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Résumé

La recherche en bruit de combustion est de nos jours majoritairement consacrée au développe-
ment d’outils de calcul du bruit rayonné par les flammes. Les méthodes actuelles de CFD telles
que la LES ou la DNS sont capables de fournir le champ acoustique rayonné par des sources de
bruit, mais elles sont cependant limitées, en raison de leur fort coût de calcul, à des domaines
de faible taille. Pour surmonter cette limitation, des méthodes hybrides ont été proposées dans
le passé. Dans cette approche, les sources de bruit sont découplées du son rayonné et calculées
par les méthodes DNS et LES. L’analogie acoustique permet alors de calculer le son rayonné
par des codes acoustiques, moins coûteux en temps de calcul.

L’objet de cette étude est de développer un outil numérique sur la base de l’analogie acous-
tique de Phillips pour de faibles nombres de Mach. Il permet de prendre en compte l’impact
des conditions limites sur le champ acoustique résultant. La LES et le code de calcul acoustique
développé ont été utilisés pour évaluer le bruit produit par une flamme turbulente confinée.
Les deux techniques donnent des résultats en accord tant que les bonnes quantités sont com-
parées: il a été observé que le signal de pression obtenu directement à partir de la LES contient
une quantité non négligeable de fluctuations hydrodynamiques, lesquelles doivent être nég-
ligées si on cherche à comparer seulement les champs acoustiques issus des deux codes.

L’hypothèse d’un nombre de Mach faible est totalement réaliste si l’on considère l’écoulement
présent dans une chambre de combustion. Elle conduit à des simplifications significatives
lorsque les analogies acoustiques sont considérées. Cependant, cette hypothèse ne peut pas
être utilisée pour l’écoulement en amont (entrée d’air, compresseur) ou en aval (turbine, tuyère)
des chambres de combustion aéronautiques. Un outil numérique a été développé pour pal-
lier à ce problème. Il est basé sur les équations d’Euler Quasi-1D, qui prennent en compte des
écoulements convectifs, non isentropiques et non isenthalpiques. Cet outil permet d’estimer les
conditions limites acoustiques qui doivent être imposées sur les entrées/sorties d’une chambre
de combustion pour prendre en compte la présence d’un écoulement de nombre de Mach non
négligeable, alors que les calculs acoustiques sont eux effectués sous cette hypothèse fortement
restrictive.

Mots clés : LES, bruit de combustion, analogies acoustiques





Abstract

Today, much of the current effort in combustion noise is the development of efficient numerical
tools to calculate the noise radiated by flames. Although unsteady CFD methods such as LES or
DNS can directly provide the acoustic field radiated by noise sources, this evaluation is limited
to small domains due to high computational costs. Hybrid methods have been developed to
overcome this limitation. In these schemes, the noise sources are decoupled from the radiated
sound. The sources are still calculated by DNS or LES solvers whereas the radiated sound is
evaluated by acoustic tools using an acoustic analogy.

In the present study, a numerical tool based on the Phillips’ analogy for low Mach numbers
flows has been developed. This tool accounts for the role of the boundary conditions in the
resulting acoustic field. Both LES and the acoustic solver developed here are used to assess
the noise produced by a turbulent swirled-stabilized flame generated in a staged combustor.
Good agreements are obtained between both techniques as long as the good quantities are
compared: the pressure signal obtained directly from LES contains a non negligible amount of
hydrodynamic fluctuations that must be removed when a suitable comparison is sought with
the acoustic solver.

The low Mach number assumption is completely realistic when considering the flow within
a combustion chamber; it also conducts to considerable simplifications when leading with
acoustic analogies. However, it cannot be used for the upstream (air-intake, compressors) and
downstream (turbines, nozzle) of an aeronautical combustion chamber. A numerical tool is de-
veloped based on the quasi-1D Linearized Euler Equations in order to account for convective,
non-isentropic and non-isenthalpic flows. By means of this tool, it is possible to estimate the
acoustic boundary conditions that should be imposed at the inlet/outlet of a given combustion
chamber when performing low-Mach number acoustic computations.

keywords: LES, combustion noise, acoustic analogies
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1
General Introduction

