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Résumé
L’hémodynamique est aujourd’hui considérée par la communauté médicale comme
un marqueur prépondérant dans l’apparition et dans l’évolution de certaines
pathologies artérielles (formation d’un caillot sanguin, anévrisme, sténose,...). Sa
caractérisation par imagerie médicale est désormais possible grâce à l’Imagerie
par Résonance Magnétique, qui présente l’avantage d’être une technique non
invasive et non ionisante. Historiquement réservée à l’étude morphologique des
organes, les progrès technologiques réalisés cette dernière décennie ont permis de
l’adapter à l’évaluation hémodynamique grâce à l’IRM à contraste de phase 3D
(ou IRM de flux 4D) [100]. En donnant accès à l’évolution temporelle du champ
de vitesse dans les trois directions de l’espace en plus de la morphologie du secteur
artériel d’intérêt, cette technique constitue potentiellement un outil de choix en
pratique clinique pour la prise en charge et le suivi des patients. Contrairement à
l’imagerie de flux 2D utilisée pour mesurer le débit selon une orientation et position
de coupe déterminées en cours d’examen, l’imagerie 4D fournit au clinicien la
possibilité d’évaluer rétrospectivement de nombreuses quantités utiles au diagnostic
à partir d’un examen unique et compréhensible. Par exemple, deux mesures de
débit volumique effectuées sur un même volume d’acquisition (aorte et tronc
pulmonaire) suffisent en théorie à estimer la sévérité d’une hypertension artérielle.

Outre la simplicité d’analyse des données, il devient possible d’estimer de
nouveaux biomarqueurs dérivés du champ de vitesse tels que les contraintes de
cisaillement parietales [128], la pression statique [86], ou encore le temps de séjour.
S’ils sont difficilement accessibles par les techniques d’imagerie classiques, ces
paramètres sont pertinents en terme de diagnostic médical : en modifiant la
fonction des cellules endothéliales, la variation temporelle du frottement pariétal
(Wall Shear Stress) joue un rôle prépondérant dans la déformation des parois
vasculaires responsable de la formation d’anévrismes [110] ; la perte de charge
est corrélée à la sévérité d’une sténose artérielle et permet également d’évaluer la
nécessité d’une intervention chirurgicale pour remplacer une valve cardiaque. Enfin,
il est désormais envisageable grâce à l’IRM de flux 4D de quantifier des marqueurs
associés à des phénomènes hémodynamiques complexes tels que l’énergie cinétique
turbulente [87], ou la perte de charge due à la production de turbulence [64],
qui semblent être impliquées dans le développement de certaines pathologies
cardiovasculaires comme la formation de plaque d’athérome ou dans certaines
dysfonctions cardiaques [32, 45].

Cependant, la résolution spatio-temporelle limitée accessible en IRM de flux 4D
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Figure 1: Illustration schématique du banc d’essai expérimental et du fantôme.

(typiquement 2 mm en espace et 0.05 s en temps pour une acquisition thoracique), la
dépendance des résultats à la vitesse d’encodage, la présence d’artéfacts expérimen-
taux ou encore la complexité des séquences et les variabilités inter-constructeurs
sont autant de facteurs qui limitent la précision des mesures de flux et la confiance
que l’on peut leur accorder [58, 60]. L’erreur de mesure sur le champ de vitesse ne
pourra par ailleurs être qu’amplifiée par le calcul d’une quantité dérivée comme
le frottement pariétal, pourtant au cœur des applications cliniques. De plus, les
complexités intrinsèques au processus d’acquisition en IRM rendent difficilement
identifiables les sources d’erreurs de ces mesures (protocole d’acquisition, logiciel,
machine). Ces limitations sont autant de freins à l’utilisation intensive de l’IRM
de flux 4D en routine clinique ; elles le demeureront tant qu’une méthodologie
rationnelle permettant de contrôler in situ la qualité des données hémodynamiques
produites n’aura pas été mise en place.

Une méthode alternative consiste à utiliser la simulation numérique par mé-
canique des fluides (Mécanique des fluides Numériques ou MFN) pour reconstruire
l’écoulement 3D compatible à la mesure par IRM. Bien qu’elle repose sur plusieurs
hypothèses de modélisation, la MFN couplée aux mesures IRM facilite l’accès
à l’intégralité du champ hémodynamique sans les contraintes expérimentales de
l’IRM (résolution spatio-temporelle, bruit de mesure, artéfacts). Au regard des
bénéfices qu’elle apporte, cette approche a suscité beaucoup d’intérêts dans la com-
munauté médicale et de nombreux développements ont déjà été réalisés à ce jour.
Néanmoins, de récentes études ont mis en lumière l’importance prépondérante
du choix des paramètres de simulation sur les prédictions de certains marqueurs
hémodynamiques [156, 172].

Le premier objectif de cette thèse est de développer une méthodologie permet-
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Figure 2: Coupe transverse de la norme du champ de vitesse obtenue par MFN
et mesurée par IRM de flux 4D dans le fantôme après post-traitements à trois
différents instants dans le cycle (gauche début du cycle, centre, pic systole et
droite diastole).

tant l’évaluation systématique des mesures par IRM de flux 4D dans un régime
d’écoulement complexe. Pour ce faire, un banc d’essai expérimental muni d’une
pompe programmable produisant un écoulement pulsé contrôlé par un débitmètre
à ultrason (voir Figure 1) a été développé. L’écoulement est délivré au sein
d’un fantôme IRM compatible capable de générer un écoulement typique de ceux
observés dans la circulation thoracique (crosse aortique, bifurcation, anévrisme).
Les propriétés du fluide et la position des parois rigides du fantôme étant connues
au préalable, cette configuration in vitro de s’affranchir d’une multitude de sources
d’incertitudes rencontrées physiologiquement (rhéologie du sang, déformation des
artères, erreurs de segmentation). L’écoulement résultant mesuré par IRM de
flux 4D est ensuite comparé à l’écoulement prédit par un outil de simulation
numérique développé à l’IMAG et dédié à la prédiction des écoulements sanguins
(YALES2BIO). L’analyse des résultats obtenus permet d’expliquer la majeure
partie des différences entre MFN et IRM et de réduire celles-ci par des traite-
ments adaptés (correction de volume partiel, filtrage physique, ré-échantillonnage,
...). La corrélation finalement obtenue (supérieure à 97 %) permet d’établir un
écoulement de référence pour le fantôme considéré (voir Figure 2) et de proposer
une méthodologie de contrôle qualité utilisable in situ des systèmes IRM de flux 4D.

Dans la deuxième partie de la thèse, la méthodologie développée est utilisée afin
d’évaluer différentes méthodes de reconstruction de quantités dérivées du champ
de vitesse à partir de mesures IRM. Plusieurs méthodes de reconstruction du
frottement pariétal (voir Figure 3) et de la pression (voir Figure 4) sont successive-
ment évaluées et comparées. Dans un premier temps, l’évaluation du frottement
pariétal par MFN révèle qu’un raffinement local du maillage est nécessaire pour
résoudre raisonnablement la couche limite dans ce régime d’écoulement. De plus,
les différentes approches testées fournissent des estimations du frottement très
variables et éloignées de la MFN. Au contraire, la reconstruction du champ pression
semble très peu sensible aux détails du champ de vitesse mesuré par IRM. De plus
la contribution inertielle à la pression semble largement dominer la perte de charge
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Figure 3: Magnitude du frottement pariétal obtenue en pic systole pour différents
algorithmes de reconstruction. (a) Approche volume-finis, (b) Potters et al., [128],
(c) Sotelo et al. [142], (d) MFN.
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Figure 4: Perte de charge estimée par plusieurs méthodes de reconstruction dans
le fantôme. UB : Approche Bernoulli instationnaire, SB : approche Bernoulli
simplifiée.

totale dans le fantôme, ce qui suggère qu’une acquisition 2D effectuée à l’entrée
du domaine suffit à obtenir une estimation précise des variations de perte de charge.

De nombreuses erreurs de mesures sont dues à l’utilisation de paramètres
d’acquisition peu adaptés au type d’imagerie à effectuer (angle de bascule, résolu-
tion spatio-temporelle, vitesse d’encodage). Un moyen d’identifier les paramètres
causant ces distorsions de la réalité consiste à simuler numériquement le processus
d’acquisition en IRM. La dynamique de l’aimantation décrite par les équations
de Bloch [17] est au centre de l’acquisition en IRM et constitue le phénomène
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(a) t/Tp = 0.2 (b) t/Tp = 0.44

(c) t/Tp = 0.68 (d) t/Tp = 0.91

Figure 5: Coupe transverse de la magnitude du champ de vitesse (gauche) simulé
par IRM et (droite) prédit par MFN à 4 différentes phases dans le cycle.

physique responsable du contraste sur une image en IRM. L’intérêt de telles
simulations est alors de pouvoir reconstruire une image synthétique exempte de
toute erreur expérimentale propre à la mesure IRM. Un autre intérêt de la simu-
lation d’IRM est de pouvoir distinguer les erreurs dues à un dysfonctionnement
machine (aimant permanent, antennes réceptrices, gradients, radio-fréquence, ...)
des erreurs logicielles (algorithme de reconstruction, interpolation) ou issues d’un
protocole d’acquisition peu adapté au type d’imagerie à effectuer (cœur, carotide,
aorte). Afin de prendre en compte le déplacement du fluide dans les simulations,
il est nécessaire de coupler l’IRM avec la MFN. Les deux phénomènes mettant en
jeu des échelles de temps physique très variées, il est alors complexe de simuler
efficacement une telle configuration.

Afin d’aboutir à une évaluation plus complète des données issues des systèmes
IRM de flux 4D, le troisième volet de cette thèse présente le développement d’un
outil de simulation du processus d’acquisition en IRM. Les étapes principales ainsi
que les choix numériques sont développés dans un premier temps. Une méthode
de couplage avec la MFN et d’injection de particules permettant de minimiser le
coût de calcul est présenté. L’association d’une intégration numérique et d’une
formulation semi analytique pour avancer les équations de Bloch est présentée.
Par la suite, plusieurs cas de validation sont présentés et les gains associés à cette
méthodologie sont quantifiés. Finalement, la méthodologie complète est validée
sur le fantôme, le champ de vitesse reconstruit est analysé, et comparé à des
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mesures expérimentales (voir Figure 5).
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1.1 Motivations
With more than 31% of the deaths, cardiovascular diseases (CVDs) are the leading
cause of mortality worldwide. Notably, the last three decades have seen an increase
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CHAPTER 1. INTRODUCTION

by 6% of the total number of deaths due to cardiovascular disorders [116]. In
this respect, research associated with the development of early diagnosis metrics
and adapted medical treatments have become a widespread public health issue.
Among the many risk factors identified, hemodynamics (dynamics of blood flows)
has recurrently proved to be closely related to the onset and evolution of several
cardiovascular disorders such as aneurysms, stenoses, or blood clot formation
due to thrombosis [14, 48, 109, 110]. Therefore, measurements of the blood flow
spatio-temporal distribution could potentially provide useful information on the
cardiovascular condition.

Recent technological advances have promoted the development of non-invasive
techniques for quantification of hemodynamics. As it provides a comprehensive
access to blood flows in-vivo, time-resolved 3D phase-contrast magnetic resonance
imaging (or 4D Flow MRI) has gained an increasing interest over the last decades
[100]. In one unique exam, 4D Flow MRI opens access to the temporal description
of the velocity field in the three spatial directions, as well as the morphology
of the region of interest. In this sense, it stands out as a highly relevant tool
for diagnosis, patient follow-up and research in CVD. However, this technique
suffers from several limitations that can compromise the measurement accuracy
and question its relevance for patient diagnosis in clinical practice. This work is
part of the current research effort towards a better understanding and control of
these limitations.

1.2 Physiology of the cardiovascular system
The cardiovascular system is a closed loop organ system that enables to deliver
nutrients, oxygen, hormones, and blood cells to the organs and tissues. The
heart acts as a pump that distributes about 5 litres of oxygenated blood into the
arterial network, composed by arteries, arterioles and capillaries. The oxygen is
then transferred to the tissue and carbon dioxide is carried to the blood. The
de-oxygenated blood flows from the venules to the veins, and then back in the
heart’s right ventricle. The blood filling the right ventricle is ejected into the
pulmonary circulation towards the lungs for re-oxygenation by diffusion of oxygen
into the blood stream through the alveoli. The re-oxygenated blood is finally
sent back into the left ventricle of the heart. The human cardiovascular system is
schematically depicted in Figure 1.1.

1.2.1 The heart

The heart splits into two parts to send and collect the blood to the arterial and
from the venous circulations, respectively. The de-oxygenated blood flowing from
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Figure 1.1: Sketch of the cardiovascular system and human heart, taken from
[170]. The arterial circulation is coloured in red, and the venous circulation in
blue.
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the systemic venous circulation is received and stored in the right atrium (RA).
The tricuspid valve separates the right atrium from the right ventricle (RV),
whose role is to eject the blood towards the pulmonary arteries. Similarly, the
oxygenated blood is collected in the left atrium (LA), which is separated from the
left ventricle (LV) by the mitral valve. At the LV contraction, the aortic valve
opens and the blood is pumped from the LV to the aorta.

1.2.2 The cardiac cycle
A cardiac cycle corresponds to a sequence of events that occur during one heart
beat. Each cardiac cycle can be divided into two phases - systole and diastole.
The diastole represents the period of time when the heart muscle relaxes. During
the diastole, oxygenated blood in the left atrium (LA) progressively fills the left
ventricle (LV), while de-oxygenated blood flows from the right atrium (RA) to the
right ventricle (RV). During the systolic phase the myocardial muscle contracts
to eject the oxygenated blood from the LV through the aorta, as well as the de-
oxygenated blood from the RV to the pulmonary system. The human aortic flow
rate and pressure signals along a cardiac cycle are presented in Figure 1.2. Most
arteries experience large variations of their blood flow waveform and assuming
steady flows generally represents a considerable deformation of the reality [53].
From the classical human hemodynamic parameters listed on Table 1.1, the
Reynolds number calculated in the ascending aorta and defined as Re = 2UR

ν

where U is the bulk velocity, R the vessel radius, and ν the kinematic viscosity,
varies within a cardiac cycle in the range Re ∈ [0, 4000]. In steady flow, Re < 2000
corresponds to laminar flow regime where flow streamlines remain almost parallel
from one to another and the viscous effects dominate while at Re > 2000 the
transient effects dominate and chaotic unsteady vortices characteristic of turbulent
flows may occur. However, when considering a pulsatile flow regime such as
that observed in the cardiovascular system, additional turbulent-like features and
cycle-to-cycle variations occur during flow deceleration phases [32].

1.2.3 Mechanical structure of the large vessels
The aorta is the largest artery of the body. Connected to the left ventricle, it
delivers the oxygenated blood to the systemic circulation. A sketch of the aorta is
presented in Figure 1.3a. The aorta is classically divided into two segments: the
thoracic and abdominal aorta. The thoracic aorta comprises the ascending aorta
that connects to the LV, and the aortic arch that connects to the descending aorta.
Three vessels are branched to the aortic arch and supply blood to the upper part
of the body (right arm, head, and neck). The abdominal aorta delivers the blood
to the inferior members, and splits into the two common iliac arteries.
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Figure 1.2: Typical healthy human (top) static pressure and (bottom) flow rate
waveforms in the ascending aorta [170].

Table 1.1: Normal range of variations for some classical hemodynamic parameters
of the human cardiovascular system.

Parameter Range
heart rate (bpm) 60-100
stroke volume (ml/beat) 70-110
ejection fraction (%) 60-72
cardiac output (L/min) 4.0-8.0
blood ventricular velocity (cm/s) 20-25
arterial blood pressure (mmHg) systolic: 10-140, diastolic: 2-8
intra-luminal ascending aortic diameter (mm) 22-36
kinematic blood viscosity (m2/s) 4.02× 10−6
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(a) (b)

Figure 1.3: a). Segments of the human aorta. b). Multi-layer composition of the
artery walls. Images taken from [2].

As shown in Figure 1.3b, the structure of the arterial walls presents particular
mechanical properties to sustain the high blood pressure sent by the heart. The
artery wall is basically a multi-layer structure that contains the intima, media and
adventitia. While the adventitia contains smooth muscle cells playing only a minor
role in the mechanical response of the walls, the media is composed of elastic fibers
that absorb the blood pulse wave kinetic energy as it propagates into the vessels.
The main role of the media is to maintain the structural rigidity of the vessel by
minimizing the arterial deformation. Note that with ageing or arterial diseases,
the increase in arterial stiffness can provoke hypertension. The third layer is the
intima, which contains collagen fibres and muscles that allow to diffuse nutrients
and wastes. The endothelium is an additional thin layer of cells in contact with
the blood, whose main functions are to minimize the flow resistance, maintain the
vessel wall permeability, and regulate the blood flow. While it acts as a barrier
between blood and body tissues, it is selectively permeable to certain chemicals,
white blood cells, as well as carbon dioxide. The endothelium is therefore the
first blood-wall exchange layer involved in the vessel wall growth, remodelling
and regulation of blood coagulation. Endothelial defects are precursors in many
arterial diseases.
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1.3 The role of hemodynamics in the
cardiovascular diseases

Blood mainly contains plasma, platelets, red blood cells and white blood cells
which, all together, provide blood with its complex rheology and non-Newtonian
properties. These complex features give to blood the specificity to adapt its
mechanical response to the surrounding environment (vessel diameter, temperature,
stress state). Therefore, understanding the blood flows dynamics at the microscopic
level is challenging and remains an active field of research [51, 52, 104, 108? ].
External factors such as smoking, diabetes, obesity or cholesterol may also impact
the blood properties, or deregulate the cardiovascular system. All these elements
induce intrinsic changes of the hemodynamics function, which plays a key role in
the genesis and evolution of many cardiovascular diseases. Conversely, structural
variations such as heart valves defects, chamber geometry, or wall motion impact
the hemodynamic response. Because blood flow changes are involved in the
process of vascular remodelling and are also impacted by the vascular changes,
hemodynamics constitutes a pertinent biomarker to pilot patient diagnosis, follow-
ups and could be used as a decision tool to plan surgical treatments. Furthermore,
hemodynamics could be used in pilot studies as a tool to evaluate and optimize
the design of medical devices in contact with blood [109, 163]. Finally, research-
focussed blood flows evaluation in pathological configurations is a promising way
to better understand the behaviour of the flow and generate adapted diagnosis
metrics.

The mechanisms associated with the formation of atherosclerosis and aneurysms
are briefly described as examples to illustrate the clinical interests associated with
blood flow measurement.

Atherosclerosis Atherosclerosis is a disease that affects the lumen of the ar-
teries, as well as the arterial wall stiffness. The lumen is narrowed by the
subendothelial deposit of plaques made of fat, cholesterol, and other substances
found in the blood. The plaque (or atheroma) can damage the arterial wall by
increasing its permeability. Also, the lumen narrowing further accelerates the rate
of plaque growth. The plaque can detach from the wall and embolize an other
vessel, or blood clot could form due to a thrombosis reaction and adhere to the
injured site. This can eventually lead to a partial or full obstruction of the vessel
(see Fig. 1.4), leading in the worst cases to heart attacks due to the lack of oxygen
supply (ischemia).

In atherosclerosis, the vessel obstruction resulting from the plaque deposit
accelerates the blood flow locally and therefore introduces higher flow resistance,
inducing a local increase of the wall shear stress (WSS). In this sense, the WSS
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Figure 1.4: Sketch of a normal and embolized artery due to the presence of a
plaque and a thrombus [2].

is often used as a biomarker of the arterial stenosis. Moreover, the transstenotic
pressure drop is also a common biomarker to assess the severity of the stenosis.
Generally speaking, the hemodynamic stress repartition could help surgical repair
decision by providing the ideal stenting site deployment [162].

Aneurysm An aneurysm is a localized dilatation of an arterial wall, forming
a sac filled with blood. The wall dilatation is accompanied with stretching and
tapering. Even if most aneurysms are stable in shape and size, external factors can
promote wall weakening and lead to a complete rupture. The rupture provokes
an internal bleeding and conducts to death in 75-90% for aneurysms located in
the abdominal aorta [5]. The development process of an aneurysm is depicted
in Figure 1.5. Nowadays in clinical practice, the only therapeutic criterion to
assess the necessity of a surgical intervention is based on a maximum diameter
measurement [21]. Multiple factors contribute to the initiation of an aneurysm,
including factors affecting the vessel walls and the blood flow. Its evolution and
stability highly depend on the stresses (pressure and shear) exerted by the blood
flow on the wall. The most classical surgical intervention consists in apposing a
stent onto the vessel lumen around the aneurysm neck to deviate the trajectory of
the main flow, while creating a stagnation zone in the sac. A decreased saccular
velocity reduces the stresses applied on the artery walls, and the stagnation
promotes thrombosis formation after the treatment, which helps consolidating the
thin artery wall [149].

In this respect, pre and post-operative hemodynamics evaluation could ensure
the correct sizing and positioning of the stent. WSS also plays an important role
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Figure 1.5: Sketch describing the initiation, growth and rupture of an aneurysm.

in aneursym initiation since changes in WSS influence endothelial cell function
and thus promote vascular remodelling and vessel dilatation [110]. Some studies
demonstrated that regions of high WSS are preferential sites for the development
of aneurysms [83], while other found that the aneurysm initiation occurs mainly
at low WSS sites [20]. Others markers such as Oscillatory Shear Index, or Spatial
WSS gradient were found to impact the aneurysm evolution [83, 110]. While no
consensus has been reached about the role it plays in the aneurysmal development,
WSS certainly provides useful information to help for the evaluation of aneurysmal
evolution, as well as the detection of hotspots.

Other aortic diseases such as aortic coarctation and dissection may be detected
by measuring the hemodynamics condition. The pressure gradient and peak
velocity at the narrowing site help to measure the severity of the coarctation,
and the necessity of a surgical treatment. Aortic dissections could be diagnosed
by the presence of regurgitant flow (velocity with inverse direction) in the false
lumen. Numerous other congenital heart diseases such as bicuspid aortic valve,
single ventricle or Fallot’s tetralogy are classically quantified from hemodynamics
assessment [44].

1.4 In vivo blood flow measurements

Invasive measurement techniques such as catheterization are simple and robust
methods to measure some hemodynamic flow fields. Nowadays, pressure catheter-
ization (introduction of a pressure probe in the artery) is still considered as the
clinical gold standard to obtain a direct measurement of the pressure in-vivo and to
evaluate the severity of a stenosis. Limited by the risks due to its invasiveness, this
procedure is only recommended to treat severe or urgent cases. With the recent
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developments in medical imaging techniques, invasive blood flow measurement
techniques are progressively replaced by non-invasive measurement techniques
such as phase-contrast MRI and Doppler echocardiography, which emerge as the
reference blood flow measurement techniques in clinical practice.

1.4.1 Doppler echocardiography
The echocardiography technique benefits from the Doppler effect to estimate the
blood velocity or tissues motions in a real-time fashion, with a high temporal
resolution. However, an important limitation is that it only gives access to the 1-D
velocity component oriented along the ultrasonic beam angle. Speckle tracking
[56] or Vector Doppler [121] techniques allow to reconstruct the 2D velocity field
by addition of physical constraints to the measurement. Apart from estimating
the pressure field using Bernoulli’s principle, other hemodynamics quantities
are difficult to compute with Doppler-based techniques since the through-plane
velocity component is not measured. Figure 1.6a shows a 2D velocity vector map
obtained using vector flow Doppler echocardiography mapping in the left heart.

(a) (b)

Figure 1.6: Velocity maps in the heart obtained by a). Vector Doppler echocar-
diography, and b). phase-contrast MRI. Images are taken from [134].

1.4.2 Phase-Contrast Magnetic Resonance Imaging
Initially developed for visualization of soft tissues, MRI measures the relaxation
properties of some specific atoms subjected to high-frequency variations of magnetic
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fields. Phase-contrast MRI is a specific class of MRI sequence in which the
linear relationship that exists between the phase of the measured signal and the
magnetically excited protons velocity is used to reconstruct the blood velocity.
Initially developed in 2D [113], it has later been extended to time-resolved 3D
imaging [100], referred to as 3D CINE PC-MRI or 4D Flow MRI. A detailed
description of the MRI basic operating principles, applications and limitations
can be found in Chapter 2.

Briefly, the main advantage of this technique is that it provides in a single
exam a comprehensive access to the temporal evolution of the 3D velocity fields as
well as the morphology of the arterial region of interest. In this sense, it stands out
as a relevant tool to evaluate the hemodynamics fields in-vivo. As compared to 2D
CINE PC-MRI, 4D Flow MRI allows to assess the flow field in a fully retrospective
fashion. For instance, to measure the flow rate with 2D imaging the user needs
to predetermine the position and orientation of a slice. With 4D imaging, the
velocity field is first measured in the entire domain so that the slice could be freely
positioned afterwards (retrospectively). Moreover, 4D Flow MRI opens access to
new hemodynamics biomarkers derived from the velocity field, such as pressure
field [86], WSS [128], or residence time, which are pertinent quantities in terms of
medical diagnosis but difficult to evaluate with other modalities. Finally, specific
4D Flow MRI sequences have allowed to quantify several biomarkers associated
with complex unsteady phenomenon such as turbulent kinetic energy [87] and
pressure loss due to turbulent production [64], which were found to be involved
in the development of cardiovascular disorders such as atherosclerosis or cardiac
malfunctions [31, 45].

While Doppler echocardiography is well suited for rapid diagnosis, PC-MRI
generally shows clear advantages for the complete quantification of blood flows.

1.4.3 Limitations
Despite all these advantages, several acquisition parameters can limit the expected
accuracy and compromise the MRI measurements reliability [60]. For example,
a poor spatial resolution could misrepresent the measured flow near the arterial
walls (partial volume effects). Similarly, a poor temporal resolution might provide
insufficient flow description, depending on its complexity and pulsatility. Time
offsets between space and velocity encoding might also generate motion-induced
image artifacts [146]. Also, MRI intrinsically provides a sample average repre-
sentation of the flow, where the velocity fluctuations are not directly accessible.
Moreover, machine-specific variability could affect the measurements depending
on both hardware and software settings [58]. Moreover in most of the cases, the
measurement errors are at least as much pronounced for quantities that are derived
from the velocity field such as the WSS or pulse wave velocity.

11



CHAPTER 1. INTRODUCTION

1.5 Using numerical simulations to improve
diagnosis

Due to the recent increase in computational power, numerical simulation applied
to medical research has recently known a widespread development. Since few
decades, Computational Fluid Dynamics (CFD) has been thoroughly adapted to
blood flows prediction and analysis in the cardiovascular system.

In-silico and in-vitro CFD-based parametric studies are classically performed to
isolate some parameters and evaluate their effects on the hemodynamics field [114].
Pilot studies present great interests in the optimization of biomedical devices,
and in pre and post operative blood flow assessment [85]. Coupled CFD-MRI
studies have sometimes been proposed for validation and verification purposes,
either using CFD [59] or MRI [13, 111] as a reference field. Physics-based CFD
constraints can also be added to regularize the MRI flow measurements [6, 132].

For in-vivo investigations, CFD can be used as a complementary tool to get
in-depth insights into the physiological or pathological cardiovascular flows. To
this end, a method consists in coupling CFD with planar MRI flow measurements
as boundary conditions to predict the 3D velocity fields within a numerical mesh
of the vessel morphology measured with CT or MRI scan.

Although CFD accuracy hinges on model assumptions, it enables to partially
bypass some experimental limitations inherent to the MRI acquisition process.
The obvious advantage is that CFD has the potential to provide higher spatio-
temporal resolutions and to grant an easy access to derived and instantaneous
quantities. Therefore, CFD coupled with MR velocity measurements has the
potential to provide highly resolved blood flow insights, and will probably further
be exploited in the future.

1.5.1 Coupling CFD with PC-MRI
A prerequisite to couple CFD to MRI is to ensure that at some point the two
techniques converge towards compatible outcomes. In this respect, considerable
efforts have been made to compare and cross-analyse MRI measurements and
CFD predictions over the last years. However, as shown in Table 1.2, there is still
no consensus on whether or not the two techniques lead to the same outcomes and
several limitations are generally pointed out to explain the reported discrepancies.
Indeed, some studies conclude that PC-MRI and CFD are in close agreement
[13, 77] while others report large discrepancies [70, 84].

As it hinges on many modelling assumptions and numerical approximations,
blood flow simulations are generally not exempt from errors. Many studies have
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investigated the impact of boundary conditions and numerical strategy on the
resulting hemodynamic errors. First, numerous studies highlighted the importance
of imposing adequate boundary conditions [114, 130]. Nevertheless, as shown
in Table 1.2, idealized velocity profiles (such as blunt, flat, or fully developed
profiles) are often prescribed as inlet boundary condition [9, 70, 111, 168], although
this may result in erroneous hemodynamic predictions [114]. Moreover, in-vivo
simulations may require to account for the wall motions [31], or an a priori
knowledge of its mechanical properties (for fluid-structure interactions). However
in practice, arterial wall deformations are often neglected [24, 35], which probably
leads to misrepresentations of the flow field in the viscous layer, especially for
large vessels simulations [37]. Moreover, multiple outlets are commonplace in-vivo,
from simple bifurcations (e.g. carotid artery) to entire arterial networks (e.g.
pulmonary network). In spite of being a key ingredient driving the flow split
between daughter branches, the outflow boundary condition is often reduced to
an unrealistic zero pressure condition [29] which constitutes a potential source of
errors [70, 72]. Prescribing outflow conditions from measurements (e.g. pressure
measurements) could be a way to bypass this restriction, although these latter
are certainly not free of errors. For in-vitro models, an alternative way to get
a flow split independent of the outlet boundary condition consists in merging
the branches in a unique outlet. In this case, flow distribution within the flow
domain is driven by the fluid mechanics only and a zero-pressure condition can
be prescribed at the outlet.

The complex blood properties require an adapted model to simulate its shear-
thinning non-Newtonian behaviour. At the macroscopic level, blood is often
assumed to be Newtonian and homogeneous. While this is a reasonable assumption
in large arteries such as aorta [55, 123], it may result in erroneous predition for
flows experiencing low shear rates (under 100 s−1) [123]. In-vitro simulations
with perfectly characterized blood mimicking fluid rheology can be performed to
bypass this modelling uncertainty, and to avoid the associated errors.

In addition, making an advised choice of CFD strategy is essential for a
reliable hemodynamics prediction. As the typical Reynolds number in the (large)
arteries ranges from a few hundreds (laminar) to a few thousands (turbulent), it
is important to adopt a CFD strategy that accounts for the turbulence effects
during computations. However, this step is often excluded [13, 35]. As solving
the whole range of turbulence spectrum generally requires huge computational
resources, turbulence modelling strategies are often used to either partially or
totally model the velocity fluctuations. Nevertheless, there are still controversies
about the proper formulation to model turbulence, and an unsuitable model
could significantly affect the flow prediction [87, 111]. Among the large number
of existing models, Reynolds Averaged Navier-Stokes (RANS) and Large Eddy
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Simulation (LES) are the two recurrent approaches usually adopted in flow
solvers. Although more computationally demanding, Large Eddy Simulation
has the advantage of capturing the transition to turbulence with no changes of
turbulence model parameters and can thus be considered as predictive, whereas
Reynolds Averaged Navier-Stokes (RANS) models require parameters adaptations
to properly represent transitional flows [73, 98].

Recent CFD challenges also highlighted the large influence of the solver numer-
ics and boundary conditions on the resulting flow patterns [172]. As demonstrated
in Valen-Sendstad et al. [156], the discrepancies between different techniques
partially come from low-order unconditionally stable implicit schemes proposed
as default parameters by several commercial CFD codes, which generate artificial
dissipation for robustness purposes. In this sense, a careful validation of the CFD
strategy seems important to appreciate the level of errors associated with the
modelling assumptions.

1.5.2 Reconstruction of derived quantities from PC-MRI
As already mentioned, the wall shear stress (WSS) is a flow quantity that is
often regarded as a biomarker of disorders such as aortic diseases, aneurysm,
atherosclerosis, or valve regurgitation. In particular, WSS plays an important role
in both aneurysm initiation, growth and rupture, since changes in WSS influence
endothelial cell function and thus, promote vascular remodelling and vessel dilata-
tion [110]. Procedures based on different algorithms have been proposed in the
literature to reconstruct the WSS [128, 142, 144] from MRI velocity data.

The relative pressure field is also relevant for diagnosis to estimate the severity
of a stenosis or a pulmonary hypertension. This quantity can be inferred from
velocity measurements and several research works have developed numerical
procedures to reconstruct the relative pressure field from MRI [42, 46, 47, 82].

The large number of different approaches proposed in the literature to estimate
both WSS and pressure from MRI suggests the importance of a gold standard
solution to assess the accuracy and robustness of the proposed methods under
realistic complex flow conditions (cf. conditions other than the simple analytic
Womersley or Poiseuille flow solutions). Even if Les et al., (2010) [90] found that
the WSS computed from CFD does not reach proper convergence with mesh
refinements, little attention is generally devoted to ensure that the reference flow
variable is correctly converged.

1.5.3 Numerical simulation of PC-MRI
In the hypothesis where a CFD velocity field with limited enough errors is
generated, it can be used as the reference field to evaluate the errors that arise
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from a direct measurement or when reconstructing a derived hemodynamics field
from a 4D Flow MRI acquisition. If the differences between CFD and MRI
can be alleviated, one can reasonably assume that the remaining discrepancies
are principally due to the MRI acquisition process. Among the many different
factors contributing to the MRI velocity error, one can for example mention the
dysfunctions induced by defects of the MRI hardware (gradient or radiofrequency
coils - see Section 2.2.1) that distort the flow measurement. Furthermore, a set of
parameters unsuited to the imaging protocol would also influence the resulting
measurements. Indeed, the complex physical principles governing the MR signal
acquisition process, the signal processing steps required to reconstruct an MR
image, as well as the large variety of user-dependent acquisition parameters are
all potential sources of errors that make it generally difficult to precisely identify
the reasons for an erroneous measurement.

In this sense, the numerical simulation of the MRI acquisition process could be
an efficient way to decompose these modalities in order to identify the sources of
errors. It has already proven its usefullness to describe and correct some sources of
imaging artifacts [122], as well as to optimize MRI pulse sequences [4]. Moreover,
the well-known MR fingerprinting technique [96] is a good illustration of a possible
use of MRI simulation to generate a dictionary containing the MR signals of a
complete spectrum of tissue properties.

1.5.4 Limitations and scientific challenges

The large variety of possible input options, from the MRI setup (acquisition
parameters and post-processing corrections) to the choice of CFD strategy (nu-
merics, modelling assumptions, boundary conditions,...) or the study framework
(in-vivo/in-vitro/in-silico), makes it intricate to draw general conclusions about the
reported errors in the literature between MRI and CFD outcomes (see Table 1.2).
Even in a perfect world where CFD and MRI outcomes would be virtually free
of errors, the fundamental differences inherent to MRI and CFD modalities (e.g:
high/low resolution in space and time, noise/noiseless data, solution in physical
space/k-space filling, etc...) would most probably induce errors relative to the
comparison itself.

The complex numerical procedure adopted to compute hemodynamics quan-
tities that are derived from the MRI velocity field (pressure, WSS, pulse wave)
are also likely to introduce additional errors, on top of propagating input velocity
errors. Indeed, it is expected that quantities such as WSS are very sensitive to
velocity measurement errors.

Finally, a clear identification of the MRI sources of discrepancies that remain
after corrective post-processing is necessary to further improve quantitative blood
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flow measurements in clinical practice. However, the multi-modal MRI acquisition
process complicate the identification of the sources of discrepancies.

1.6 Thesis outline and objectives

1.6.1 Objectives

The first objective of this work is then to propose a standardized procedure
for comparing MRI and CFD under complex flow conditions. To establish this
procedure, a preliminary step is to mitigate the sources of discrepancies coming
from each technique separately in order to focus on the errors relevant to the
comparison itself.

For this purpose, we designed a fully controllable, reproducible and MRI
compatible experiment delivering a blood-mimicking fluid flow within a phantom
which gathers topological complexities typical of that observed in-vivo. We have
full control of the geometry of the non deformable flow domain and fluid rheology,
thus removing classical sources of uncertainties that could be found in-vivo:
segmentation errors, wall motion, blood properties. Also, although branching is
present within the considered flow domain, there is only one outlet boundary so
that a simple zero pressure condition can be safely prescribed. The corresponding
flow is predicted by means of a high resolution LES solver, and compared with
velocity fields acquired using conventional 4D PC-MRI scans at various spatial
resolutions. A quantitative analysis of the differences is then performed to highlight
the potential discrepancies induced by a straightforward comparison. Finally,
several post-processing steps are encompassed and a generic comparison protocol
is proposed to systematically correct for these sources of discrepancies.

Once the standardized procedure established and validated with a proof-of-
concept comparison case, the second objective is to use this CFD solution as a
reference field to evaluate how the MRI velocity measurement errors propagates
when reconstructing derived quantities, such as WSS or pressure field. The
accuracy, validity and robustness of different reconstruction algorithms are also
tested.

The final objective is to discriminate the source of the observed MRI hemody-
namics field errors, and where appropriate, to account or correct them. In this
respect, given the complexity of the MRI acquisition process, we aim at developing
a 4D Flow MRI acquisition simulation platform to understand and isolate the
dominant phenomenon responsible for the errors observed. The interest here is
double; the numerical simulation allows to identify the source of measurement er-
rors, but it also can be used to optimize existing PC-MRI protocols and sequences.
It is however a long-term objective and this thesis limits to the development of
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the MRI simulation framework.

1.6.2 Thesis outline
The second chapter of this thesis first introduces the reader with some fundamental
concepts of MRI and the main features of phase-contrast MRI sequences. From
these concepts, the experimental limitations that are raised and the most common
sources of errors involved in PC-MRI are detailed.

The third chapter describes the numerical framework implemented in the flow
solver and presents two validation test cases developed during this thesis.

In the fourth chapter, a CFD-based quality control procedure relevant to the
4D flow MRI technique is developed. This includes all the details about the design
of the experimental test bench, the MRI and CFD post-processing steps, and
the description of the flow. A proof-of-concept validation of the procedure is
presented, results are analysed and conclusions are drawn about the significance
and scope of application of this work.

In the fifth chapter, we evaluate the accuracy that can be expected when using
MRI data to reconstruct quantities that are derived from the velocity field. Based
on our in-vitro CFD framework, and using the CFD as a reference field, we assess
and compare the accuracy and robustness of the proposed solution with other
existing WSS-reconstruction methods published in the literature. We infer on the
reliability of our method and finally come up with general recommendations on the
WSS reconstruction from MRI measurements. Then, a very similar approach is
developed for the relative pressure reconstruction from MRI velocity measurements.
We also assess several pressure reconstruction approaches using the previously
developed CFD-based framework. This chapter illustrates an alternative way to
use such a reference framework as a benchmark to evaluate and compare different
reconstruction approaches.

In the penultimate chapter of this thesis, an in-house 4D Flow MRI acquisition
simulator is developed. The algorithm is detailed, and several validation test cases
are presented where each part of the full MR velocity reconstruction pipeline
are treated incrementally. Finally, 4D Flow MRI simulations of the phantom’s
experiment are compared with realistic 4D Flow MRI measurements. Conclusions
about the significance of the results and possible future developments are finally
expressed.

In the last chapter, a retrospective summary of the main results obtained is
presented and general conclusions are drawn. Clinical perspectives as well as
future research directions are discussed.
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Table 1.2: Non-exhaustive review of recent publications comparing 3D PC-MRI to
CFD for Newtonian, incompressible flow in a rigid domain under pulsatile regime.

