found unstable, with the fre-
quencies listed in Tab. H.2. While the change of geometry (i.e. removing the swirler)
did not modify the acoustics of the burner in the absence of flame, the situation is
radically different when introducing one. The combination of a surface-based FTF
and a matrix swirler decreases the real part of the frequency by about 10% and con-
siderably increases the imaginary component (by about a factor 30 in the worst case).
The difference increases when the volume removed from the geometry is greater. The
worst results are obtained with the biggest surface S3 and the best with the small-
est surface S2. This drastic modification is not well understood yet. One possible
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cause might be related to the observation made in Section 4.5.3: the acoustics and
stability of the combustor can be modified because the transverse components of
the velocity fluctuation created by the flame are removed when passing through the
matrix surfaces. The difference could also be due to the high ratio between the gain
for the point-based FTF and the surface-based ones. For now, there is no strong
argument in favor of one formalism or the other. These issues should be investigated
in the future.

RUN Frequency [Hz]
R4a 293.0 + 1.51 i
R4b 294.0 + 1.74 i
R4c 268.5 + 43.2 i
R4d 279.1 + 36.5 i
R4e 262.7 + 51.4 i
R4f 270.3 + 30.0 i
R4g 276.9 + 26.3 i
R4h 262.4 + 34.0 i

Table H.2: Frequency of the first azimuthal mode in R4x computations.

Another surprising observation of Tab. H.2 is that the variability between the fre-
quencies obtained with the surface-based FTFs is quite important, even though the
signals used to compute the FTF were very similar. The disparity between R4c, R4d
and R4e is actually much greater than the one between R4a and R4b, obtained with
the point-based FTFs. Again, we have no definite explanation for now. It is possible
that removing the swirler from the geometry as done here modifies the acoustics in
the combustor, leading to different velocities on the reference surface in the LES and
in the Helmholtz solver. To check this, R4x computations should be run again with a
geometry including the swirler, and a reference surface interpolated on the complete
mesh. This was not done during this thesis because it requires rather important
code developments.

Concerning the mode structures (Fig. H.1), the same kind of observations can be
made. The mode structure remains quite similar to the one observed in the previous
runs. The level of pressure fluctuations is much more important with surface-based
FTFs than with point-based ones and it increases when switching from S2 to S1 and
finally S3. The phase delay between the bypass and the flame tube follows the same
evolution. In Fig. H.1, only runs R4a, R4c, R4d, R4e are shown. Indeed, R4a and
R4b are almost identical. The pressure level in R4f, R4g and R4h is slightly lower
than in R4c, R4d and R4e but the same evolution with the size of the reference
surface is observed.
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Figure H.1: Modulus of pressure in a transverse cut and phase of pressure
seen from the back of the combustor for R4a, R4c, R4d and R4e.
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Appendix I

Separation of the acoustic flux
contributions in the Helmholtz
computation of the SAFRAN
combustor

For the acoustic energy balance analysis of Section 5.7, the total acoustic flux is
decomposed into the contributions of each type of boundary condition. A naive
decomposition consists in computing the acoustic flux separately on the cells of each
type of boundary condition. Unfortunately, this decomposition fails when many
boundaries share common edges. Indeed, as already explained in Section 4.3.2,
nodes and cells shared by two boundary conditions receive a contribution from the
two. In this section, a simple approximative procedure is presented to reallocate
acoustic flux to the correct boundaries. In this procedure, two categories of shared
edges are distinguished:

Edges shared by a dissipative boundary and a wall. In this case, some of the
acoustic flux on the wall is reattributed to the dissipative boundary, following
the procedure described next. Matrix patches for the swirlers and perforated
plates feature this type of edges.

Edges shared by two dissipative boundaries. In the present configuration, only
dilution holes and perforated plates share this type of edges. The previous
Helmholtz computations indicate that the dissipative effect of dilution holes
dominates the one of perforated plates. Part of the acoustic flux on perforated
plates is therefore wrongly attributed and should be reassigned to dilution holes,
with the procedure described below.

The redistribution of acoustic flux is performed based on the assumption that the
effect of dissipative boundaries is felt not only by the cells of the boundary but also by
the immediate neighbors. This effect is taken into account with a corrective factor,
computed with an approach similar to the one of Section 4.3.2. The procedure is the
following. For each pair of adjacent patches (k, i) (with k the ID of the dissipative
patch, and i the IDs of the adjacent walls / perforated plates if i corresponds to a
dilution hole):

1. Compute the total length of shared edges C.
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2. Compute a corrective factor β:

β = Cdx
Sk

(I.1)

In this expression, the mesh size dx at shared edges should remain constant,
and this is well-verified for all the meshes studied here. The corrective factor
β mimics the fact that the effect of patch k actually extends one cell over its
prescribed outline (Fig. 4.14). This is an approximation, but it works well, as
demonstrated in Section 4.3.2.

3. Correct the initial acoustic flux Fk (integrated over the cells) by multiplying it
by 1 + β.

Fk ← Fk(1 + β) (I.2)

In order to retain the same sum of fluxes, the fluxes from patch i must also be
modified :

Fi ← Fi − Fkβ (I.3)

Without this procedure, the acoustic flux distribution cannot be trusted. For exam-
ple, in a Helmholtz computation of the industrial geometry where the only dissipative
boundaries are at dilution holes, the acoustic flux distribution without correction in-
dicates that only 70% of the flux actually comes from the dilution holes, while the
remaining 30% are attributed to walls. With the proposed procedure, a coherent
acoustic flux distribution is obtained, with 100% of the flux coming from the di-
lution holes. Figure I.1 shows another illustration of the benefits of the corrective
procedure on computation R5a (Tab. 5.8). The corrective procedure successively
reallocates the acoustic flux from the walls to the perforated plates and swirlers, and
from the perforated plates to the dilution holes.
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Figure I.1: Energy balance for the most amplified mode of R5a, with (left)
and without (right) correction.
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