Contents
1.1 Noise in a combustion chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Scope of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Seeing a powerful jet aircraft take off and land, listening to its strong fierce roars when it is
passing by, still inspire awe in many of us. Captured by the magic of flight we usually forget
all the possible annoyances that aviation can produce. For instance, this amazing roar can
quickly become a painful nuisance as there is one departure every 30 seconds in some of the
biggest airports around the world [46]. In our skies, up to 25 millions flights take place each
year and according to ICAO air-traffic forecasts, this number will double by the year 2025 [35].
In terms of ease of mobility this is good news for humanity, however, some problems can be
magnified: consumption of non-renewable energy sources; air pollution; and no less important,
noise. In the last few decades, engineers and scientists have been working together on these
three subjects. Their understanding, prediction and mitigation is crucial.

Noise beyond 75 dB has been proved to be very harmful [58] (see Table 1.1) and particularly
annoying for frequencies between 3000Hz-6000 Hz [104] 1. According to the International Pro-
gram on Chemical Safety (WHO 1994), an adverse effect of noise is defined as a change in the
morphology and physiology of an organism that results in: noise-induced hearing impairment;
interference with speech communication; disturbance of rest and sleep; psychophysiological,
mental-health and performance effects; effects on residential behavior and annoyance; as well

13



14 Chapter 1: General Introduction

Noise Exposed population
Produced highly annoyed

(dB) (%)
45 1
50 5
55 10
60 17
65 26
70 37
75 49

Table 1.1: EU recommended relationships between annoyance and aircraft noise

as interference with intended activities [104]. But humans are not the only ones that suffer
from noise pollution; significant structural damage can occur to aircrafts when vibrations are
generated at specific frequencies.

But what is aircraft noise? Aircraft noise is the superposition of propagating pressure fluctu-
ations that are generated by different mechanisms belonging to the aircraft. These pressure
fluctuations propagate to both inwards into the cabine, affecting the passengers, and outwards
to the environment, annoying the inhabitants of nearby regions. Within an aircraft, several
sources of noise can be identified as shown in Fig. (1.1)

Landing gear 

Flaps 

Slats 

Fan 

Combus5on 
Chamber 

Jet Fuselage 

Figure 1.1: Main sources of aircraft noise

1Our hearing systems are not equally sensitive to all sound frequencies (ISO 1987a). Thus, not all frequencies are
perceived as being equally loud at the same sound pressure level, and when calculating overall environmental noise
ratings it is necessary to consider sounds at some frequencies as more important than those at other frequencies.
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One can identify from Fig. (1.1) the airframe noise and power-plant noise. The scale of turbu-
lence induced by the airframe varies considerably and a multifrequency noise signal is then
produced. During the final landing approach, airframe noise rises significatively. The deploy-
ment of high-lift devices (slats and flaps) and the landing gear not only create drag but also
considerable levels of noise. Of these two sources, the landing gear produces the most intense
noise, giving a spectrum-level increase of 5-10 dB and changing the directivity of the overall
source to near-spherical [94]. Aircraft propulsion systems, however, are without a doubt the
major sources of aircraft noise. Propulsion systems come in many forms: the jet, the turbofan,
piston and turbine driven propellers, the helicopter rotor and the developing ‘open rotor’ or
advanced, high-cruise-speed propeller. The level of noise produced by any of these engines is
related to the maximum thrust level and the thermodynamical cycle performed. As a conse-
quence, take-off is one of the noisiest phases of flight (75 dB-85 dB at about 3 miles) [58] since
at this stage, the highest levels of power are reached.

Three main sources of noise can be identified in a turbofan aeronautical engine: the fan-stator
interaction; the core noise; and the exhaust jet flow. Vortex shedding is created when the in-
coming stream of air flows through the fan. These wakes slap against the stators like waves on
a beach generating in turn important acoustic waves. The design of blades (profile, thickness,
number) for both fan and stator, the angular velocity of the fan and the absorption treatment
for tones in the inlet nacelle/bypass air ducts are the main mechanisms to control fan noise.
Core noise is the noise produced inside the combustion chamber and is related to the interac-
tions that can arise between the flame and the surroundings. No significant progress has been
done to control core noise so far as it is little understood. Absorbing materials to damp acoustic
waves is out of the question in this extremely hot region; any fundamental advancement would
consist in controlling combustion dynamics. Finally, it remains the so-called jet noise. The pure
jet engines and the low-bypass-ratio engines have extremely high exhaust velocities, which in
turn cause the highest levels of noise when compared to fan and core noise. Strong turbulence
is created when a high velocity stream of hot gases is discharged into the atmosphere. The
shear layer generated accounts for strong fluctuations of the largest turbulent eddies which in
turn generate big amplitude and low frequency pressure waves. Levels of jet noise have been
decreased mainly by velocity reduction of the jet flow that mixes with the ambient air. The de-
sign of high by-pass ratio engines has been conclusive on this matter since reductions up to 10
dB have been reached [58]. As a conclusion, it can be stated that due to the different improve-
ments in the science of noise reduction, relevant to jet and fan noise, the relative importance of
combustion noise tends to increase. Those seeking advancement in the field of noise reduction
are now looking towards combustion.