Author,
year Configuration Compared

variables Conclusion of the study

Miyazaki
et al., 2017
[111]

Healthy and dou-
ble aortic arch

Flow rate
Velocity
WSS
Energy Loss

Moderate correlation for velocity in
AAo (r = 0.53) and overestimation
of flowrate (up to ε = 1.87); poor
agreement for WSS and energy loss
in AAo

Biglino et al.,
2015 [13]

in-vitro normal
aorta and TGA

Flow rate
Velocity
WSS

Flow rate: small discrepancies ( ε ≤
0.162, r2 ≥ 0.86 )

Pahlavian et
al., 2015 [70]

Cervical Spinal
Subarachnoid
space

Velocity
High discrepancies (from 1.4 to 5.6
times greater for MRI through-plane
peak velocity magnitudes)

Cibis et al.,
2014 [35] Carotid artery Flow rate

WSS

Good qualitative WSS patterns,
WSS magnitude errors up to 30 %,
WSS vector angle errors up to 65.6°

Berg et al.,
2014 [9]

Intracranial
aneurysm Velocity

Good qualitative agreement, discrep-
ancies for velocity correlation (76.5%
of the points have accuracy of more
than 80% for MSI)

Van Ooij et
al., 2013a
and 2013b
[157, 158]

in-vitro/vivo
intracranial
aneurysm

Velocity
WSS

High qualitative agreement and high
quantitative discrepancies for WSS:
ρ = 0.65 at peak systole, up to ε =
27.1% error for velocity magnitudes

Lantz et al.,
2013 [87] in-vivo aorta Kinetic En-

ergy

Good agreement for peak integrated
TKE (13% error for LES , and 51%
for RANS k − ω SST)

Yiallourou
et al., 2012
[168]

Cervical spine
subarachnoid
space

Velocity
Flow rate

Overestimation of MRI (error ≥
70% for peak velocity), many visual
discrepancies for velocity

DAo: Descending Aorta; AAo: Ascending Aorta; TKE: Turbulent Kinetic Energy; r: Pearson’s
product moment coefficient; ρ: Spearman’s correlation coefficient; MRI-CFD error calculated
as: ε =

∣∣∣ fCF D−fMRI

fMRI

∣∣∣ where f is the flow parameter considered. MSI stands for Magnitude
Similarity Index [9]. SST: Shear Stress Transport.
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2.1 Nuclear Magnetic Resonance
Magnetic Resonance imaging is based on the phenomenon of Nuclear Magnetic
Resonance (NMR) discovered by Rabi et al. [129] in the 1930’s. Then, in 1946,
Bloch and Purcell extended this work to liquids and gas and measured the effects
of the applied magnetic field on the protons. For this work, they obtained a Nobel
Prize in 1952.

The basic principles of NMR arise from the magnetic properties of the protons.
An atomic nucleus can be described by a nuclear spin angular momentum J and a
spin quantum number. Only atomic nuclei composed by a odd number of protons
and/or odd number of neutrons possess a spin quantum number that is non-zero,
and are subjected to Nuclear Magnetic Resonance. A non-zero spin quantum
number induces a magnetic moment µµµ oriented along the same direction, and that
can be expressed as:

µµµ = γJ (2.1)

where γ is a gyromagnetic ratio, a constant specific to each atomic species
considered. The hydrogen atom, with a spin quantum number that equals ±1/2
and a gyromagnetic ratio γ = 267.513 × 106 rad.s−1.T−1 is often exploited in
NMR as it is the most abundant in the human body. Without any exterior
magnetic field, the spins are oriented randomly. In the presence of an external
static magnetic field B0, these spins align according to two lowest energy states,
that read:

E+1/2 = +1
2γB0} , E−1/2 = −1

2γB0} (2.2)

where } is the reduced Planck constant. The Boltzmann distribution states that
the spins will statistically prefer a parallel orientation (E+1/2) rather than an anti
parallel orientation (E−1/2) since the energetic contribution is more favourable.
Moreover, the interaction between the proton’s spin and the external magnetic
field generates a torque such that:

dµµµ

dt
= γµµµ×B0 (2.3)
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B0

dµµµ

µµµ

Figure 2.1: Rotation (precession) of the magnetic moment vector µ around the
axis of the applied magnetic field B0. The precession occurs as a response to a
torque generated by the interaction between the proton’s spins and the external
magnetic field.

Note that as a convention, B0 will be chosen such as B0 = B0êz with (êx, êy, êz) the
Cartesian unit vectors. The rotation induced by this torque is called precession and
schematically represented in Figure 2.1. The angular frequency of this precession
(called Larmor frequency ω0) is proportional to the external magnetic field such
as:

ω0 = γB0 (2.4)
It is important to note that if γ > 0 the rotation of the magnetic moment vector
follows a left-hand rule about the static field axis and rotates clockwise. Then,
the following convention applies: if B0 is applied along z-axis, then B0 = ω0

γ
êz

where the angular velocity vector equals Ω0 = −ω0êz.
Since a huge amount of atoms are considered in the NMR process, the behaviour

of a sample of Ns spins included in a volume V can be described at the macroscopic
scale, following the classical laws of mechanics by summing the contribution of
each magnetic moment:

M = 1
V

Ns∑
i=1

µµµi (2.5)

where M is the net macroscopic magnetization vector. Following Equation (2.3),
if one neglects the interaction of the protons with their environment, the time
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evolution of the macroscopic magnetization in a presence of an external static
magnetic field B0 can be expressed as:

dM
dt

= γM×B0 (2.6)

In classical MRI scan, B0 ranges from 1.5T to 7T . As a result of the precession
induced by B0, it is possible to express the macroscopic magnetization at thermal
equilibrium M0 as:

M0 = ρ0γ
2}2

4kT B0 (2.7)

where ρ0 is the number of protons per unit volume, k the Boltzmann constant, and
T the temperature. Detailed derivation of the thermal equalitibrium magnetization
can be found in [65]. This resultant vector M0 aligns along the field direction êz.

2.2 NMR experiment: the Bloch equations
The equations describing the macroscopic evolution of the magnetic response that
arise when a set of spins is submitted to an external magnetic field were introduced
by Felix Bloch in 1946. This set of spins is called an "isochromat" and defined as
an ensemble of spins with the same phase. An NMR experiment basically consists
in two steps: a perturbation of the spins from their equilibrium state (excitation),
followed by a relaxation where the spins’ signature are collected.

2.2.1 Excitation
In the excitation step, an oscillating magnetic field B1 is applied to disturb the
net magnetization from its equilibrium state. This magnetic field called the
Radio-Frequency (RF) pulse is applied by a transmit coil transversally to the
static field such as B1(t) = B1x(t)êx + B1y(t)êy, and during a short period of
time (τrf ∼ 10 µs). As a result of an excitation pulse at resonance frequency,
the orientation of the net magnetization vector is shifted towards the transverse
plane. An RF excitation applied with a frequency ωrf = ω1 can be expressed in
the transverse plane with the following complex notation:

B1(t) = B1x(t) + iB1y(t) = Be
1(t)e−iω1t+φ (2.8)

where φ is the phase of the RF vector, and Be
1(t) the envelope of the pulse. To

characterize the signature of the RF pulse on the system, the flip angle is defined
as the amount of rotation accumulated by the magnetization due to an RF pulse.
From Eq. 2.4, the flip angle can be defined as:

α = γ
∫ τrf

0
Be

1(t)dt (2.9)
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Typical flip angles are comprised between 0° and 90° for gradient echo sequences
while between 90° and 180° for spin echo sequences. Considering a rectangular RF
envelope reduces the flip angle to α = γB1τrf . Usually, on modern MR scans, the
maximum amplitude of the B1 field does not exceed 50 µT , and the RF impulse
usually lasts few milliseconds.

2.2.2 Relaxation

After the RF pulse, the protons contained in the excited sample start interacting
with each other and with their surrounding environment. The magnetization
vector relaxes until it recovers its initial longitudinal orientation M0 (see Eq. 2.7)
after a time which is typical of the tissue observed. This is the relaxation. The
spin-lattice and spin-spin relaxations may be introduced to characterize the nature
of the tissues.

Spin-lattice relaxation The spin-lattice relaxation describes the energy ex-
changes between the spins and their environment. Its characteristic time (or
relaxation time) T1 corresponds to the time needed for the longitudinal component
of the magnetization vector M · êz to recover 63% of its equilibrium value.

Spin-spin relaxation The spin-spin relaxation describes the magnetization
decay in the transverse plane due to the energy exchanges between the spins,
themselves, and their environment, and is characterised by the time T2 (which
corresponds to the time needed to relax 37% of the initial transverse magnetization).
The steps of a complete NMR experiment are schematically depicted on Figure 2.2.

The spin-spin and spin-lattice relaxation phenomena added in the previous
Eq. (2.6) lead to the following Bloch Equation:

dM
dt

= γM×B + M0 −Mz

T1
êz −

Mx

T2
êx −

My

T2
êy (2.10)

where ~B = ~B0 + ~B1.
To simplify the Bloch equations, it is common to introduce a rotating frame

that rotates clockwise at the Larmor frequency around the z axis of the laboratory
frame of reference. The following relation can be used to change the time derivative
from the laboratory to rotating frame:

(
dM(t)
dt

)
Rlab

=
(
dM(t)
dt

)
Rrot

+ Ω×M(t) (2.11)
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Equilibrium Excitation Relaxation

Figure 2.2: Illustration of an NMR experiment. First, the macroscopic magnetiza-
tion is aligned with the static magnetic field B0 = B0êz. A RF pulse is then applied
in the transverse plane B1 = B1xêx. This excitation forces the magnetization
vector to align quasi-instantaneously in the transverse plane, orthogonal to the
RF pulse axis. After the RF pulse excitation, the magnetization vector recovers
its orientation during a phase of relaxation. The duration of this relaxation allows
to characterize the material in the region of interest.

where Ω = −ωêz. Then, the magnetization vector expressed in the rotating frame
M′ = (Mx′ ,My′ ,Mz′) reads:

dM′

dt
= γM′ × (B′1 + B0 −

ω

γ
êz) + M0 −Mz

T1
êz −

Mx′

T2
êx′ − My′

T2
êy′ (2.12)

where Rrot = (êx′ , êy′ , êz′) denotes the unit vectors of the rotating frame of
reference. The rotation matrix from the laboratory frame towards the rotating
frame reads:

R =


cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 (2.13)

The effective magnetic field corresponds to the magnetic field perceived by an
isochromat in the rotating frame, and can be defined as Beff = B′1 + B0 − ω

γ
êz.

Therefore, if ω = ω0, the static field contribution is cancelled since B0 = ω0
γ
êz,

and therefore Beff = B′1.
One can express the complete Bloch equations in the rotating frame of reference

using the following matrix notation:

d

dt


Mx′

My′

Mz

 =


−1/T2 γBz −γBy′

−γBz −1/T2 γBx′

γBy′ −γBx′ −1/T1



M ′

x

M ′
y

Mz

+


0
0

M0/T1

 (2.14)

where Bx′ = B1,x′ and By′ = B1,y′ represent the RF transmitter magnetic field.
Suppose the RF field is initially applied along the x′ axis with a frequency ω1;

it can be expressed in the laboratory frame as:

B1(t) = B1(t) cos (ω1t)êx −B1(t) sin (ω1t)êy (2.15)
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Then, in the rotating frame of reference (ω = ω0), it can be expressed as B′1(t) =
RB1(t) or:

B1,x′

B1,y′

B1,z

 =


cos(ω0t) − sin(ω0t) 0
sin(ω0t) cos(ω0t) 0

0 0 1



B1(t) cos(ω1t)
−B1(t) sin(ω1t)

0

 (2.16)

which simplifies to: 
B1,x′(t)
B1,y′(t)
B1,z(t)

 =


B1(t) cos(ω1 − ω0)t)
−B1(t) sin(ω1 − ω0)t)

0

 (2.17)

To rotate the spins in the transversal plane, the RF pulse should be applied at
the Larmor frequency ω1 = ω0. Therefore the previous expression simplifies to
B1(t) = B1(t)êx′ . When the RF is turned on, the relaxation terms in Eq. (2.12)
can be ignored since typical values of γB1 (∼ 103 rad/s) are much greater than
the decay rates 1/T1 and 1/T2 (∼ 1s−1).

2.3 Analytical solution of the relaxation
After the application of a RF excitation to initially orient the magnetization in
the transverse plane, in the presence of a static magnetic field only B = B0êz the
Bloch equations expressed in the rotating frame of reference simplify to:

dM ′
x

dt
= −M

′
x

T2
dM ′

y

dt
= −

M ′
y

T2
dMz

dt
= −Mz −M0

T1

(2.18)

Back in the laboratory frame, these equation lead to the following set of analytic
solutions:

Mx(t) = (Mx(0) cos(ω0t) +My(0) sin(ω0t))e−t/T2

My(t) = (My(0) cos(ω0t)−Mx(0) sin(ω0t))e−t/T2

Mz(t) = (Mz(0)−M0)e−t/T1 +M0

(2.19)

where, for the sake of simplicity, t0 = 0 denotes the end of the RF pulse τrf

(i.e: the beginning of the relaxation), and M(∞) = (0, 0,M0)T the equilibrium
magnetization. It is common to express the magnetization as a longitudinal
component (Mz) and transverse component using a complex notation Mxy =
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Figure 2.3: Relaxation of the transverse (left) and longitudinal (right) mag-
netization with initial magnetization M(0) = (1.0, 0.0, 0.0). First sample
(T1/T2=0.25/0.07) corresponds to relaxation times of fat while T1/T2 = 0.5/0.04
corresponds to liver and T1/T2=0.85/0.17 is for blood at B0 = 1.5T .

Mx + iMy. Moreover, the transverse magnetization at t = 0 is often decomposed
as Mxy(0) = |Mxy(0)|eiφ0 , where φ0 is the initial phase shift of the transverse
magnetization introduced by the RF excitation. Then, the solution takes the
following form:

Mxy(t) = |Mxy(0)|eiφ0e−iω0te−t/T2

Mz(t) = (Mz(0)−M0)e−t/T1 +M0
(2.20)

Note that the transverse magnetization could also be written as: Mxy(t) =
|Mxy(t)|eiφ(t) where |Mxy| = |Mxy(0)|e−t/T2 and φ(t) = φ0 −

∫ t
0 ωdt = φ0 − ω0t the

phase accumulated by the transverse magnetization at time t. The longitudinal and
transverse magnetization decays are represented for several tissues in Figure 2.3.

Note that it is also possible to account for the diffusion of the magnetization by
solving the Bloch-Torrey equation [155] by adding the diffusion term ∇· (D∇(M))
to Eq. (2.10) where D is the diffusion tensor. The Bloch-Torrey equations are
however not treated in this thesis.

2.4 Reception of the signal

2.4.1 Signal detection concepts
The net magnetization resulting from the spin relaxation induces a temporal
variation of the magnetic flux Φ, measured through a receiver coil. Consider a
sample object which magnetization precesses around its z-axis placed nearby a
receiver coil, as depicted in Figure 2.4. According to Faraday’s law of induction,
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Figure 2.4: Illustration of the magnetic flux induced by a sample composed by
four isochromats into a receiver coil.

the rate of change of magnetic flux measured by a receiver coil of surface Σ equals
the electromotive force (or voltage) induced in the receiver coil, such as:

emf = −dΦ
dt

= − d

dt

∫∫
Σ

Brec(r, t) · dS (2.21)

where Brec is the magnetic field received through the receiver coil and dS is
normal to the coil area and oriented along the positive flux direction. Usually,
the detection of this signal is ensured by the RF-coil which is switched from
transmitter to receiver. As detailed in Haacke et al. (1999) [65], the magnetic
flux detected over a receiver coil can be replaced by the integration over the
entire domain of the magnetic field per unit current produced by this coil Cr at
position r and due to the magnetization M(r, t), where a spatial dependence is
added. This relation is consistent with the principle of reciprocity. Therefore, the
resulting emf induced in a sample of volume Ω (defined as the volume of non-zero
magnetization) and detected by the RF-coil could be expressed as:

emf = − d

dt

∫
Ω

M(r, t) ·Cr(r)dΩ (2.22)

where Cr is the received magnetic field produced by the receiver coil at all points
of non zero magnetization; we often call it the detection sensitivity of the receiver
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coil. Given that Mx = Re(Mxy) and My = Im(Mxy), and recalling the expression
of the transverse magnetization given in Eq. 2.20, the time-derivative taken inside
the integrand as well as inside the real and imaginary operators leads to the
following derivatives:

dMxy

dt
= −(iω0 + 1

T2
)|Mxy(r, 0)|e−t/T2e−i(ω0t−φ0)

dMz

dt
= − 1

T1
(Mz(r, 0)−M0)e−t/T1

(2.23)

In the previous equation,1/T2, 1/T1 could easily be neglected given that ω0 is
at least 4-5 order larger for classical magnetic field (around 1.5T). Therefore,
the z-component vanishing, the time-derivative of the transverse magnetization
reduces to:

dMx

dt
≈ −ω0|Mxy(r, 0)|e−t/T2 sin(ω0t− φ0)

dMy

dt
≈ −ω0|Mxy(r, 0)|e−t/T2 cos(ω0t− φ0)

(2.24)

The previous emf expression (Eq. 2.22) reduces to what is often referred to as the
signal s(t):

s(t) = ω0

∫
Ω
e−t/T2|Mxy(r, 0)|

(
Cr
x sin(ω0t− φ0) + Cr

y cos(ω0t− φ0)
)
dΩ (2.25)

Finally, if we note Cr
xy = Cr

x+iCr
y the effective transverse sensitivity of the receiver

coil and Cr
x = |Cr

xy| cos(φr) and Cr
y = |Cr

xy| sin(φr) where φr is the phase of the
receiver coil, the signal can be simplified by using simple trigonometric identities.
This leads to the following expression in the laboratory frame:

s(t) = ω0

∫
Ω
e−t/T2 |Mxy(r, 0)|

∣∣∣Cr
xy

∣∣∣ sin (ω0t− φ0 + φr)) dΩ (2.26)

2.4.2 Signal demodulation
A demodulation of the signal is then performed to remove the rapid oscillations
at the frequency ω0. This demodulation is equivalent to viewing the signal in
the rotating frame of reference that rotates at frequency ω0. In practice, the
demodulation consists in multiplying s(t) by a sinusoidal signal sin(ω0t) and to
applying a low-pass filter to remove the resulting high frequencies oscillations.
The sinusoidal term in Eq. (2.26) sin(ω0t−φ0 +φr) multiplied by sin(ω0t) together
with the trigonometric identity (sin a sin b = 1

2(cos(a − b) − cos(a + b)) where
a = ω0t − φ0 + φr and b = ω0t gives the demodulated signal. Then, a low-pass
filter is applied to remove the high frequency component cos(a+ b), resulting in
the real channel signal sre(t):

sre(t) = 1
2ω0

∫
Ω
e−t/T2 |Mxy(r, 0)|

∣∣∣Cr
xy

∣∣∣ cos (φ0 − φr)) dΩ (2.27)
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Similarly, an imaginary signal can be obtained by multiplying the sinusoidal term
in Equation (2.26) by a factor − cos(ω0t), resulting in sim:

sim(t) = 1
2ω0

∫
Ω
e−t/T2 |Mxy(r, 0)|

∣∣∣Cr
xy

∣∣∣ sin (φ0 − φr)) dΩ (2.28)

A quadrature detection is finally needed to combine the real and imaginary parts
of the signal received by the receiver coil into a complex signal S(t) = sre + isim.
In practice, two orthogonal coils measure the same precessing magnetization, and
this in order to determine the direction of the rotation. The resulting complex
demodulated signal is therefore given by:

S(t) = sre(t) + isim(t) = ω0

∫
Ω
e−t/T2 |Mxy(r, 0)|

∣∣∣Cr
xy

∣∣∣ ei(φ0−φr)dΩ (2.29)

which in a more condensed form reads:

S(t) = ω0

∫
Ω
Mxy(r, t)C∗xydΩ (2.30)

where C∗xy = |Cxy|e−iφr is the complex conjugate of Cr
xy.

2.4.3 Space and time variations of the magnetic field
Note that the previous expression for the signal is valid for time and space constant
magnetic fields. However, in practice the z-component of the magnetic fields is
space and time varying, such that the Larmor frequency can be expressed (in the
laboratory frame) as:

ω(r, t) = ω0 + ∆ω(r, t) (2.31)
where ∆ω the frequency shift due to the variations of magnetic field perceived by
the sample at position r. In the rotating frame, ω0 vanishes, then ω(r, t) = ∆ω(r, t).
The accumulated phase φ of the transverse magnetization at position r can be
expressed in the rotating frame, as:

φ(r, t) = φ0 −
∫ t

0
ω(r, t′)dt′ = φ0 −

∫ t

0
∆ω(r, t′)dt′ (2.32)

where it is recalled that φ0 = φ(0) is the phase of the transverse magnetization at
the end of the RF pulse (t = 0). With this spatio-temporal dependence considered,
the transverse magnetization can be rewritten from Eq. 2.20 as:

Mxy(r, t) = |Mxy(r, 0)|eiφ0e−i
∫ t

0 ∆ω(r,t′)dte−t/T2 (2.33)

Then, introducing this spatio-temporal dependence into the signal expressed in
Eq. 2.29 leads to:

S(t) =
∫

Ω
ω(r, t)Mxy(r, t)C∗xydΩ (2.34)

where ω(r, t) is largely dominated by the contribution of ω0, which could be taken
outside the integrand and so that Eq. 2.29 is recovered. Note that ω0 could even
be removed, without any loss of information.
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2.5 Localization of the signal
One of the main challenge in MRI resides in the spatial localization of the magnetic
contribution coming from each isochromat, to the global integrated signal measured
by the receiver coil. For that, a spatial encoding is required prior to the signal
detection. Spatial encoding involves a key component for the initiation of a
MR image: the magnetic field gradients. Magnetic fields gradients denoted by
[Gx, Gy, Gz] = [dBz

dx
, dBz

dy
, dBz

dz
] can be applied independently along each of the 3

axes using additional coils, and are used to spatially modify the longitudinal
magnetic field strength, and accordingly the Larmor frequency, as follows:

Bz(r, t) = B0 + G(t) · r = B0 +Gx(t)x+Gy(t)y +Gz(t)z
ω(r, t) = ω0 + γG(t) · r

(2.35)

where r = (0, 0, 0) is defined as the isocentre of the scanner or the centre of the
image. The magnetic gradient linearly alters the unique resonance frequency to a
continuous bandwidth in order to distinguish the spatial location of signal emitted
by the spins. Therefore, three spatial encoding steps are required to encode the
three spatial directions. Typical gradients coils are usually designed to produce
variations of the magnetic fields that range from 20 to 100 mT/m. In medical
imaging, anatomical denominations are usually employed to describe the plane of
acquisition. For a human lied down in a MR tunnel, the coronal plane is parallel
to the ground; the transverse plane is perpendicular to the ground and separates
the head from the feet; the sagittal plane is perpendicular to the ground and
separates left from right, as illustrated in Figure 2.5.

2.5.1 Slice selection
Given a 3D volume placed in an MR tunnel, the first step to produce a 2D
image (in the xy-plane, by convention) is to locate the position of the image
in the direction orthogonal to the slice (along the z-direction). To this end, a
slice selective excitation is usually applied to excite exclusively the spins included
within the slice. It consists in applying a RF-pulse with a limited bandwidth ∆ωp
together with a slice selection gradient Gss along the z-axis to solely excite the
spins which resonance frequency is included in the slice of interest, of thickness
∆z (as described in Figure 2.6).

Recalling that ω(z) = γB0 + γzGz, the frequency bandwidth ∆ωp of the
RF-pulse excitation ranges from ω(z0− ∆z

2 ) = γB0 +γ(z0− ∆z
2 )Gz to ω(z0 + ∆z

2 ) =
γB0 +γ(z0 + ∆z

2 )Gz. Therefore, a slice selective excitation of thickness ∆z centred
in z0 can be obtained by modulating the gradient Gss, such as:

∆z = ∆ωp
γGss

(2.36)
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Figure 2.5: Illustration of the three elementary anatomical planes used in medical
imaging.

2.5.2 RF pulse shape

Several types of RF pulse shapes can be used depending on the sequence and
the object to measure. Hard pulses such as rectangular shapes are efficient but
limited to 3D acquisition. Soft pulses (time-varying shape) are usually preferred
for selective excitation. One of the most common soft pulses consists in applying
a cardinal sine (SINC) shape excitation. The Fourier Transform of the SINC pulse
shape with infinite number of lobes results in a perfect rectangular frequency
profile, equally exciting the spins located within a slice and leaving the surrounding
spins unchanged. In practice, however, a SINC function has a finite duration and
therefore does not regularly excite the spins within a given frequency bandwidth.
Window functions are usually applied to digitally filter the shape of the pulse
by flattening the top of its frequency profile. Moreover, an apodization filter is
used truncate the SINC function at its base and avoid exciting the spins located
outside the slice thickness. The envelope of a SINC RF-wave can be expressed as:

Be
1(t) =

{
AW (t) sinc(πt

t1
) if 0 < t < τrf

0 else (2.37)
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Figure 2.6: Slice-selective excitation. A RF pulse of frequency bandwidth ∆ωp
could generate different slice thickness depending on the encoding gradient applied.

where A is the peak RF amplitude, N = floor(τrf/2t1) where N is the number of
zero-crossing of the pulse, t1 is half the width of the central lobe, and W (t) is the
window function applied. Usual window functions are:

W (t) =


1,
(1− α) + α cos( πt

Nt1
),

0.42− 0.5 cos( πt
Nt1

) + 0.08 cos( 2πt
Nt1

),
(2.38)

where the first, second and last lines correspond to no (or rect) window, Hamming
(α = 0.46) or Hanning (α = 0.5) windows, and Blackman windows, respectively.
The resulting transverse magnetization obtained for the presented window func-
tions are presented in Figure 2.7. The use of a window function seems necessary
to dampen the oscillations that appear at the boundaries of the slice.

2.5.3 Selective excitation pulse design

A typical slice selective excitation sequence is presented in Figure 2.8.
Recalling the relation found in Eq. 2.36, and given a gradient magnitude

Gss = 10mT/m, the bandwidth necessary to excite a slice of thickness ∆z = 7
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Figure 2.7: Left Envelope function of several SINC RF pulse as described in
Equation (2.38). Right The resulting y-component of the magnetization at the
end of the slice selective RF-pulse.

mm is:
∆f = 1

2πγGss∆z = 2975 Hz (2.39)

where ∆f = ∆ωp

2π . Moreover, if one considers that the full width at half maximum
(FWHM) of the SINC pulse in the frequency domain provides a good approxi-
mation of the bandwidth (∆f ' 1

t1
), then the duration of the RF pulse can be

approximated by: τrf = 2Nt1 ' 4πN
γGss∆z = 2.68 ms. Note that looking at FWHM

of the magnetization is as expected around ∆z = 7mm in Figure 2.7.
As the slice selection gradient induces a variation of the frequency of the

excited spins through the slice, the phase shift accumulated by the spins should
differ by the end of the gradient application. Therefore, a negative gradient with
the same magnitude and of duration τss/2 is applied to rephase all the spins
within the excited slice, as shown in Figure 2.8. After the application of this
negative lobe, the excited spins on the slice are refocused and are therefore all
with a zero phase. The refocusing gradient is applied for a duration of τss/2 since
it is assumed that the spins are tipped instantaneously at the centre of the RF
pulse. Therefore, the phase is being accumulated from this moment on, when half
of the positive lobe slice selection gradient (τss/2) remains to apply.

2.5.4 Spatial encoding
After the slice selection (always applied along the z-axis, by convention), to locate
each spin within the excited slice, x and y directions are spatially encoded. As
for the slice selection, a frequency-encoding gradient (or readout gradient) Gx is
applied during τx along the x-axis to encode the frequency of the spins. A phase-
encoding gradient Gy is also applied for a duration τy to spatially encode the phase
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Figure 2.8: 90° flip-angle slice-selective sequence. A negative gradient is applied
after the RF-pulse is turned off for refocusing of the transverse magnetization (i.e:
to remove the phase shift accumulated over the slice width due to the modification
of the frequency by the positive gradient).

of the transverse magnetization along the y-axis. Note that a straightforward
approach would be to apply another frequency encoding gradient along the y-
axis instead of encoding the phase. Nevertheless, using two frequency encoding
gradients would necessarily lead to redundant frequencies between isochromats
within a slice. The resulting frequency of an isochromat at location r can be
decomposed as:

ω(r, t) = ω0 + γ(Gx(t)x+Gy(t)y) (2.40)

where ∆B(r, t) = Gx(t)x + Gy(t)y. Introducing this expression into the signal
measured by the receiver coil as given in Equation (2.34) leads to:

S(t) = ω0

∫
Ω
C∗xy(r) ·Mxy(r, 0)e−t/T2e−i2π(kx·x+ky ·y)dΩ (2.41)

where the k-space trajectory is defined as:

kx = γ

2π

∫ t

0
Gx(τ)dτ (2.42)

ky = γ

2π

∫ t

0
Gy(τ)dτ (2.43)

Defining the k-space operators as a spatial frequency (or wave number), Eq. (2.42)
shows that the total k-space covered during a time interval is the area under
the gradient waveform G(t). Eq. (2.41) shows that the signal acquired is the
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2D Fourier transform of the transverse magnetization weighted by the sensitivity
profile of the receiver coil. Recalling that the transverse magnetization can be
expressed as a function of the spin density ρ0 per unit volume (see Eq. (2.7)), it is
then possible to rewrite the previous Equation (2.41) as follows:

S(k) =
∫

Ωk

ρ(r, T2)e−i2π(kx·x+ky ·y)dk (2.44)

where ρ(r, T2) = ω0ΛC∗xyMxy(r, 0)e−t/T2 is an effective spin density, and Λ a
constant accounting for the gain factors of the electronic detection system. Note
that if the time when the signal acquisition is performed (called echo time TE) is
small as compared to T2, the exponential relaxation term is close to the unit and
the dependence of the spin density to T2 can be removed (i.e: ρ(r, T2) becomes
ρ(r)). Similarly, here the longitudinal relaxation effects were neglected in the
signal expression but in the general case, we should write ρ(r, T1, T2).

Finally, taking the inverse Fourier transform of the signal leads to the reparti-
tion:

ρ(r) =
∫

Ω
S(k)e+i2π(kx·x+ky ·y)dΩ (2.45)

Therefore, the spin density is the inverse Fourier transform of the signal acquired
over a sample. This relationship represents the key concept exploited in MRI.
Sequentially sampling the k-space over a discrete range of frequencies in both
phase and frequency encoding directions, and taking the inverse Fourier transform
of the resulting discrete signals are the necessary steps to form a 2D image.

2.5.5 k-space coverage
Different k-space trajectories can be adopted to fill the k-space, depending on the
amount of signal and pixel width required. The path adopted greatly influences
the resulting imaging artefacts. A common and straightforward strategy consists
in covering the k-space following a Cartesian trajectory (see Fig. 2.9). First,
a phase-encoding gradient is applied to encode the phase of each spin along y
direction. Each line is separated by ∆ky = γGy∆ty. Between each line increment,
nx columns are filled with sampling interval ∆kx = γGx∆tx, where ∆tx and ∆ty
are the dwell times of sampling interval along the frequency and phase encoding
directions, respectively. Due to the use of a discrete Fourier transform, a sampling
constraint to avoid aliasing is to satisfy the Nyquist theorem stating that if a
signal sampled with intervals ∆x has a spectrum bandwidth in the frequency
domain 2kx,max greater than 1/∆x, then aliasing would occur. In this sense, the
k-space sampling interval ∆kx should be limited to:

2kx,max ≤
1

∆x
∆kx = 2kx,max

nx
≤ 1
FOVx

(2.46)
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Figure 2.9: Example of a Cartesian k-space trajectory. The k-space is covered
from left to right and from top to bottom.

where FOV = (FOVx, FOVy, FOVz) corresponds to the field of view or the image
size, and where nx, ny is the number of points in the k-space according to readout
and phase encoding direction respectively. Note that the previous relation also
applies for the y-axis. Other strategies such as radial, spiral or zig-zag k-space
trajectories might also be adopted [12].

Note that a large amount of kx and ky values are usually required to reconstruct
the entire image with a sufficient level of details, and it is common to see k-space
matrix size of more than 512×512. However, a larger matrix size would necessarily
induce a smaller number of spins per isochromat and would therefore results in a
lower Signal to Noise ratio (SNR). Low SNR images produce grainy images. A
way to counteract this effect can be to increase the slice thickness, increasing the
number of spins and therefore the quantity of signal coming from each isochromat.
In general, the user should decide whether to prioritize a fine spatial resolution
(but with poor SNR), or a high SNR with low resolution. More details will be
given about the SNR in Section 2.8.5.

2.6 Imaging sequence
To fill the k-space progressively, a MR imaging sequence consists in the sequential
repetition of many pulse sequences, each pulse sequence usually filling one line
of the k-space. A particular type of sequence might be preferred depending on
the type of tissues/organs or functionality to image. For instance, spin echo
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Figure 2.10: Example of a typical GRE pulse sequence. In Cartesian filling
strategy, a full k-space line is filled during the time interval Ts by the ADC
(Analog to Digital Converter), where data are collected by the receiver coil. The
amplitude of the phase encoding gradient Gy is modified for each consecutive pulse
sequence to fill a new k-space line. Note that a prephasing gradient is applied
along the readout (x) direction to accelerate the FID decay signal. Dephased
spins are then rephased by applying a gradient of opposite polarity, while signal
is detected.

sequences are characterized by the presence of a 180° refocussing RF pulse, and
will be preferred to measure the T2 with accuracy. On the contrary, gradient echo
sequences (GRE) are usually characterized by a lower flip angle and a unique RF
pulse per pulse sequence, such that it results in a fast MR acquisition. A typical
GRE pulse sequence is presented in Figure 2.10. Note that several groups of pulse
sequences can be distinguished (spin echo, gradient echo, inversion recovery, ...)
depending on the properties of the tissues to image. So far, a large variety of
imaging protocols have already been developed in order to mitigate the imaging
artefacts while reducing the time duration of a scan. A detailed overview of the
existing sequences and their main features is provided in Bernstein et al. [12].
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2.7 3D imaging
Similarly as for 2D imaging, the signal coming from the spins in the third dimension
could be encoded. This could be achieved either with 2D multi-slice or 3D
sequences. In 2D multi-slice imaging, a series of consecutive slices are sequentially
excited by varying the RF pulse to increment the position of the excited slice,
while keeping constant slice-selection gradients. On the contrary, in 3D imaging,
the RF excitation bandwidth is adjusted to cover the entire thickness of the
volume (called a slab), and phase-encoding gradients are adjusted to encode the
signal according to this direction.

2.8 Phase-contrast MRI
So far, static spins were implicitly considered. Assessing the blood flows is of
interest for the reasons detailed in the previous chapter. However, the classical
imaging techniques are not suited to measure the displacement of the moving
spins contained in the blood flows.To this end, two distinct MR techniques exist:
the MR Angiography (MRA) and the Phase-Contrast MRI (PC-MRI). MRA is
usually dedicated for the measurement of the blood vessel lumen while PC-MRI
is used to quantify the blood velocity inside the vessels. PC-MRI is based on the
principle that in the presence of moving spins, the phase of the spatially encoded
signal could be expressed as a function of the velocity of these spins. The phase
accumulated between the end of the RF excitation (t = 0, by convention) and
echo time (TE) where the signal is collected is expressed as:

φ(r, TE)− φ(r, 0) = −
∫ TE

0
ω(r, t′)dt′ = −γ

∫ TE

0
r(t) ·G(t′)dt′ (2.47)

Note that since the signal is demodulated with respect to the Larmor frequency
induced by the static magnetic field, the contribution of γB0 cancels out. Note
also that local field phase that arise due to magnetic fields inhomogeneities are
for now neglected and will be discussed later. A second-order Taylor expansion of
the spin location r(t) at the vicinity of t0 gives:

r(t) = r(t0) + (t− t0) ∂r
∂t

∣∣∣∣∣
t0

+O((t− t0)2) (2.48)

Introducing this decomposition of r in the expression of the phase accumulated at
echo time TE gives:

φ(r, TE) = φ0 − γr0 ·
∫ TE

0
G(t′)dt′︸ ︷︷ ︸
M0

−γu0 ·
∫ TE

0
t′G(t′)dt′︸ ︷︷ ︸
M1

(2.49)
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Figure 2.11: Illustration of the effects of applying either flow compensating (left)
or bipolar encoding velocity gradients (right) on the phase of the magnetization
vector. The static spins (blue) result in a zero accumulated phase at the end of
the application, while the moving spins (red) result in a non-zero phase, such that
M1(2τv) = −γ

∫ 2τv
0 tG(t)dt = γτ 2

vGv for bipolar gradients while M1(3τfc) = 0 for
flow compensating gradients applied.

where u0 = ∂r
∂t

∣∣∣
t=0

and φ0 = φ(r, 0) = φ(r, τrf) is an additional background
phase. To simplify the notation, M0,M1 are introduced as the zero and first order
moments of G(t). Note that r(t) is here approximated at the second order, i.e
with a constant velocity, but a more complete description could be obtained using
a third-order Taylor expansion, considering the acceleration of the spin. Bipolar
velocity encoding gradients are used to encode the velocity according to the three
spatial directions. A bipolar gradient is a succession of a negative and positive
lobes of the same amplitude. They are particularly useful in phase-contrast
MRI since a bipolar gradient results in a zero phase for static spins (M0 = 0)
while M1 6= 0 for the moving spins, as illustrated in Fig. 2.11. Nevertheless,
background phase effects remains after bipolar gradients application. To remove
the contribution of φ0, two consecutive measurements of first moments M1

1 and
M2

1 are necessary, with bipolar gradients of opposite polarities. Considering the
x-component of the velocity, the difference of the resulting phases ∆φ leads to:

∆φ(r, TE) = φ2(r, TE)− φ1(r, TE) = γuM2
1,x − γuM1

1,x (2.50)

and finally, the expression the velocity can be obtained as:

u = ∆φ(r, TE)
γ∆M1,x

(2.51)

Note that three velocity encoding gradients along (x,y,z) are required to encode
all spatial directions. Therefore, at least 4 measurements are required (1 reference
and 3 direction encodings pulse sequences), given that the same flow compensating
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gradient (resulting in both M0 = 0 and M1 = 0) is used as a common reference
measurement. Several variant of velocity encoding strategies exist, as described by
Pelc et al. (1991) [124]. An important feature to consider in PC-MRI is that the
phase only varies between φ ∈ [−π, π]. Therefore, an encoding velocity must be
set by the user in such a way that it is representative of the maximum velocity of
the flow in this encoding direction. The maximum velocity chosen (uenc, venc, wenc)
is then defined as the velocity producing a phase shift of π, and could be expressed
along the x-axis as:

uenc = π

γ∆M1,x
(2.52)

If at some points the velocity of the flow is higher than the encoding velocity,
aliasing (or phase wrapping) will occur. Multiple methods to correct the phase
wrapping exist [139], but are not covered in this thesis. From the previous
expression, one can rewrite the 3 velocity components as:

u = uenc
π

∆φx

v = venc
π

∆φy

w = wenc
π

∆φz

(2.53)

2.8.1 PC-MRI sequences
The first 3D cine PC-MRI sequence with 3 directional velocity encodings was
developed in Markl et al., (2003) [100] and referred to as 4D Flow MRI. A PC-MRI
sequence is based on gradient echo sequence already presented in Figure 2.10,
where flow compensating and velocity encoding gradients are added. Nowadays,
one of the main drawback of the PC-MRI sequences is the time of acquisition Tacq
needed to acquire the full 3D velocity field, that reads:

Tacq = 4NyNzTR (2.54)

where Nx, Ny, Nz is the k-space matrix size, TR is the repetition time (i.e: the time
between to consecutive pulse sequences). On top of that, as cardiovascular flow are
pulsatile flow, the cardiac cycle should be split into Np time-frames (or phases) of
duration ∆t. As the time duration of one cardiac cycle Tc = Np∆t is not sufficient
to acquire all the data, the k-space is filled progressively during several cycles,
each phase data being acquired in a synchronised way from one cycle to another.
This synchronization is usually performed using the electrocardiogram (ECG)
signal and is called ECG-gating. Therefore, in pulsatile flows with ECG-gating,
the acquisition time is extended to:

Tacq = NyNzNp

Nseg

∆t (2.55)
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where Nseg is the number of k-space lines that can be filled during each time frame
of duration ∆t. In other words, it can be defined as: Nseg =

⌊
∆t

4TR

⌋
, where the 4TR

corresponds to the time needed to acquiring 1 reference measurement (φ0) and 3
velocity encoded measurements (φx, φy, φz).