1.1 Noise in a combustion chamber

Acoustics in a combustion chamber (CC) is generated by different physical mechanisms which,
coupled or not, occur either inside, outside or at the boundaries of the combustor:
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• Inside: A combustion chamber is the part of an engine in which fuel is burnt. In aero-
nautical engines, this chemical reaction should generate considerable levels of thermal
power

∫
Q̇dv and for that reason flames must be turbulent and generally stabilized by a

swirled flow [74]. Noise is linked to fluctuations of thermodynamical quantities (density
ρ, pressure p, temperature T, entropy s, ...) that are somehow generated by the unsteady
velocity field and the turbulent flame.

• Outside: Clearly, acoustic pressure waves exist as well both upstream (compressor
stages and diffusor) and downstream (turbines and nozzle). These pressure oscillations
might travel either with or against the mean flow reaching the combustion chamber. Sub-
sequently, they interact with the turbulent flow/flame and the surroundings (walls, mul-
tiperforated plates, injectors, etc).

• At the combustion chamber boundaries: Acoustic waves can be produced when either
vortical or entropy waves reach zones of non-homogeneous mean flow [12, 55]. It usually
happens at the ‘HPD’ (high pressure distributor) just after the combustion chamber.

It is naive to believe that all these phenomena always happen independently of each other.
In some cases, they are totally coupled and their study becomes clearly extremelly difficult.
Classically, one can identify three different interactions that in the worst cases, when acoustic
energy is not efficiently dissipated, lead to instabilities:

• flame/entropy/acoustics In this case hot spots (entropy) are produced by the unsteady
flame. These hot spots travel downstream at the flow velocity until reaching the HPD
where acoustic waves are generated [12, 55]. These acoustic waves will travel upstream
attaining the reactive region. They will modify, as a consequence, the flame dynamics and
therefore the fluctuating entropy. When acoustic and entropy waves are coupled, a com-
bustion instability called ‘rumble’ might appear. This instability is characterized by its
low frequencies (50-150 Hz) and can take place during the startup phase of aeronautical
engines [23].

• turbulence/acoustics/boundaries Everywhere where turbulence is enhanced, acoustic
waves are generated. Acoustic waves can propagate until they are reflected on any
boundary and travel-back reaching the vortical zone. Turbulence, i.e. hydrodynamic
perturbations, will be in turn modified by this acoustic field and the close loop may re-
start. If the hydrodynamic preferential frequency coincides with a multiple of the acous-
tic resonant frequency of the specific configuration, significant unstable interactions may
occur.[81]. A ‘hydrodynamic instability’ would be said to have appeared.

• flame/acoustics/boundaries A volumetric expansion due to the unsteady heat release is
created. Acoustic waves are therefore generated and propagate until they attain reflect-
ing boundaries where they will be sent back. These waves propagate back, reaching the
flame and consequently influencing it by modifying the unsteadiness of the heat release.
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When an unstable coupling of this nature takes place, one will talk about ‘thermoacous-
tics instabilities’ [78, 22]. This is a broad field of study within the combustion community
[48]. Efforts have been done over several decades to understand the influence of acoustics
on flame dynamics [78, 18, 19, 73, 87, 49, 86, 88, 63]

Understanding combustion noise in real engines means understanding all these coupled phe-
nomena. However, the most clear starting point to study combustion noise is to ‘un-couple’ all
these mechanisms, focusing on one at a time. As a consequence, it is assumed that the sources
of noise (flame, turbulence, etc) are independent of the acoustic field generated. In other words,
that no instabilities occur. Still, the following noise generation phenomena remain and must be
considered:

• flame/entropy/acoustics→ ‘indirect combustion noise’. The sources of noise are the en-
tropy waves when crossing non-homogeneous regions (zones with mean flow gradients).