Typically, to measure the 3D velocity field in the aorta (pulsatile flow), a
repetition time TR = 5− 10ms, and a number of subsets filled in one time frame
of Nseg = 2 would result in a temporal resolution of ∆t = 40− 80ms. Moreover,
a spatial resolution of 2× 2× 2 mm3, approximately corresponding to a matrix
size Nx = 240, Ny = 240, Nz = 20, would result in an acquisition time of about
30− 40 min.

2.8.2 Spoiling of the residual magnetization
While the assumption that the transverse magnetization is completely refocussed at
the end of a pulse sequence (i.e TR > T2) is valid for certain types of sequences with
long TR, it is generally false for PC-MRI sequences due to very small repetition
times (few milliseconds). A non-negligible residual transverse magnetization
should remain between two consecutive pulse sequences, therefore transmitting
a non equilibrium magnetization vector as initial condition of the next pulse
sequence. For this reason, RF- or gradient- spoilers are usually added to PC-MRI
sequences. Spoiling is a method used to destroy the transverse magnetization
that may persist from one pulse sequence to another. It is realized either through
application of a gradient or a varying phase RF impulsion. Usually the RF-spoiling
is preferred since it does not generate gradients-induced artefacts and is constant
in space. RF-spoiling consists in applying a varying phase offset to each successive
RF pulse. For more details about the design of a RF-spoiler, the reader can refer
to Bernstein et al. [12].

2.8.3 Pre-saturation of the longitudinal magnetization
Given a spin system at initial equilibrium state such that M(t = 0) = (0, 0,M0)T ,
if we apply a RF pulse with flip angle α and duration τrf to this system, the
longitudinal and transverse components of the magnetization vector would take
the following form:

Mz(0+) = M0 cos(α)
Mxy(0+) = M0 sin(α)

(2.56)

where the notation + refers to the end and − to the beginning of the RF pulse.
Then, if one applies another RF pulse after a time TR that is not sufficient to
fully relax the longitudinal magnetization (Mz(T−R ) 6= M0) whereas the transverse
magnetization is spoiled (i.e Mxy(T−R ) = 0), then Mz(T+

R ) is modified by the

41



CHAPTER 2. FUNDAMENTALS OF MAGNETIC RESONANCE IMAGING

second RF and therefore different from Mz(0+). After a sufficient number of RF
pulses n applied consecutively interleaved by TR, the longitudinal magnetization
should reach a steady-state value (M ss

z ) such as:

Mz(nT−R ) = M ss
z (2.57)

Therefore, spoiled GRE sequences usually start with a repetition of RF pulses so
that the longitudinal magnetization can reach this steady state. Note that the
number of repetitions needed to reach a steady state value is proportional to the
flip angle and TR. One can derive from Eq.(2.20) the analytical expression of Mz

after n repetitions as:

Mz(nT−R ) = M0(1− e−TR/T1) +Mz((n− 1)T−R ) cos(α)e−TR/T1 (2.58)

Now considering that a steady state value is reached after m repetitions means
that Mz(mT−R ) = Mz((m − 1)T−R ) = M ss

z , and therefore the expression of M ss
z

reads:

M ss
z = M0(1− e−TR/T1)

(1− cos(α))e−TR/T1
(2.59)

The longitudinal magnetization at t = nT−R can also be expressed from the first
repetition, and reads:

Mz(nT−R ) = M0(1− E1)
n−1∑
i=0

(cos(α)E1)i +M0(cos(α)E1)n (2.60)

where E1 = e−TR/T1 . Using that,

n∑
k=0

ak = 1− an+1

1− a (2.61)

the previous expression simplifies to:

Mz(nT−R ) = M0(1− E1)
1− cos(α)E1

(1− (cos(α)E1)n) +M0(cos(α)E1)n (2.62)

Introducing the expression of M ss
z gives rise to the following expression:

Mz(nT−R ) = (M0 −M ss
z )(cos(α)e−TR/T1)n +M ss

z (2.63)

The evolution of Mz under consecutive RF pulses for different TR and α is shown
in Figure 2.12. For the cases considered, increasing the flip angle leads to a reduce
number of repetitions needed. However, to minimize the acquisition time, the
best compromise seems to be the case where TR = 20 ms and α = 30°.
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Figure 2.12: Evolution of the longitudinal magnetization at T−R for n consecutive
RF pulses with M0 = 1 and T1 = 0.85 (blood).

2.8.4 Small tip-angle approximation
If one neglects the relaxation effects, the transverse component of the Bloch
equations can be expressed as:

dMxy

dt
= γMyBz − γMzBy + i(γMzBx − γMxBz) (2.64)

Considering that the RF pulse only shifts the longitudinal magnetization by a small
angle (small tip-angle approximation), meaning that Mz(t) ≈M0 = constant, the
following simplification applies:

dMxy

dt
= γ (iM0 (Bx + iBy)− iBz (Mx + iMy)) (2.65)

Therefore, by decomposing B1 such that B1 = B1,x + iB1,y, and Bz = G · r, it
appears that:

dMxy

dt
= iγM0B1(t)− iγG(t) · rMxy(t) (2.66)

Solving this equation leads to the following expression:

Mxy(t) = iγM0e
−iγ
∫ T

0 G·rdt
∫ T

0
B1(t)eiγ

∫ T

0 G·rdtdt (2.67)

Using the k-space notation k(t) = γ
∫ T

0 G(t)dt,

Mxy(t) = iγM0e
−ik(t)·r

∫ T

0
B1(t)eik(t)·rdt (2.68)

This analytical description of the transverse magnetization during a RF excitation
is especially well-suited to PC-MRI sequences, as the flip angle is generally included
between 5°and 30°.
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2.8.5 Signal and noise
Noise is always present in MRI and can be a non-negligible source of errors. It
generally originates from the electromagnetic interaction within the MRI scan
room (receiver coils), or can be due to patient body electronic charges. As
demonstrated in [65], its relationship with the signal magnitude is given by the
Signal-to-Noise Ratio, which is proportional to the voxel size, and the square root
the acquisition time as:

SNRmag ∝ ∆x
√
Tacq (2.69)

As already discussed, decreasing the voxel size increases the noise. Similarly,
if one considers a PC-MRI sequence with a squared matrix size, the SNR takes
the following form:

SNRmag ∝

√√√√∆xFOVxTc
Nseg

The noise also impacts the phase of the MR signal. Low signal intensities can
result in a prominent bias due to the acquisition noise. As expressed in [124] a
measure of the velocity SNR (SNRu) is:

SNRu = π√
2
u

uenc
SNRmag (2.70)

Several previous works focused on proposing analytical expressions of the noise.
Among them, Edelstein et al. [49] showed that pure noise in magnitude image
can be expressed as a Rayleigh distribution. Later, Bernstein et al. [11] proposed
a more general Rician distribution of the noise in magnitude data, related to the
SNR. Finally, Gudbjartsson expanded the analytical expression of the noise to
phase contrast images [63].

2.9 Limitations and PC-MRI artifacts
In the previous section, idealized magnetic fields were considered, with no in-
homogeneities or image artifacts. In practice, however, artifacts are almost
systematically present in MRI, and induced by many different factors (motions,
tissues, hardware, signal-processing, etc.). As the aim of this thesis is not to
provide the reader with a complete overview of the existing artifacts, we will focus
exclusively on the most common artifacts that appear in flow MRI.

2.9.1 Motion-related artifacts
In-vivo motions

Motions are inevitable in-vivo. These motions generally produce ghosting and
blurring on the images. These motions can be random, as patient motion during
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Figure 2.13: Illustration of the flow misregistration artifact. The flow particle
is first phase-encoded at a given position while when the frequency encoding
occurs, the particle has changed position. For this reason, the particle appears
misregistered.

an exam, or cyclic, as the cardiac and respiratory motions. In flow MRI of pulsatile
flows, cardiac gating is usually necessary to locate and store the measured data
at the correct phase within the cardiac cycle. Moreover, cardiovascular imaging
usually require to compensate for the respiratory motions. During free-breathing
measurements (as for 4D Flow MRI), it is common to add a navigator gating that
record the diaphragm position at the end of each cardiac cycle. If the current
diaphragm position lies into a predefined acceptance interval, then the data is
accepted; otherwise, the data is rejected [101].

Flow misregistration

Flow-induced artifacts could also be prominent in flow MRI. As illustrated in
Figure 2.13, a flow misregistration artifact occurs whenever the moving spins have
changed position between the frequency and phase-encoding gradients times. The
resulting encoded position of the phase is then shifted by the distance travelled
by this parcel during a ∆t = tphase − tfreq where tfreq is the time at the frequency
encoding gradient. This artifact is most prominent for in-plane flows. See [146]
for more detailed discussions about the misregistration artifacts in phase-contrast
MRI.
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Object to image
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Figure 2.14: Illustration of the phase wrap-around artifact. The object segments
that lay out of the FOV are subjected to phase-wrapping (i.e: the part labelled 1.
is encoded with phases that range between [330, 360] while the part 2. is encoded
with phases that range between [0, 30].

Inflow effects

Successive RF-excitations associated with small TR are responsible for a progres-
sive saturation of the longitudinal magnetization (see Section 2.8.3 of the tissues,
reducing at the same time the amplitude of the magnetization vector. However, as
the blood flowing in the vessels is continuously replaced by non-saturated blood,
it results in higher magnitude of the magnetization vector and therefore in higher
amplitude of the signal on the image. This phenomenon constitutes the basis of
time-of-flight angiography techniques.

2.9.2 Technique-related artifacts

Phase wrap-around

A wrap-around artifact is a result of an FOV smaller than the size of the object
to image. In practice, it manifests as a fold-over of the object at the boundary
where the object is larger than the FOV (see Figure 2.14). It results from a
violation of the Nyquist theorem, which states that the sampling rate must be
twice the maximal frequency that occurs in the image. It is generally avoided by
phase-oversampling (i.e: assigning a larger matrix size to a phase cycle).
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Figure 2.15: Illustration of the Gibbs artifact. The red square wave is described
as a Fourier series with the first 7 harmonics only.

Gibbs artifact

The Gibbs artifact or truncation artifact occurs as a consequence of the Fourier
transform. In theory, an MR signal is represented by an infinite number of
harmonics, while in practice a finite number of harmonics depending on the
sampling is used. Therefore, the signal is trucated. A concrete example of the
Gibbs artifact is illustrated in Figure 2.15 where the finite-number of Fourier
harmonics used to describe the square waveform generates oscillations (ringing).

2.9.3 Tissues-related artifacts

Partial volume effects

Partial volume effects appear when a voxel lies at the interface of two tissues with
different resonance properties. For example, a voxel at the interface blood-wall
would raise a signal averaged from the contributions of blood spins and artery
walls spins.

Chemical shift

Some variations of the resonance frequencies may occur depending on the chemical
environment around the protons (i.e: the molecules it belongs to). A local
induced magnetic field opposed to the external magnetic field is created due to the
shielding effect produced by the proton’s molecular environment. The chemical
shift corresponds to this small variation of resonance frequency induced by the
shielding effect.
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Magnetic susceptibility

The magnetic susceptibility is intrinsic to each material properties and corresponds
to its ability to either disperse the surrounding magnetic field (diamagnetic) or
to concentrate it (paramagnetic, ferromagnetic). Magnetic field distortions then
appear due to the magnetic field susceptibility differences at the interface between
two tissues. This artifact is present essentially around metal implants and air-
tissue interfaces. Shorter TE and increased gradient strength allow to alleviate
this artifact.

2.9.4 Hardware-related artifacts
Eddy-currents artifacts

Due to the rapid switches on and off of the gradient fields, time-varying magnetic
fluxes induce deviations of the gradient waveform profile, and therefore perturbs
the spatial encoding. Active shielding of the gradient coils can be a way to reduce
the eddy-currents effects [22]. Otherwise, their effects can be partially removed
by post-processing the images. This will be discussed in a later Section 4.4.2.

Static field inhomogeneities

Imperfections in the homogeneity of the static field are natural, and can be
additionally caused by the object to image. Shimming (passive or active) of the
machinery consists in adding supplementary coils or ferromagnetic elements that
help recovering the magnetic field homogeneities. The inhomogeneities caused by
the object to image can be corrected by post-processing the images [135].

Gradient field non linearities

One of the artifact that produces the most significant distortions is due to the
spatial non-linearities of the gradient fields along the three axes. While usually
linear gradients field are assumed along the three axes ω(r) = ω0 + γG · r, one can
show that in practice this linearity is not compatible with Maxwell’s equations
[22]. These effects can be corrected either by using predefined displacement tables,
or measuring the distortions for a reference object.
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This chapter develops the numerical methods implemented in the YALES2BIO1

solver [106]. The YALES2BIO solver is an in-house numerical software designed
to perform numerical simulations of blood flows in complex geometries. The
YALES2BIO solver uses the finite-volume method, high-order non-dissipative
numerical schemes and massively parallel capabilities inherited from the YALES2
solver to solve the full Navier-Stokes equations (NSE) on unstructured meshes
[117]. Developed and maintained at CORIA2, the YALES2 solver is principally
designed for the research in turbulent flows. In this chapter, the numerical methods
to simulate the fluid dynamics are expanded, and four numerical test cases are
presented. The developments related to the numerical simulation of 4D Flow MRI
acquisition process are detailed in Chapter 6.
1https://imag.umontpellier.fr/~yales2bio/
2https://www.coria-cfd.fr/index.php/YALES2/
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CHAPTER 3. NUMERICAL FRAMEWORK

3.1 The YALES2BIO solver
Blood is an incompressible fluid characterized by complex rheological properties
an Non-Newtonian behaviour. However, at the macroscopic scale, blood flows
experiencing high shear rates in large vessels are often modelled as a Newtonian
fluid [123]. To this respect, the motion of a Newtonian incompressible fluid on
which is exerted a volume force of density f can be described by the well-known
Navier-Stokes equations (NSE), that reads:

∂u
∂t

+∇ · (uu) = −1
ρ
∇p+ ν∇2u + 1

ρ
f

∇.u = 0
(3.1)

The first equation expresses the conservation of momentum of the system, while
the second imposes the mass conservation. Although no generally valid analytical
solution was found yet, several numerical methods have been developed that allows
to approximate the solution. To numerically solve the NSE, the fluid domain of
interest is partitioned with polyhedral mesh elements (generally hexahedral or
tetrahedral in 3D). Among the large variety of methods that allow to discretize and
solve the NSE on a numerical mesh, the finite-volume method was implemented
in the YALES2BIO solver. It is beyond the scope of this thesis to develop the
other methods.

3.1.1 The finite volume method
In the finite volume method, the discretization procedure is based on the integral
of the conservation equations over polyhedral control volumes (CV). A CV could
either be centred on the node or the element of the mesh. In YALES2BIO, node-
centred CV are utilized, as illustrated in Figure 3.1. Finite volumes approach
is often adopted in the field of computational fluid dynamics since the integral
formulation of the discretized surface forces naturally conserves the momentum.

Integrating the momentum equation (Eq. 3.1) over a control volume Ω leads
to: ∫

Ωi

∂u
∂t
dV =

∫
Ωi

∇ ·
(
−uu− 1

ρ
pI + ν∇u

)
dV +

∫
Ωi

1
ρ
fdV (3.2)

Using the Gauss theorem
∫

Ωi
∇·φdV =

∮
∂Ωi

φ·dS to transform the volume integrals
to surface integrals :

∫
Ωi

∂u
∂t
dV =

∮
∂Ωi

(
−uu− 1

ρ
pI + ν∇u

)
· dS +

∫
Ω

1
ρ
fdV

=
Nfi∑
j=1

∫
Sij

(
−uu− 1

ρ
pI + ν∇u

)
· dS +

∫
Ωi

1
ρ
fdV

(3.3)
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Sij

i

j

Vi

Figure 3.1: Control volume Vi created around the node i of an unstructured hybrid
mesh constructed by linking the centroids of the neighboring elements (red dots)
and the centres of the edges adjacent to the node i (blue dots).

where each control volume is bounded by Nfi pair face normals Sij = nijSij where
Sij is the pair face, as illustrated in 2D in Fig. 3.1.

3.1.2 Spatial discretization
From Eq. 3.3, the body force and unsteady terms need to be integrated over the
control volume. The average of a variable φ over a control volume is defined as:

φΩi
= 1
Vi

∫
Ωi

φdV (3.4)

A Taylor expansion in the vicinity of the CV node i leads to:

φ = φi +
∂φ

∂xk

∣∣∣∣∣
i

(
xk − xki

)
+ 1

2(xk−xki )(xl−xli)
∂2φ

∂xk∂xl

∣∣∣∣∣
i

+O
(
||xk − xki ||3

)
(3.5)

If the CV centre of mass xΩi
= 1

Vi

∫
Ωi

xdV is located at the node position i, then

φΩi
= 1
Vi

∫
Ωi

φdV ≈ φi (3.6)

is second-order accurate on regular grids. Nevertheless, as the CV barycentre and
the node do not necessarily have the same position, Eq. 3.6 generally reduces to
first-order accuracy.

Similarly, the surface integral in Eq. 3.3 must be discretized. The average of
the variable φ over the pair surface Sij is given by:

φSij
= 1
Sij

∫
Sij

φdS (3.7)

If this CV pair centre xij is located at the barycentre of surface Sij, the approxi-
mation ∫

Sij

φdS ≈ φijSij
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becomes second-order accurate. Adding that,

φij ≈
φi + φj

2
This approximation is always second-order accurate since, by definition, each pair
centre ij is located at the midpoint between i and j.

Discretization of the derivative operators

The gradient, divergence and Laplacian operator can be discretized from the
previous discretization of the CV surface integrals. The second-order discretization
stencil for the gradient reads:

G(φ)|i = 1
Vi

Nfi∑
j=1

φi + φj
2 Sij (3.8)

From a similar observation, the second-order discretization for the divergence
operator can be obtained such as:

D(u)|i = 1
Vi

Nfi∑
j=1

ui + uj
2 · Sij (3.9)

The most straightforward way to discretize the Laplacian operator is to apply
successively the gradient and divergence operator. Nevertheless, this leads to
non-compact stencil, which might involve non-physical solutions of the Poisson
equation as it misrepresents some frequencies of the variable due to the even spatial
sampling of the discretization: this phenomenon is often called the checkerboard
problem. Moreover, this stencil is not straightforward to implement according to
the data structure which only allows to reach the first neighbours of a node. An
alternative scheme can be derived in order to get a compact stencil, where the
Laplacian operator of a scalar variable φ is expressed as:

L(φ)|i =
Nfi∑
j=1
∇φ|ij · Sij (3.10)

By expansion in Taylor series of φi and φj , the following approximation arises:

φi = φij + ∇φ|ij · (xi − xij) +O(∆x2)
φj = φij + ∇φ|ij · (xj − xij) +O(∆x2)

(3.11)

Then, it comes that:

∇φ|ij = (φj − φi)
(xj − xi)T

‖(xj − xi)‖2 (3.12)
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and finally second-order discretization for the Laplacian operator is obtained:

L(φ)|i =
Nfi∑
j=1

(φi − φj)
(xj − xi)T

‖(xj − xi)‖2 · Sij (3.13)

If the CV face normal Sij is parallel to the pair edge, one can decompose the dot
product in Eq. 3.13 and the Laplacian operator becomes:

L(φ)|i =
Nfi∑
j=1

(φi − φj)
‖(xj − xi)‖

‖Sij‖ (3.14)

However, it is usually not the case in practice for general unstructured grids
and each component of the gradient should be assessed. Given the Laplacian
operator discretized from the previous expression, it is therefore important to
generate meshes with a cell skewness as low as possible to minimize the associated
approximation errors.

Note that all these second-order discretization procedures are fully described
in the PhD. thesis of S. Vantieghem [159].

High-order discretization

High order schemes are generally preferred for resolving the small scale turbulence
of the flow in LES and DNS frameworks as it reduces the numerical diffusion and
dispersion. The spatial discretization scheme implemented in the YALES2BIO
solver provides a 4th-order accurate approximation of the finite-volume integration
on regular grids. It mainly consists of an operation that allows to transfer the
variable averaged over the CV φΩi

towards the CV node φi. This procedure
is refereed to as a deconvolution of the finite-volume integration, and detailed
explanations can be found in [81]. A Taylor expansion of φ at the vicinity of node
i inserted into Eq. 3.6 can be seen as an averaging operator applied to the nodal
value φi. An inversion of this operator allows to express φi as a function of φΩi

[145]. After some simplifications, the resulting deconvolution reads:

φi = φΩi
− δxki

∂φΩi

∂xk
−
(1

2δ
2x

kl

i − δx
k

i δx
l

i

)
∂2φΩi

∂xk∂xl
+O(δx3) (3.15)

where
δx

k

i = 1
Vi

∫
Ωi

(
xk − xki

)
dV

and
δ2x

kl

i = 1
Vi

∫
Ωi

(
xk − xki

) (
xl − xli

)
dV

Now if one writes the previous approximation at the CV barycentre φi = φ(xΩi
):

φi = φΩi
− 1

2δ
2xi

kl ∂2φΩi

∂xk∂xl
+O(δx3) (3.16)
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since δxki = 0.
The surface integrals in Eq. 3.3 can be discretized from a similar observation.

The value of φ at barycentre of the surface Sij can be defined as:

φSij
Sij =

∫
Sij

φdS

A Taylor expansion of φ in the vicinity of the control volume pair centre ij leads
to:

φ = φij + ∂φ

∂xk

∣∣∣∣∣
ij

δxkij + 1
2δx

kl
ij

∂φ

∂xk∂xl

∣∣∣∣∣
ij

+O
(
δx3

)
(3.17)

Now, we can decompose the value at the pair centre as:

φij =
φij/Ωi

+ φij/Ωj

2
where φij/Ωi

is the contribution of CV i to the pair centre ij. Another Taylor
expansion of φij/Ωi

in the vicinity of the barycentre i leads to:

φij/Ωi
= φi + δxki,ij

∂φi
∂xk

+ 1
2δ

2xkli,ij
∂2φi
∂xk∂xl

+O(δx3)

The barycentric value φi can be replaced by the expression found in Eq. 3.16, and
after some simplifications (see [81] for details), φij reads:

φij =
φΩi

+ φΩj

2

+ 1
2
(
δxi

k + δxj
k
) ∂

∂xk

φΩi
+ φΩj

2

+

1
2

δxki,ijδxlj,ij + δxki δx
l
j

2 −
δ2xi

kl + δ2xj
kl

2

 ∂

∂xk∂xl

φΩi
+ φΩj

2

+O(δx3)

(3.18)

where δxk
i,ij

= xk
i
−xkij and δxkli,ij = (δxk

i
−δxkij)(δxli−δx

l
ij). Finally, introducing this

expression in Eq. 3.17 and integrating over the surface Sij leads to an expression
of φSij

. This deconvolution procedure raises the approximation to fourth-order
for regular grids, and to third-order for isotropic unstructured meshes.

3.1.3 Time advancement
Resolving numerically the incompressible version of the Navier-Stokes equations is
usually more challenging than for compressible flows as there is no state equation
that pilots the evolution of the pressure. For this reason, the time advancement
scheme implemented in YALES2BIO is based on a fractional step method, initially
developed in Chorin (1968) [34], and later modified by Kim and Moin, (1985) [78].
This splitting algorithm is based on the Helmholtz-Hodge decomposition which
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states that any sufficiently smooth vector field u defined in a domain Ω could
be uniquely decomposed as irrotational (∇× = 0) and solenoidal (∇· = 0) parts,
such as:

u = usol + uirr on Ω
usol · n = 0 on ∂Ω

(3.19)

where n is the outward normal vector on the ∂Ω boundary. As the irrotational
part verifies ∇ × uirr = 0, it derives from a potential and can be written as
uirr = ∇φ. Then, taking the divergence of the previous Eq. 3.19 gives rise to a
Poisson equation:

∇ · u = ∇2φ (3.20)
since ∇ · usol = 0. Then, by solving this equation, the divergence-free velocity
field can be recovered:

usol = u−∇φ (3.21)
This is equivalent to defining an orthogonal projector P that maps u into its

divergence-free part usol such that Pu = usol. Of course, this projector verifies:

P∇φ = 0

and
Pusol = usol

In the Navier-Stokes equations, the pressure plays the role of the operator
that projects the velocity field into a divergence-free vector field. In practice, the
algorithm developed by Chorin is split in two steps: first an intermediate velocity is
predicted from the momentum equations expressed with no pressure contribution.
Then, a pressure Poisson equation is raised to correct the intermediate velocity
field and ensure the divergence-free of the velocity. An illustration of this algorithm
is presented where the explicit Euler scheme is considered for the time integration.
Note that the velocity is expressed at time steps n, n + 1 while the pressure is
solved at shifted time steps n− 1/2, n+ 1/2. A first prediction of the intermediate
velocity u∗ is obtained by integrating the momentum equations with no pressure
term:

u∗ − un

∆t = − (un · ∇) un + ν∇2un + 1
ρ
fn (3.22)

the velocity is then corrected by integrating the new pressure gradient:
un+1 − u∗

∆t = −1
ρ
∇pn+1/2 (3.23)

Then to determine the pressure pn+1/2, we take the divergence of the previous
equation which raises the following Poisson equation for the pressure:

1
ρ
∇2pn+1/2 = ∇ · u

∗

∆t (3.24)
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since ∇ · un+1 = 0. Later, Kim and Moin [78] highlighted that the boundary
condition prescribed for the intermediate velocity u∗ is inconsistent and could lead
to erroneous results. They proposed a modified version of the splitting algorithm.
At first, we predict an intermediate velocity û including the pressure gradient at
n− 1/2:

û− un

∆t = − (un · ∇) un − 1
ρ
∇pn−1/2 + ν∇2un + 1

ρ
fn (3.25)

with boundary condition û = un+1 on ∂Ω. The pressure contribution is then
removed:

u∗ = û + ∆t1
ρ
∇pn−1/2 (3.26)

and the pressure is updated by taking the divergence of Eq. 3.23:

∇2pn+1/2 = ∇ · u
∗

∆t (3.27)

with classical homogeneous Neumann boundary conditions:
∂pn+1/2

∂n
= 0 on ∂Ω (3.28)

Then finally the velocity is corrected with the new pressure gradient:

un+1 = u∗ −∆t1
ρ
∇pn+1/2 (3.29)

In this formulation, u∗ at boundaries is second-order accurate (while û is first
order accurate). This last version of the algorithm is implemented in YALES2BIO.

3.1.4 Temporal discretization
The temporal discretization of the intermediate velocity u is then performed using
a 4th-order Runge-Kutta scheme in time (RK4). Note that other time schemes are
available in YALES2BIO, such as the TFV4A scheme [81], but are not presented
here. Rewritting Eq. 3.1.3 as:

û− un

∆t = rhs
(
un, pn−1/2

)
, (3.30)

the velocity û is advanced such as:

u(1) = un + 1
4∆trhs

(
un, pn−1/2

)
,

u(2) = un + 1
3∆trhs

(
u(1), pn−1/2

)
,

u(3) = un + 1
2∆trhs

(
u(2), pn−1/2

)
,

u∗ = un + ∆trhs
(
u(3), pn−1/2

)
.

(3.31)

Note that in practice, a low-storage version of this RK4 scheme is implemented
[161] for improved computational efficiency.
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3.1.5 Resolution of the Poisson equation for the pressure
To determine the pressure that enforces the velocity to meet the divergence-free
condition, an elliptic Poisson equation (Eq. 3.27) has to be solved. From the
discretization of the Laplacian operator presented in Eq. 3.13, this equation could
be written as a linear system Ap = b. As iterative methods are well-suited
for solving large linear systems, a Deflated Preconditioned Conjugate Gradient
(DPCG) algorithm was implemented in the YALES2BIO solver. More details
about this algorithm can be found in [97].

3.1.6 Turbulence modelling
As explained in the Section 1.5.1, several reasons motivated the use of LES
rather than RANS modelling strategy to account for the turbulence effects in the
YALES2BIO solver. In LES strategy, the largest turbulent scales are explicitly
resolved as a solution of the low-pass filtered Navier-Stokes equations while the
subgrid scales are modelled. In RANS approaches, all the scales are averaged and
the entire turbulence spectrum is modelled. According to Kolomogorov’s theory
[80], the statistics of the smallest structures are universal and only depend on the
rate of kinetic energy dissipation and the viscosity of the fluid. On the contrary,
large scales fluctuations are geometry-dependant and their shape is less generic.
As it generally harbours many large scale fluctuations induced by the complex
geometries of in the cardiovascular system [32], LES strategy seems then more
adapted to solve this type of flows.

Formally, the basis of LES consists in filtering a field of interest Φ with a
convolution filter (F) (low-pass filter) defined as:

Φ(x) =
∫

Ω
Φ(x′)F (x− x′)dx′ (3.32)

where Ω is the flow domain considered, and F satisfies a normal distribution∫
F (x−x′)dx′ = 1. Note that for simplicity, a spatially varying field was considered,

but the filter could be similarly defined along the temporal direction for time
varying variables. Using the previous definition, the variable Φ can be split into a
resolved Φ and Φ′ fluctuating (unresolved) part as:

Φ(x) = Φ(x)+Φ’(x) (3.33)

An important difference with Reynold’s averaging (used in RANS strategy) is
that the filtered fluctuations are generally not null (e.g Φ′(x) 6= 0). Usually, the
convolution filters take the form of cut-off, box, or Gaussian function. We can
apply a LES filter the incompressible NSE using Einstein notation:

∂ui

∂xi
= 0

∂ui

∂t
+ ∂uiuj

∂xj
= −1

ρ
∂p
∂xi

+ ν ∂2ui

∂xj∂xj
+ fi

(3.34)
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The filtered advection term can be split up according to Leonard’s decomposition
[89]:

uiuj = (ui + u′i)(uj + u′j) = ui uj + uiu′j + u′iuj︸ ︷︷ ︸
Cij

+u′iu
′
j︸ ︷︷ ︸

Rij

(3.35)

where Cij (cross-scale tensor) represents the interactions between large and
small scales and Rij (Reynolds subgrid tensor) the interactions between the subgrid
scales. The following decomposition was additionally proposed [89]:

ui uj = (ui uj − uiuj)︸ ︷︷ ︸
Lij

+uiuj (3.36)

where Lij is the Leonard tensor that represents the interactions among large scales.
Finally, the NSE can be written as:

∂ui

∂xi
= 0

∂ui

∂t
+ ∂uiuj

∂xj
= −1

ρ
∂p
∂xi

+ ν ∂2ui

∂xj∂xj
− ∂τSGS

ij

∂xj
+ fi

(3.37)

where τSGSij = Lij + Cij + Rij = uiuj − uiuj is the sub grid scale tensor (SGS)
stress tensor that arises from the non linear convective term in the NSE. Since it
describes the effect of unresolved scales, this tensor is unknown and should be
modelled. Eddy-viscosity-based models use the following Boussineq assumption
to close the equations:

τSGSij = −2νSGSSij (3.38)

where Sij = 1
2( ∂ui

∂xj
+ ∂uj

∂xi
) the rate of strain tensor of the resolved scales, and νSGS

the sugrid scale viscosity to be modelled. Many subgrid scale models have been
proposed, where most of them taking the following form:

νsgs = (Cm∆)2Dm(u) (3.39)

where C is the model constant, ∆ is the subgrid characterstic length scale (usually
taken as the mesh size), and Dm the differential operator of the model acting
on the resolved scales. Among the most common models, one could cite the
Smagorinsky model where Ds =

√
2SijSij and Cs = 0.18. Since this model is

known for being very dissipative near walls, improvements were proposed, that lead
to models such as dynamic Smagorinsky [91], WALE [118], or σ-models [119]. The
σ-model (Cσ = 1.35 and Dσ = σ3(σ1−σ2)(σ2−σ3)

σ2
1

with σ3, σ3, σ3 the singular values
of the velocity gradient tensor) was used in all the simulations, as it has revealed
better agreement than well-known dynamic Smagorinsky model as compared to
experimental data in a configuration relevant to cardiovascular flows (unsteady
jet with a rigid wall [154]). Moreover, this model results in a null SGS viscosity
in a number of canonical flows, where the structure of the velocity gradient tensor
indicates laminar flow features. This is particularly suited for transitional flows
[30].
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Figure 3.2: Establishment of a fully developed velocity profile

3.2 Numerical test cases
Validation test cases are important to optimize the calculation parameters in the
configuration of interest (optimal mesh size, numerical scheme, turbulent model,
stability conditions) but also to ensure there is no parametrization errors in the
computations. To test the validity of the CFD solution in the entire domain, the
complex features encountered in the phantom were treated separately through
validation test cases.

First, the development length of a pulsatile flow in a straight pipe was es-
tablished and compared with the analytical Womersley velocity profile. As will
be mentioned in Section 4.3, pilot simulations were performed to predict the
development length upstream the flow phantom inlet necessary to guarantee a
fully developed unidirectional inflow profile and well-controlled conditions.

A second test case is then presented where the behaviour of a pulsatile flow
in a pipe bend is numerically predicted and compared with experimental results
from the literature. In all the validation test cases presented, mesh convergence
analyses were performed but are not expanded here.

3.2.1 Entrance flow

Development length (or entrance length) is defined as the axial distance needed to
the boundary layers to reach and merge at the centre of the pipe. In other words,
a flow whose velocity profile no longer varies with axial position is defined as fully
developed, as illustrated in the Figure 3.2. The definition adopted in practice
is the distance from the inlet where the centreline velocity has reached 99% of
its asymptotic value. Several publications have already proven that the entrance
length is longer at the centreline than at all other radial positions in a pipe [25, 43].
The entire velocity profile is then fully developed when the centreline velocity has
reached an asymptotic value. Note that to define fully developed turbulent flows,
time-averaged velocity are usually considered instead.
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Steady flow

Under the assumptions of steady, laminar, incompressible flow in a straight pipe of
circular cross-section and driven by a steady axial pressure gradient, the condition
of fully developed flow can be verified by the well-known Hagen-Poiseuille velocity
profile, expressed as:

uz(r, θ, z) = uz(r) = 2umean
(

1−
(
r

a

)2
)

where r is the radial coordinate, a is the radius of the pipe, and umean the
mean velocity over the cross section considered. This profile applies at low enough
Reynolds number only. Transitional and fully turbulent flows appear to have
much larger wall shear stress and thinner boundary layer than the laminar case,
implying flatter velocity profiles. Turbulent velocity profiles are often represented
by logarithmic or power laws, from semi-empirical derivations, such as:

u

umax
=
(

1− r

a

)1/n

Over the past century, entrance length in straight pipes has been widely
investigated by analytical and numerical methods mainly, as reviewed by Durst
et al. [43]. Experimental measurements have also been published by Nikuradse
[120].

By considering an order of magnitude of velocity convection term in the flow
direction and diffusion term in the radial direction, Durst et al. [43] suggested a
semi-analytical expression of the development length as a function of Reynolds such
as : L

D
= C0Re+ C1. Then, they validated this expression using a finite volume

numerical approach for laminar pipe and channel flows. Finally, a more extensive
non-linear correlation was proposed, such as: L

D
=
[
(C0)1.6 + (C1Re)1.6

]1/1.6
where

C0 = 0.619 and C1 = 0.0567 for pipe flows in the range 0 < Re < 2000.
He et al. [68] published spectral finite element simulations of the flow with

Reynolds varying in the range 40 < Re < 1400. For Re = 1000, the development
of centreline velocity along the axial length demonstrates very good agreement
with the experimental data published by Nikuradse [120].

In this test case the flow through a straight pipe is predicted by simulation
with the YALES2BIO solver for Reynolds number ranging in Re ∈ [0, 2000]. The
resulting development lengths are compared with the development length proposed
by Durst et al [43], the experimental measurements of Nikuradse [120], as well as
the numerical simulations proposed by He et al [69].

60



CHAPTER 3. NUMERICAL FRAMEWORK

Numerical set up

As physiological Reynolds numbers generally range between laminar and transi-
tional regime, computations were performed in the range 10 < Re < 2300. An
incompressible Newtonian flow with kinematic viscosity ν = 4.02× 10−6m2/s was
modelled within a 3 m length pipe of radius a = 13 mm meshed with 8 million
tetrahedra. To reduce the influence of the velocity profile on the development
length, we prescribed to each computation a flat inlet velocity profile on which
was added up to 1% of white random noise.

The numerical establishment of a fully developed velocity profile was compared
with the theoretical Poiseuille profile at Re = 60 and the results are shown on
Figure 3.3a. The evolution of the development length with the Reynolds number
is presented on Figure 3.3b.

Results

The fully developed velocity profile shown in Figure 3.3a are, as expected, in
excellent agreement with the theoretical Poiseuille flow profile. Note that an
overshoot appears on the developing velocity profiles (at z/Le = 0.042), which
is not predicted by classical first order boundary layer theory since the main
assumption of this theory is to consider that δ << L, where δ is the boundary
layer thickness and L is the axial length scale. Near the trailing edge of the wall
(inlet), this assumption is not valid. As shown on Figure 3.3b, the present results
are in good agreement with Durst et al [43] and in excellent agreement with He
et al. [68]. Practically speaking, a pipe length of 1.75 m would be necessary to
ensure a fully developed flow with a 100 mL/s continuous flow rate.

Pulsatile flow

While steady flow validation is always informative, pulsatile flows are studied in
the framework of this thesis. A pulsatile flow is defined as a steady flow on which
is added an oscillatory component, such as: upulsatile(t) = ust + uosc(t). Pulsatile
flows have been widely studied since 1950 to understand the motion of blood flows
through arteries. One of the first analytical work was proposed by Womersley in
1954. To characterize the effect of pulsation-induced inertia over viscous forces,
he introduced the Wormersley number, a dimensionless number derived from a
linearisation of the incompressible Navier-Stokes equations, and formulated as:

α = a

√
ω

ν
(3.40)

where a, ω, and ν are the radius of the pipe, the angular frequency of the
oscillations, and the kinematic viscosity of the fluid respectively. This number
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Figure 3.3: (a). Normalized velocity profile development with axial location at
Re = 60. (b). Evolution of the entrance length as Re increases for laminar pipe
flows.

evaluates the ratio between transient inertial forces and viscous forces. He also
proposed an analytical formulation for the velocity profile of a fully developed
flow in a rigid circular cross-section pipe, driven by a pulsatile pressure gradient.
This velocity profile is obtained by solving of the incompressible Navier-Stokes
equations projected on the axial direction in cylindrical coordinates, such as:

∂uz
∂t

+ ur
∂ur
∂r

+ uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

= −1
ρ

∂p

∂z
+ ν

(
∂2uz
∂r2 + 1

r2
∂2uz
∂θ2 + ∂2uz

∂z2 + 1
r

∂uz
∂r

)
(3.41)

where a fully developed (∂uz

∂z
= 0) axisymmetric ( ∂

∂θ
= 0) flow is considered with

an uni-axial velocity component ur = uθ = 0 due to the symmetry of the pipe.
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Eq. 3.41 then simplifies:

∂uz
∂t

= −1
ρ

∂p

∂z
+ ν

(
∂2uz
∂r2 + 1

r

∂uz
∂r

)
(3.42)

Then, in the context of pulsatile flows, Womersley used a decomposition in Fourier
series to represent a purely oscillatory pressure gradient as a periodic function of
the time, such as:

∂p

∂z
(t) = −Re

[
N∑
n=0

∂p

∂z

∣∣∣∣∣
n

]
where Re[.] stands for the real part of a complex-valued quantity. Therefore, for
each harmonic n, one can write each component of the pressure gradient as a
complex exponential such as:

∂p

∂z

∣∣∣∣∣
n

= cne
jnωt

Note that if the pressure gradient is a real-valued function, it may be written
as:

∂p

∂z
(t) = a0 +

N∑
n=1

an cos(nωt) + bn sin(nωt)

with ω = 2π
T

the angular frequency of the periodic pulse. cn = an + jbn are
the complex Fourier coefficients of the nth harmonic. Then, Eq. 7.7 becomes for
each harmonic n:

∂2un
∂r2 + 1

r

∂un
∂r
− 1
ν

∂un
∂t

= 1
ρν
cne

jnωt (3.43)

Here the use of the subscript n indicates that the equation is solved for one
component, summing over the entire harmonics, and taking the real part of the
result.

Then, one possible solution of Eq. 3.43 may be written as:

un = fn(r)ejnωt

which leads to the following equation:

d2fn
dr2 + 1

r

dfn
dr
− jnω

ν
fn(r) = − cn

ρν
(3.44)

Equation 3.44 is a general form of the zero-order Bessel differential equation.
The solution reads:

fn(r) = jcn
ρωnn

(
1−

J0(j3/2αn
r
a
)

J0(j3/2αn)

)
(3.45)
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Taking the pressure gradient as a the real part of cnejnωt allows to express the
nth component of the velocity as a time dependent function. Then, adding the
steady component u0 to the temporal solution leads to the entire velocity profile:

uz(r, t) = u0(r) +
N∑
n=1

Re [un(r, ω)]

uz(r, t) = u0(r) +
N∑
n=1

Re
[
jcn
ρωnn

(
1−

J0(j3/2αn
r
a
)

J0(j3/2αn)

)
ejnωt

]
(3.46)

with u0(r) = c08µ
(

1−
(
r
a

)2
)

From the previous Eq. 7.5, the pressure gradient is required to deduce the
velocity profile at a position where the flow is fully developed. Nevertheless, when
performing numerical simulations, it is more common to impose velocity or flow
rate as inlet boundary conditions rather than a pressure gradient. Consequently,
a modification of Womersley’s analysis has been proposed to obtain the velocity
profile as a function of the flow rate in a straight pipe [69], by decomposing the
oscillatory flow rate component as a Fourier series: qn(t) = Re [q̂n(ω)ejnωt], which
allows to deduce from Eq. 3.45:

qn(ω) = 2π
∫ a

0
un(r, ω)rdr = πa2 jcn

ρωnn

(
1− 2

j3/2αn

J1(j3/2αn)
J0(j3/2αn)

)
ejnωt (3.47)

q̂n(ω) = πa2 jcn
ρωnn

(
1− 2

j3/2αn

J1(j3/2αn)
J0(j3/2αn)

)
(3.48)

with the similar relation as Eq. 7.5:

q(t) = q0 +
N∑
n=1

Re [qn(ω)]

where q0 = c0
πa4

8µ
Combining Eq. 3.48 and Eq. 3.45 results in:

fn(r) = q̂n(ω)
πa2

J0(j3/2αn)− J0(j3/2αn
r
a
)

J0(j3/2αn)− 2
j3/2αn

J1(j3/2αn)

Finally, taking the real part of the Fourier series decomposition, summing over
all the harmonics, and adding the steady state Poiseuille velocity leads to:

uz(r, t) = u0(r) +
N∑
n=1

Re
 q̂n(ω)
πa2

J0(j3/2αn)− J0(j3/2αn
r
a
)

J0(j3/2αn)− 2
j3/2αn

J1(j3/2αn)e
jnωt

 (3.49)

64



CHAPTER 3. NUMERICAL FRAMEWORK

where u0(r) = 64µ2q0
πa4

(
1−

(
r
a

)2
)
. Note that the z-axis dependence out in the

axial velocity was omitted since the flow is fully developed z >> Le. For entrance
pulsatile flows, we define the development length after He et al., [68] as:

uz(0,∞, t)− uz(0, Le, t)
1
T

∫ T
0 uz(0,∞, t)dt

= 0.01 (3.50)

To evaluate the ability of the flow solver to predict the entrance length correctly,
numerical simulations were then performed in the same pipe configuration as
in the previous case for steady flow considering a pulsatile flow rate such that
q(t) = 1 + sin(θ), where θ = ωt = 2πt/T and Rest = uD

ν
= 200 the time-

averaged Reynolds number. The fully developed velocity profile was compared
to the Womersley profile given in Eq. 3.49. Then, the maximum entrance length
defined as max(Le/D) was compared to the results obtained by He et al., [68] for
Womersley numbers ranging from 1 to 12.5.

Results

Figure 3.4a reveals excellent agreement between the numerical and analytical
velocity profile at θ = 90° and θ = 270°. Figure 3.4b also shows a good agreement
with the results obtained by He et al. [68]. The maximum entrance length could
be decomposed into three main parts: it slowly decreases for α < 3, then suddenly
drops between α ∈ [3, 6], and stabilizes to an asymptotic value for α > 6. This
asymptotic value is close to the steady entrance length at the same Reynolds
number (Re = 200) found in the previous section (see Fig. 3.3b). The limit where
α→ 0 also tend towards the steady entrance length found for the peak Reynolds
number Re = 400.

As mention beforehand, this validation test case was also used to build a
criterion to adjust the length of the experimental test rig. The simulations,
extrapolated to match the pulsatile flow regime of the experiment (α = 15 and
Rest = 1000), finally predict a development length around Le/D = 50. Therefore,
a pipe of 1.3 m length was installed upstream the flow phantom to ensure a fully
developed flow profile (cf Section 4.2.2).

3.2.2 Flow in a pipe bend
A quick review of the literature clearly shows that flows in curved pipes have been
subject to numerous research works for the past century, with a particular interest
to understanding the flow behaviour in human arterial network. The analytical
velocity profile solution for a steady fully developed Newtonian flow in a pipe with
circular cross section and small curvature was proposed by Dean in an early study
[39]. He first highlighted the presence of secondary flows appearing as a pair of
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Figure 3.4: (a). Comparison of the velocity profile obtained numerically with
the analytical Womersley solution at different phases (θ = 90° and θ = 270°
), far downstream in the pipe where the flow is fully developed at Rest = 200
and α = 12.5. The velocity is normalized by the time-averaged value of the
inlet velocity u. (b). Normalized maximum entrance length at Rest = 200 and
α ∈ [1, 12.5] obtained numerically and compared with the results obtained by He
et al.[68].
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Figure 3.5: ( ) Axial velocity contour and (- - -) secondary streamlines in a pipe
bend as provided in [105].

counter-rotating vortices (call Dean vortices) and induced by the centrifugal forces
sweeping the flow towards the outer wall. An illustration of these vortices is given
in Fig 3.5. He also introduced the Dean number [40], a dimensionless number that
assesses the effect of the inertial forces in comparison with the viscous forces, and
giving emergence of this secondary flow. Many variants of the original definitions
have been proposed in the literature but the definition adopted in Berger et al.
[10] is probably the most intuitive:

D =
√
a

Rc

Re (3.51)

where a is the radius of the pipe and Rc the radius of curvature (also denoted
δ = a

Rc
), and Re the Reynolds number based on the mean axial velocity. Later,

Lyne established theoretical solutions of unsteady flow velocity profiles for small
Dean number and large Womersley values. He showed that secondary structures
are composed with two extra pairs of vortices now called the Lyne vortices [95],
rotating in opposite direction as compared to Dean vortices.

Steady flow

In this section, a steady flow through an infinite pipe bend was simulated at varied
Dean numbers. Note that to simulate an infinite pipe bend and avoid dealing with
entry flow, a small numerical domain was designed (see Figure 3.6, and periodic
boundary conditions were prescribed at the inlet and outlet of the flow domain.
Nevertheless, imposing periodic boundary condition numerically results in a null
pressure gradient, thus leading to a stagnant flow. To bypass this issue, a source
term has been introduced to artificially act as a pressure gradient driving the flow.
The following source term was imposed:

Sφ = 4ν2D

a3
√
δ

Rc

R
(3.52)
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Figure 4.1.3 – Evolution of the normalized axial velocities when increasing (a) Dean number, (b) curvature
ratio. · Dean / — Siggers and Waters

Figure 4.1.4 – Mesh of the CFD model for validation at d = 0.16

velocity position shifts towards the inner wall of the bend. On an other hand, velocity profiles as depicted
by Dean’s model do not change for different curvature ratio at fixed Dean number.

As D increases, SW’s model results in a profile moving toward the outer bend of the wall , driven by the
inertial forces. The latter trend has been previously verified by [13]. Indeed, The SW’s estimation seems to
be more appropriate for predicting the real velocity profile since wSW = f (d , D) while wD = f (D).

Comparison between SW’s theory and YALES2BIO

Since SW’s theory seems to be more accurate to predict the behavior of a fluid in a pipe, it has been preferred
to Dean’s theory. Both normalized and dimensional velocity profiles have been compared on Figure 4.1.7
and 4.1.6 with simulations based on a 258 000 (see 4.1.4 for d = 0.16) and 700 000 tetrahedrons grids (for
d = 0.01). Note that the transverse diameter is defined as the diameter (2a) from the inner to the outer wall
of the bend.

Also, to assure that the calculations have been run long enough to converge in time to reach a steady

16

Figure 3.6: (Left) Cylindrical coordinates system defined to describe the source
term in the simulation of a steady flow in a pipe bend. (Right) Numerical
mesh associated with periodic boundary conditions. The mesh contains 700 000
tetrahedrons.

The derivation of this source term could be found in Appendix 7.4. By implement-
ing the above source term along the centreline of the curved duct, it is possible
to perform a periodic simulation of flow in a curved pipe directly piloted by the
Dean number.

Siggers and Waters [137] performed simulations with a pseudospectral code,
whose algorithms are usually very accurate. The resulting axial velocity profiles
are compared to their simulation results at Dean number D = (1.77, 17.7, 441).

Results

The axial velocity countours obtained by simulation are compared to [137] in
Figure 3.7. Results are very accurate in term of axial velocity profiles for both of
them, and trends are the same for the axial vorticity contours. As D increases,
the velocity profile moves toward the outer bend of the wall, driven by the inertial
forces. The latter trend has been previously verified by [105].

Pulsatile flow

The effect of the pulsation on the flow in a curved channel was investigated. To
this respect, a validation test case was developed, where the flow through a 90
°circular cross-section pipe bend was predicted with the YALES2BIO solver and
compared to a previous work proposed Timite et al. [153]. An incompressible
Newtonian flow was modelled in a curved pipe with a a = 2 mm radius and a
Rc = 220 mm radius of curvature. The flow was driven by a pulsatile flowrate
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(a) Axial velocity contours (spacing 0.5) (b) Axial vorticity (spacing: 0.05)

(c) Axial velocity (spacing: 5) (d) Axial vorticity (Spacing: 8)

Figure 4.1.8 – Contours of axial velocity and axial vorticity compared to SW simulations. (a), (b) d =
0.3, D = 1.77 / (c), (d) d = 0.3, D = 17.7 - SW - - - / YALES2BIO —

where an, bn are the Fourier coefficients, n is the current Fourier mode, Nmodes is the total number of
Fourier modes, t is the time, and T is the period.

The signal is represented on Figure 4.2.2.
Several meshes have been used, and the one kept is a 32 million tetrahedrons. Note that in terms of

boundary conditions, all the simulations from now on are performed with:

– Inlet: Poiseuille velocity profile (see Equation 4.1.1)

– Walls: No-slip velocity condition

– Outlet : convective boundary condition traduced by ∂u
∂ t +Uconv ∂u

∂n = 0 where n is the outward normal
at the outlet patch, and Uconv the convective velocity imposed in order to meet the mass conservation
over the entire domain.
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where an, bn are the Fourier coefficients, n is the current Fourier mode, Nmodes is the total number of
Fourier modes, t is the time, and T is the period.

The signal is represented on Figure 4.2.2.
Several meshes have been used, and the one kept is a 32 million tetrahedrons. Note that in terms of

boundary conditions, all the simulations from now on are performed with:

– Inlet: Poiseuille velocity profile (see Equation 4.1.1)

– Walls: No-slip velocity condition

– Outlet : convective boundary condition traduced by ∂u
∂ t +Uconv ∂u

∂n = 0 where n is the outward normal
at the outlet patch, and Uconv the convective velocity imposed in order to meet the mass conservation
over the entire domain.
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Figure 4.1.9 – Contour of axial velocity for d = 0.3, D = 441 - SW: - - - / YALES2BIO: —

Results

Trends obtained have revealed a relatively good agreement with both simulations and experiment, as shown
on Figure 4.2.3. It should be noticed that the experiment is the result of measurements averaged over
50 realizations; although present, cycle-to-cycle fluctuations are not represented here. Simulations with
YALES2BIO have been run with both a Poiseuille and flat velocity profile at the inlet. The flat velocity
profile has been kept since it corresponds to the conditions used in the study.

During the acceleration phase, the peak velocity is located near the inner wall, agreeing with obser-
vations of Yearwood and Chandran (1982) [26]. During the deceleration phase when inertial forces are
dominant, the peak velocity shifts towards the outer wall. At t = 1.3s, a reverse flow occurs at the inner
wall of the tube and maximum velocity is located at the outer side, due to the stopping effect (deceleration
phase), described by [42]

Nevertheless, the flow rate imposed in our simulations seems to be smaller than the one of the pub-
lication, based on the velocity profiles shown. Further analysis of the results and numerical set up is still
ongoing to understand the reason for this mismatch. Note however that, despite this unexplained difference,
the overflow structure is well retrieved by the YALES2BIO computation.

Finally, YALES2BIO has shown to be in good agreement when dealing with both steady and unsteady
configurations. At some point, assessing the margin of error between a third party’s experiment and a
simulation is an fastidious task, especially because of the lack in the control of the parameters during the
experiment and the uncertainties of measurements.
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Figure 3.7: Contour of the axial velocity profiles. left δ = 0.3, D = 1.77, middle
δ = 0.3, D = 17.7 , right δ = 0.3, D = 441. (—) Reference simulations from
Siggers and Waters [137], (- - -) present numerical results.

such that:

Q(t) = Q0(1 + β sinωt) (3.53)

where Q is the flowrate, β = Qmax

Q0
, Qmax the peak oscillatory flowrate, Q0 the

mean (steady) flowrate and ω the angular frequency. The steady Reynolds is
defined as Rest = 2Q0

νπa
.

Results

The axial velocity profiles in the middle of the bend resulting from the numerical
simulations are compared to the experimental results obtained with Laser Doppler
Velocimetry by Timite et al [153] in Fig. 3.8 for various phases and Womersley
numbers (α = 12.14 and α = 17.17). Results show an overall good agreement
for each case. At ωt = 90° on Fig. 3.8a), the peak axial velocity is located near
the inner wall, as observed in Yearwood and Chandran (1982) [167]. However,
during the deceleration phase, when inertial forces are dominant, the peak velocity
shifts towards the outer wall. When increasing the Womersley number, the peak
velocity gets closer to the wall. At ωt = 270°, a reverse flow occurs at the inner
wall of the tube and maximum velocity is located at the outer side, due to the
stopping effect (deceleration phase), described by Weinbaum and Parker (1975)
[160]. Similarly, the peak reverse flow value seems closer to the wall for higher
Womersley number. The dominance of the inertial effects as compared to viscous
effects can explain the reduction of the viscous layer as the Womersley increases.
The axial velocity along the y-axis (Fig. 3.8b and Fig. 3.8d) is symmetrical and
a valley is observed as well as the peak velocity close to the wall. The valley is
observed due to the centrifugal forces increasing the tangential velocity component
close to the external wall. The fluid particles initially at the centre then move
towards the external wall and a secondary flow is produced, with the formation of
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Dean vortices as mentioned above (see Fig. 3.5). The peak velocity near the walls
represents the centre of these vortices.
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Figure 3.8: Normalized axial velocity profiles in the middle of the bend (45 °) at
phases ωt = 90, 180, 270° for upper, middle and lower curves respectively. The
experimental results ( ) are obtained with Laser Doppler Velocimetry [153] while
computations ( ) are performed with the YALES2BIO solver. (a) and (b) show
a case where Rest = 600 the steady component Reynolds number, α = 12.14, and
β = 1. (c) and (d) show a case where Rest = 600, α = 17.17 and β = 1.
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4.1 Introduction
As detailed in the first chapter, one of the main objectives of this thesis is to
develop a standardized procedure for comparing PC-MRI and CFD under complex
flow conditions representative of the cardiovascular system. To establish this
procedure, a preliminary step is to mitigate the sources of discrepancies coming
from each technique in order to focus on the errors relevant to the comparison
itself. For this purpose, we designed a fully controllable, reproducible and MRI
compatible experiment delivering a flow of a blood-mimicking fluid within a
phantom which gathers topological complexities typical of that observed in-vivo.
We have full control of the geometry of the non deformable flow domain and fluid
rheology, thus removing classical sources of uncertainties that could be found
in-vivo: segmentation errors, wall motion, blood properties. In addition, although
branching is present within the considered flow domain, there is only one outlet
boundary so that a simple zero pressure condition can be safely prescribed without
determining the flow split in the branches. The corresponding flow is predicted by
means of a high resolution LES solver, and compared with velocity fields acquired
using conventional 4D PC-MRI scans at various spatial resolutions. A quantitative
analysis of the differences is then performed to highlight the potential discrepancies
induced by a straightforward comparison. Finally, several post-processing steps
are encompassed and a generic comparison protocol is proposed to systematically
correct these sources of discrepancies.

4.2 Design of a well-controlled experiment

4.2.1 Flow phantom
The flow phantom was constructed to generate a complex and realistic flow, such
as that observed in the cardiovascular system. The aim was not to reproduce
a patient-specific geometry, but to gather several geometrical features yielding
complex flow patterns analogous to in-vivo flow patterns, while keeping a relatively
compact and well-controlled flow phantom. A pipe bend with 26 mm of inner
diameter was designed with a 50 mm radius of curvature to mimic aortic arch
blood flows. A bifurcation was set in analogy with collateral arteries. Daughter
vessel sizes were designed to replicate typical flow split that can be found in-vivo
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between supraceliac and infrarenal arteries [151]. Finally, a protuberance was
attached at the intersection between the collateral and main branch, to mimic
blood flows patterns in aortic aneurysms. Figure 4.1 shows the final design of this
MRI flow phantom. The flow in such a geometry is expected to feature complex
flow structures such as flow recirculation in the aneurysm, regurgitation in the
bifurcation, or a mixing layer produced by the jet at the junction of the collateral
branch with the main branch.

Stereo-lithography based 3D printing technique was used to make a first version
of the flow phantom from a photopolymer resin (FormLabs Inc, Somerville, USA).
Stereo-lithography has the advantage to produce complex models with excellent
surface conditions, with a geometric tolerance down to 25 µm. Nevertheless, a
major constraint of this technique is its limitation in terms of printable volume,
which imposes to print the phantom in 4 separated parts and assemble it afterwards.
Even with a slide link limiting to one translation its degrees of freedom, the
collateral was braced between its two junctions, and finally broke after a few
months. A second flow phantom was therefore designed as a single component
made of Nylon PA 12 with a 60 µm geometric tolerance (Sculpteo, Villejuif,
France). The surface state of slightly quality than for the resin but the structure
was less brittle and therefore more adapted for transport. Four holes were drilled
in the structured and drain systems were attached for possibly inserting pressure
transducers, and to evacuate the residual air blocked in the flow phantom when
filling the circuit. Owing this high fidelity, we could compute the flow directly
from the computer aided design (CAD) model with no surface approximations
associated with a segmented geometry. Finally, as detailed in Section 4.4.2, static
tissues are necessary to post-correct for the eddy currents effects on the phase
images. For this reason, and to increase the quantity of signal emitted within
the acquired field of view, the phantom was fully immersed in a silicon bath
(see Figure 4.2b). Additionally, the silicon bath protects the flow phantom from
collisions.

4.2.2 Experimental test bench
A schematic diagram of the experimental setup is shown in Figure 4.3. A blood-
mimicking fluid (Newtonian fluid) with a kinematic viscosity of ν = 4.02 ×
10−6 m2/s and a fluid density of ρ = 1020 kg/m3 was supplied to the circuit. To
avoid undesired artifacts and for MR safety reasons, all the circuit components,
apart from the pump, were MR compatible. Inside the scanner room, the pump
was positioned outside the 5 Gauss Line (perimeter around the scan where the
static magnetic field is higher than 5 Gauss) also for MR safety considerations. A
reservoir was added to empty and purge the system. Flexible tubing at the inlet
and outlet of the pump were necessary to easily change its position while keeping
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Figure 4.1: Analogy with cardiovascular system

static the remaining part of the circuit. Nevertheless, the in-line arrangement
of tubes and devices coming up with specific features (such as diameter, surface
state, compliance, etc.) between the pump and the phantom’s inlet surface
certainly results in non-negligible flow perturbations. To reduce the swirling
motion of the entering fluid and avoid complex profile at the inlet of the flow
phantom, a flow straightener was set upstream of a long straight (26 mm inner
diameter) rigid plastic pipe. The development length necessary for the pulsatile
flow profile to be fully developed downstream the flow straightener was estimated
using the CFD simulations presented in Section 3.2.1. This pilot simulation
constitutes an important consideration in the design of the test rig to reduce
and optimize any cumbersome or unnecessary part. The flow phantom was
then connected downstream with plug-in connectors between junctions to split
the circuit and facilitate the transport. The experiment was carried out using
a computer controlled pump (CardioFlow 5000 MR, Shelley Medical Imaging
Technologies, London, Ontario, Canada) providing user-defined pulsatile flow
waveforms such that q(t) = q0 (1 + sin(2πt/Tp)) where q0 = 100 mL/s is the
mean flow rate delivered by the pump and Tp is the duration of one cycle.

A preliminary calibration of the programmable pump was performed to control
the inflow waveform precision and reproducibility over time during a scan. The
calibration was performed by measuring the time tfill needed by the pump to
fill a 3000 mL water tank with a programmed sine inlet waveform. The mean
error was defined as: εpump = | tprog−tfill

tfill
| where tprog is the time that should be

required to fill the tank according to the programmed flowrate waveform. Results
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Figure 4.2: a). (left) Engineering drawing and (right) the first version of the
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Figure 4.3: Schematic diagram of the experimental setup.

Table 4.1: Pump and flow meter calibration results. Fourteen cases are considered,
varying the inflow rate waveform parameters (time period, peak and mean flow
rates) programmed in the pump.

N Period (ms) Qmax (mL/s) Qmean (mL/s) Remax εpump (%) εflowmeter (%)
1 1200 200 60.867 2980 42.98 10.40
2 1200 200 60.867 2980 46.45 5.80
3 1200 200 60.867 2980 35.12 13.65
4 1200 250 60.867 2980 18.39 3.30
5 1200 250 60.867 2980 12.81 10.33
6 1000 200 79.57 4900 12.96 3.13
7 1000 160 79.57 3900 49.49 2.20
8 920 160 79.57 3900 53.76 0.77
9 800 160 79.57 3900 56.20 0.57
10 700 160 79.57 3900 56.36 6.67
11 600 160 79.57 3900 62.48 0.83
12 1120 160 79.57 3900 31.66 8.20
13 1200 160 79.57 3900 44.42 1.97
14 2000 160 79.57 3900 28.59 6.13

of the calibration process are presented on Table 4.1. As we found a mean error of
εpump = 41.47± 17%, we then decided not rely on the pump to ensure the inflow
waveform precision and reproducibility. Instead, the pulsatile flow rate delivered
by the pump was measured by means of an ultrasonic flowmeter (UF25B100
Cynergy3 components Ltd, Wimborne, Dorset, UK) placed upstream of the flow
straightener. As expected, a considerably better agreement was found with the
flow meter (5.28± 4% average error).
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Figure 4.4: Flow split repartition over a cycle.

4.3 PC-MRI measurements

All PC-MRI scans were performed on a 1.5T scanner (Siemens Magnetom Avanto,
Siemens Medical Systems, Erlangen, Germany) at Rangueil University Hospital
(Rangueil, Toulouse, France).

4.3.1 2D measurements

To ensure that the CFD simulations reflect the experimental conditions as accu-
rately as possible, it is important to prescribe high resolution velocity profiles as
inflow conditions. In this sense, to guarantee that the flow is accurately measured
at inlet boundary location, several retrospectively gated time-resolved 2D PC-MRI
measurements were acquired at high resolution in the transverse plane and com-
pared to the reference flow meter measurements. To increase the signal-to-noise
ratio, the pixel size was set to 0.78125 x 0.78125 mm2 and the slice thickness to
6 mm. Good agreement was found between the flowmeter and the 2D PC-MRI
measurements; the mean relative error over one cycle was ε2D = 0.32%. It was also
verified that the flow straightener disrupts any vortex coming from upstream: the
in-plane velocity component measured was less than 0.05w, where u = (u, v, w)
and w is the through-plane velocity component. Figure 4.4 shows the flow rate
repartition measured with 2D CINE PC-MRI during a cycle.
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4.3.2 Near-wall masking

The 2D cine PC-MRI inlet velocity measurements were masked to correct the
velocity offsets due to the partial volume effects and random noise caused by the
plastic phantom walls as well as the air surrounding the phantom (first version).
The mask was applied so that the near-wall velocity is supposed linearly evolve
with the radial direction, assuming a zero velocity at the boundary walls. In
practice, the masked through-plane velocity component w at position r ∈ [Rlim, R]
(where R is the radius of the circular cross-sectional inlet surface and Rlim = 0.9R
an arbitrarily defined inner radius) equals to:

w(r) = w(Rlim)
R−Rlim

(R− r) (4.1)

As compared to the reference flow meter measurements, this near-wall mask
revealed a noticeable improvement of the flow waveform, with a mean relative
error reduced from 0.32% to 0.15%. A second 2D PC-MRI scan was acquired with
the same input parameters to ensure the reproducibility of the measurements.

4.3.3 4D measurements

Then, three successive prospectively gated 4D flow MRI measurements were then
acquired with an isotropic voxel size of 2 mm, 3.1 mm and 3.4 mm. The flow
phantom was scanned in coronal orientation with the following settings: encoding
velocity VENC = 0.5 m/s in all three velocity encoding directions ; TE = 3.43-3.5
ms; temporal resolution = 49-52 ms; flip angle = 15 °. All scans were acquired
without parallel imaging acceleration so that every line of the k-space was filled
and for an improved SNR. Also to maximize the SNR, the encoding velocity
was set according to a numerical estimation of the maximum velocity in the flow
domain and a particular attention was paid to avoiding phase aliasing.

4.3.4 Consistency and reproducibility

As shown in Figure 4.5 and Table 4.2, an overall good agreement was found
between the inlet flow rate reconstructed from 4D Flow MRI measurements and
the 2D CINE PC-MRI measurements. As expected, the error generally increases
with the voxel size. Also, mainly at peak systole, the best improvements between
raw and masked data are obtained for the largest voxel size, since partial volume
effects are more important.

80



CHAPTER 4. CFD-BASED METHODOLOGY TO ASSESS PC-MRI

Table 4.2: Comparison of the raw and masked inlet flow rates measurement
errors between 4D Flow MRI and 2D cine PC-MRI. The error is here defined
as: ε = | 1

Np

∑Np

i=1
q4D

i −q
2D
i

q2D
i
| where q is the flow rate and Np the number of cardiac

phases. Note that the inlet near-wall mask was applied to both the 4D and 2D
MRI.

Error (%) (raw/masked) inlet collateral
2D (1) 2D (2) 2D (1) 2D (2)

4D Flow MRI (2 mm) 5.15/4.74 3.37/3.42 12.93/11.10 3.80/1.21
4D Flow MRI (3.1 mm) 7.37/5.50 5.56/4.18 19.08/13.79 9.46/3.66
4D Flow MRI (3.4 mm) 10.53/8.08 8.67/6.72 15.03/11.76 5.73/1.81
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Figure 4.5: Left Inlet flow waveforms over one cycle measured at different isotropic
voxel sizes (a) without and (b) with near-wall velocity masking. Right (a) Raw
and (b) masked velocity field measured from 2D PC-MRI scan during systole.
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4.4 MRI dataset processing
The MRI post-processing steps required to correct for velocity artifacts, as well as
to prepare the MR data for comparison with CFD, are described in this section.

The first step consists in applying an affine transform matrix to the raw
DICOM (expressed in the image coordinate system) to express them into the
unique "world" coordinate system. The data are reordered and a velocity mapping
is then computed from the phase images, and the resulting dataset is written as a
structured grid in the VTK format (Visualisation ToolKit, Kitware, Inc, Clifton
Park, NY). These steps are performed using an in-house Matlab program (The
MathWorks, Natick, USA) developed and kindly provided by Dr. Anou Sewonu.
All the following processings steps were implemented through VTK-based Python
programs.

4.4.1 Noise masking
As detailed in the previous Section 2.8.5, the noise affects the quality of the
magnitude image but also the phase image.

Low intensity signal denoising

When the SNRmag is low, as it is the case for low signal intensities regions where
tissues contain few protons such as in air or plastic, the velocity images contain
randomly distributed phases. In the vicinity of a wall, this noise can strongly
affect the quantification of certain hemodynamics biomarkers such as wall shear
stress by introducing a random phase deviation to the integrated signal in the
voxels crossing the walls. A straightforward way to mask this noise is to compute
the pixel-wise maximum value of image magnitude over all the cardiac phases. As
the magnitude signal emitted by the air and plastic wall of the phatom is low, a
binary mask can easily be generated and noisy regions excluded. Another way to
remove the noise consists in thresh-holding the time-course standard deviation
of the velocity field voxel-by-voxel [18]. Since velocity noise results in higher
temporal variation as compared to the static tissues and blood flow, it can be
separated and removed. A measure of the time-course pixel velocity corresponding
to blood, noise, and static tissues is presented in Figure 4.6. A mix of these two
approaches can easily be implemented and most probably provide better noise
masking (see Fig. 4.7).

Divergence-free denoising

An additional reduction of the residual noise is possible by introduction of physical
knowledge in the processing of MRI dataset. According to the conservation of
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Figure 4.7: (left) Raw measurement velocity field (right) masked velocity field
with both magnitude and time-course standard deviation technique.
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Figure 4.8: Schematic representation of the divergence-free velocity field space
(M), adapted from [140]. u0 is the exact velocity field while u0

mri is the projection
of the MRI velocity onto M which still contains the divergence-free part of the
noise.

the mass, and as blood is incompressible, the continuity equation imposes the
divergence of the velocity field to be zero. A way to enforce the velocity field
to meet the divergence-free condition can be achieved by defining a projection
operator P that orthogonally projects the velocity field onto the space of divergence-
free fields (see the previous Section 3.1.3). An illustration of the projection is
presented in Figure 4.8. To this end, the classical approach already detailed
in Section 3.1.3 is to decompose the MRI velocity field umri as the sum of an
irrotational and solenoidal parts, such as:

umri = u0
mri +∇q on Ω

u0
mri · n = 0 on ∂Ω

(4.2)

where ∇ · u0
mri = 0, Ω is the flow region delimited with ∂Ω boundary. In other

terms, the projector P could be expressed as:

Pumri = umri −∇q = u0
mri (4.3)

where Pu0
mri = u0

mri and P∇q = 0. Then, taking the divergence of the previous
equation raises the Poisson equation to solve, where q is the solution of the
following Neumann problem:

∇2q = ∇ · umri on Ω
∂q

∂n
= umri · n on ∂Ω

(4.4)

where n is the outward normal to the boundary and the classical no-slip boundary
condition u0

mri · n = 0 is assumed at walls. It can be shown that this equation
admits an unique solution up to an additional constant [33].
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Song et al., (1993) [140] first applied this physical principle to regularize MRI
velocity field. They posed the problem in a different way, and used Lagrange
multipliers method to demonstrate the existence of the previous projector P.

Note that even if umri is divergence free, the projection does not eliminate
all the noise but only the part which is not divergence free. As illustrated in
Figure 4.8, one can decompose the velocity field as follows:

umri = u0 + n (4.5)

where u0 is the exact velocity field (exempted of noise), n = n0 + n⊥ with n0 ∈M
the divergence-free noise, and n⊥ the noise which is orthogonal to this direction.
The projection of the velocity can also be written as function of the exact velocity
field (see Fig. 4.8:

u0
mri = u0 + n0 (4.6)

A straightforward way to numerically solve the Neumann problem given
in Eq. 4.4 is to adopt a finite difference discretization of the equation with
discretization nodes located at voxel centres in the imaging matrix (viewed as a
regular Cartesian grid). Although the Poisson equation can easily be discretized
on rectangular flow domains, the fluid regions found in the cardiovascular system
are most of the time irregular. In this case, defining the normal vector along
the walls is more challenging [140]; instead the fluid domain outline is generally
segmented and a proper boundary conditions are deduced from the "smooth" walls
topology.

In the scope of this thesis, the a priori knowledge of the flow phantom mor-
phology (provided by the 3D CAD model) was used for spatial interpolating the
MRI dataset on the phantom’s volume mesh. Note that a prior registration of the
MRI images with this morphology is necessary ; this processing step is detailed
in Section 4.4.3. The Neumann problem was then discretized on the defined
nodes and the Biconjugate Gradient Stabilized algorithm implemented in the
YALES2BIO solver was used to solve the resulting linear system. Results of the
divergence-free processing are shown in Figure 4.9. Qualitatively it clearly shows
a diminution of the blurring. Quantitatively, the resulting error map shows an
error up to 10% of the VENC in the collateral branch.

Note that other methods exist to constraint the velocity field as the decom-
position into radial basis functions [23]. It was however not implemented in this
thesis.

4.4.2 Eddy currents correction
Eddy currents are currents induced within the conducting parts of the scanner by
the time-varying magnetic fields emitted by the gradient coils. Their effects are
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Figure 4.9: Magnitude velocity field at t/Tp = 0.2 s.(left) raw MRI ||umri||,
(middle) divergence-free velocity ||u0

mri||, (right) L2-norm error defined as:
EL2(xi, tn) = ||umri(xi, tn)− u0

mri(xi, tn)||

proportional to the gradient slew rate and described by the Faraday’s law. They
particularly affect the phase image accuracy by creating a non-linear phase offset
(even though often assumed linear near the isocentre) [28]. An algorithm based on
a method developed in Lorenz et al., (2014) [92] was implemented to correct for
their effects on the velocity field in 4D flow images. The main steps are as follows:

1. Given that a prior mask of the noise was performed (see Section 4.4.1),
static regions are extracted in the full 3D volume by thresholding the signal
magnitude to remove blood flow regions.

2. Slice-wise 2D least-square fit (linear, quadratic, polynomial) of the remaining
static velocity map is performed and propagated on the entire image as a
global indicator of velocity offset.

3. Each resulting offset velocity fit is subtracted to the original velocity image
to correct for eddy current effects

4. The procedure is repeated for each phase in the cycle and for each velocity
component.

This approach was implemented and tested for several types of surface fit orders
and the results are provided in Figure 4.10. Among all, the second-order fit shows
high spatial variations and indeed seems to be very sensitive to the location of
the static tissues in the images. For this reason, and as also concluded in Lorenz
et al. [92], the first-order fit outperformed the second-order fit at 1.5T and should
be selected.
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Figure 4.10: Eddy current correction at the middle of the flow phantom. (a).Static
region velocity field, (b). velocity field corrected from eddy currents (c). (top)
Linear surface fit correction where ufit(x, y) = ax+ by + c, (bottom) second-order
fit where ufit(x, y) = ax2 + by2 + cxy + dx+ ey + f . Note that bottles of water
were added to generate additional static regions.

4.4.3 Image registration

As described previously, a main advantage of using 3D printing technique to
make the phantom is that the surface approximations caused by the MR image
segmentation process are removed. Nevertheless, this method is not completely
free of errors since it require to spatially register the real MR images onto the
CAD surface model. This process could induce additional errors according to
the registration accuracy. An important step in order to minimize this error
is to correctly choose the registration algorithm. Image registration algorithms
are generally formulated as optimization problems where the aim is to find the
geometric transformation matrix M that minimizes the difference between a given
metric calculated from the two datasets.

Let us consider that the "reference" dataset (CFD) is fixed in space while the
"moving" dataset (MRI) is displaced to match the reference dataset, as illustrated
in Figure 4.11. Registering the MRI dataset towards the CFD mesh seems to be
a natural choice since the flow phantom position and orientation are specific to
each MRI experiment while kept fixed at each CFD simulation. Intensity-based
registration algorithms assign metrics to compare intensity patterns between
the two dataset and iteratively optimize the orientation of the moving dataset,
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Figure 4.11: Schematic representation of the CFD-MRI registration process.

while feature-based methods find correspondence between features such as points,
contours, surfaces, etc. Note also that only linear (rigid) transformations (3
translations and 3 rotations) were authorized since MRI images were rescaled to
real world value beforehand (see Section 4.3).

Supposing that ri(q) is the residual function describing the difference between
the moving fi(q) and reference data gi at node i, q = (q1, q2, q3, q4, q5, q6) is the
vector containing the 6 transformation parameters (3 rotations + 3 translations).
Then the transformation matrix M = T R can be defined as:

T =


1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1

 ,Rx =


1 0 0 0
0 cos(q4) sin(q4) 0
0 − sin(q4) cos(q4) 0
0 0 0 1

 ,

Ry =


cos(q5) 0 sin(q5) 0

0 1 0 0
− sin(q5) 0 cos(q5) 0

0 0 0 1

 ,Rz =


cos(q6) sin(q6) 0 0
− sin(q6) cos(q6) 0 0

0 0 1 0
0 0 0 1


(4.7)

where R = RxRyRz. A commonly adopted cost function is the sum of squared
differences, defined as follows:

S(q) =
Nnodes∑

i

r2
i (q) (4.8)

where ri(q) = f(q) − gi, and Nnodes is the number of comparison nodes of the
dataset. A straightforward way to minimize the cost function consists in computing
either the gradient or the Hessian of the cost function with respect to each of the
parameters, to find the steepest descent direction. For the (normalized) descent
gradient algorithm, the updated value of the transformation parameters q at each
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iteration is given by:
qn+1 = qn − α ∇qS(qn)

‖∇qS(qn)‖ (4.9)

where α is the descent rate arbitrarily set between α ∈ [10−2; 10−3]. The descent
gradient algorithm is generally robust but slow to converge. The descent step size
α could help increasing the convergence rate but should be kept small to ensure
numerical stability. Another way to improve the convergence rate is to compute
the Gauss-Newton algorithm defined as:

qn+1 = qn − α H−1
GN∇qS(qn)

‖H−1
GN∇qS(qn)‖

(4.10)

If we define the Jacobian of the residual as the following matrix:

(J(q))ij = ∂ri(q)
∂qj

= ∂fi(q)
∂qj

(4.11)

Then, the gradient of the cost function can be written as:

∇qj
S(q) = ∂S

∂qj
=

Nnodes∑
i=1

ri(q)∂ri(q)
∂qj

(4.12)

and therefore,
∇qS(q) = J(q)T r(q) (4.13)

From Equation 7.1, the Gauss-Newton algorithm takes the following form:

qn+1 = qn − α(JTJ)−1JT r(qn) (4.14)

where HGN = JTJ
The main drawback of the Gauss-Newton algorithm resides in the fact that

the Hessian matrix can become singular if any column of the Jacobian matrix
linearly depend to another.