• Turbulence/acoustics→ ‘aerodynamic noise’. The unsteady turbulent field is the source
of noise. The influence of walls as scattering/reflecting mechanism (ex: wing airfoils,
cavities) are also usually considered into the physical formulations.

• flame/acoustics→ ‘direct combustion noise’. The unsteady heat release acts as a distri-
bution of acoustic monopoles which generate pressure fluctuations.

1.2 Scope of the present work

Combustion noise has been widely studied in open flames. These predictions are based on
what is known as hybrid methods. In these approaches the sources of noise are computed sep-
arately from the radiated acoustic field. Unsteady CFD methods as LES or DNS are used to
compute the sources of noise whereas wave equations coming from acoustic analogies are em-
ployed to compute the sound radiation produced by these sources. LES or DNS are rarely used
to estimate acoustic fluctuations directly, since these fluctuations are much smaller in compar-
ison to first order fluctuations, as velocity or temperature perturbations. The first objective of
this thesis regards this concern. It is seen how much the computation resolution of LES influ-
ence the quality of the estimations of noise. A second objective is linked to the hybrid approach
for the estimation of combustion noise. No significative studies within the combustion com-
munity have been performed to evaluate whether or not hybrid approaches are appropriate
to compute noise of confined flames. Confinement of flames leads to possible complexities:
one of them is that pressure fluctuations produced by the flame might contain an important
contribution of hydrodynamics since in confined flames turbulence might be significative ev-
erywhere. Another significant concern is the evaluation of acoustic-flow interactions. When
sound propagates through a quiescent homogeneous field, as in the far field for an open flame,
no acoustic-flow interactions exist. In confined domains, on the contrary, this interaction might
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be crucial everywhere and therefore acoustic phenomena as scattering or refraction might be
of considerable importance. Other issue to take into account in noise produced by confined
flames is the influence of acoustic boundary conditions since acoustic waves reflected by the
system boundaries contribute to the overall noise inside the domain. During this thesis, an
acoustic solver has been developed that resolves a simplified version of the Phillips’ equation.
The purpose of this acoustic tool is to understand the problematic described above and to state
the possible advantages and constraints that a hybrid approach might present when estimating
noise from confined flames. Also, procedures and numerical tools for post-processing LES data
are developed.

An important issue of low Mach number acoustic codes, as the Helmholtz solvers or the acous-
tic solver developed during this thesis, is the implementation of reliable acoustic boundary
conditions at inlets/outlets. These boundary conditions are expressed usually in terms of the
acoustic impedance that in turn depends on the mean flow through the boundaries. The acous-
tic impedance is hardly obtained either experimentally or numerically. In order to obtain values
of the acoustic impedance at the inlet/outlet of the combustion chamber from numerical CFD
simulations it would be necessary to model the entire engine. An alternative then relies on
what is known as quasi-1D Linearized Euler solvers. These numerical tools resolve the lin-
earized Euler Equations LEE for systems in which changes in the mean flow, due to changes
in the section area, are accounted for (see Fig. 1.2). In despite of this, the majority of the exist-
ing linearized Euler solvers consider isentropic and isenthalpic flows. In other words, neither
changes in entropy nor in the total pressure are allowed. During this thesis, the development of
a quasi-1D Euler solver was performed in which changes in entropy and total enthalpy through
the domain are considered. As a consequence, a first approximation of the acoustic impedances
at the inlet/outlet of an aeronautical combustion chamber can be obtained including the effect
that compression/expansion stages might have on the acoustics of the system.

CC 

CC 

Compressor Turbine 

Inlet  
CC 

Outlet  
CC 

Figure 1.2: Acoustic solvers: The Euler acoustic solver is used beforehand to provide proper
boundary conditions to the low Mach number acoustic solver.