To minimize the chance of failure of the iteration, a term is added such that
HLM = λdiag(HGN) + HGN ; this leads to the Levenberg-Marquardt algorithm.
The main advantage of this method is that for low λ, the algorithm converges
as fast as Gauss-Newton steps while for high λ, more robust steep descent steps
are utilized. In practice no explicit line search is needed for this algorithm.
Moreover, the λ coefficient is updated at each iteration such as: if S(qn+1) < S(qn),
λ = 10−1λold, else: λ = 10λold.

Intensity-based metrics For automatic registration of medical images, intensity-
based approaches are usually accurate, even though less robust notably because of
the presence of noise and bias between the datasets [3]. The magnitude velocity
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Figure 4.12: Comparison between gradient descent and Levenberg-Marquardt
algorithms for registration of two MR images. The Levenberg-Marquardt algorithm
generally outerperforms the classical gradient descent in terms of convergence
rate due to the second-order derivative of the Hessian. Nevertheless, the gradient
descent is generally more robust and stable.

field was used as the registration metric, assuming that both CFD and MRI veloc-
ity patterns are sufficiently similar to converge towards an accurate transformation.
At the beginning of each iteration, the MRI velocity field was linearly interpolated
into the CFD mesh to compute the residual based on similar comparison points.
Several tests were computed using the velocity field as registration metrics, varying
the step size as well as the initial guess; all these tests generally resulted in non
robust results and large errors in the transformation matrix. To illustrate this,
one of the computations is presented in Figure 4.12 and reveals, as expected, a
faster convergence of the Levenberg-Marquardt algorithm as compared to the
descent gradient algorithm. Nevertheless, both algorithms show quite unstable
convergence results (with high residual level). This behaviour seems mainly due
to the sensitivity of the algorithms to the noise in the velocity images. The
relative differences between the two velocity fields can also be responsible for this
instabilities.

To conclude, using an intensity-based metric seems generally inadequate to
comparing two dataset coming from different imaging modalities.

Feature-based metrics Due to the unsatisfactory results obtained using the
magnitude velocity field as metric, an iterative closest point algorithm was tested.
In the Iterative Closest Point algorithm, the residual quadratic metric is based on
the distance from each of the source point pi (MRI) to a reference point xi (CFD).
As this algorithm compares only surfaces, a preliminary rough segmentation of
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Figure 4.13: Illustration of the Iterative closest Point algorithm procedure. Note
that a prior step (not represented here) necessary to form the triad is to juxtapose
the centroids of the moving and reference surfaces. Then, an orthonormal triad is
formed from each point pi of the moving surface, centroid, and the closest point
on the reference surface xi. Another triad is computed by taking the reference
surface point as origin instead. A transformation (rotations and translations)
matrix is deduced for each couple of points.

the MRI dataset was computed to extract the surface of the flow phantom. This
segmentation was computed by thresholding the image magnitude. Given an
initial guess of the rigid body transformation (as aligned centroids), the nearest
neighbour of each point in the source dataset is calculated. Then, a reference
orthonormal triad is constructed from the three reference points (centroid, pi and
xi), and the same is done for the source points. A transformation matrix (rotation
and translation) is then deduced from the rotations and translations between
the two constructed triads. This process is repeated for each points lying on the
surfaces. Weights are attributed to pairs of points in order to reject outliers and
to better match the final transform (bigger weights to points with small distances
from each other). By combination of each point’s transformation matrix, a sum

of squared distances S(R, t) =
Np∑
i=1
‖xi −Rpi − t‖2

2 is deduced, where R and t are
the rotation matrix and translation vector describing the transformations between
the corresponding points xi, pi of the source and moving models respectively. The
optimal transformation matrix is finally iteratively obtained. An illustration of
the ICP process is presented in Figure 4.13. More detailed explanations of the
method are provided in [71].

The algorithm was tested with the phantom datasets and results are shown in
Figure 4.14. In this case, the algorithm converges with order q = 2.3 to a mean
distance between the two surface below 10−6 m. This algorithm was tested in
multiple configurations, for multiple MRI datasets, and found to be quite robust as
long as the initial rotation does not exceed about 90° along each spatial direction.
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Figure 4.14: Convergence of the ICP algorithm as function of the mean distance
between the two surfaces.

4.5 Simulations of the experimental
configuration

In this section, the simulation of the flow within the phantom is presented.
The simulation set up is detailed, the resulting simulations are shown, and the
post-processing steps of the results explained. The sensitivity of the resulting
simulations to several parameters is investigated and in order to ensure that the
simulation is well-converged.

4.5.1 Simulation setup
The blood-mimicking fluid is modelled as an incompressible Newtonian fluid of
kinematic viscosity ν = 4.02 × 10−6 m2/s. A centred fourth-order numerical
scheme with an explicit fourth-order Runge-Kutta time advancement scheme was
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used to solve the Navier-Stokes equations. The time step was computed in order to
ensure that the Courant–Friedrichs–Lewy (CFL) number remains equal to 0.9 for
numerical stability. The pressure advancement and divergence-free condition were
met thanks to the fractional step algorithm [78] (see Section 3.1.3). A Deflated
Preconditioned Conjugate Gradient algorithm was used to solve the associated
Poisson equation [97]. The Sigma eddy-viscosity-based LES model [119] was used
to account for turbulence effects (see Section 3.1.6). A convective outlet boundary
condition was imposed such that:

∂u
∂t

+ U conv ∂u
∂n

= 0 (4.15)

where n is the outward normal to the outlet surface, and U conv the convective
velocity adjusted in such a way that it meets the global mass conservation of
the entire flow domain. All the walls were assumed rigid, consistently with the
material selected for manufacturing the phantom, and no-slip boundary condition
was prescribed.

The peak systolic Reynolds number is Re = 2ubulka
ν

= 1830 where a is the
radius of the principal duct and ubulk the averaged inlet velocity. Likewise, the
Womersley number characterizing the pulsatility of the flow is α = R

√
ω
ν

= 16.4,
where ω = 2π

T
.

Spatial interpolation of the MRI inflow signal

A pixel-based inflow velocity was derived from 2D cine PC-MRI measurements
acquired at the inlet surface of the flow domain (see Section 4.3) and imposed
as inlet boundary condition of the simulations. First, the transformation matrix
found from the 4D Flow MRI registration was applied to register the 2D PC-MRI
measurements to the numerical mesh. This was possible as the two measurements
were performed sequentially, with no changes of the phantom’s position. Then, a
2D spatial interpolation of the measured 2D PC-MRI velocity field was performed
on the corresponding inlet surface of the CFD domain, for each of the Np = 32
frames in the cycle independently. A simple and fast way to interpolate the MRI
velocity on the inlet surface nodes is to use a finite element formulation. Each
MRI pixel is subdivided into two equivalent triangles and a linear shape function
is defined for each triangle. This shape function takes the following form:

fij = αxi + βyj + γ (4.16)

where xi = x0 + i∆x and yj = y0 +j∆y with x0, y0 the coordinates of the lower left
pixel. Given the values at the three vertices of the triangle (fi,j, fi,j+1, fi+1,j+1),
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Figure 4.15: Schematic illustration of the pixel-based inlet velocity interpolation
procedure.

the coefficients are determined as:

α = fi+1,j+1 − fi,j+1

∆x
β = fi,j+1 − fi,j

∆y
γ = fij − αi∆x− βj∆y

(4.17)

The velocity at position x, y can then be estimated from the previous shape
function. This approach has the advantage to require low computational effort
and to be robust since the values at the interface of each triangle are continuous.
An illustration of the interpolation method is presented in Figure 4.15.

Temporal interpolation of the MRI inflow signal

The discrete temporal evolution of the spatially-interpolated signal was then
converted into a time-continuous signal by node-wise trigonometric interpolation.
A list of Nk = bNp

2 c+ 1 non-redundant complex Fourier coefficients ûi,k can be
extracted from the interpolated velocities at each Np = 32 phases and for each
inlet surface node i, as follows:

ûi,k =
Np−1∑
n=0

ui,ne−2πjkn/Np (4.18)

where k ∈ [0, Nk − 1], and j2 = −1. The corresponding continuous input velocity
signal can then be retrieved by injecting back the Fourier harmonics coefficients
ûi,k in a Fourier series expansion of the signal again computed for each node of
the inlet surface, such as:

ui(t) =
Nk−1∑
k=0

ûi,ke2πjkt/T (4.19)

where ui(t) is the continuous velocity vector function at inlet node i and time t,
and T is the period of a cycle. Trigonometric interpolation is well adapted in this
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Figure 4.16: Inlet flow waveform prescribed as inlet boundary condition of the
simulations. Comparison with the flow rate before spatio-temporal interpolation
of the 2D PC-MRI measurement.

case since the signal emitted by the pump is periodic. Moreover, there is no need
to compute an interpolation at each iteration since the Nk Fourier coefficients are
stored at the initialization of the calculation and injected along the simulation in
the analytical expression of the periodic signal, with no control points. This is
also valuable since in practice, the time steps are generally not constants.

The effect of interpolation on the resulting inlet flow rate waveform is expected
to be negligible, as shown in Fig. 4.16.

4.5.2 Phase-averaging

During a conventional PC-MRI scan, the k-space is progressively filled over
hundreds of cycles and pulse sequences are often repeated to increase contrast.
For this reason, confronting MRI measurements with instantaneous CFD velocity
fields might not be relevant. Moreover, cycle-to-cycle fluctuations may appear
for such high Reynolds number unsteady flows [32]. Hence, a proper way to
analyse the computed flow is to phase-average the flow velocity over a sufficiently
representative amount of cycles [32]. The phase averaged velocity u(x, t) at spatial
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coordinates x = (x, y, z) and at time t is defined as:

u(x, t) = 1
N

N−1∑
k=0

u(x, t+ kT ) (4.20)

where u(x, t) refers to instantaneous velocity vector and N the total number of
cycles of period T . The phase root-mean square velocity is therefore defined as:

urms(x, t) =
√

u2(x, t)− u(x, t)2 (4.21)

4.5.3 Down sampling
Two classical methods may be adopted for comparing CFD to MRI velocity
fields on identical grids: the MRI velocity fields can be interpolated on the high
resolution CFD grid (termed as HR-CFD), or HR-CFD velocities at nodes localized
within a given MRI voxel might be averaged to obtain the corresponding down
sampled CFD field, noted low resolution CFD (LR-CFD) [35]. The down sampling
process was achieved by linear interpolation of the CFD data on an MRI sub grid
where each MRI voxel contained 216 isotropic sub voxels. The resulting down
sampled field at each MRI voxel was then calculated as an average of the 216 sub
sampled fields. The down sampling process is illustrated in Figure 4.17.

4.5.4 Data convergence
Mesh sensitivity analysis

A mesh sensitivity analysis was performed to ensure the spatial convergence of
the computations. Results are reported in Table 4.3. The magnitude of the
phase-averaged velocity in the aneurysmal sac results in a numerical uncertainty
of 1.88% for the fine mesh, with an apparent spatial order of convergence p = 2.0
(see Sigüenza et al. [138] for details). Therefore, the fine mesh (h = 0.7 mm)
was considered fine enough for the velocity field to be spatially converged and
independent of the spatial resolution.

Phase-averaging sensitivity analysis

A phase-averaging sensitivity analysis was performed to estimate the number of
cycles necessary for the phase-averaged velocity field to converge. Beforehand, the
first 10 cycles were removed to cancel the effect of the arbitrary initial condition
(zero velocity condition). The results presented in Figure 4.18 show that the
main components of the velocity (u and w) are well-converged after few cycles
(about 5 cycles) while the transverse component of the velocity (v) requires
more (about 30 cycles). Since the transverse velocity correlation is expected
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Figure 4.17: Illustration of the down sampling of a CFD velocity field. The MRI
grid is first subsampled with 6 voxels in each direction (216 sub-voxels per voxel).
The CFD solution is linearly interpolated on the sub sampled grid, and the sub
sampled grid is down sampled back to the MRI grid by averaging the velocity
over the 216 subvoxels included in each voxel.

Grid h (mm) Cells ×103

Coarse 1.3 622
Medium 1.0 1 284
Fine 0.7 3 812

Table 4.3: Properties of meshes used for the sensitivity analysis, as reported in
Celik et al. [1]. h corresponds to the representative cell size. The corresponding
(left) coarse, (middle) medium and (right) fine meshes are represented above.
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Figure 4.18: Evolution of the Pearson’s correlations (r2) between phase-averaged
CFD velocity computed over different numbers of cycles and the 60-cycle phase-
averaged CFD velocity. The correlations are performed on each node of the
domain.

to be zero by symmetry, it is mostly representative of the velocity fluctuations
induced by turbulence, thus justifying the slower convergence rate observed in
Figure 4.18. Among the 60 simulated cycles, velocity field was phase-averaged
over 30 cycles which was deemed sufficient for v to reach a reasonable asymptotic
value. The reproducibility of the phase-averaging process was tested by extracting
and independently phase-averaging two subsequent sets of 30 cycles from the 60
cycles simulated. High correlation levels were found (r2(u) = 0.995, r2(v) = 0.930,
r2(w) = 0.999 and r2(‖u‖) = 0.997 where r is the Pearson’s correlation coefficient
introduced in Sec. 4.6.1), showing that the outcome of the phase-averaging process
does not depend on the set of cycles selected.

Whereas phase-averaging over 30 cycles seems enough for the global correlation
to converge, a more ’local’ sensitivity analysis was performed to ensure the
convergence at key sites within the phantom. Three probes were then seeded
in the aneurysm, collateral and bend. The magnitude of the velocity field at
these locations were recorded at each peak systolic phase during 50 cycles and
the cumulative average of the field was computed to track the evolution of the
convergence. Results are shown in Figure 4.19. As expected, the highest velocity
fluctuations occur in the aneurysm. Moreover, eliminating the first ten cycles to
evacuate the initial condition seems sufficient at the sight of the initial velocities.
It seems however difficult to discern any cyclic repetition of reproducible patterns.

Therefore, all the velocity fields were phase averaged over 30 cycles and the first
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Figure 4.19: Left Locations of the probes in the flow phantom. Right (black
dots) Dimensionless magnitude of the instantaneous velocity at peak systole for
the three probes, (solid lines) cumulative average associated. The instantaneous
velocity magnitude used to compute the cumulative average at i-th cycle are
marked with black dots.

Figure 4.20: Magnitude of the velocity fields in the flow phantom at peak systole
for cycle 20 (a), cycle 30 (b), phase-averaged (c). The velocity fluctuations (d)
are expressed through urms. Important cycle-to-cycle fluctuations between the
instantaneous fields indicate non reproducible disturbed zones, where turbulence
is more likely to appear, while the phase averaged field encompasses dominant
flow patterns.

ten cycles were removed. The resulting velocity fluctuations were calculated as the
root-mean-square velocity and are presented at peak systole in Figure 4.20. This
figure well-illustrates the large velocity variations from one cycle to another, and
therefore emphasizes the importance of phase-averaging the velocity to compare
with MRI.
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Figure 4.21: Probability density function of the ratio local mesh size over the
Kolmogorov length scale where ntot is the total number of mesh nodes.

Indicators of the LES resolution

As detailed in Section 3.1.6, the σ-model was used in the simulations. To assess
the turbulence resolution in the simulation, it is necessary to estimate the size of
the smallest turbulent structures. According to Kolmogorov’s theory, the smallest
turbulent length scale (ηk) is universal and reads:

ηk ≡
(

(ν + νsgs)3

ε

)1/4

(4.22)

where
ε = 2(ν + νsgs)S ′ijS ′ij

S ′ij = 1
2(∂u

′
i

∂xj
+
∂u′j
∂xi

)

where ε is the dissipation rate and S ′ij the symmetric part of the fluctuating
strain rate tensor. Under the hypothesis of homogeneous isotropic turbulence, the
smallest length scale measured in the simulations equals 1.56 × 10−4 m , while
the average scale is about 1.05× 10−3 m. To this respect, a mesh resolving the
entire turbulence spectrum (DNS) would require more than 68 million cells. As
specified in Moin and Malesh [112], an acceptable level of spatial resolution for
DNS should verify ∆x ≈ 2ηk, where ∆x is the characteristic mesh size. As shown
in Figure 4.21, about 30% of the elements in the present simulation are above this
limit.

A general measure of the turbulence resolution in LES was proposed by Pope
[127]. It considers that for a LES to be well-resolved, at least 80% of the turbulent
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kinetic energy should be solved. Formally, this can be written as:

M(x, t) = ksgs(x, t)
ktot(x, t)

< 0.2 (4.23)

where ktot(x, t) = ksgs(x, t) + kres(x, t) is the total turbulent kinetic energy, a sum
of ksgs the turbulent kinetic energy of the unresolved scales and kres the turbulent
kinetic energy of the resolved eddies. kres is defined as:

kres(x, t) = 1
2u′i · u′i (4.24)

As the he subgrid scale kinetic energy is not explicitly calculated in this LES,
ksgs should be estimated. The following estimate was proposed by Yoshizawa and
Horitu [169]:

ksgs(x, t) =
ν2
sgs

(C∆)2 (4.25)

where C ≈ 0.1.
Another formulation derived by Pope [127] estimates the Pope criterion as:

ksgs
ktot
≈ 3C

2

(
∆
πL

)2/3

(4.26)

where L is the characteristic length of the largest structures (L ≡
(
k

3/2
tot

ε

)
), C = 1.5.

As shown in Figure 4.22, about 5% of the nodes show turbulence resolution superior
to 20%. As expected, the highest ratio of unresolved turbulent kinetic energy
arise at phase 5 (peak sytole), when the Reynolds number reaches its maximum.
These unresolved scales are mainly located at the inlet and outlet of the collateral
branch, where high fluctuating velocity gradients are induced by the geometric
singularities and the jet.

Another simulation was performed with a finer mesh (27 million instead of
3.8 millions cells) for which the Pope criterion was satisfied (M < 0.2 for all the
nodes). The turbulent viscosity ratio νsgs

ν
associated with the two meshes are

shown in Figure 4.23. For the reference mesh (3.8 million elements), the level of
SGS viscosity ratio observed is generally quite low (less than 20%) and viscosity is
added mainly in the aneurysm, and in the jet outflows the collateral branch. For
the refined simulation, almost no viscosity is added. The phase-averaged velocity
relative error between the two simulations equals 0.8% of the maximum velocity.
Given the small gain associated with this mesh refinement, we considered the
reference simulation with the 3.8 million element mesh as sufficiently well resolved
to estimate the velocity with accuracy.
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Figure 4.22: a). Temporal evolution along a cycle of the node fraction verifying
M > 0.2. b) Volume rendering of the sites where M > 0.2 at phase 5.

Figure 4.23: Eddy viscosity ratio at peak systole ( t/Tp = 0.25) interpolated on
the xz-middle plane of the phantom. Comparison between left the reference mesh
(3.8 million elements) and right 27 million element mesh.
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4.5.5 Results of the simulations

Figure 4.24 shows the 3D magnitude vorticity field computed from the phase-
averaged velocity field at different instants in the cycle. At t/Tp = 0.04, initially
regurgitant flow in the collateral vessel is convected by the entering flow, and
starts changing direction. At t/Tp = 0.2, the flow structure entering the main
branch induces a counter-clockwise rotating motion of the fluid particles located
in the aneurysm. At t/Tp = 0.36 (end of the peak systole), the inflow acceleration
stops, and the flow trajectory in the main branch near the inlet surface is deviated
by the rotating motion in the collateral branch. This creates a detached flow
structure that persists during the next phases in the main branch upstream of
the bend. Also, a jet with small rotating structures is formed at the junction
between the collateral outlet and the main branch. At phase t/Tp = 0.52, the
jet extends and a mixing layer appears due to the differential velocity directions
between the collateral and main branch flows. A focus on the jet flow streamlines
at the collateral outlet elbow is presented in Figure 4.26. As the jet flows out
the collateral branch towards a cross directional flow that comes from an upper
location in the main branch, this latter deflects its trajectory and circumvent
the collateral jet. As a consequence, the separated principal flow reattaches in
the stagnation zone right under the jet, symmetrically on both sides of the pipe.
Additionally, counter-rotating vortices are created due to the stagnation zone
produced by the local momentum increase of the jet. The-jet-in-cross flow is
typical of the patterns observed in Mendez et Nicoud [107].

Note also the existence of a detached structure in the pipe bend, due to the
centrifugal forces pushing the flow towards the outer wall and inducing counter-
rotating vortices located near the inner wall. These vortices are expected and are
described in Section 3.2.2. A closer look of these vortices (and the cycle-to-cycle
variations associated) is provided in Figure 4.25. As expected, a stagnation zone
close to the concave wall is observed and Dean vortices are formed near the
inner wall. At t/Tp = 0.73 and t/Tp = 0.9, only the flow in the collateral branch
regurgitates due to the negative inlet flowrate. The flow in the bend does not
change significantly its direction, since the total pressure loss necessary to move
this fluid column would be higher than in the collateral branch.

Figure 4.27 shows maps of the phase-averaged velocity vectors in the middle
plane of the aneurysm. The vectors are scaled by the magnitude of the phase-
averaged velocity at each time. At t/Tp = 0.2, the entering flow structure in the
main branch detaches and starts expanding in the aneurysm. The z-component of
the velocity structure confers its counter-clockwise rotative motion to the flow in
the aneurysm. A high pressure gradient appears at the entrance of the collateral
due to the increase of the flow rate (mass conservation), and is amplified by the
sudden cross-sectional narrowing until the peak systole (at t/Tp = 0.36). At
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(a) t/Tp = 0.04 (b) t/Tp = 0.2 (c) t/Tp = 0.36

(d) t/Tp = 0.52 (e) t/Tp = 0.73 (f) t/Tp = 0.89

Figure 4.24: Dimensionless volumetric maps of vorticity magnitude of the phase-
averaged velocity fields at different phases of the simulation.

Figure 4.25: Axial velocity field in the pipe section at the middle of the bend at
4 consecutive cycles. Given that Rc = 50 cm, r = 26 mm and Remean = 1000, a
flow with a Dean number D = 613 is expected.
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Figure 4.26: 3D phase-averaged velocity streamlines (magnitude) at the junction
between collateral outlet and main branch. Top YZ-plane view and bottom
XY-plane view.

t/Tp = 0.52 when the inflow starts decelerating, the flow impacts the aneurysm
neck (upper zone). This impingement zone is characteristic of about 20% of the
aneurysms, and the velocity structure associated could be classified into type
1 patterns as proposed by Cebral et al. [27]. At t/Tp = 0.73, when the inlet
flowrate is close to zero, the collateral flow regurgitates into the lower part of the
aneurysm (close to the inlet), which was a stagnation zone at peak systole. As
the collateral flow regurgitation intensifies, a jet is convected towards the centre
of the aneurysm and two distinct stagnation zones appear. The flow pattern
is now typical of the separation zones raised in structures of type 3 [27]. This
configuration therefore seems to adequately reproduce the large variety of flow
structures generally observed in aneurysms. Another primordial feature of this
configuration which was not treated here is the pressure distribution into the two
branches: it will be discussed in the next chapter.
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(a) t/Tp = 0.04 (b) t/Tp = 0.2 (c) t/Tp = 0.36

(d) t/Tp = 0.52 (e) t/Tp = 0.73 (f) t/Tp = 0.89

Figure 4.27: Phase-averaged velocity vectors in the middle plane of the aneurysm
at different instants in the cycle.

4.6 Baseline comparison: proof of concept of
the methodology

In this section, we compare the CFD velocity field with the 2 mm isotropic spatial
resolution 4D PC-MRI measurements described in the previous Section 4.3. A
quantitative analysis of the differences is performed with different levels of post-
processing of the two modalities to investigate the discrepancies induced by a
straightforward comparison. A generic comparison protocol is then proposed to
systematically correct for these sources of discrepancies.

4.6.1 Pearson’s correlation

The Pearson’s product moment correlation is often used as a metric to compare
two independent modalities. It indicates the affine relation that exists between a
variable x and a variable y. It is defined as the ratio of their covariance σxy by
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the product of their standard deviations σxσy, as:

r = σxy
σxσy

(4.27)

where σx =
√

1
N

∑N
i=1(xi − x)2 and σxy = 1

N

∑N
i=1(xi−x) · (yi−y) are the standard

deviation of x and covariance of (x, y) respectively. The resulting r ranges in
[−1, 1]. While it does not indicate the sign of the linearity, it is more common
to see r2 rather than r as it ranges in [0, 1]. Two variables with r2 = 0 are
uncorrelated while a perfectly linear relation would result in r2 = 1. Given that
u1 and u2 are the MRI and CFD velocity components, one can reformulate the
Pearson’s correlation as:

r = (u1 − u1)(u2 − u2)√
(u1 − u2)2

√
(u2 − u2)2

(4.28)

By decomposing of the velocity in a mean and fluctuating part (u = u+ u′), it
follows that:

r = u′1u
′
2√

u′21

√
u′21

(4.29)

where u′ = 0. Written in this form, it represents the covariance normalized by
the rms values of u1 and u2. It is important to differentiate the spatial deviations
associated the average velocity over the entire domain at a given phase, and
the temporal fluctuations from the phase-averaged velocity at a given node, as
illustrated previously in Figure 4.20.

4.6.2 Qualitative comparison
In Figure 4.28 the HR-CFD phase averaged velocity field is first qualitatively
compared with MRI velocity data with corrected phase offsets (i.e: noise masking
and eddy currents) in the in-plane direction (foot-head and right-left) at several
phases during the cycle. Magnitude velocity maps reveal excellent agreements and
show highly similar velocity patterns even in complex flow regions, such as in the
aneurysm. For instance, both MRI and CFD capture the small separation region
in the main branch at early systole (Figure 4.28a), as well as the recirculation in
the aneurysm or the back flow in the bifurcation at late diastole (Figure 4.28c).

Through-plane (antero-posterior) velocity comparison shows larger visual
discrepancies (Figure 4.28g-i). This was expected given the low signal amplitudes
(v ∈ [−5, 5] cm/s) with respect to the VENC (50 cm/s).

In addition, the length of the jet issued from the collateral segment appears
smaller in the MRI at peak systole. In this region, the MRI does not seem to
capture the mixing layer as well as CFD does. A misregistration artifact due to the
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unavoidable time delays that exist between different velocity encoding directions
(see Section 2.9.1) could be responsible for these distortions, as described in
Steinman et al. [146]. In practice, for the 2 mm voxel-size acquisition, a time
delay of 12.5 ms was measured between u and w. This corresponds to the time
needed for a flow structure in the jet issued by the collateral to travel through
approximately 2 voxels at 0.3 m/s. Note that the diameter of the collateral branch
contains 8 voxels.

The corresponding velocity error were computed at each node and for each
velocity component independently as εi =

√
(uCFD,i − uMRI,i)2, where ui repre-

sents the i-th velocity component. The resulting errors maps are presented in
Figure 4.29. One can observe in Figure 4.29d) that a large right-left velocity u
error pattern is located between the aneurysm and collateral branch inlet at early
systole. A closer look onto the root-mean-square velocity map at this particular
phase reveals that it coincides with the site of highest cycle-to-cycle fluctuations.
Moreover, as shown in Figure 4.29b), the highest velocity error levels are located
in the recirculation region under the collateral branch outlet elbow and at peak
systole (see Figure 4.26. This region corresponds to the site of highest convective
acceleration where small rotating structures are formed (see Figure 4.26). An
explanation is that eddies smaller than the voxel size should produce intravoxel
phase dispersion due to the vector summation of the spins different velocity vector
directions within a voxel [12]. On the contrary, a better agreement is found in the
regions where velocity gradients are small. Down sampling the CFD to PC-MRI
spatial resolution should reduce the errors associated as it mimics the intravoxel
spin velocity averaging process inherent to PC-MRI.

Time evolution and flow profiles comparison

Figure 4.30 compares the temporal evolution of flow rate and peak velocity in
the collateral segment measured by MRI with HR-CFD predictions. Excellent
agreement is found for both the flow rate and the peak velocity evolution between
CFD, 2D PC-MRI and 4D Flow MRI.

4.6.3 Quantitative comparison

A statistical analysis of the velocity differences observed between the low resolution
CFD (LR-CFD) and 4D Flow MRI at peak systole is presented in Figure 4.31. An
excellent correlation was found for the main velocity component along z-axis. As
observed qualitatively in the previous section, the in-plane velocity components
(u and w) yield better correlations than the through-plane component (v).
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Figure 4.28: Comparison in the coronal plane of HR-CFD velocity fields with
MRI measurements at 2 mm resolution at different instants of the cycle. First
row represents the velocity magnitude, while second, third and last rows depict
right-left (u), up-down (v) and foot-head (w) velocity components respectively.
The corresponding instant of the inlet flow rate evolution is represented below as
title of indication (see Fig. 4.16).

Influence of the processing on the correlation

To better understand the impact and influence of each processing step on the final
comparison, statistical analyses were performed for various processing levels as
defined in Table 4.4. Note that only the velocity magnitude correlation results
are reported, as a global indicator of the three velocity components.

The first striking result is the low correlation between raw MRI data and
the instantaneous high-resolution CFD results (case 1). Note that the 63%
correlation was obtained by imposing the measured velocity profile at the inlet of
the computational domain as obtained by 2D cine PC-MRI. However, an approach
often adopted in the literature consists in applying an idealized velocity profile
(flat or parabolic) with the same integral as the actual measured profile. This
approach was tested and resulted in even worse correlations, with only r2 = 0.58.
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Results in Table 4.4 also show that main correlation improvements are obtained
either by down sampling the phase-averaged CFD field or by correcting for the
phase offset artifacts (i.e: noise masking and eddy currents). Note that the low
correlation between raw MRI and the LR-CFD is mainly due to the impact of
the noise surrounding the flow phantom in the MRI measurements and affecting
the points located on the wall surface. In LR-CFD, about 35% of the points are
located on the surface (only 13% in HR-CFD). The noise is then masked between
case 3 and 6, producing a significant improvement of the correlations. Finally, the
range of variations of the correlation coefficient over the last row of Table 4.4 (0.89-
0.97) shows the importance of degrading the CFD prediction to match the MRI
spatial resolution and temporal sampling. The gain obtained by degrading the
CFD data is not negligible, yet smaller, compared to the improvement generated
by processing, denoising and correcting the raw MRI data (which improves the
correlation from 63 % to 89 %, see first column of Table 4.4).

r2
‖u‖ inst HR-CFD HR-CFD LR-CFD
Raw MRI 0.63 (1) 0.67 (2) 0.21 (3)

Phase offset corr. 0.81 (4) 0.85 (5) 0.85 (6)

uwall = 0 0.89 (7) 0.92 (8) 0.96 (9)

∇ · u = 0 0.89 (10) 0.93 (11) 0.97 (12)

Table 4.4: Evolution of Pearson’s product moment correlation (r2
‖u‖) for the

velocity magnitude at peak systole, as a function of the level of post-processing.
"inst HR-CFD" stands for the instantaneous high resolution CFD velocity field of
the 30th computed cycle. "HR-CFD" corresponds to the phase-averaged CFD field
and "LR-CFD" to the phase-averaged velocity down sampled to the MRI spatial
resolution. "Phase offset corr." corresponds to the raw MRI dataset corrected
from eddy currents and noise artifacts. "uwall = 0" refers to the corrected MRI
dataset where a no-slip boundary condition is applied at walls and "∇ · u = 0"
refers to the resulting MRI velocity field modified to meet the divergence-free
condition. Each comparison case is denoted with a superscript number between
brackets to ease the discussion. Note that the qualitative comparison shown in
Fig. 4.28 represents the case (5).

4.7 Influence of the spatial resolution
Figure 4.32 compares the temporal evolution of the flow rate and peak velocity in
the collateral segment at different spatial resolutions. Regardless of the spatial
resolution, the MRI measurements seem to well-predict the flow rates. Being
an integrated quantity, the flow split is not sensitive to local errors such as the
near-wall noise. Results show that enforcing a zero velocity at boundary walls
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seems adapted for computing the velocity gradient and that the latter is also very
sensitive to the spatial resolution. The peak axial velocity in the collateral also
agree very well for all the spatial resolutions although at t = 0 only the 3.1 mm
measurement matches with the CFD results for unexplained reasons.

The situation is not as favourable when considering velocity profiles in the
middle of the bend, as shown in Figure 4.33. Results indicate that PC-MRI
velocity tends to underestimate the HR-CFD profile mainly where high velocity
gradients occur. On the contrary, a better agreement is found in the regions where
velocity gradients are small. Note that the MRI dataset without near-wall velocity
masking was willingly presented here to highlight the significant discrepancies
raised close to the walls due to partial volume effects. As an illustration, the mean
relative error spans from ε = 17.3% without to ε = 14.4% with near-wall velocity
masking.

4.8 Conclusion
In this chapter, we developed a CFD-based procedure for assessing the quality of
4D Flow MRI measurements. A proof-of-concept workflow for mutual validation of
MRI and CFD under well controlled and idealized conditions was first established.
The results obtained for the idealized flow clearly highlight that some discrep-
ancies remain even after errors associated with boundary conditions, numerics,
or turbulence modelling are minimized in the CFD part. Indeed, we noted that
a straightforward comparison of the two modalities only produces a very poor
agreement (r2

|u‖ = 0.63). Some post-processing corrections were thus proposed,
that drastically increased the velocity correlations (r2

|u‖ = 0.97). To this respect,
post-processing of PC-MRI dataset such as correcting phase-offset errors and
near-wall velocity masking produces a more realistic output and better matches
with the CFD outcome. Moreover, forcing the flow to meet the incompressibility
constraint and imposing a zero velocity at the boundary walls is an efficient way
of correcting the non-physical noise present in the measurement. As for imaging
data post-processing, some CFD downgrading are required to match the MRI
spatio-temporal resolution, and therefore improve the correlation. Phase-averaging
of velocity fields produces a mean representation of the flow which is suitable
to match the MRI data acquisition process. Down sampling CFD velocity fields
allows to mimic the acquisition of PC-MRI signal, and leads to a consistent
comparison.

These results prove that in a well-controlled environment with suitable prior
processing, both MRI measurements and CFD predictions bring trustworthy and
equivalent global flow quantities. Moreover, this validation work is essential to
consider the CFD solution as a reference flow for evaluating the accuracy which
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can be expected in clinical routine, when using time-restrained low-resolution
MRI protocols to assess an hemodynamic outcome. Indeed, this framework might
further be used to estimate the level of confidence that the MRI signal can
guarantee as a function of the MRI input settings. For instance, if the MRI
signal agrees locally well with HR-CFD, one could assume that some flow-sensitive
hemodynamic variables such as WSS might be reasonable estimated. On the
contrary, a MRI signal providing only global flow information might be reliable in
terms of flow split but not for direct estimation of local and sensitive quantities
like the WSS.

Nevertheless, several discrepancies were not corrected, and some limitations
remain. Poor correlations due to a low Velocity-to-Noise ratio (VNR) in the y-
component of the velocity v were noticed. This may be bypassed by using multiple
VENC based on several flow acquisitions with phase wraps correction using phase
unwrapping [88]. Moreover, MRI temporal delays between different velocity
encoding direction systematically raise misregistration artifacts. Reducing the
echo time decreases this delay and thus could mitigate the velocity error associated.
Another possibility is to use non interleaved velocity encoding sequences [66]. As
well, acceleration-induced artifacts induced by the neglecting of second and higher
order motions in the signal phase expression most probably impacts the flow
at sites where accelerated flows occur. Moreover, tripolar acceleration-encoding
gradient sequences could be used to measure the acceleration field and therefore
reduce this offset [15]. This however leads to highly prohibitive acquisition times.
Post-processing corrections are also possible to correct the velocity errors raised
[152]. It was also observed that the largest velocity differences are mainly located
where CFD yields fluctuating velocities. As already discussed, this could be
explained by the signal loss due to intravoxel dephasing. In order to quantify
these remaining divergences, one could estimate the amount of PC-MRI subvoxel
velocity fluctuations by deriving the intravoxel velocity standard deviation from
two signal measurements with different first moment gradients [45]. Additionally,
partial k-space filling or parallel imaging such as GRAPPA or SENSE technologies
should reduce the acquisition time, while decreasing the SNR. To improve the
agreement, one could also take part of the phase images noise into account by
considering the theoretical Rician distribution of the noise in the CFD velocity
field [63].

As the present analysis was limited to in-vitro idealized flow conditions, several
in-vivo features were not discussed and would certainly produce very different
outcomes. For example, considering non-rigid walls would either require a dynamic
assessment of the wall position during the cardiac cycle or an a priori knowledge of
the mechanical properties of the walls to account for the fluid-structure interaction
in the simulations. The velocity patterns should be significantly affected and
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the velocity errors would certainly increase. Although the blood-mimicking fluid
used in the experiment is Newtonian, modelling blood rheology under in vivo
conditions is still very challenging.
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Figure 4.29: Comparison of the velocity errors corresponding to the comparisons
shown in Fig. 4.28. The error of the i-th velocity component is calculated as:
εi =

√
(uCFD,i − uMRI,i)2. First row represents the velocity magnitude, while

second, third and last rows depict right-left (u), up-down (v) and foot-head (w)
velocity components respectively.
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Figure 4.30: left Flowrate and right peak axial velocity evolution over one cycle
in the collateral branch.

Velocity u v w ‖u‖
Mean differences (cm/s) -0.09 -0.08 0.27 -0.39
Standard deviation (cm/s) 2.07 1.99 2.48 2.54
r2 coefficient 0.93 0.29 0.98 0.95
Slope 0.97 0.73 1.02 1.01
Intercept (×10−3) -0.25 0.76 -2.76 2.30

Figure 4.31: Top Pearson’s product moment correlation analysis for each velocity
component on the entire domain at peak systole between LR-CFD and PC-MRI
measurements. Bottom Corresponding Bland-Altman and linear regression charts
of the magnitude of the velocity. Note that for clarity, only 1 over 10 data point
randomly selected were plotted. Middle grey line on the Bland-Altman chart
stands for mean difference ‖uCFD‖ − ‖uMRI‖, surrounded by its 95% confidence
interval grey lines (±2σ where σ is the standard deviation). The resulting linear
regression is shown in the bottom right figure with a grey dashed line, while the
solid line denotes the ideal regression line.
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Figure 4.32: left Flowrate and right peak axial velocity evolution over one cycle
in the collateral branch at different spatial resolutions.
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Figure 4.33: Axial velocity profiles in the middle of the bend of the flow phantom.
along y (up-down) and z (foot-head) axis. The solid lines and the grey filled
bar chart correspond to the HR-CFD and LR-CFD, respectively. The coloured
filled chart bars in 1st, 2nd and 3rd columns represent the 2 mm, 3.1 mm and 3.4
mm voxel size 4D Flow MRI acquisitions respectively. Error bars correspond to
u± urms
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5.1 Introduction
The aim of this chapter is to evaluate the accuracy which can be reached when
reconstructing derived quantities from PC-MRI velocity measurements. As men-
tioned in the introduction chapter, the wall shear stress (WSS) and relative
pressure field are two pertinent biomarkers to explain the pathogenesis and to
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diagnose CVD. For this reason, several algorithms were developed to reconstruct
these biomarkers from MR velocity measurements. However, these algorithms
differ by nature, and generally raise contradictory results and varied robustness to
the input MRI dataset. In this chapter, by first ensuring the correct convergence of
the pressure and WSS fields, we reuse the CFD solution developed in the previous
chapter for the comparing and validating the existing reconstruction approaches
found in the literature. This chapter illustrates an alternative way to use such
a reference framework as a benchmark to evaluate and compare the accuracy of
different reconstruction approaches.

5.2 Wall shear stress reconstruction methods
from PC-MRI

5.2.1 Introduction
The wall shear stress (WSS) is a flow quantity that is often regarded as biomarker
of CVD such as aortic diseases, aneurysm, congenital heart diseases, or valve
regurgitation. In particular, WSS plays an important role in aneursym initiation,
growth and rupture, since changes in WSS influence endothelial cell function and
thus, promote vascular remodelling and vessel dilatation [110].

However, reconstructing WSS from MRI measurements is challenging, espe-
cially in cardiovascular regimes where high near-wall velocity gradients occur.
Moreover, the accuracy which can be expected when reconstructing WSS from
MRI dataset highly depends on both wall delineation and spatial resolution
[128, 158].

A straightforward approach to reconstruct the WSS field from MRI consists
in a finite difference discretization of the gradient field at boundary walls from
the velocity measured at MRI voxels [115]. In the case of complex geometries
with tortuous boundary walls as found in the arterial circuit, finite-difference
methods are less adapted since the definition of the wall normal vectors requires
simplifications that could introduce important errors [140]. Instead, the vessel
wall topology is generally segmented, discretized with triangular elements, and
the velocity gradient computed at boundary walls is associated to the face inward
normals. In practice, existing methods to estimate wall positioning and inward
normal orientation often imply uncertainties that could cause large WSS errors [128,
158]. To minimize the segmentation errors and to get a smooth and continuous
description of vessel walls, Stalder et al. [144] proposed to fit the vessel walls with
cubic B-splines. In the case of low spatial resolution, the results showed a high
WSS underestimation and errors up to 50% were reported. Potters et al. [128]
calculated the WSS vector field from the full velocity gradient matrix generated
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using smooth weighted splines to fit the MRI velocities at voxels close to the
boundary walls. They found that at least 3 voxels across the vessel diameter and
a wall inward normal distance as long as 50% of the vessel are recommended to
reach a 5% accuracy of the WSS reconstruction. Still, according to the authors,
the algorithm tends to overestimate the WSS for in-vivo datasets mainly because
the velocity field does not undergo any spatial filtering. Sotelo et al. [142] also
reconstructed the WSS using a decomposition in finite-element shape functions
of the velocities measured inside the lumen. They highlighted the importance
of incorporating both the in-plane and longitudinal velocity gradients into the
WSS computation, instead of only the 2D planar projection, as classically done
[126, 144, 158]. Nevertheless, the authors reported some inconsistent patterns
associated with the piece-wise linear interpolations.

The large number of different approaches proposed in the literature to estimate
the WSS from MRI suggests the importance of a gold standard WSS solution
to assess the accuracy and robustness of the proposed methods under realistic
complex flow conditions (cf. conditions other than the simple analytic Womersley
or Poiseuille flow solutions as used so far). For this reason, several studies use
numerical simulations as a validation tool to evaluate the robustness and accuracy
of the WSS reconstruction from MRI dataset [19, 125, 142, 158]. Petersson et al.
[125] performed PC-MRI simulations of flow data to evaluate and compare the
accuracy of different WSS reconstruction approaches. They found considerable
errors depending on VENC, velocity and spatial resolution, irrespective of the
method used. Cibis et al. [35] compared the WSS reconstruction from CFD and
3D PC-MRI in carotid arteries and found that WSSMRI always underestimates
WSSCFD, but also noticed a clear improvement of the correlations when the CFD is
down sampled to MRI resolution. Boussel et al. [19] also computed the flow with
CFD simulations of in-vitro intracranial aneurysms and found generally poor WSS
correlations although correlations were good in terms of velocity fields. Sotelo et
al., [142] reported errors up to 20% between their 3D WSS reconstruction method
and the CFD in a funnelled-tube model.

In all these studies, the ability of the CFD simulation to provide a reliable
estimate of the velocity gradients at the vicinity of the boundary walls has however
not been questioned and convergence analysis of the hemodynamics parameters
derived by CFD is often disregarded [19, 35, 158]. On the contrary, Les et al. [90]
performed patient-specific CFD simulations of aortic aneurysms at several mesh
resolutions, and found that the mean WSS does not properly converge with mesh
refinement.

Given the large variety of WSS errors and the contradictory results found in
the literature from the different approaches cited above, it seems important in a
first instance to guarantee the value of WSSCFD, the wall shear stress extracted
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from CFD results, and particularly its convergence with mesh resolution. It will
then make sense to use the CFD field as a reference to evaluate the MRI-based
WSS reconstruction approaches, where appropriate.

The objective of this section is to reuse the previous reference CFD simulation
to evaluate several WSS reconstruction approaches from MRI. A preliminary mesh
sensitivity analysis is first performed to study the WSSCFD field convergence. In
order to assess the sensitivity of the reconstruction to the input parameters, the
WSSMRI is then reconstructed from the experimental MR velocity data obtained
in Sec. 4.3, and using the same gradient discretization method as in the CFD
simulations. The impact of the gradient discretization order as well as the
interpolation mesh on the resulting WSSMRI are then assessed by comparison
with WSSCFD. To highlight the influence of the reconstruction algorithm on
the resulting WSS field, two approaches introduced above, which conceptually
differ from the one proposed (Potters et al., [128], and Sotelo et al., [143]) are
tested and compared with the WSSCFD and WSSMRI using the same experimental
MRI dataset. To separate the impact of the input velocity from the numerical
treatments inherent to the presented algorithm, the WSSCFD is down sampled
and the gain on the correlation with WSSMRI is analyzed.

As already mentioned, a major advantage of this idealized setup is that the wall
position is known a priori up to a registration uncertainty errors. For this reason,
the influence of the segmentation on the WSS reconstruction is not investigated
in this thesis.

5.2.2 WSS computation from CFD
The viscous stress tensor of a Newtonian fluid can be written using the Einstein
notation as:

τij = 2µSij −
2
3µSkkδij (5.1)

where δij is the Kronecker symbol and Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
the strain rate tensor

and µ the dynamic viscosity. Under the hypothesis of incompressible fluid, the
second term cancels since Skk = ∇ · u = 0, and the viscous stress tensor written
in matrix form reduces to:

τ = µ


2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂x

+ ∂u
∂y

2∂v
∂y

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z

∂w
∂y

+ ∂v
∂z

2∂w
∂z

 (5.2)

Then, the wall shear stress is defined as the normal vector component of the
viscous stress tensor at a boundary wall:

WSS = τ · n (5.3)

where n is the inward normal to the boundary wall.
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Figure 5.1: Results of the WSSCFD mesh convergence analysis at peak systole
(t/Tp = 0.2). First row: left Location of the probes within the phantom, and
resulting WSSCFD maps at different spatial resolutions. Second row: left WSS
averaged over the whole domain, middle maximum WSS and rightWSS averaged
over the collateral branch only. Last row: WSS values at left probe P1, middle
probe P2, right probe P3.

Mesh sensitivity analysis

To ensure the convergence of reference WSSCFD field, a preliminary mesh sensitivity
analysis is performed using the phase-averaged velocity field as input for the
gradient calculation. Five meshes are considered with varied characteristic mesh
sizes, as follows: M1: ∆x = 1 mm (1.3 million cells), M2: ∆x = 0.7 mm (3.8
million cells), M3: ∆x = 0.58 mm (8.3 million cells), M4: ∆x = 0.475 mm (15.4
million cells), and M5: ∆x = 0.35 mm (27.4 million cells).

Results are presented in Figure 5.1. Visually, the highest WSSCFD magnitude
levels are located at both the collateral inlet contraction and outlet expansion.
The first hotspot at the collateral inlet occurs as a consequence of the high singular
pressure drops due to abrupt cross-sectional changes. At the collateral outlet
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Figure 5.2: Top: Dimensionless WSS magnitude distribution histogram for meshes
from M1 to M5. Bottom: Pearson’s correlation coefficient for the WSS magnitude
with M5 as reference.

elbow, the high momentum of the jet forms a stagnation zone and therefore an
increase of the pressure gradient. As a consequence, the deflected principal flow
structure reattaches in the stagnation zone right under the jet, symmetrically on
both sides of the pipe, with the formation of counter-rotating vortex due to the
radial pressure gradient. This phenomenon induces a local increase of the velocity
gradients at the boundary walls, distributed symmetrically on the pipe surface on
both sides of the jet.

The first striking result in Figure 5.1 is that despite the high resolution meshes
used for the simulation (up to 27 million elements), the mesh independence of
the WSS seems clearly not reached. On the contrary, one can see significant
changes between the maximum WSS magnitude as the mesh size decreases (380%
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relative error between M1 and M5). The mean WSS magnitude also increases
at a relatively smaller rate, as observed with the 20% relative error between M1
and M5. This non convergence behaviour was already found in Les et al. [90],
although the inverse trends were found (decrease of the WSS as the mesh size
decreases).

Nevertheless, from a qualitative observation of the WSS maps, the WSS pat-
terns seem similarly located irrespective of the mesh resolution. This observation
is supported by the dimensionless WSS distribution histogram shown in Figure 5.2.
The high similarity also suggests that a proportionality relationship exist between
each mesh. The dimensionless WSS seems therefore to provide a correct con-
vergence. As an indicator of the linearity, the Pearson correlation coefficient is
additionally shown in Figure 5.2. The high correlation reported (r2 = 0.98) as
well as the very small increase of the correlation with mesh refinement (especially
for M2,M3 and M4) confirms this behaviour.

The insufficient resolution in the near-wall regions constitutes the most obvious
explanation of the lack of convergence observed. A rapid estimation of the
boundary layer thickness using the Womersley solution results in δ = R

α
= 0.8 mm

(where α is the Womersley number and R the characteristic length scale). This
corresponds to a boundary layer discretized with only two cells in the radial
direction for the finer mesh M5, which seems unsufficient to resolve the complex
pulsatile velocity profile. It is important to notice that isotropic tetrahedral
meshes with low cell skewness are preferred for minimizing the errors associated
with the discretization of the Laplacian operator [159]. Therefore, we did not
perform any local mesh refinement. Assuming that about 8 cells in the boundary
layer thickness is a good compromise for an accurate estimation of the velocity in
the viscous layer, a computational mesh of more than 1.3 billion isotropic cells
would be required, inducing highly prohibitive calculation cost.

The dimensionless wall distance y+ is a commonly used metric to assess the
near-wall mesh resolution. It is defined as y+ =

√
WSS/ρ∆n

ν
where ∆n here is the

distance of the first mesh node in the direction normal to the wall. A maximum
y+ = 6.7 and a mean y+ = 0.14 was found at the collateral outlet elbow. As
observed by Gross-Hardt et al. [62], a y+ < 0.2 was necessary to correctly resolve
the WSS in the presence of such sharp angles.

It seems important to note that to each mesh resolution is associated a unique
discretization of the phantom’s surface topology. The variations of surface mesh
generally come with modifications of the surface normal vector orientation and
WSS changes could be raised from these topological changes. One may suggest
that these changes are responsible for the non-convergence behaviour of the WSS
with mesh refinements. For this reason, to remove the errors associated with the
topology variation, additional numerical meshes were generated by fixing an initial
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topology of the surface mesh. From the initial mesh, a refinement was performed
by dividing each tetrahedron in 8 sub-tetrahedra so that the boundary faces lay
on the same plane, and therefore the normal vector is kept constant. A second
similar refinement step was performed on the mesh and WSS were compared.
However, the results were roughly similar as what is observed in Fig. 5.1.

In the following sections, M3 is considered as a reference WSS solution intended
for qualitative assessment only; given the lack of convergence, it seems unwise to
consider as a reference field the absolute value of WSSCFD.

5.2.3 WSS reconstruction from MRI
Proposed approach

Even though the second term in Eq. 5.1 is generally removed because of the assumed
incompressibility of the flow, the MRI velocity contains experimental noise which
is not divergence-free; the pertinence of assuming the flow incompressibility for the
computation of WSS from raw MRI remains therefore questionable. To remove
any doubt, the MRI velocity field was systematically projected onto the space of
divergence-free fields.

PC-MRI velocity fields corrected from phase-offsets artifacts as described
in the previous chapter were used to compute WSSMRI. As the true position
of the boundary walls is known, the MRI velocity field was interpolated on an
unstructured phantom mesh M2 with second order Shepard’s interpolation method
(Inverse distance weighting). The ideal mesh resolution for the interpolation will
be discussed in more details in the next section. At the boundary walls, a zero
velocity is prescribed to respect the no-slip boundary condition. The velocity
gradient at wall is then computed from the interpolated MRI velocity field. As
already mentioned above, the high-order spatial discretization of the gradient
operator implemented in the YALES2BIO solver and described in Sec. 3.1.2 is
used to compute the WSS from 4D PC-MRI velocity measurements. In practice,
the gradient operator is discretized at the nodes as the average gradient over the
control volume. Note that the volume integral can be rewritten as the sum of
the velocity fluxes over all the faces of the control volume. It is important to
note that is approach is quite straightforward and does not intend to provide the
best representation of the WSS, but only to highlight the influence of different
numerical treatments and evaluate the sensitivity to the input MR velocity field
of the WSS reconstruction.

Potters’ approach

In the approach developed in Potters et al [128], the WSS is computed at the
wall points defined from a triangular surface mesh segmentation of the vessel.
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The boundary surface of the phantom’s mesh M2 was provided as the input
segmentation to the algorithm. A zero velocity was prescribed at these wall points.
A local coordinate system was then defined where one direction is oriented along the
inward normal of the boundary. According to the authors recommendations, three
points along the normal are defined between the wall and the middle of the vessel.
The MR velocities are then projected with natural neighbour interpolation method
on these points. Finally, a smoothing spline (piecewise polynomial functions) is
defined through these points and the velocity derivatives are computed from the
analytical expression of the spline.

Sotelo’s approach

The second algorithm tested was proposed by Sotelo et al., [142]. In this approach,
the 3D WSS is computed using a finite-element interpolation scheme with piecewise
linear shape functions to interpolate the the WSS on the nodes of the mesh.
The phantom tetrahedral mesh M2 was provided as input of the algorithm. A
smoothing distribution filter is needed due to the poor convergence of the algorithm.
This algorithm is part of an entire 4D Flow MRI post-processing Matlab tool
kindly provided by the author.

5.2.4 Sensitivity to the numerical parameters
The sensitivity of the proposed reconstruction algorithm to the resolution of the
interpolation mesh as well as the influence of the gradient discretization order are
presented.

Influence of the interpolation mesh

The impact of the interpolation mesh necessary for the computation of WSSMRI

is analysed and compared with the WSSCFD computed from ∆xm3 = 0.475
mm. A mesh size ratio is here defined as MSR = ∆xinterp

∆xmri
where ∆xinterp is the

tetrahedral interpolation grid characteristic mesh size and ∆xmri the MRI voxel
size (∆xmri = 2 mm used for the convergence study).

As shown in Figure 5.3, WSSMRI levels seem more uniformly distributed
along the collateral branch and the stress concentrations observed at the collateral
inlet/outlet are more diffuse as compared to WSSCFD. A mean error was calculated

as: ME =

∣∣∣ 1
m

∑m

i=1 ||WSSMRI(xi)||− 1
n

∑n

j=1 ||WSSCF D(xj)||
∣∣∣

1
n

∑n

j=1 ||WSSCF D(xj)|| where m,n are the number
of surface nodes of MRI and CFD respectively. Figure 5.3 also reports mean
WSSMRI differences up to 58% between MSR = 1 and MSR = 1/4. As compared
to WSSCFD, the lowest error is raised at MSR = 1/3 (5.3%) which seems to be
an optimal value also from visual observation of the WSS levels. These trends can
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Figure 5.3: Sensitivity of the MR velocity field to the interpolation tetrahedral
mesh with size ratio comprised between MSR = 1 and MSR = 1/4. Top Magni-
tude of the WSS maps for different MSR at t/Tp = 0.2. Bottom Corresponding
mean WSS value and mean WSS error.

partially be explained as a result of the second order inverse distance weighting
interpolation used to interpolate the MRI velocity field, which tends to amplify
the velocity gradient as the mesh size decreases. Note that in Sotelo et al. [142],
the MRI velocity field was interpolated on a tetrahedral mesh with MSR = 1/4.
which should induce from the present results a non negligible WSS overestimation,
although they used a different WSS computation methodology and a cubic velocity
interpolation. It is also important to note that the low-dissipative high-order
numerical schemes used in the present computations generally add very few
numerical diffusion, which makes the velocity gradients very sensitive to the mesh
quality.

Influence of the gradient discretization order

The impact on both the WSSMRI and WSSCFD of the spatial discretization order
of the gradient operator is investigated in this section. An illustration of the
discretization procedures at second and fourth orders are provided in Section 3.1.2
and detailed in the PhD thesis of M. Kraushaar [81].
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Table 5.1: Magnitude of the WSS vector at peak systole (t/Tp = 0.2) computed
with second and fourth-order gradient discretization. The mean, standard devia-
tion and maximum WSS over the entire wall surface of the phantom’s mesh M2
are reported.

CFD (2nd) CFD (4th) MRI (2nd) MRI (4th)
Mean WSS (Pa) 0.54 0.58 0.59 0.58
Std WSS (Pa) 0.30 0.33 0.35 0.35
Max WSS (Pa) 3.0 3.5 2.59 2.65

Table 5.2: WSS correlations with WSSCFD at peak systole, for the entire boundary
surface of the phantom. The WSS correlations are calculated for each vector
component separately.

Potters et al. Sotelo et al. Present method
r2
WSSx

0.78 0.77 0.82
r2
WSSy

0.19 0.38 0.37
r2
WSSz

0.90 0.84 0.88
r2
||WSS|| 0.57 0.51 0.60

Results are presented in Table 5.1. It can be observed that the higher order
systematically results in higher maximum WSS, as it is more sensitive to the high
near-wall velocity frequency variations. Moreover, a higher order implies higher
variations of maximum WSSCFD as compared to WSSMRI. Generally speaking,
these low variations observed suggest that the WSSMRI is much less sensitive
to the order of accuracy of the gradient discretization than to the choice of the
interpolation mesh or to the MRI spatial resolution.

5.2.5 Comparison of the approaches
Comparison with HR-CFD

The presented WSS reconstruction algorithm (see Sec. 5.2.3) is compared with two
conceptually different algorithms proposed in the literature, where the experimental
MR velocity measurements presented in Section 4.3 are used as input of the
reconstruction algorithms. Figure 5.4 shows the WSS computed from the three
presented approaches, as compared to the WSSCFD. Statistical analyses are
illustrated through Blandt-Altman plots and Table 5.2 reports the corresponding
correlations.

In the present method, the high WSS sites near the boundary outlet and
along the collateral seems globally in agreement with CFD; nevertheless, a large
overestimation of the WSS in the collateral branch can be observed. As the same
gradient discretization method is used, the observed small spots of high WSS
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Figure 5.4: WSS maps at peak systole t/Tp = 0.25 reconstructed from different
algorithms. Top (a) Presented method, (b) Potters et al, (c) Sotelo et al, (d)
CFD. Different color scales are associated with each dataset for visual clarity.
Bottom WSS magnitude linear regression and Bland-Altman plots computed
from the left current numerical method, middle Potters et al. and right Sotelo
et al., and compared with CFD.

variations along the entire surface can be attributed to the high sensitivity of
the method to the input velocity. As shown in Table 5.2, it results in very low
WSS magnitude correlations r2

||WSS|| = 0.60 as compared to the corresponding
velocity correlations r2

||u|| = 0.93. This larger discrepancy can be explained by
both the loss of information associated with the down sampling process and by the
sensitivity of the WSS computation to the residual noise in the near-wall voxels.
As well, the WSS correlations for the x and z-axis outperforms the y-direction.
This was expected since the corresponding x and z velocity correlations are more
favourable. Finally, a WSS underestimation can be noticed, especially where high
WSS levels occur.

The WSS reconstructed from the algorithm proposed by Potters et al. shows
a large underestimation of the WSSCFD and WSSMRI as illustrated by the linear
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Figure 5.5: WSS maps at peak systole t/Tp = 0.25 reconstructed from different
algorithms. Top (a) Presented method, (b) Potters et al, (c) Sotelo et al, (d)
LR-CFD. Different color scales are associated with each dataset for visual clarity.
Bottom WSS magnitude linear regression and Bland-Altman plots computed
from the left current numerical method, middle Potters et al. and right Sotelo
et al., and compared with LR-CFD.

regression and Bland-Altman plots. However, in terms of WSS repartition, roughly
similar trends are observed, with an increase of the shear in the collateral as well
as near the outlet in the main branch. The generally diffuse WSS repartition
could be explained due to the large distance along the inward normal vector used
to compute the b-spline; this tends to lower the near-wall gradient by averaging
the high frequency variations of the near-wall velocity as compared to the low
variations of the velocity at proximity to the centerline. This method seems by
nature less sensitive to the noise present at the vicinity of the walls. Although it
largely underestimates the WSSCFD, a linear relationship exists and the resulting
correlation is very close to the proposed method r2

||WSS|| = 0.57.

Finally, as shown in Fig. 5.4b), the WSS map obtained from the algorithm
proposed by Sotelo et al. report very similar patterns as compared to the proposed
approach (WSSMRI). This was also expected as the two reconstructions methods
are inherently close from each other (smoothed finite-element vs. finite volume).
However, small spots of higher WSS are observed as compared to the present
method. This can be explained as in finite-element method the WSS is interpolated
at nodes while in finite-volume formalism the nodal value corresponds to an average
over the control volume, which by definition systematically lower the local maxima.
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Table 5.3: WSS correlations with WSSLR at peak systole, for the entire boundary
surface of the phantom. The WSS correlations are calculated for each vector
component separately.

Potters et al. Sotelo et al. Present method
r2
WSSx

0.90 0.81 0.88
r2
WSSy

0.27 0.34 0.34
r2
WSSz

0.96 0.87 0.90
r2
||WSS|| 0.79 0.60 0.69

Comparison with LR-CFD

To estimate the sensitivity of the presented reconstruction algorithm to the input
velocity, the CFD field was down sampled to the MRI spatial resolution (WSSLR).
Figure 5.5 shows the WSS computed from the three presented approaches, as com-
pared to the WSSLR. Statistical analyses are illustrated through Blandt-Altman
plots and Table 5.3 reports the corresponding correlations. As expected,WSSMRI

better matches the LR-CFD (r2
||WSS|| = 0.69) than the HR-CFD (r2

||WSS|| = 0.6).
As WSS sensitivity to spatial resolution and wall position induces high relative
discrepancies, down sampling and applying a no-slip boundary condition improve
the agreement. Nevertheless, as shown from the Bland-Altman and linear re-
gression analysis in Figure 5.5 a small overestimation of WSSMRI is observed as
compared to WSSLR, especially in the collateral branch. To highlight the impact
of the down-sampling on the correlation and hide the influence of the velocity field,
WSSLR and WSSHR were compared and resulted in r2

||WSS|| = 0.86. The analysis
thus shows that intravoxel averaging significantly degrades the accuracy of the
gradient computation and is partly responsible for the poor WSS correlations
observed between HR-CFD and MRI in Table 5.3. This was expected since the
voxel averaging performed through the MRI acquisition smoothens the (strong)
velocity gradients present in the wall region. Note also that downsampling has
higher influence on the WSS than on the velocity. The striking result is the large
correlation improvement that results from the algorithm proposed by Potters et al.
(+22%). In Figure 5.5, the Bland-Altman and linear regression plots show that a
strong linear relationship exists between the two values, while a proportional un-
derestimation error propagates as the WSS magnitude increases (linear regression
slope=0.52). This result can be explained by the low sensitivity to near-wall noise
of the algorithm proposed by Potters as compared to the Sotelo’s and presented
algorithms.

This result suggests that the reconstruction algorithm is mostly responsible
for the low correlation observed and that the differences observed between MRI
and CFD velocity fields has low influence on the WSS reconstruction.
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5.2.6 Conclusion

In this section, the high-order finite-volume methods implemented in the YALES2BIO
solver were used to assess different WSS reconstruction approaches. We performed
a mesh sensitivity analysis of the WSSCFD field but found no proper convergence,
even for highly refined mesh (27 millions cells). The convergence was unreachable
especially where highly sharp angles occurs. To this respect, it seems unwise to
consider as a reference field the absolute value of WSSCFD. Nevertheless, the WSS
histogram showed that the WSSCFD spatial distribution was correctly predicted,
irrespective of the mesh resolution; in this sense, we infer that one can still rea-
sonably use WSSCFD as a reference field to evaluate the ability of an algorithm to
predict the WSS distribution.

It was also observed that systematic errors are raised as a consequence of the
MR velocity field interpolation onto a tetrahedral phantom mesh. These errors
were found to highly change depending on the interpolation phantom mesh size
and an optimum was found at mesh size ratio MSR = 1/3. The low-dissipative
high-order numerical method used for the gradient discretization generally adds
very few numerical diffusion, which makes the resulting velocity gradients very
sensitive to the mesh quality. However, decreasing the gradient discretization
order did not significantly affect the resulting WSS. It should be noted that this
result is most probably case-sensitive and extensive analyses should be carried on
to generally understand the behaviour of these errors. Furthermore, the influence
of the velocity interpolation method was not investigated but most probably has
a large influence in the WSS reconstruction. Others interpolation methods should
be tested, such as spline interpolation, kriging. As it provides an estimation of
the intravoxel velocity distribution, Fourier-velocity encoding MRI that could be
used to improve the near-wall velocity profile [125].

Two WSS reconstruction algorithms found in the literature (Potters et al.,
Sotelo et al.,) were then tested on real 4D Flow MRI measurements (see Section 4.3)
and compared with the presented approach as well as the WSS computed from
the high resolution CFD field. Both algorithms underestimated WSSCFD at
sharp angles locations. However, the distributions and WSS levels found with
the Sotelo methodology were in good agreement with the presented approach,
as expected given the similarities of the two reconstruction approaches. The
WSS reconstruction proposed by Potters generally presented diffuse WSS, while
the present results and Sotelo’s contained noise and reveal small spots of high
WSS variations. A possible explanation for the diffuse patterns is that the MR
velocity was fitted along a normal wall distance equal to half the vessel diameter
(as recommended by the author). In our configuration, increasing the normal
wall distance would come down to decreasing the MSR and result in a global
overestimation of the WSS field.However, the pertinence of increasing the wall
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normal distance (or reducing the MSR) is questionable in terms of consistence
of the field calculated; the larger the boundary wall normal distance used to
discretize the gradient, the falser is the approximation of the velocity normal
derivative at wall. On the other side, a less sensitive field could be obtained since
the increase of the discretization distance acts as a smoothing filter and limits the
impact the outliers values due to partial volumes and noise effects.

While low correlations were found between the proposed approaches and
WSSCFD, downsampling the CFD field to the MRI resolution resulted in a non
negligible improvement for all the approaches. The comparisons between HR-
CFD and LR-CFD revealed that solely the differences of spatial resolutions are
responsible for about 15% of the total discrepancies observed on the reconstructed
WSS. Moreover, while the approach proposed by Potters et al. leaded to WSS
underestimates with factor three errors as compared to the other approaches, a
stronger WSS correlation was observed. If one considers the LR-CFD as a free of
noise MRI WSS field, then this large correlation improvement confirms the low
sensitivity to noise of the approach proposed by Potters et al. In this sense, the
Pearson’s correlation turns out to be a suited metric to evaluate the relative WSS
distribution, as it evaluates the linearity between two methods, with no reflect on
the absolute WSS levels.

Finally, even if a slight underestimation at higher WSS values was observed,
low WSS levels generally agreed quite well with the WSSCFD. Because low WSS
are associated with aneurysm growth [20] and atherosclerotic plaques [90], the
WSS could reasonably be quantified in these regions [125]. Nevertheless, the
results found in section 5.2.2 suggest that there is no guarantee that the flow is
well predicted even in regions of low WSS. Looking at the WSS distribution or
evaluating metrics such as OSI could therefore bring more precise and reliable
information.

The presented work intents to show how sensitive the WSS computation is.
From the CFD point of view, particular attention should be paid to systematic
convergences analysis in order to estimate the degree of reliability of the field. A
local mesh refinement is essential to ensure that the boundary layer is sufficiently
resolved and this is even more true for highly pulsatile regimes. This can be
performed by a field-guided mesh adaptation strategy such as presented in [38].
From a MRI point of view, given the large variety obtained from three different
algorithms, it seems therefore difficult to draw any generalized conclusions on how
reliable and accurate it could be.
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5.3 Relative pressure field reconstruction from
PC-MRI

5.3.1 Introduction

The relative pressure drop is a common biomarker used clinically to detect and
characterize the severity of cardiovascular disorders such as aortic valve stenosis,
aneurysm, aortic coarctation, or pulmonary hypertension [5, 7, 36]. For example,
the transstenotic pressure drop is a commonly adopted marker to assess the severity
of stenosis or aortic coarctation in clinical practice. The transvalvular pressure
drop is also used as a criterion to assess the myocardial load, and determine
whether or not a surgical treatment should be planned. Moreover, as it drives
the dilatation of the vessels, it also plays a key role in aneurysm initiation and
rupture.

Nowadays, pressure catheterization is still considered as the clinical gold
standard to obtain a measure of the relative pressure in-vivo. However limited
by the risks due to its invasiveness, this procedure is only used to treat severe or
urgent cases. Alternative approaches have been developed to estimate the relative
pressure non-invasively. Among them, the most common approach consists in
measuring the peak velocity in a region of interest using Doppler echocardiography
to deduce the peak pressure from the simplified steady Bernoulli relation. By
neglecting the pressure losses due to fluid friction irreversibilities, this method has
shown to significantly overestimate the true pressure gradient [26]. These strong
assumptions have led to extended versions of the Bernoulli relation that account
for the pressure recovery [57]. Morevoer, the pressure estimate in the simplified
Bernoulli relation is based on the peak velocity measurement and assumes steady
flow condition. For this reason, the accuracy of the pressure estimates can be
improved by working with the Generalized Bernoulli relation that includes the
unsteady contributions of the velocity [50].

Recently, Donati et al., (2015) [42] proposed a method to evaluate the pressure
drop between two surfaces from integration of the work-energy equation over a
region of interest. More complete than Bernoulli since it does account for the
viscous and unsteadiness effects, this method is also fast to compute. However, it
indicates the pressure drop between two surfaces which could be insufficient if the
local repartition is needed. Also, the in-vivo applicability can be problematic if
dealing with regurgitant flows since the pressure admits a discontinuity when the
flow rate tends towards zero. A modification of this algorithm based on the Virtual
work-energy equation was more recently proposed to correct for this divergent
behaviour [102].

A local repartition of the pressure can also be obtained by solving the pressure
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Poisson equation (PPE) (derived from the NSE) from the velocity field measured
with PC-MRI. This approach was first developed by Yang et al. [166], but
earlier work applied to the estimation of the relative pressure from Computed
Tomography (CT) cardiac images was covered by Song et al. [141]. Although
providing the local pressure distribution (up to an additive constant), this method
is usually associated with higher computational costs than the other approaches
and its use is therefore limited to research purposes. Moreover, the pressure drop
estimates highly depend on the accuracy of the PC-MR velocity measurements,
and therefore on the MR acquisition itself. In this sense, the questioning of the
pressure reconstruction sensitivity to the input velocity field remains unclear.

It is moreover important to notice that each of the contributors to the pressure
could be associated with a specific function of the cardiovascular circuit affecting
the blood flow dynamics. For example, the transient term represents the accelera-
tion imposed by the cardiac pump to the blood into the cardiovascular system.
The convective term expresses the impact on the flow of the vessel geometry
variations, while the viscous terms correspond to the loss due to wall friction.
In this sense, another interest of the PPE is that it allows to decouple each
of the contributors to the pressure drop; this could help tracing cardiovascular
dysfunctions and understanding the dominant pressure behaviour. Lamata et al.
[86] solved the full PPE in aortic flows configuration and found that the transient
term plays the key role in the resulting pressure gradient.

In this section, we reuse the developed CFD-based methodology to assess the
relative pressure field computed from different Bernoulli-based methods derived
from 4D flow MRI velocity measurements. We aim at finding the best accuracy
which can be expected when reconstructing the pressure field from MRI measure-
ments. The accuracy of the pressure computation methods are evaluated thanks
to the high resolution CFD solution, where a prior mesh sensitivity analysis is
undertaken to study the convergence of the pressure field. The influence of the
transient contribution term in the NSE on the resulting pressure drop is com-
pared to the convective and viscous contributions. Finally, we use this pressure
contribution splitting to assess the steady and unsteady Bernoulli formulations.

As this work was not fully completed within the allocated time, several
methodologies for computing the relative pressure based on solving the PPE using
4D Flow MRI velocity measurements are presented and compared in Appendix 7.4.

5.3.2 Pressure computation from CFD

As for the velocity field, the relative pressure field was phase-averaged over 30
cycles. Figure 5.6 illustrates the impact of phase-averaging on the pressure field.
The highest levels of pressure fluctuations are located in the aneurysm and do
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Figure 5.6: Pressure distribution in the middle XZ-plane of the phantom at
t/Tp = 0.44 left instantaneous pressure, middle phase-averaged pressure and
right pressure fluctuations (RMS).

not exceed 5% of the maximum relative pressure. CFD pressure fluctuations are
therefore much lower than the corresponding velocity fluctuations.

A mesh sensitivity analysis of the phase-averaged relative pressure field was
then performed and is presented in Figure 5.7. Qualitatively, the pressure patterns
look very similar irrespective of the mesh and no significant differences can be
distinguished. The mean and maximum pressure over the entire domain are tightly
close to one another and M2 (∆x = 0.7 mm) results in errors of 0.6% and 0.7%
respectively as compared to M5 (∆x = 0.35 mm). In the collateral branch, similar
behaviour is observed but with slightly higher errors with 2.5% and 2.4%. As
it seems to provide a reasonably converged phase-averaged pressured field, we
consider mesh M2 for the following pressure comparisons.

5.3.3 Pressure reconstruction from MRI
Bernoulli principle

The kinetic energy conservation for an inviscid incompressible fluid with volume
external forces deriving from a potential (f = −∂F

∂x ) reads:

ρu · ∂u
∂t

+∇ ·
(
ρ

2(u · u)u
)

= −ρu · ∇F −∇ · (pu) (5.4)

Recalling that ∇ · (AB) = A∇ ·B + B · ∇A, it comes that:

− ρu · ∂u
∂t

= u · ∇
(
ρ
u · u

2 + ρF + p
)

(5.5)
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Figure 5.7: Mesh convergence of the CFD pressure field for meshes M1 to M5
at peak systole. First row: Pressure difference maps in the middle slice of the
flow phantom at peak systole (t/Tp = 0.25). Second row: left Mean and right
maximum pressure field over the entire domain. Last row: left Mean and right
maximum pressure field over the collateral branch.
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If steady flow is considered, the weak formulation of the Bernoulli principle is
raised:

ρ
u · u

2 + ρF + p = cste = H (5.6)

This relation is valid along all the isovalues of H, which are equivalent to the
velocity streamlines as u · ∇H = 0.

Simplified Bernoulli

From this formulation, a common simplification in clinical practice consists in
measuring the peak velocity from PC-MRI to deduce the peak pressure from a
simplified Bernoulli relation:

∆P = K (u · n)2 (5.7)

where u · n is the velocity normal to the centreline of the vessel, and K the loss
coefficient which is taken as 4.0 mmHg.s2/m2 as recommended in Baumgartner
et al. (2009) [7]. It will be denoted as Simplified Bernoulli (SB) formulation in
the next paragraphs. The strong assumptions behind in the simplified Bernoulli
relation (steady, inviscid, incompressible fluid) have led to several extended versions
of the Bernoulli relation that account for the viscous dissipation as a function of
the geometry of the vessel.

Unsteady Bernoulli

A more general (strong) formulation of the Bernoulli principle valid for time-
varying flows (denoted UB for Unsteady Bernoulli) can also be derived. Under
the assumption of irrotational flow, one can write the velocity as u = ∇φ, and
the previous Eq. 5.5 simplifies:

ρ
∂φ

∂t
+ ρ

u · u
2 + ρF + p = cste = H (5.8)

This relation is called the strong formulation of the Bernoulli principle since it is
true regardless of the streamline. It is common to find another formulation of the
unsteady Bernoulli principle, obtained by integration of the Euler equation along
a streamline between points A and B:

ρ
∫ B

A

∂u
∂t
· ds + ρ

uB · uB
2 + ρFB + pB = ρ

uA · uA
2 + ρFA + pA (5.9)

where the flow path is defined by the curvilinear coordinates s. This equation
stands valid while the flow streamlines do not change with time. In this sense,
a simplification adopted to compute pressure from the unsteady Bernoulli for-
mulation is that the streamline considered follows the centreline of the vessel.
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The simplicity of the Bernoulli-based pressure estimation approaches makes them
generally valuable for fast evaluation of pressure drops. Nevertheless, as viscous
effects are not accounted for, this can raise pressure estimation errors.

Pressure Poisson equation

On the other side, a more local (spatio-temporal) relative pressure distribution
has been made accessible by the apparition of 4D Flow MRI. The methods that
fully benefit from the use of local spatio-temporal velocity distribution are based
on the full Pressure Poisson equation (PPE). Recalling the incompressible NSE:

∇p = −ρ∂u
∂t︸ ︷︷ ︸

transient

− ρu · ∇u︸ ︷︷ ︸
convective

+ µ∆u︸ ︷︷ ︸
viscous

(5.10)

A straightforward way to get the pressure could be by direct integration of the
pressure gradient (Eq. 5.10) to recover the pressure up to an additive constant.
However, for noisy input velocity data, this integration step depends upon the
path chosen, which is not appropriate [46]. Instead, by taking the divergence of
Eq. 5.10, a PPE arises:

∇2p = ∇ ·
(
µ∆u− ρ

(
∂u
∂t

+ u · ∇u
))

(5.11)

where u is the velocity, µ the dynamic viscosity, p the pressure, and ρ the
density of the fluid. If ∇ · u = 0, the previous equation can be simplified:

∇2p = −∇ · (ρu · ∇u) (5.12)

The relative pressure can be recovered by solving this equation. Note that this
equation stands only if the velocity field verifies ∇ · u = 0, which is generally false
for raw MRI measurements.

Dynamic forcing

If the pressure is computed for each MRI image independently, the transient
contribution (∂u

∂t
) of the pressure gradient reduces to zero and a steady pressure is

calculated.
A dynamic forcing term can also be added to ensure the flow continuity between

two MRI phases and to account for inertial effects. In practice, we constraint the
inflow velocity at each inlet boundary surface node i and at time n such that :

un+1
i = αnuni (5.13)
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Figure 5.8: Temporal evolution of the inlet flow rate. • MRI measurements and -
- spline cubic interpolation.

where αn is the forcing coefficient that guarantee a continuous flow rate variations
between two iterations, such as:

αn = qn+1

qn
(5.14)

where qn the inlet volume flow rate at current phase tn in the cycle. qn+1 is
estimated by interpolating the measured inlet flow rates between two subsequent
4D Flow MRI images qm and qm+1 (where m is the MRI phase number). A
piecewise cubic spline interpolation was then performed at each iteration to re-
evaluate qn+1 as well as the forcing coefficient. This allows a smooth variation
of the transient term (first order derivative), as well as a continuous second-
order derivative. The resulting spline cubic interpolation of the inlet flow rate is
presented on figure 5.8.