1.3 Organization of the manuscript 19

1.3 Organization of the manuscript

This manuscript is organized as follows: first, the two considered approaches for the evalua-
tion of combustion noise (the direct and hybrid approaches) are described in the second chap-
ter. The governing equations of turbulent reactive flows are exposed as well as the governing
equations for Large Eddy Simulation. Subsequently, both Lighthill and Phillips’ analogies are
derived from the governing equations and some overview about the analytical solution of the
Lightill’s analogy is provided. The third chapter is focused on the numerical solution of a sim-
plified Phillips’ equation. The acoustic code developed during this thesis (AVSP-f) is explained
in order to focus on the discretization of the wave equation and the mathematical procedures
involved in the solution of the underlying linear system. The forth chapter presents the test
cases set up for the validation of the acoustic code including the noise produced by monopole
sources and by a two dimensional laminar premixed flame. In the fifth chapter the computa-
tion of the noise generated by a three dimensional turbulent premixed combustor is exposed.
Both direct and hybrid approaches are used for the estimation of combustion noise. The sixth
chapter consists in a review of the different analytical approaches proposed in the past in or-
der to evaluate impedances of isentropic and isenthalpic quasi-1D ducts [55]. These analytical
methods are then compared to the solutions of the quasi-1D LEE system solved thanks to a
numerical tool developed (SNozzle) during this work. Finally in the last chapter, the acous-
tic modes of a real gas turbine combustor are computed by a Helmholtz solver in which the
impedance evaluated numerically by SNozzle is imposed as an acoustic boundary condition.
The effect of this boundary condition on the acoustic modes evaluated is discussed.
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2.1 Introduction

Studies on combustion noise carried out by Bragg in 1963, recognized that a flame behaves as
a monopole radiator [9], due to the isotropic volumetric expansions induced by the dilatation
of gases once combustion occurs. Further on, the same year, Smith & Khilam stated that a
turbulent flame could be seen as acoustically equivalent to a set of monopole sources, each of
them radiating at different strengths, frequencies and phases [95]. Thomas & Williams in 1966
[100] did perhaps the first significative experimental study concerning direct combustion noise.

20
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In their experiment they fill soap bubbles with a reactive mixture and recorded the farfield
pressure generated by the burning of each isolated bubble. The noise (far-field pressure signal
p′) was then expressed in terms of the volume acceleration over the reactive region induced by
the non-steady combustion. This expression yields

p′(r, t) =
ρ∞

4πr
d2∆V

dt2 (2.1)

where ρ∞ is the far field air density at the measurement location r and r designates the distance
between the compact flame and the observation point. Two years later, Price [76] and Hurle
[34] proposed a relation that accounts for the rate of consumption of reactants as responsible
for this density dilatation

p′(r, t) =
ρ∞

4πr

(
ρu

ρb − 1

) [
dQ
dt

]

t−τ

(2.2)

In this expression ρu/ρb designates the volumetric expansion ratio of burnt to unburnt gases,
Q the total volumetric rate of consumption of reactants and τ is the time required for acous-
tic propagation from the combustion region to the measurement point r. Anyway, the first to
generalize these studies starting from the Navier-Stokes equations and deriving an analytical
expression was Strahle [98]. Following the procedure developed by Lighthill [50, 51], Strahle
proposed a rearrengement of the Navier-Stokes equations in which the acoustic field is sepa-
rated from the generators of combustion noise [99]. In order to obtain a compact formulation,
he considers that the acoustic wave length λ is large compared to any flame length scale L
(λ � L). This expression, which is valid for low Mach numbers, is recognized as the main
result in combustion noise theory [13]

p′(r, t) =
γ− 1
4πrc2

1

∫

Vc

∂ω̇T

∂t

(
r0, t− |r− r0|

c̄

)
dV(r0) (2.3)

Here γ is the specific heat ratio, c1 is the sound speed in the burnt gases and ω̇T the volumetric
heat release rate in the combustion zone. Equation (2.3) proves the relation (2.2) obtained on a
more intuitive basis. The reactive source ∂ω̇T/∂t is an efficient acoustic radiator, a monopole,
that has been proved to be much more important when compared to the classical aerodynamic
source from Lighithill analogy, the double divergence of the Reynolds tensor, which is in fact
a quadrupolar term [32]. A dimensional analysis performed on the sound power produced
by these sources in combustion systems shows that the acoustic power from the combustion
process is of the order of 1/M4 larger than the acoustic power generated by turbulence [102, 38].
Hence, for low Mach-number flows, the quadrupole source term can be neglected. Note that
to decrease pressure losses induced by high speed flows, most combustion systems indeed
operate at low Mach numbers [105].
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There are two main concerns when formulating acoustic analogies1:

1. The precision of the acoustic analogy chosen. It depends on the capacity of the propaga-
tion operator to take into account the interactions between the acoustic field and the flow
itself and, in particular, the effects of convection and refraction of waves.