This forcing term allows to account for the inertial contribution in the Unsteady
Bernoulli principle.

5.3.4 Comparison with Bernoulli-based approaches

In Figure 5.9, the pressure drops computed from the simplified Bernoulli (SB)
and unsteady Bernoulli (UB) approaches are compared to the reference CFD. As
the UB pressure drop depends on the integration path, both collateral and bend
centrelines were considered. The CFD (steady) corresponds to the CFD pressure
field with only the viscous and convective contributions kept and the transient
term suppressed (∂u

∂t = 0). Similarly, CFD (transient) corresponds to a CFD
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where the viscous and convective terms are set to zero and only the transient
contribution is kept.

The first interesting result is that the steady CFD and full CFD provide
totally inverse pressure drop trends. The steady CFD pressure drop evolution
follows the flow rate evolution, while the full CFD agrees with the flow rate time
derivative (i.e: transient term). This can be verified looking at the full CFD
pressure evolution, where a plateau arises at peak systole and a zero-crossing
happens when the flow rate starts decreasing.

As it does not include the transient pressure contribution, the SB approach
provides a pressure drop which is largely not representative of the full CFD
pressure evolution. Nevertheless, as it roughly follows the steady CFD pressure
drop, it might be well suited for estimating pressure drop for steady flows.

The UB approach underestimates the full CFD pressure drop, irrespective of
the path used; this could be due to the inviscid flow assumption of the Bernoulli
principle that tends to reduce the overall pressure due to the lack of diffusion term.
Note that the main pressure drop differences between the two paths closely follow
the flow split temporal distribution illustrated in Figure 4.4. At the beginning of
the cycle, the higher flow rate time-derivative observed in the collateral branch
corresponds to a higher pressure drop, while from peak systolic to diastolic phase,
higher flow rate acceleration occur in the bend that results in a pressure drop
overestimation.
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Figure 5.9: Total pressure drop evolution in a cycle. Simplified Bernoulli (SB)
corresponds to the pressure drop given in Equation 5.7 while Unsteady Bernoulli
(UB) is the solution of Equation 5.9. CFD (steady) corresponds to a CFD solution
where no dynamic forcing is applied.
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5.3.5 Conclusion
The total pressure drop evolution in the cycle was compared for the different
pressure reconstruction methods. Additionally, several PPE-based methods are
presented and compared in Appendix 7.4.

Regarding the Bernoulli-based methods, as expected the simplified Bernoulli
equation brings very few information about the pressure drops at highly pulsatile
regime. It should however be better suited to the estimation of the pressure
drop where the viscous and convective contributions dominate as for example
in smallest cerebral arteries. On the contrary, the unsteady Bernoulli relation
exhibits global good trends with small variations depending on the path followed
(either the main segment or the collateral segment). This result shows that the
pressure in this configuration is fully piloted by the transient contribution and
that viscous and convective terms only play a minor role. This emphasizes the
importance of systematically including the transient contribution (∂u

∂t
) in the

pressure computation. This can easily be achieved with an adapted numerical
post-processing of the MRI measurements.

In this sense, under cardiovascular regime (where the transient term dominates),
a fast and reliable pressure drop can be estimated from the unsteady Beenoulli
principle computed with only a 2D CINE PC-MRI acquisition at the inlet surface
and the morphology of the vessel. While it provides a reasonable estimate as
compared to the computational effort required, solving the full PPE from 4D Flow
MRI measurements should be more adapted where a local estimate of the relative
pressure is needed.
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Simulation of 4D Flow MRI

Chapter contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.1.1 The simulation of the MRI acquisition process . . . . . . . 144
6.1.2 The simulation of Bloch equations for flowing spins . . . . 144

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.1 4D Flow MRI simulation procedure . . . . . . . . . . . . . 147
6.2.2 Numerical efficiency of the semi-analytic formulation . . . 155
6.2.3 Scaling of the simulations . . . . . . . . . . . . . . . . . . 155
6.2.4 Time partitioning of the computations . . . . . . . . . . . 156

6.3 Validation of the Bloch solver . . . . . . . . . . . . . . . . . . . . 157
6.3.1 Magnetization vector . . . . . . . . . . . . . . . . . . . . . 157
6.3.2 Full velocity reconstruction pipeline . . . . . . . . . . . . . 158
6.3.3 Coupling with CFD . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Influence of the particle density . . . . . . . . . . . . . . . . . . . 166
6.5 Influence of the spatial resolution . . . . . . . . . . . . . . . . . . 167
6.6 Comparisons with experimental results . . . . . . . . . . . . . . . 169
6.7 Simulation of displacement artifact . . . . . . . . . . . . . . . . . 170
6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.1 Introduction
The principal concern of the previous chapters was to evaluate the discrepancies
that arise either from direct MR velocity measurement or when reconstructing
an hemodynamics field, as compared to a pre-established ground truth CFD flow
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field. The errors relative to the comparison with the CFD were alleviated, so that
one can reasonably assume that the remaining divergences are principally due
to the MRI acquisition process. While some hypothetical culprits were inferred,
the origins of the discrepancies were not formally identified so far. Indeed, the
complex physical principles governing the MR signal acquisition process, the signal
processing steps required to reconstruct an MR image, as well as the large variety
of user-dependent acquisition parameters, are as many potential sources of errors
that make it generally difficult to localize with precision the sources an error in a
particular measurement..

6.1.1 The simulation of the MRI acquisition process
The numerical simulation of the MRI acquisition process could be an efficient way
to decompose these modalities and to understand the mechanism that lead to the
measurement errors: it has already proven its usefulness to describe and correct
some sources of imaging artifacts [122], as well as to optimize MRI pulse sequences
[4] for morphological MRI. The well-known MR fingerprinting technique [96] is
a good illustration of a possible use of MRI simulation to generate a dictionary
containing a representative variety of tissue MR signatures.

As already detailed in Chapter 2, the main core of the acquisition process is
based on the phenomenon of Nuclear Magnetic Resonance (NMR), described at
the macroscopic scale by the Bloch equations [17]:

dM(t)
dt

= γM(t)×B(t) + M0 −Mz(t)
T1

êz −
Mx(t)
T2

êx −
My(t)
T2

êy (6.1)

where γ is the gyromagnetic ratio, B is the external magnetic field experienced
by the nuclei, M = (Mx,My,Mz) is the nuclear magnetization vector, T1 and
T2 are the relaxation times of the magnetization and M0 is the steady state
magnetization.

6.1.2 The simulation of Bloch equations for flowing spins
Although many simulation frameworks have already been developed for static
tissues imaging [8, 16, 148, 164], modelling the flow MRI is still a challenging
issue. This is mainly due to the necessity to account for the dynamics of the spins,
which results in a considerable increase of the computational load. In its classical
formulation (see Equation 6.1), the Bloch equations are ordinary differential
equations (ODE) expressed with a Lagrangian formalism. Nevertheless, when
moving spins are considered, the input velocity field required to simulate the
dynamics of the spins is usually predicted by Computational Fluid Dynamics
(CFD) on a fixed numerical mesh.
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Eulerian approach

A classical approach often adopted in the literature is then to consider the Eulerian
formulation of the Bloch equation [67, 75, 93]. In this case, the CFD velocity
is used to transport the magnetization vector and a non linear convection term
is explicitly added to the time rate of change of the magnetization vector (M),
which becomes:

dM
dt

(r, t) = ∂M(t)
∂t

+ (u(r, t) · ∇)M(t) (6.2)

The Eulerian approach has a relatively low computationaly cost since both the
flow and Bloch equations can be solved on the same fixed mesh and no velocity
interpolation is needed. Nevertheless, the Eulerian equations becomes a partial
derivative equations and does not admit a generally valid analytical solution.
Moreover, it encompasses some modelling assumptions as the necessity to prescribe
boundary conditions for the magnetization vector, and some transformations of
the mesh are needed to correct for the spatial misregistration effects [75, 93],
although another method uses local magnetization transformations to account for
the flow-related effects [76]. Finally, this approach is less adapted to complex flow
configuration, where the time scale of the velocity variations is small as compared
to the time scale of the MR sequence [93].

Lagrangian approach

An alternative approach consists in modelling the spins with Lagrangian particles,
using the CFD velocity to update each particle position. The Bloch equations
can then be solved independently for each particle, with no spin-spin interaction
[54, 103, 126]. Therefore, the computational load can easily be partitioned on
multiple cores to accelerate the calculations. Nevertheless, a sufficient number
of particles is necessary to accurately approximate the MR signal. As found in
[136], at least 3 particles/direction/voxel are necessary to reduce the MR signal
error to 1.5%: this may require high computational resources depending on the
image spatial resolution. Homogeneous particle repartition within the domain is
also needed to avoid zones with spurious MR signals [54]. In the usual procedure
[54, 76, 79, 103, 126, 146, 164], a prior CFD simulation is performed to store all
the particle positions during the entire simulation; this approach can be suited for
steady flows but seems irrelevant for pulsatile flows simulations where very large
physical time (and thus particle position) are generally simulated. To illustrate
this, particle tracking along the simulation of a 4D Flow MRI scan of physical
duration Tacq = 6 min, with a constant time step ∆tCFD = 10−3 s, injecting 3
particles per direction per voxel would require to store about 60 TB of memory
for an acquisition matrix of size (160, 160, 20). The huge file size and the repeated
accesses to this file, on top with the temporal interpolation needed to update the
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particle position at different time point of interests during the MRI simulation
would most probably lead to highly prohibitive computational costs. To address
this problem, the CFD simulations can be performed "on the fly", i.e. performed
simultaneously to update the particle positions at each iteration, with no particles
path tracking required.

With the gain of computational power due to the recent improvements of
hardware and software capabilities, well resolved computations are now achievable
at reasonable costs: to that extent, Lagrangian computations then become feasible
and adapted to simulate complex flow MRI measurements [93]. Moreover, the
widespread interests expressed since the development of time-resolved 3D PC-MRI
have involved many new developments to mitigate some artifacts (cardiac and
respiratory motion [99]) and to reduce overall scan duration with compressed
sensing [94] or parallel imaging [41]. However, to the author’s knowledge, no
simulation framework of time-resolved 3D PC-MRI sequences has ever been
proposed yet, as summarized in the literature review presented on Table 6.1.

Table 6.1: Review of the published works in flow MRI simulations.

Publication Configuration Formulation Sequence

Steinman et al., 1997
[146]

steady 3D idealised bifurca-
tion Lagrangian 2D/3D PC

Jou et Saloner, 1998
[75]

pulsatile 2D carotid bifurca-
tion Eulerian 2D GE

VC/VU
Lorthois et al., 2005
[93] steady 2D carotid bifurcation Eulerian 2D GE

VC/VU
Marshall, 2010 [103] steady 3D carotid bifurcation Lagrangian 3D PC
Petersson et al., 2010
[126] steady 3D stenosis Lagrangian 3D PC

Jurczuk et al., 2013
[76]

steady 3D straight/U-bend
tubes Eulerian 2D/3D GE

Xanthis et al., 2014
[165] steady 3D cylinder Lagrangian 2D PC

Klepaczko et al., 2014
[79]

steady 3D stenosed/U-bend
tubes Lagrangian 3D GE VC

Fortin et al., 2018 [54] steady 3D cerebral artery Lagrangian 3D PC

GE : gradient echo; VC: velocity compensated; VU: velocity uncompensated; PC: phase
contrast.

The objective of this chapter is then to present a workflow for simulating
realistic RF-spoiled time-resolved 3D PC-MRI acquisitions. To this aim, the
numerical procedure for simulating the Bloch equations as well as the coupling
with CFD are introduced. To reduce the computational cost associated with the
simulations, a semi-analytical solution of the Bloch equations was implemented.
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A series of validation test cases are then presented, where each independent
block of the solver is validated in an incremental fashion. First, the resolution of
Bloch equation for spins flowing along a 1-D line is compared with the literature
[67, 171]. Then, the full velocity reconstruction pipeline (i.e. k-space filling,
Fourier transform and velocity calculation) is tested through a Poiseuille flow
configuration, where the reconstructed velocity is compared to the analytical
Poiseuille flow profile imposed to the particles. The CFD coupling is also validated
through the full simulation of a 4D Flow MRI sequence of the phantom experiment.
The sensitivity of the solution to the temporal discretization and spin density is
then analysed, and the parallel scalability of the code is presented. The influence
of the spatial resolution on the resulting reconstructed velocity field is evaluated.
Realistic 4D Flow MRI measurements are finally compared to the corresponding
coupled CFD-MRI simulations. One of the interests of developing such a simulation
framework is also briefly illustrated through the simulation of a common ghosting
artifact.

6.2 Methods

6.2.1 4D Flow MRI simulation procedure

The CFD setup was already detailed in Section 4.5 and is not re-expanded. The
entire CFD-MRI simulation procedure is illustrated in Figure 6.1. A pseudo-code
of the procedure is provided in Algorithm 1.

147



CHAPTER 6. SIMULATION OF 4D FLOW MRI

Velocity 
interpolation 
on particles

Solve Bloch 
equations

Particles 
magnetization

k-space filling

Integrate M 
over domain

Image 
reconstruction

MR sequence

Mesh + BC
Simulated 

image (SMRI)

Solve NSE t = t + �t t = tfif

CFD velocity

Particles 
velocity

Beff (r, t)

Figure 6.1: Main steps of the CFD-MRI simulation procedure. BC: Boundary
conditions. The grey block corresponds to the simulation framework kernel, while
the red/blue blocks are inputs/outputs to the simulation.
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Algorithm 1: Pseudo-code of the coupled CFD-MRI simulation procedure.
Input :

B1(t), Gx(t), Gy(t), Gz(t), time, readout←− InputSequence()

T1, T2,M(t = 0),Minj(t)←− ParticlesData()

1

2 Initialize Data:
3 xp ←− FillWithParticles()
4 for p = 1 : npt do
5 Mp = Mss

z

6 up = u0

7 end
8 B1(t), Gx(t), Gy(t), Gz(t), time, readout←− ReadInputSequence(InputSequence)
9

10 Temporal Loop:
11 while not done do
12 tm = tn

13 ∆tcfd ←− CalcCFLTimeStep(CFL)
14 tn = tn + ∆tcfd
15 for i = 1 : nnodes do
16 Ui ←−SolveNavierStokes(Ui,∆tcfd)
17 end
18 if spoiling==True then
19 DeactivateAllParticles(npt)
20 npt ←− FillWithParticles()
21 end
22 while tm < tn + ∆tcfd do
23 for p = 1 : npt do
24 Bp

eff ←−CalcBeff(B1(tm), Gx(tm), Gy(tm), Gz(tm))
25 ∆tpmri ←− CalcMRTimeStep(Bp

eff )
26 tm = tm + ∆tpmri
27 up ←− InterpolateVelocityOnParticle(U)
28 xp ←−AdvanceParticlePosition(xp)
29 Mp ←−SolveBloch(Bp

eff ,∆t
p
mri)

30 end
31 if readout==True then
32 S(tn)←− CalcMRSignal(Mp)
33 end
34 end
35 end
36

Output :S(t)
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Injection of particles

To model the spins, a homogeneous spatial distribution of Np Lagrangian particles
is injected within the fluid domain at the initialization of the computation. Np,el

particles are injected inside each element of the Eulerian grid following a uniformly
random distribution [133]. This randomization avoids spurious rephasing artifacts
induced by regularly-spaced spins [150]. An injection magnetization M(t = 0) =
Minj = (0, 0,Minj) is prescribed as initial condition of each particle injected. The
longitudinal magnetization is set to its steady state value Minj = M ss

z so that no
presaturation of the magnetization is required (see Section 2.8.3). To each particle
p injected inside an element of volume Vel is associated an isochromat volume of
weight wp = Vel

Np,el
to the magnetization vector. To each particle are also affected

some magnetic properties (T1, T2, M0).

Fluid-particle velocity interpolation

To advance the position of the particles, a fluid iteration is first performed (i.e.
solve the NSE on the fixed numerical mesh) such that the Eulerian velocity field
is advanced at time t+ ∆tCFD. For numerical stability purposes, the CFD time
step ∆tCFD was computed such that the CFL number remains equal to 0.9. In
practice, it means that the distance travelled by a fluid particle during an iteration
can not travel more than 90% of the smallest mesh element size. The velocity
is interpolated from the CFD velocity field onto the particles with an inverse
distance weighting interpolation. The particle position is then advanced using the
interpolated velocity, as followed:

xp(t+ ∆t) = xp(t) +
∫ t+∆t

t
u(xp)dt (6.3)

where ∆t is a numerical time step. This numerical time step is associated to the
particle advancement which depends on the discretization of the Bloch equations.
It can therefore differ from ∆tCFD. The integration is performed with a third-order
Runge-Kutta method (RK3).

Simulation of the RF-spoiling

As found in [54], a realistic simulation of an RF-spoiling event that raise an error
under 3% should require 1000 isochromats/voxel to avoid constructive vector
summation resulting in spurious signal due to the discrete spatial distribution of
particles. This however would lead to a dramatic increase of the computational
costs. To circumvent this problem, the RF-spoiling was modelled by nulling the
transverse magnetization of each particles. In practice at each spoiling event, all
the particles within the domain are suppressed, and Np particles are reinjected at
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the same location as initially, with the magnetization vector reset to its initial
value Minj = (0, 0,M ss

z ). Although the longitudinal magnetization is not affected
by the spoiling, Mz converges by definition towards the same value M ss

z after each
repetition time as it is systematically reset to Minj = M ss

z . The re-injection of
particles at the same initial location is a key step of the methodology that allows to
keep the particles distribution homogeneous, and to avoid zones of spurious signal
due to either a lack of particles in regions of high velocities, or the accumulation
of slow velocity particles near the boundaries. Under certain circumstances that
will be discussed later, it also allows to partition the simulation into independent
sub-computations with respect to time.

Effective magnetic field

Between each fluid iteration, the Bloch equations are solved in the frame of
reference that rotates clockwise around the z-axis at Larmor frequency ω = ω0 =
γB0, by convention. It is recalled that Bloch equations in Eq. 6.1 expressed in the
rotating frame allow to cancel the static magnetic field contribution, such that
it can be expressed as a function of the effective magnetic field Beff = B− ω0

γ
êz.

The effective magnetic field perceived by a particle at position xp and iteration tn
in this frame of reference is calculated as:

Beff(xp, tn) =


Bx

By

Bz

 =


B1(tn) cos(ω1t

n)
−B1(tn) sin(ω1t

n)
xp ·G(tn) + ∆Bz(xp, tn)

 (6.4)

where B1 is the RF field that rotates around the z-axis at frequency ω1 with
respect to the frame of reference. x ·G corresponds to the magnetic field induced
by the gradient coils for spatial and velocity encoding and ∆Bz(xp, tn) represents
the deviations of the magnetic field due to off-resonance effects. The off-resonance
effects mainly comprise non linear gradients, concomitant fields, eddy currents,
chemical shift, T2∗ dephasing, and magnetic susceptibility. In the initial develop-
ment phase, these effects are neglected. Note that all the sequences were generated
with the JEMRIS sequence development interface [148].

Temporal discretization

A multi-criterion time-stepping approach was implemented to solve the Bloch
equations while ensuring the numerical stability of the solution as well as a
sufficient temporal resolution to capture the highest frequencies of the external
magnetic field. The first time step criterion corresponds the CFL stability ∆tCFD.
It imposes a regular update of the information between Eulerian (CFD) and
Lagrangian (particles) variables.
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Similarly, as will be detailed in the next Section 36, a numerical integration is
adopted under some conditions to advance the Bloch equations. During magnetic
events when the RF is off, a numerical stability criterion for the explicit Runge-
Kutta scheme could be obtained from a stability analysis, which enforces the
following time step constraint:

∆tstab <
2

T2
(

1
T 2

2
+ γ2B2

z

) (6.5)

A derivation of this result can be found in Appendix 7.4.3. To capture the stiff
variations of the magnetization induced by the abrupt changes of the magnetic
field source term, an additional time step is calculated as:

∆trf = bn
γBeff,max

(6.6)

where Beff,max corresponds to the maximum effective magnetic field imposed in
the sequence. where bn (for Bloch Number) is a dimensionless coefficient fixed
by the user. A convergence analysis of the Bloch number was performed and is
presented in Section 6.3.

When the particle experiences a ramping gradient field, an additional time
constraint applies:

∆tgrad = 0.1Gmax∣∣∣∂G
∂t

∣∣∣ (6.7)

where Gmax is the maximum gradient amplitude specified in the sequence. This
constraint ensures that each gradient ramps is sampled by at least ten time points.
It was notably added to cover the instants with small or null Beff and with high
gradient time derivative.

A supplementary time constraint ∆tseq was added to ensure the adequate
sampling of the RF waveform, as well as the correct spacing between readout
samples.

Finally, the magnetic time step is calculated as: ∆t = min (∆tCFD,∆tstab,∆trf ,∆tgrad,∆tseq).
Note however that the resulting magnetic time constraints are generally more
restrictive (three or four order of magnitude lower) than the fluid time steps.
A typical time step distribution is illustrated in Fig. 6.2. To avoid somewhat
redundant CFD calculations, the fluid velocity is kept constant while the sum
of the magnetic time steps is below the CFD iteration length. This multi-time
step integration strategy significantly reduces the overall computation time as
compared to a classical uniform time stepping strategy for all the physics.

Numerical advancement of the Bloch equations

So far, two classes of approaches have been adopted in the literature to solve
the Bloch equations. The first approach was initially developed in the work
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�trf �tstab �tgrad
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Figure 6.2: Evolution of the simulation time step over an arbitrary pulse sequence
(RF and gradient) as a function of the magnetic event. Between each ∆tCFD, the
fluid velocity is kept constant. The particle velocity is updated at each iteration
as a function of its updated position.

of Bittoun et al. [16]. It consists of approximating the driving magnetic field
as a series of piecewise constant waveforms (rectangular pulses and gradients),
and accounting for each contribution as a transformation of the magnetization
vector. This approach was initially designed for static tissues simulations but later
extended to the flow-related effects [76, 164]. Because of the explicit formulation
of the magnetization, this method requires a relatively low computational effort.
However, this approach is only valid for hard pulse and not allow to simulate
both arbitrary RF-pulse shapes and gradients ramps. The term explicit here
corresponds to an analytical formulation but differs from the one presented in this
work.

Another approach is based on a full numerical integration, where an itera-
tive method is used to approximate the Bloch equations, with no preliminary
assumption on the magnetic field waveform [54, 93, 148]. This resolution method
is relatively simple to implement and the accuracy depends on the order of trunca-
tion. However the numerical integration steps result in higher computational cost
as compared with an explicit formulation. The numerical integration approach
could be unnecessarily time consuming in regimes where the Bloch equations
admit analytical solutions. For this reason, in this study, a semi-analytical solution
was implemented. The Bloch equations are solved with full numerical integration
(RK4) during the RF excitations, and analytically whenever the particles experi-
ence a relaxation or encoding gradients events. Obviously, this approach is valid
only if gradient waveforms can be described analytically.

Considering t = 0 as the end of the RF pulse (where Bx(t) = By(t) = 0 ∀0 <
t < tn), the Bloch equations can be expressed as:

dMxy

dt
= −( 1

T2
+ iγBz)Mxy (6.8)

The previous equation admits the following solution:

Mxy(xp, tn) = |Mxy(xp, 0)|eiφ0e−t
n/T2e−iγφ(xp,tn) (6.9)

where φ(xp, tn) =
∫ tn

0 γBz(xp, t)dt and φ0 is the phase of the transverse magneti-
zation at the end of the RF pulse. In the ideal case where off-resonance effects
are neglected, the phase can be decomposed in the rotating frame of reference as
a sum of piecewise analytical expressions, such as the phase reads:

φ(xp, tn) =
∫ tn

0
xp(t) ·G(t)dt =

n−1∑
m=0

∫ tm+1

tm
xp(t) ·G(t)dt (6.10)
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As piecewise constant gradients with linear ramps are assumed, one can write:

G(t) = G(tm) + ∂G
∂t

∣∣∣∣∣
m

(t− tm) (6.11)

An important approximation of the phase-contrast MRI formulation is the constant
velocity assumption between each relaxation. To this respect, in order to conserve
the benefits of the 3rd-order accurate particle position advancement (see Eq. 6.3),
the phase is advanced as:

xp(t) = xp(tm) + uprk(tm)(t− tm) (6.12)

where uprk = xp(tm+1)−xp(tm)
tm+1−tm is obtained from the RK3 particle position advance-

ment. Replacing these expressions in the previous Equation 6.10 gives rise to the
following phase:

φ(xp, tn) =
n−1∑
m=0

γ
(
am∆tm + bm(∆tm)2 + cm(∆tm)3

)
(6.13)

where ∆tm = tm+1 − tm, and
am = xp(tm) ·G(tm)

bm = 1
2xp(tm) · dG

dt

∣∣∣∣∣
m

+ up(tm) ·Gp(tm)

cm = 1
3up(tm) · dG

dt

∣∣∣∣∣
m

(6.14)

This formulation could easily be implemented and is valid either when encoding
gradients are on or during relaxation processes. Here the gradients waveforms are
assumed linear for sake of simplicity but the same reasoning could be adopted for
non linear gradients waveforms as long as it can be analytically described (such
as for non-Cartesian k-space trajectories or when adding off-resonance effects).
Note also that the assumed linear evolution of the spin position was not only a
modelling assumption, but also constraint in the phase-velocity expression, where
the high-order terms are neglected.

The phase φ can then be reintroduced in Eq. 6.9 so that the magnetization
can be explicitly calculated.

At the end of each iteration, the particle position is updated from the velocity
vector, and this procedure is repeated until the end of the pulse sequence.

Signal reception and velocity reconstruction

During the readout events, Mxy is integrated over the entire flow domain Ω. The
complex signal is then obtained by:

s(tn) =
Np∑
p=1

Cxy(xp)wpMp
xy(tn) (6.15)
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where Cxy is the receiver coil sensitivity profile and wp the isochromat volume.
The signal collected at instant tn corresponds to a unique point (kx, ky, kz) in the
k-space. When the k-space is completely filled, a 3D Discrete Fourier Transform is
applied to the complex k-space signal s to reconstruct the phase φ and magnitude
I images in the spatial domain. Finally, the 3D velocity map along each encoding
velocity direction i is obtained as:

ui = ∆φi
Venc,i
π

(6.16)

where ∆φi = arg(I0)− arg(Ii) where I0 corresponds to the reference scan image
where no velocity encoding gradients are applied, and Ii to the image of the i-th
velocity encoded direction.

6.2.2 Numerical efficiency of the semi-analytic
formulation

To evaluate the computational efficiency of the method, the acquisition of a
Poiseuille flow with a 2D PC-MRI sequence was simulated with the semi-analytic
formulation and compared to the results obtained with the full numerical inte-
gration method. Results are presented in Figure 6.3. While both methods seem
to linearly evolve with the number of spins/voxel, the semi-analytic method is 5
times faster for the same result: the mean residual errors were substantially the
same for both formulations.

6.2.3 Scaling of the simulations
The strong scaling of the computations was evaluated to measure the parallel
efficiency of the code. This allows to estimate the ideal number of cores necessary to
minimize the computational cost. To compute the strong scaling, a 4D Flow MRI
sequence of the phantom experiment at 3 mm3 spatial resolution was simulated.
The computational load was distributed to a varied number of cores, and the total
time elapsed in the temporal loop was recorded. The strong scaling efficiency was
obtained as: speedup(n) = T1/Tn where Tn corresponds to the total time needed to
complete the computation with n cores. The resulting speed-up shown in Figure 6.4
reports a satisfactory scaling of the problem. This is a direct consequence of
the the main parallel features (inter-process communications and double domain
decomposition [117]) inherited from the optimized hybrid programming interface
implemented in the YALES2BIO solver. When increasing the number of cores
while keeping the problem size fixed, the speed-up stalls from the ideal scaling
curve. This was expected since an ideal scaling corresponds to a computation
with no time spent in inter-processor communications. However in practice, the
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Figure 6.3: Computational time for the MRI simulation of a Poiseuille flow with
a 2D PC-MRI sequence, at different spin densities with an imaging matrix of size
16 × 16 × 10. The proposed semi-analytic formulation is compared to the full
numerical integration method, where a fourth-order Runge-Kutta numerical scheme
is adopted to discretize the Bloch equation. The computations are performed on
one Dell PowerEdge C6320 node containing 28 cores Intel Xeon E5-2690 V4 2,6
GHz with 128 GB random-access memory.

time needed for inter-processor communications increases as compared to the time
spent doing intra-processor operations, when the number of processors increases.

Note also that the scalability was computed for two different spin densities.
The results show that a better parallel efficiency is reached when the spin density
is larger and that the gap gets amplified with the number of cores. As the
relative load allocated for the particles-related operations increases with increasing
spin density, this behaviour well illustrates that Lagrangian computations are
better suited for parallelization than the Eulerian-related operations which require
processor communications.

6.2.4 Time partitioning of the computations
At each RF-spoiling, particles are removed, and reinjected with a similar initial
magnetization prescribed. This complete reinitialization of the magnetization state
allows a splitting of the calculation in independent partitions, where each partition
simulates the filling of a specific k-space line. Given sufficient computational
resources, the wall-clock time could then be significantly reduced, by a factor
that equals the number of spoiling events within the sequence. Wall-clock time
here means the elapsed real time required to achieve the simulations. This is
thus different from the CPU-time, which should stay constant or slightly increase
as multiple initialization steps are performed. Note that this partitioning was

156



CHAPTER 6. SIMULATION OF 4D FLOW MRI

0 50 100 150 200 250
0

100

200

Number of cores

S
p
ee
d
u
p

ideal

405 spins/voxel

768 spins/voxel

Figure 6.4: Strong scaling of the Bloch solver performed on a 4D Flow MRI
sequence at 3mm3 spatial resolution with two different spin densities considered
(405 and 768 spins/voxel).

used during the validation process for Bloch simulation of steady flows or static
tissues. However, the time partitioning does not allow to capture the cycle-to-cycle
velocity fluctuations since the reinitialized velocity state at spoiling event is not
known a priori. Assuming negligible cycle-to-cycle fluctuations, this partitioning
can be expanded to the simulations of time-resolved PC-MRI coupled with CFD
by reinitializing the particle velocity state at each spoiling event with the same
periodic velocity field.

6.3 Validation of the Bloch solver

6.3.1 Magnetization vector

First, the configuration proposed by Yuan et al. [171] and reproduced in [67] was
tested to validate the implementation of the Bloch equation solver. The evolution
of the magnetization vector produced by isochromats flowing along a 1-D segment
under a simple 90° slice-selection pulse sequence (see Fig. 6.5a) was simulated and
compared to the results obtained in [171]. The magnetization was recorded at the
end of the rewinder gradient as marked by the arrow in Fig. 6.5a. The resulting
magnetization profiles are compared for several input spins velocities (from 0 to
200 cm/s) in Figure 6.6. It results in highly similar distributions irrespective of
the velocity regime. The relative error defined as ε = ‖Mi−Mi,ref

Mi,ref
‖ where Mi,ref

is the i-th component of the magnetization found in Yuan et al., was calculated
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Figure 6.5: (a) 90° slice selective excitation used in Yuan et al. [171]. (b) Evolution
of the magnetization error with the time step, for the RK4 time integration scheme.

as a function of the time step, for the case where the velocity is zero, and is
shown in Figure 6.5b. The y and z magnetization components converge towards a
relative error level around ε ≈ 10−4 while Mx errors are two orders of magnitude
higher. This can be explained by the fact that the spins are not in phase in the
x-direction, as shown by the non linear magnetization response described in the
Bloch equations.

6.3.2 Full velocity reconstruction pipeline
As the previous test case validates only the magnetization, a second test case
was performed to validate the full velocity reconstruction pipeline (phase and
reconstruction algorithm). Moreover, it was additionally used to study the Bloch
number and spin density convergence.

A Cartesian mesh of a square duct of L = 32 mm edge length was designed.
At the centre, a Poiseuille velocity profile was prescribed such that:

w(r) = wmax

(
1− r2

R2

)
if r < R

= 0 elsewhere

where R = 8 mm is the radius of a cylindrical pipe and wmax = 0.1 m/s the
maximum axial velocity. Note that a buffer zone was added upstream of the
slice position in order to pre-saturate the spins near the inlet, and avoid spurious
magnetization inflow effects. As it gathers both static and moving spins, this
configuration allows to mimic the behaviour at the interface of a vessel. A 2D
PC-MRI sequence in transversal orientation with a matrix size Nx, Ny = (32, 32)
and a voxel size ∆x = 1 mm,∆y = 1 mm,∆z = 10 mm was simulated. 512
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Figure 6.6: Evolution of the magnetization (Mx,My,Mz) along a straight line for
several velocities imposed to the particles. The dashed lines correspond to the
YALES2BIO simulation results, while solid lines correspond to Yuan et al. data
[171].

spins/voxel were injected in the flow domain and the Bloch number was fixed to
bn = 0.1. The image reconstruction was performed by 2D Fourier transform of the
k-space signal collected. The velocity field evaluated in the reconstructed image
was compared with the analytical Poiseuille flow solution.

Results shown in Fig. 6.7b reveal an accurate reconstruction of the velocity
profile, with a RMSE = 3.6% where the RMSE is the axial velocity root-mean-
square error defined as: RMSE =

√
1
N

∑N
i=1 (wCFD(xi, tn)− wSMRI(xi, tn))2. A

time convergence analysis was undertaken by varying the Bloch number (see
Fig. 6.7c) and showed that bn = 1 seems actually enough to converge the velocity
field.

A convergence analysis of the spin density was undertaken and the results are
depicted in Figure 6.7d. It reports that about 20 spins/voxels are necessary for
the velocity to yield an error under 4%. This agrees with the resulting velocity
error found in Xanthis et al. [165], who found 4.4% error of the maximum
velocity, but for a spin density of 469 isochromats/voxel. This result agrees also
with [136] where 27 spins/voxel were necessary to get a MR signal error under
1.5% as compared to an analytical signal. Note however that in this case, the
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reconstructed axial velocity (and not the MR signal) is compared. Note also that
the spin density necessary to get a consistant signal would be dramatically higher
(around 1000 spins/voxel) if the rf-spoiling was simulated, as found in [54]. While
a small number of particles is needed to get a good approximation of the signal,
the error rate decreases until 20 particles/voxel where it reaches a plateau at
about 3.6% error. Note that the same computation was performed without the
volume weighting fraction associated with the particles, and higher errors were
however produced (5% at 20 particles/voxels), suggesting that this is important to
account for the isochromat volumes in the simulations. The remaining error could
be a direct consequence of the finite time sampling of the RF-excitation SINC
waveform. This would also explain the cut-off behaviour of the velocity error with
respect to the bn. To our understanding, the number of sampling points of the RF
waveform is not user-dependent (directly fixed by the JEMRIS program). For this
reason we did not undergo any in-depth researches in this direction to mitigate
this error.

6.3.3 Coupling with CFD
The validity of the full coupled CFD-MRI simulation was tested through the
phantom experiment presented in Chapter 4. A schematic representation of the
4D flow MRI pulse sequence (i.e. rf-spoiled gradient echo sequence with velocity
encoding gradients along the three directions) is presented in Figure 6.8. The
sequence parameters were prescribed to match with the experimental sequence
acquired and described in Section 4.3. Indeed, the gradients slew rate was set to
200 T/m/s and limited to a maximum amplitude Gmax = 45 mT/m, in accordance
with the MRI device technical features. A Hanning window apodized sinc rf pulse
was designed, with a flip angle α = 15°, and an envelope expressed as follows:

Be
1(t) = A

(
0.5

(
1 + cos

(
πt

3τrf

))
sinc

(
πt

τrf

))
(6.17)

where A = 10 µT is the peak RF amplitude occurring at t = 0, and τrf is half the
width of the central lobe.

An isotropic 2× 2× 2 mm3 voxel size was set, with a matrix size (80, 30, 120).
The readout bandwidth was set to ∆f = 0.6 kHz/pixel and the k-space was
entirely filled, with a Cartesian trajectory. The encoding velocity was set in the
three spatial directions to V ENC = 60 cm/s. Each cardiac cycle was split into 17
phases, with a temporal resolution ∆tp = 58 ms and a repetition time TR = 6 ms,
which allowed to fill two k-space lines (Nseg) between each TR. As the sequence is
composed by a reference and three velocity sensitive sub-sequences to encode the
full 3D velocity field, each sequence was split into four sub-sequences, each treated
separately to reduce the wall-clock simulation time. Therefore, Nseg =

⌊
∆t
TR

⌋
= 9
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Figure 6.7: Validation of the axial velocity profile w reconstructed from a Poiseuille
flow test case simulated with a 2D PC MRI sequence. a) Flow domain simulated.
b) Axial velocity profile along the x-axis reconstructed by MRI; comparison
between the reconstructed velocity profile and the imposed Poiseuille analytical
solution. c). Dimensionless root-mean-square error (RMSE) evolution as a
function of the Bloch number (bn) and as a function of the d) spin density.
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Figure 6.8: Diagram of a typical gradient echo pulse sequence with bipolar velocity
encoding gradients (grey-filled) along the x-axis, frequency and phase encoding
gradients along x-axis and y-axis, and slice selection gradient along z-axis. Each
k-space line is filled during the readout event where the signal is measured by
the rf-receiver coil. This pulse sequence is repeated changing the phase encoding
gradient amplitudes (Gy) after each repetition time TR to incrementally fill the
k-space lines.

subsets were filled instead of Nseg =
⌊

∆t
4TR

⌋
= 2 normally with interleaved velocity

encoding. The resulting physical time to simulate one out of 4 acquisition was
then Tacq = NyNz

Nseg
Tc = 120×30

9 × 0.986 = 394.4 s. Note that the memory storage of
such a long sequence results into huge array sizes. For this reason, the reading
of the sequence was segmented so that only small arrays composed by 1000 cells
or less are manipulated and stored in a data buffer. This decomposition is an
efficient way to reduce the computational costs.

The semi-analytic formulation was used to solve the Bloch equations, with
Bloch number set to bn = 1, consistently with what was found in Section 6.3.2.
To minimize the relative error while keeping a reasonable simulation time, a spin
density of 48 spins/voxel was injected within the fluid domain, resulting in about
1.1 million particles injected in total. The input CFD velocity field was computed
based on a numerical mesh with characteristic cell size of 2 mm.
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The four 3D raw datasets were finally collected and gathered to reconstruct
the full 3D velocity field. This 3D velocity field obtained from the simulated MRI
image uSMRI was compared with the input HR-CFD velocity field as well as with
LR-CFD. To account for the errors due to both the magnitude and orientation of
the velocity vector, the L2-norm error between the simulated velocity uSMRI and
phase-averaged CFD velocity uHR was defined as:

εL2(xi, tn) = ||uSMRI(xi, tn)− uHR(xi, tn)||

.

Qualitative analysis

Figure 6.9 compares at different phases in the cycle the magnitude of the simulated
MRI velocity field to the magnitude of the phase-averaged CFD velocity field.
Note that for visual clarity the simulated MRI was segmented using a binary mask
generated based on the magnitude of the image. A first visual comparison shows
that the two fields agree well regardless of the phase, although a systematic blurring
of the SMRI velocity is observed. This may be due to a Gibbs artifact induced
by the finite truncation of the signal. Also, slight variations occur principally in
the pipe bend, aneurysm neck and mixing layer at the collateral outlet elbow.
The discrete integration of a finite sample of particles in the domain could induce
intravoxel phase dispersion. Note however that this velocity discrepancies reduce
after downsampling the CFD velocity field (see further).

Quantitative analysis

Figure 6.10 shows the corresponding time evolution of the Pearson’s correlation
coefficient computed with respect to both the high-resolution CFD phase-averaged
velocity (HR-CFD) and downsampled phase-averaged velocity field (LR-CFD).
As expected, the low resolution velocity better matches the simulated MRI
(peak correlation r2 = 0.978 and mean correlation r2 = 0.966) as compared
to the high resolution CFD (peak correlation r2 = 0.967 and mean correlation
r2 = 0.958). Similarly as for the experimental MRI acquisition, the highest
correlation is reached at peak systole and the distribution closely follows the flow
rate evolution. Moreover, higher correlations are obtained as compared to the
corresponding experimental MRI measurements (peak correlation r2 = 0.96 and
mean correlation r2 = 0.90). Nevertheless, Bland-Altman and linear regression
plots shown in Figure 6.10 reveal that some divergences still remains. One can
suggest that these remaining divergence come from the MRI acquisition process
itself, and take their sources in the few artifacts that were not suppressed.

The previous comparisons between CFD and experimental MRI (see Chapter 4)
suggested that the errors may originate from the dependency of the correlation to
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SMRI CFD SMRI CFD

(a) t/Tp = 0.2 (b) t/Tp = 0.44

(c) t/Tp = 0.68 (d) t/Tp = 0.91

Figure 6.9: Comparison in the XZ-middle plane between ||uSMRI || and ||uHR|| at
four different phases during the cycle.

the velocity to noise ratio (VNR). As expressed in Sec. 2.8.5, the VNR linearly
depends on the ratio V/V ENC where V is the flow velocity. In this sense, regions
where the velocity amplitude is closer to the VENC (i.e. higher VNR) should
entail better correlations with CFD. However, in the present work, the simulated
MRI is by definition free of noise. Therefore, this reasoning is not valid as the
correlation is independent of the VNR. Moreover, off-resonance effects were a
potential culprit to the diminishing of the correlation. Once again, this MRI
simulation framework was voluntarily idealised and off-resonance effects were not
included.

Nevertheless, as studied in Steinman et al., [146], some remaining errors could
be caused by spatial misregistrations due to the time delays between the different
spatial encodings, as well as velocity displacement artifacts due to the acceleration
of spins during velocity encodings. For this reason, to evaluate the impact of the
spins acceleration on the MR image, the CFD phase-averaged acceleration field
was computed and compared to the SMRI velocity errors. The acceleration was
computed as the sum of the local (∂uHR

∂t
) and convective ((u · ∇)u) contributions.

Note also that ∂uHR

∂t
was computed using a first-order upwind finite difference

scheme.
The preferential sites of L2-norm error (computed from the LR-CFD) are

qualitatively compared to the highest acceleration patterns in Figure 6.11 at
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Figure 6.10: Statistical analysis of the velocity field imposed by CFD and re-
constructed in-silico with MRI simulations. a). Evolution along a cycle of the
Pearson’s correlation calculated between HR-CFD and SMRI, as well as between
LR-CFD and SMRI. b). Corresponding Bland-Altman and c). linear regression
plots at phase t/Tp = 0.2 compared with LR-CFD.
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(a) t/Tp = 0.44 (b) t/Tp = 0.91

Figure 6.11: Threshold of left phase-averaged CFD acceleration and right L2-
norm error of the SMRI velocity. a). t/Tp = 0.44 and b). t/Tp = 0.91.

t/Tp = 0.44 and t/Tp = 0.91. Some similar structures could be observed in
the collateral jet, in the main flow detachment into the aneurysm neck, as well
at the beginning of the pipe bend. The similarities suggest that some of the
highest SMRI velocity errors are due to the fact that the phase equation ignores
acceleration and higher order motions and assumes linear time variations of the
spin position (see Eq. 2.48). Expanding the spin location up to third-order
(i.e. adding the local acceleration term to the Taylor expansion of the spin
position) would most probably reduce the errors. In practice, it may however
largely extend the acquisition time as it might require additional segments with
gradient waveforms adapted to suppress the third-order gradient moment [15].
Post-processing corrections are also a possible strategy to correct the velocity
errors raised [152].

At t/Tp = 0.44, a substantial velocity deviation can be observed near the inlet
in the main branch. This is a consequence of the sparse particle distribution in the
high velocity regions, although largely alleviated by the particles reinitialization
at spoiling events. To reduce this effect, a buffered zone could be added to inject
particles with pre-saturated magnetization and as a function of the inflow velocity
profile.

6.4 Influence of the particle density
As for the Poiseuille validation case, the influence of the number of particles
per voxel was investigated in the phantom configuration. Two additional sets of
simulations were performed, with 3 mm3 and 4 mm3 voxels. The mean L2-norm
error raised at t/Tp = 0.44 for various spin density is plotted in Figure 6.12.
The first observable trend is that the 2 mm simulation reaches a plateau at 40
spins/voxel. This trend was also found in the steady Poiseuille flow simulation,
although the mean error associated was lower than in that case (about 6% of the
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Figure 6.12: Evolution of the magnitude velocity a) mean and b) maximum
L2-norm error between LR-CFD and MRI simulation of the phantom with a 4D
Flow sequence isotropic spatial resolution for different spin density at t/T = 0.44.

VENC). The higher complexity of the flow field as compared to the Poiseuille
flow may explain this higher absolute error level. In the phantom case, spatial
misregistration artifacts should be amplified due to the presence of an accelerated
three-dimensional flow. Moreover, the complex shape of the geometry most
probably induces clustering and scattering in the spin distribution that lead to
spurious signal.

Similarly to the 2 mm case, the mean error associated with the 4 mm voxel
size also reaches a plateau between 20 and 40 spins/voxel. For the 3 mm case,
the mean error slowly decrease as the spin density increases. Similar convergence
behaviour is observed for the three cases when considering the maximum error
(see Fig. 6.12b), comprised between 40%-50% of the VENC. Comparing the three
results, one can observe a global increase of the mean error with the spatial
resolution. On the contrary, a globally slow decrease of the maximum error with
increasing voxel size is reported. The straightforward explanation would be that
an increase of the voxel size induces higher errors as a result of the voxel averaging
process. However in this case the LR-CFD, which supposedly mimics the spatial
averaging, was used to compare with SMRI. A more extensive analysis is therefore
required to understand this phenomenon.

6.5 Influence of the spatial resolution
To get an in-depth understanding of the behaviour presented in the previous
section, the L2-error maps in the XZ middle plane of the phantom are presented
in Figure 6.13. Sites of high velocity errors at boundary walls are amplified as the
voxel size increase. This effect mainly arises as a result of the SMRI processing
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Figure 6.13: Map of the L2-norm error of the velocity at t/T = 0.44 between
LR-CFD and SMRI at three different spatial resolutions. Left 2 mm3, middle
3 mm3, and right 4 mm3. The error is calculated based on the LR-CFD, which
is specific to each spatial resolution. In all the simulations, 50 spin/voxel are
injected in the domain.

at boundary walls, where the voxel signal is partially averaged by the random
phase noise induced on the outside of the phantom. Consequently, the errors
are amplified at larger voxel sizes as a larger proportion of the voxel lays outside
the domain. This effect is however not reproduced by the CFD down sampling,
where the velocity is averaged with zero velocity contributions instead of random
velocity comprised between [−V ENC, V ENC]. A simple remedy to this would
be to enlarge the numerical domain by adding stationary particles around the
flow phantom.

The other predominant region of large L2-norm errors seem to appear down-
stream of the collateral branch, in the recirculating zone located under the jet.
This region harbours highly disturbed flow patterns (especially at this specific
phase), where the high momentum of the collateral jet induces a recirculating flow
region with adverse pressure gradient and counter rotating vortices (as illustrated
in Fig. 4.26). One can infer, from the error patterns presented in Fig. 6.11, that
the errors in this zone are a direct consequence of the spatial and velocity misreg-
istration effects. The small rotating structures could be responsible for intravoxel
phase dispersion. Yet, in the CFD downsampling process each voxel is divided into
a fixed number of uniform subvoxels whereas in SMRI the voxel signal is averaged
over a finite number of discretely distributed particles. Therefore, depending on
the particle distribution, the averaging process could behave differently, especially
in disturbed zones. The constant size of this error pattern with refinement of
the spatial resolution consolidates this hypothesis since the spin density is kept
unchanged.
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Figure 6.14: Velocity L2-norm error in the XZ-middle plane of the (left) exper-
imental and (right) simulated MRI at peak systole t/Tp = 0.44. The L2-norm
error is calculated based on the LR-CFD obtained from a 2 mm characteristic
mesh size.

6.6 Comparisons with experimental results

The SMRI was finally compared with the experimental MRI described in the
previous Section 4.3. The velocity L2-norm error maps as compared to LR-CFD are
reported in Figure 6.14. A first interesting result is that the highest level error sites
are similarly located under the jet, at the collateral elbow outlet. As previously
suggested, they probably arise as a result of both the high convective acceleration,
as well as the intravoxel dispersion. Moreover, the MRI error spreads on a larger
region as compared to SMRI. As the 3 directions of the velocity are encoded
simultaneously in the simulations while the velocity encoding are interleaved in
the experiments, non-negligible time offsets induced could be responsible of this
widespread error pattern. Moreover, it should be noted that acceleration-induced
errors at a given phase could generate MRI errors in the following phases.

Generally speaking, larger errors spots are introduced in the experimental MRI.
This was expected as the MRI comprises many additional sources of deviations
such as magnetic field inhomogeneities, off-resonance effects and experimental
noise. However, an important consideration is that the CFD mesh is coarser than
the one presented in the previous chapters (2 mm vs. 0.7 mm ). Even if this is
sufficient to validate the simulation workflow, it does however not guarantee a
well-resolved CFD flow field, as obtained in the Chapter 1. In this sense, in-depth
evaluation of the mesh size influence should be considered and the comparisons
with experimental MRI should be carefully looked at.
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Figure 6.15: Phase wrap-around artifact resulting from the simulation of a coronal
2D PC-MRI sequence in the flow phantom. Left Boundaries of the flow phantom
superimposed on the FOV bounds. Right Resulting artifact.

6.7 Simulation of displacement artifact
A simulated phase wrap-around artifact is presented in Figure 6.15. As already
described in Section 2.9.2, this artifact manifests as a fold over of the object at the
boundaries whenever the FOV is smaller than the size of the object. It could be
easily understood that the missing top part of the phantom folds onto the bottom
of the image. Similarly, the left and right sides of the phantom fold onto the right
and left regions respectively. This can be observed as the signal amplitude levels
are about twice higher at these locations.

6.8 Discussion
In this chapter we presented a workflow for simulating realistic time-resolved
3D PC-MRI acquisitions. To this aim we introduced a full numerical procedure
with a CFD coupling "on the fly". We implemented a semi-analytic formulation
of the Bloch equation to accelerate the computations. The computational gain
of this formulation was evaluated, as well as the parallel efficiency of the entire
program. The complete workflow was incrementally validated, and several CFD-
MRI simulations of the phantom experiment were performed and compared to
the input CFD velocity. The largest velocity discrepancies were reported at peak
systole and were mainly located in the regions of high flow acceleration. This
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is a direct limitation of the MRI acquisition process which considers a linear
velocity dependence of the signal. In this sense, post-processing corrections could
be applied to correct the velocity field [152].

Sensitivity of the solution to the spatial resolution temporal sampling, and
spin density was analysed. As compared to the existing simulators, our method
seems to provide an accurate solution with fewer particles needed. We suggest
that this is a direct consequence of the particle injection strategy adopted which
maintains a homogeneous particle distribution along the entire simulation. Also,
the semi-analytic formulation coupled to the massively parallel capabilities of the
YALES2BIO solver allows the simulation of realistic flow MRI sequences with
physical times up to hundreds of seconds.

However, some numerical artifacts introduced by the modelling assumptions
were not treated and require further developments. For instance, injection of
pre-magnetized particles at the inlet boundary condition are necessary to avoid
spurious signal resulting from sparsely distributed particles. Moreover, a relatively
coarse CFD numerical mesh was used in the simulations that does not fully resolve
the flow field. While it should not impact the comparison with the simulated MRI
velocity, it is expected that a coarser CFD produces higher velocity deviations
from the real flow field, and therefore could yield larger errors as compared to the
experimental MR velocity measurements.

As a relatively coarse CFD mesh was used in the CFD-MRI simulations as
compared to the one used in the Chapter 4, a less realistic flow field is expected
that would certainly yield a lower correlation as compared to experimental MRI.
In this sense, a similar CFD-MRI simulation should be performed with the same
mesh as used in Chapter 4. Moreover, some errors are associated with the cycle-to
cycle fluctuations that involve comparing a phase-averaged velocity with a MR
velocity resulting from a progressive k-space filling. Simulating an unique cardiac
cycle would remove the cycle-to-cycle fluctuations and thus to isolate the related
errors.

The experimental MRI was finally compared to the simulated MRI. The velocity
errors patterns were closely related to the simulated MRI, with a systematically
higher level. Some of the errors observed are most probably associated with off-
resonance effects such as gradient non-linearities, T2* relaxation effects, chemical
shift, or magnetic susceptibility, which should be added to mimic more realistic
MRI acquisition effects. Coil sensitivity profiles should also appear as a weighting
factor of the MR signal. A more realistic representation of the magnetization
dynamics can be reached by solving the Bloch-Torrey equations that accounts for
the transfert of magnetization due to diffusion [155]. In practice, the attenuation
of MR signal due to molecular self-diffusion can be calculated iteratively and
directly added to the magnetization relaxation, as proposed by Jochmisen et al.

171



CHAPTER 6. SIMULATION OF 4D FLOW MRI

[74].
However, many approximations and potential discrepancies could be attributed

to the differences between the simulated and experimental sequences. For example,
it is important to notice that the SMRI sequence was designed as a retrospectively
gated sequence while the experimental measurements presented were prospectively
gated. To this respect, the readout time sampling was slightly different as compared
to that of the MRI. Moreover, in the simulations, the three velocity components
are encoded simultaneously, but sequentially in real MRI experiment. As a result,
potential time delays between each velocity component could arise and amplify
the errors. As it belongs to the manufacturers, little is known about the design of
the experimental sequence. Getting an access to the source code of such sequences
would certainly improve the fidelity of the simulations.
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The main findings and conclusions of the accomplished work are summarized
in this chapter. Future research directions as well as clinical perspectives are
discussed.

7.1 CFD-based methodology to assess PC-MRI
In this chapter, a CFD-based procedure designed for quality assessment of 4D
Flow MRI measurements was developed. A proof-of-concept validation of the
methodology was established using idealized MRI parameters to compare with
CFD flow predictions. The results obtained clearly highlighted that some discrep-
ancies remain even after errors associated with boundary conditions, numerics,
or turbulence modelling are minimized in the CFD part. Indeed, we noted that
a straightforward comparison of the two modalities only produces a very poor
agreement (r2

|u‖ = 0.63). Some post-processing corrections were thus proposed,
that drastically increased the velocity correlations (r2

|u‖ = 0.97). These results
prove that in a well-controlled environment with suitable processing, both MRI
measurements and CFD predictions bring trustworthy and equivalent global flow
quantities. It is important to highlight that this agreement was reachable thanks
to the idealised in-vitro framework (rigid phantom, Newtonian fluid, flow rate
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waveform) considered which, although not fully representative of in-vivo conditions
(complex blood rheology, moving boundaries), represents several flow features
relevant to the thoracic circulation (aortic arch, bifurcation, aneurysm).

7.2 Reconstruction of the hemodynamic field
In this chapter the developed framework was exploited as a benchmark database
to evaluate the accuracy of different clinically relevant approaches to reconstruct
the hemodynamic field from MR velocity measurements. This approach was
illustrated through the evaluation of WSS and relative pressure fields.

Two different algorithms proposed in the literature [128, 143] were evaluated
and compared to the WSS distribution obtained from the same numerics using
the MRI velocity field as input. All the three approaches resulted in low WSS
correlations (r2 < 0.6) and low distribution similarities as compared to CFD field
of WSS, selected as a reference although not fully converged due to the virtually
unaffordable mesh refinement required to properly resolve the Womersley boundary
layer. Moreover, large discrepancies were observed between the two approaches
(ε = 300%) taken from the literature. As this result was obtained in a well-
controlled environment, higher WSS errors are expected in-vivo, where complex
moving vessel geometries and segmentation errors occur. It seems therefore difficult
to draw any generalized conclusion given that we could not guarantee the WSS
field in such an idealized in-vitro setup.

Contrary to WSS, a fast convergence of the CFD pressure field with mesh
refinement was obtained. Several methodologies were then tested to reconstruct
the relative pressure field from MR velocity data. The pressure field was also
reconstructed using YALES2BIO numerics but with the MRI velocity field as
input and a close agreement with the reference CFD pressure field (r2 = 0.98)
was reported. This suggests that the pressure field is not very sensitive to the
small velocity variations observed. Moreover, although the steady Bernoulli
formulation was found to be quite inefficient to predict the pressure drop, the
unsteady Bernoulli principle provided an accurate estimate, as well as a good
compromise for a rapid pressure drop estimate. This result confirms that the
inertial contribution plays a key role, while the viscous terms could easily be
neglected without any significant loss of information.

7.3 Simulation of phase-contrast MRI
In Chapter 6, a 4D Flow MRI simulation framework was presented, with the aim
to decompose the complex MRI acquisition process in order to identify the sources
of dysfunctions of an MR scan (hardware, software, protocol) that potentially
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lead to velocity errors. The presented methodology benefits from a semi-analytic
resolution of the Bloch equations as well as highly parallel capabilities that make
affordable the simulation of 4D Flow MRI sequences. Moreover, the efficiency of
the particle reinjection procedure allows a homogeneous spatial distribution, and
therefore a decreased number of particles required.

The validation of the MRI simulation of the phantom experiment showed
that a small velocity error (2-4%) was systematically raised, even for high spin
density. The highest error levels were found to be induced at zones of disturbed
flow (aneurysm, mixing layer). The analysis of the pattern error distribution
suggested that acceleration-induced artifacts induced by the linear phase-velocity
dependence seems partially responsible of these high error levels. Also, small
structures located at the collateral elbow could be sensitive to intravoxel phase
dispersion induced by high velocity gradients.

However, many approximations remained due to the differences between the
simulated and experimental sequences. It is important to note that very few
is known about the design of experimental sequences, as they belong to each
manufacturer. Getting an access to the source code of such sequences would
necessarily improve the fidelity of the simulations.

7.4 Perspectives
The work performed during this thesis was mainly devoted to the numerical
developments of a rigid CFD-based reference database as well as a MRI simulation
framework. Bringing this work closer to the clinical reality is now a necessity
to benefit from the added value of our developments. One may apply this
methodology as a quality control procedure to assess the errors induced by the
time-restraint low-resolution protocols used in clinical routine. The influence
of parallel acceleration, partial k-space filling strategies or on-site adaptation of
protocol parameters on the resulting velocity field could then be investigated.
Moreover, benchmarking of reconstruction algorithms could be systematically
performed to control the quality of variable of interests such as pressure drop, WSS
or turbulent features. Also, various flow regimes coexist in the arterial network
that involve different hemodynamic phenomenon, depending on the geometry and
mechanical characteristics of the vessel, as well as the velocity, pulsatility and
blood rheology. The acquisition protocols also differ as a function of the field
of view, spatial resolution, tissue type, and dynamics of the flows. For instance,
MRI measurements of small size vessels are limited by technological constraints
associated with MRI itself. For classical scanners capable of producing static
magnetic fields between 1.5T and 3T, an increase of the spatial resolution would
result in a decrease of the SNR, and therefore of the measurement accuracy [147].
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To this respect, the developed methodology seems valid only to quantify the
accuracy of flow measurements under cardiovascular regimes and could be adapted
to cover the cerebrovascular network.

The simulation framework for MRI could be a valuable tool for sequence design
and on-site protocol parameters optimization, tasks which are still most of the
time performed by experimental testing. Nevertheless, more developments are still
required in order to simulate realistic acquisition. Some common off-resonance
effects such as gradient non-linearities, T2* relaxation induced by main magnetic
field inhomogeneities, or chemical shift effects should be accounted for. As well,
multi-receiver coil systems should be additionally modelled by introducing coil
sensitivity profiles. The transfert of magnetization due to diffusion, neglected in
this study, could also be accounted for by solving the Bloch-Torrey equations [155].
As it was initially designed for the prediction of turbulent flows, the flow solver
could as well be a valuable tool to assess the MRI-based turbulence quantification
techniques [45].

Finally, the developed procedure could be a valuable tool for flow MRI quality
control and evaluation of post-processing associated. Although it represents a
first-stage development of a larger project, we believe that numerical simulation
is a promising tool for sequence prototyping, quality control purposes, and as a
decision-making tool for clinical practice.
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Appendix
Derivation of the pressure source term with
periodic boundary condition
It has been shown from the momentum equation projected on the centreline axis
−→es that velocity components are only functions of r and θ, so that the pressure
gradient ∂P

∂s
is independent of s and hence it can be written as: P (s) = −Gs

where G is a constant [10]. Note that this expression is applicable for δ � 1. In
other terms, it can be given as follows:

∂P

∂s
= − 1

Rc

∂P

∂φ
= −G (7.1)

Note that since ∇ × (∇P )) = 0, for the source term to be homogeneous to a
pressure gradient, it needs to verify:

∇× S = 0 (7.2)

To satisfy the previous Equation 7.2, the following constraint is added and Sφ is
defined as :

Sφ = G

ρ
( R
Rc

)n (7.3)

Using the curl definition in the cylindrical coordinate system, this condition gives:

−∂Sφ
∂y

= 0⇐⇒ Sφ = A(R, φ)

1
R

∂(RSφ)
∂R

= 0⇐⇒ Sφ
R

= −∂Sφ
∂R

These conditions conduct to n = −1, and Equation 7.3 simplifies in:

Sφ = G

ρ
(Rc

R
) (7.4)

When the duct is weakly curved (e.g: δ � 1), one can derive a relationship
between pressure gradient and velocity, assuming a Poiseuille flow with the
following formulation:

64
Re

= − ∆P
1
2ρW

2
0

2a
L

(7.5)

with ρ, L, ∆P respectively the fluid density, the length over which the pressure
gradient is applied, and the pressure difference between the inlet and the outlet
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of the almost straight pipe. Using the previous definition of the Dean number
coupled with Equation 7.5 to explicit the relationship between velocity and pressure
gradient, W 0 = −∆P

L
a2

8µ , one can express the latter as a function of the pressure
gradient, as follows:

D =
√
δ
Ga3

4ρν2 (7.6)

It is very important to note that, following the formulation adopted by Berger
[10], the Dean number is valid only when the flow is fully developed and δ � 1.
For higher values of δ, the relationship between velocity and pressure gradient has
to be determined a posteriori of the solution. By combining Equations 7.3 and
7.6, a simple expression of Sφ depending on the Dean number can easily be found,
as follows:

Sφ = 4ν2D

a3
√
δ

Rc

R
(7.7)

By implementing the above source term along the centreline of the curved duct, it
is possible to perform a periodic simulation of flow in a curved pipe at a prescribed
Dean number value. Note that the Reynolds number Re = 2aW0

ν
is based on

the mean axial velocity W0 of a straight pipe that would be driven by the same
pressure gradient over a length L.
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PPE-based pressure reconstruction approaches
from MRI
In this section, we present and compare several methodologies for computing the
relative pressure based on solving the pressure Poisson equation (Eq. 5.12) from
4D Flow MRI velocity measurements. Among the methodologies proposed, we
isolate the transient from the viscous and convective pressure contribution to solve
the PPE separately. We then juxtapose the full 3D PPE approach to the PPE
solved from 2D planar PC-MRI inflow measurements only. We also look at the
impact on the relative pressure field of the prescribed boundary condition at walls.
As it was not fully achieved within the allocated time, we did not include these
results to the main body of the thesis.

7.4.1 Proposed approaches

From the 3D CINE PC-MRI velocity field corrected from off-resonance effects,
we first project the velocity field onto the space of divergence-free fields, as the
divergence of the velocity field supposedly reduces to zero in Equation 5.12. As
done in the previous Section 5.2, the resulting post-processed 3D PC-MRI velocity
field is then interpolated on a tetrahedral mesh, with a mesh size ratioMSR = 1/3.

The relative static pressure is obtained by iteratively solving Equation 5.12 with
a Deflated Preconditioned Conjugate Gradient algorithm, developed in Malandain
et al. [97]. Once again, the high-order numerical methods implemented in the
YALES2BIO solver are used to solve the full PPE discretized on an unstructured
grid. A major interest of solving the PPE directly on the specified flow domain
was highlighted by Ebbers et al. [47], who observed a non negligible improvement
of the pressure estimates, especially in complex geometries, as compared to
quasi-rectangular iterative approaches [46, 141], which tend to systematically
underestimate the pressure field, on top of being more computationally extensive.
The pressure at the outlet boundary is set to zero so that additive constant up to
which the pressure is defined is set once for all. While it is still a controversial issue
[131], a homogeneous Neumann boundary condition is applied to all the other
boundaries of the computational domain, in accordance to what was published
in [61]. If Eq. 5.12 is solved for each MRI image independently, the transient
contribution (∂u

∂t
) of the pressure gradient reduces to zero and a steady pressure is

calculated. This approach is referred to as 3D MRI PPE (steady) formulation.
On the contrary, the dynamic forcing term presented in Section 5.3.3 was added
to ensure the flow continuity between two MRI phases and to account for inertial
effects. The resulting pressure field then contains the full pressure contributions
and is referred to as 3D MRI PPE approach. At last, the 2D MRI PPE designates
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Table 7.1: Overview of the main features of the pressure computation methods
considered in this section. Ω is the fluid domain delimited by boundary walls ∂Ωw

and an inlet surface ∂Ωin of inward normal vector n. Note that a time dependency
was added to the velocity as we used the time-splitting algorithm presented in
Section 3.1.3 to advance the velocity and incorporate the transient contribution.

Method Formulation

Pressure Poisson Equation ∇2p = −ρ∇ · (u · ∇u)

3D MRI PPE (steady)


u(x, t0) = umri(x, t0) on Ω

u(x, t) = 0 on ∂Ωw

3D MRI PPE


u(x, t0) = umri(x, t0) on Ω

u(x, t) = 0 on ∂Ωw∫
∂Ωin

u(x, t) · ndS =
∫
∂Ωin

umri(x, t) · ndS

3D MRI PPE (slip walls)


u(x, t0) = umri(x, t0) on Ω

u(x, t) · n = 0 on ∂Ωw∫
∂Ωin

u(x, t) · ndS =
∫
∂Ωin

umri(x, t) · ndS

2D MRI PPE


u(x, t0) = 0 on Ω

u(x, t) = 0 on ∂Ωw∫
∂Ωin

u(x, t) · ndS =
∫
∂Ωin

umri(x, t) · ndS

a simplification of the latter in that it calculates the pressure drop when only
an inflow velocity profile is prescribed, with null velocity field anywhere else in
the domain. In practice, this case corresponds to measuring the inlet velocity
field with 2D CINE PC-MRI, as well as the morphology of the domain. This
approach is devoted to evaluate the sensitivity of the pressure to the input velocity
distribution. Moreover, it is much less time-consuming than measuring the full
3D velocity field with 4D Flow MRI scan as only a 2D CINE PC-MRI scan with
morphology is required. Table 7.1 summarizes the methods considered and their
main features. Note that the three approaches developed here could be seen as the
pressure reconstruction methods available when the input velocity datasets come
from different MRI modalities: namely, 3D MRI PPE,3D MRI PPE (steady), and
2D MRI PPE correspond to 4D Flow MRI, 3D PC-MRI, and 2D CINE PC-MRI
respectively.
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7.4.2 3D MRI PPE approach

MRI CFD MRI CFD
Figure 7.1: a). Velocity magnitude and b). relative pressure fields obtained
from PC-MRI (2mm isotropic voxel size) and CFD at peak systole (left) and late
diastole (right).

The relative pressure calculated from the full 3D MRI PPE approach with
no-slip boundary condition at walls is qualitatively compared in Figure 7.1 with
the CFD phase-averaged pressure field at peak systole and late diastole. The
corresponding MRI and CFD velocity fields are also shown for clarity. The MRI
relative pressure field reveals very reproducible patterns at both peak systole and
diastole as compared to CFD and no large visual discrepancy can be distinguished.
The high pressure gradient interface at the collateral inlet seems well captured.
Similarly, the pressure gradient induced at the downstream edge of the collateral
branch is correctly predicted, although somewhat more diffused in the MRI field.

Quantitatively, an excellent agreement (r2 = 0.98) is obtained at peak systole
(see Fig. 7.2). Note however a sudden decrease of the correlation at phases when
the flow rate time derivative gets close to zero, right after the peak systole and at
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late diastole. These phases correspond to instants in the cycle when the transient
effects are dominated by the viscous and convective effects. The Bland-Altman
and regression plot in Figure 7.2 also show a net overestimation of the pressure
computed from MRI at nodes that encompass the highest pressure levels. A closer
look on the pressure maps reveals that these nodes correspond to the boundary
walls, where the Neumann pressure boundary condition is prescribed.

To release the friction at walls responsible for the pressure overestimation,
the same 3D MRI PPE approach was solved but prescribing slip walls boundary
condition instead. A general improvement of the correlations is observed, as shown
in Figure 7.2. Although still present and located about one phase earlier in the
cycle, the correlation collapse is alleviated. Note also that the large MRI pressure
overestimation at boundary walls vanishes, as seen in the linear regression plots.
On the contrary, a global underestimation of pressure by MRI is observed as a
constant bias in the no-slip wall linear regression plot. This may be explained
by the lower viscous resistance at boundary walls, implying a lower viscous and
convective pressure contributions. Moreover, as highlighted in Ebbers et al. [46],
the low MRI spatial resolution tends to underestimate the gradient and Laplacian
operators necessary to calculate the viscous ∇2u and convective effects u · ∇u.

Given the overestimation/underestimation whenever no-slip/slip walls are set
respectively, one can infer that the ’true’ MRI pressure could be bounded by these
two cases.

7.4.3 Splitting of the pressure contributions
Figure 7.3 shows the relative inlet-outlet pressure drop computed with the pre-
sented approaches. The full PPE (3D MRI PPE) is compared with the PPE
including viscous and convective contributions only (3D MRI PPE (steady)), as
well as with the 2D MRI PPE comprising the transient contribution at inlet
boundary only. These approaches are compared with the reference pressure drop
predicted by CFD (full CFD). A second reference pressure drop compatible with
the 3D MRI PPE (steady) was generated by prescribing a steady inflow profile at
each phase. This approach is denoted CFD (steady).

Omitting the transient effects (3D MRI PPE steady) leads to the inverse
trends as those predicted with the full CFD. As compared to the reference
steady CFD field (CFD (steady)) however, similar pressure drops are observed,
with a slight overestimation of the MRI. This trend is supported by the linear
regression result in Fig. 7.2, where the pressure obtained with no-slip boundary
conditions systematically overestimates the CFD pressure. This result confirms
our explanation that this is the added wall resistance due to the prescribed
boundary condition (i.e. viscous/convective effects) that are responsible for this
overestimation.
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Figure 7.2: a). Correlation between the 3D MRI PPE approach with both
slip and no-slip boundary walls and compared to CFD for each phase during the
cycle. The inlet flow rate is also plotted for a better comprehension. b). Linear
regression plots at phase 9 (sudden decrease at t = 0.4 ms) for the left no-slip
walls and right slip wall case, respectively.
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Figure 7.3: Pressure drops computed from MRI solving the 3D PPE approaches
compared with CFD.

In the 2D MRI PPE approach, the velocity is set to zero in the whole domain
except at the inlet surface plane, where the time-varying velocity profile is pre-
scribed to account for the transient contribution. The pressure drop temporal
evolution reveals very similar pressure drops as compared to the full 3D MRI
PPE as well as the full CFD approaches. While slightly higher oscillations are
observed, this approach agrees unexpectedly well. Both the velocity magnitude
and corresponding pressure maps are depicted in the middle slice of the phantom
at different instants during the cycle, as shown in Figure 7.4. The high velocity
magnitude differences resulting in low relative pressure discrepancies suggest that
the pressure drop evolution in a rigid phantom is largely dominated by the flow
rate waveform, with low dependencies on the details of the velocity profile.
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(a) t/Tp = 0.04 (b) t/Tp = 0.2

(c) t/Tp = 0.36 (d) t/Tp = 0.52

(e) t/Tp = 0.73 (f) t/Tp = 0.89

Figure 7.4: Phase-averaged velocity magnitude top and pressure maps bottom
reconstructed at different instants in the cycle from left 3D PPE, middle CFD,
right 2D PPE.
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Stability criterion for explicit numerical scheme
In this section, we derive the stability criterion of the Explicit RK4 scheme
presented in Section 36.

Mn+1
i = Mn

i + ∆tf(Mn
i , t

n) (7.8)

where f(Mn
i , t

n) is the right-hand side term of Eq. (2.10). Let us analyse only one
direction (called m) of the magnetization vector(M) such that one can decompose
f in Taylor series around its initial value t0 as follows:

f(mn
i , t

n) = f(m0
i , t

0) + (tn − t0)∂f
∂t

(m0
i , t

0) + (mn
i −m0

i )
∂f

∂m
(m0

i , t
0) + ... (7.9)

Then:
f(mn

i , t
n) = λmn

i + α1 + α2t
n + ... (7.10)

where λ = ∂f
∂m

(m0, t0),α1, α2 are constants. If one neglects the inhomogeneous
terms in the previous expression of f(mn

i , t
n) and keep only the first term λmn

i , it
results that we can write:

mn+1
i = mn

i (1 + λ∆t) (7.11)

Considering the previous equation as a geometric progression, the solution at time
step n could therefore be written as:

mn
i = m0

i (1 + λi∆t)n (7.12)

And therefore, the scheme is stable if |1 + λ∆t| ≤ 1. Let’s consider the simple
relaxation case where B = (0, 0, 0), then the stability constraint becomes:

λx = −M
′
x

T2

λy = −
M ′

y

T2

λz = M0 −Mz

T1

(7.13)

Then, according to the 3 axes of the rotating frame of reference, the stability
condition for the Euler explicit scheme imposes that:

∆t < 2 min(T1, T2) (7.14)

From the assumption that the inhomogeneous terms are neglected in the Taylor
series decomposition (see Eq. (7.10)), the time step calculated is valid for relaxation
only, where RF and gradients are null. It should be noted that in practice the T1
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relaxation time is always larger than T2, therefore, we can simplify the previous
time step constraint to

∆t ≤ 2T2 (7.15)

In the case where encoding gradients are on, but RF pulse is still off, (i.e:B =
(0, 0, Bz)), then a stability condition could be found for the transverse magnetiza-
tion Mxy, and Equation 7.11 becomes:

Mn+1
xy = Mn

xy

(
1−∆t

(
iγBz + 1

T2

))
(7.16)

Then the stability condition generalizes to:

∆t ≤ 2
T2
(

1
T 2

2
+ γ2B2

z

) (7.17)

As expected, when Bz = 0 the stability constraint equals to Eq. 7.15.
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Abstract

Hemodynamics (blood flow dynamics) is now recognized as a key marker in the onset and evolution of many
cardiovascular disorders such as aneurysms, stenoses, or blood clot formation. As it provides a comprehensive
access to blood flows in-vivo, time-resolved 3D phase-contrast magnetic resonance imaging (or 4D Flow MRI)
has gained an increasing interest over the last years and stands out as a highly relevant tool for diagnosis,
patient follow-up and research in cardiovascular diseases. On top of providing a non-invasive access to the
3D velocity field in-vivo, this technique allows retrospective quantification of velocity-derived hemodynamic
biomarkers such as relative pressure or shear stress, which are pertinent for medical diagnosis but difficult to
measure in practice. However, several acquisition parameters (spatio-temporal resolution, encoding velocity,
imaging artifacts) might limit the expected accuracy of the measurements and potentially lead to erroneous
diagnosis. Moreover, the intrinsic complexities of the MRI acquisition process make it generally difficult to
localize the sources of measurement errors.

This thesis aims at developing a methodology for the assessment of 4D Flow MRI measurements in com-
plex flow configuration. A well-controlled experiment gathering an idealized in-vitro flow phantom generating
flow structures typical of that observed in the cardiovascular system is designed. The flow is simultaneously
predicted by means of a high-order Computational Fluid Dynamics (CFD) solver and measured with 4D flow
MRI. By evaluating the differences between the two modalities, it is first shown that the numerical solution can
be considered very close to the ground truth velocity field. The analysis also reveals the typical errors present
in 4D flow MRI images, whether relevant to the velocity field itself or to classical derived quantities (relative
pressure, wall shear stress). Finally, a 4D Flow MRI simulation framework is developed and coupled with CFD
to reconstruct the synthetic MR images of the reference flow that correspond to the acquisition protocol, but
exempted from experimental measurement errors. Thanks to this new capability, the sources of the potential
errors in 4D Flow MRI (hardware, software, sequence) can be identified.

Keywords : hemodynamics, Computational Fluid Dynamics, 4D Flow MRI, MRI simulation.

Résumé

L’hémodynamique (la manière dont le sang coule) est aujourd’hui considérée par la communauté médicale
comme un marqueur prépondérant dans l’apparition et dans l’évolution de certaines pathologies cardiovasculaires
(formation d’un caillot sanguin, anévrisme, sténose...). Les récents progrès technologiques ont permis d’adapter
l’Imagerie par Résonance Magnétique (IRM) à l’exploration vélocimétrique 3D du système cardiovasculaire grâce
à l’IRM de flux 4D. En plus d’être non invasive et non ionisante, cette technique ouvre l’accès à l’évaluation
de quantités dérivées du champ de vitesse telles que la pression ou le frottement pariétal, pertinentes lors
des diagnostics médicaux, mais difficilement accessibles par imagerie. Néanmoins, les contraintes technologiques
(temps d’acquisition, résolution spatiale, dépendance aux vitesses d’encodages) limitent la précision des mesures.
De plus, les complexités intrinsèques au processus d’acquisition en IRM rendent difficilement identifiables les
sources d’erreurs de mesures.

Cette thèse à pour but de développer une méthodologie standardisée permettant l’évaluation systématique
des mesures par IRM de flux 4D dans un régime d’écoulement complexe. Dans ce but, un fantôme IRM compa-
tible capable de générer un écoulement typique de ceux observés dans la circulation thoracique (crosse aortique,
bifurcation, anévrisme) est conçu et intégré à un banc d’essai expérimental. L’écoulement est prédit par simu-
lation numérique (Mécanique des fluides Numérique) et simultanément mesuré par IRM de flux 4D. Grâce à
une évaluation rigoureuse des différences entre ces deux modalités, on montre que la simulation numérique peut
être considérée comme une représentation fidèle du champ de vitesse réel. L’analyse met aussi en lumière d’une
part des erreurs typiques de mesures du champ de vitesse par IRM de flux 4D, ainsi que des erreurs relatives
au calcul de quantités dérivées (pression et le frottement pariétal). Enfin, une méthodologie de simulation du
processus d’acquisition en IRM est développée. Couplée avec la MFN, celle-ci permet de reconstruire des images
IRM synthétiques correspondant à l’écoulement de référence mesuré par un protocole d’acquisition donné, mais
exemptes de toutes erreurs expérimentales. La capacité à produire des images in silico permet notamment
d’identifier les sources d’erreurs (matériel, logiciel, séquence) en IRM de flux 4D.

Mots-clefs : hémodynamique, Mécanique des fluides numérique, IRM de flux 4D, simulation d’IRM.
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