2. The inclusion of radiating surfaces into the mathematical formulation either as additional
sources or merged in the acoustic operator.

In combustion noise formulations derived from Lighthill’s analogy, one considers an observer
in a uniform medium at rest receiving acoustic radiation from a distribution of sources of
sound. It is inherently assumed that the source lies in a limited region which is surrounded
by a uniform fluid to which the acoustic wave equation applies. These analogies actually do
include scattering mechanisms, but the drawback is that they are implicitly present into the
sources formulation [4]. It leads to several constraints since a completely decoupling of sources
from the radiated sound is not reached. As a consequence, density fluctuations ρ′ cannot be
neglected when evaluating this sources, and, if doing so, little errors will be added in the com-
putation of sources. This little errors will be magnified when solving the acoustic analogy and
consequently considerable miss-predictions of noise would be obtained. The first significant
step to include flow-acoustic interactions in the wave operator is due to Phillips [66] (1961). In
this expression mean flow-acoustic interactions are taken into account into the acoustic opera-
tor. Some years later Chiu & Summerfield [14] (1974) and Kotake [39] (1975) extended Phillips
formulation to reactive flows. The resulting formulation raised several advantages as for ex-
ample to account for scattering of acoustic waves when changes in the mean sound velocity
are present, which is naturally the case for reactive flows. Unfortunately, as shown by Lilley,
all the acoustic-flow interactions are not included on the left-hand side of this equation, and
flow effects on acoustics are still contained in the linear compressible part of the aerodynamic
source term. Lilley [52, 53] proposed an equation in which sound propagation effects are sep-
arated from sound generation as explained by Goldstein [31]. The wave operator of Lilley’s
equation is the correct wave operator containing all mean flow-acoustic interactions. An ex-
tension of this equation to reactive flows is proposed by Bailly [4]. Another method to account
for all acoustic-flow interactions is to force the Linearized Euler Equations LEE by appropriate
source terms [6, 24, 25]. One of the first applications of this numerical strategy was carried
out by Béchara [7] for predicting subsonic jet noise. The LEE do not only describe acoustic
perturbations: instability waves of the Kelvin-Helmholtz type are also solutions. On the other
hand, Bui [10] proposed to use the acoustic perturbation equations (APE) system combined
with specific source terms in order to investigate combustion noise. The homogeneous APE
system is used to describe wave propagation in the presence of a mean flow without exciting
vortical or entropy waves [26]. It should be noted that all refraction effects are not included in
the homogenous system [1].

1The term ‘analogy’ refers to the idea of representing a complex fluid mechanism of any aero/thermo-acoustic
process by an acoustically equivalent source term and an acoustic operator
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The extensions to reactive flows of Lighthill’s, Phillip’s and Lilley’s analogies in addition to
LEE and APE formulations have been proved successful for the study of noise generated by
open flames [40, 99, 16, 10, 36]. Studying noise radiated by such flames is important in order to
characterize the position, directivity and strength of each of the sources present [95]. Anyway,
in order to go further in the study of combustion noise the inclusion of reflecting surfaces is
mandatory. This is an issue where aeroacoustics is a head on top of combustion acoustics. In
aeroacoustics theory, Curle extended Lighthill’s analogy in order to account for turbulence-
body interactions and introduced a corresponding additional source mechanism that involves
the reaction force exerted by the body on the surrounding field, equivalent to an acoustic dipole
[20, 85]. This acoustic analogy has been deeply studied in cavity noise. When these bodies are
moving at not negligible velocities Curle’s analogy must be re-formulated. This was done
by Ffowcs-Williams and D. L. Hawkings at the end of the sixties [106]. Ffowcs-Wiliams and
Hawkings theory has been broadly implemented in the study of noise radiation by wing airfoils
[60, 15] and aerodynamic rotors [27].

2.2 Direct Computation of noise through Large Eddy Simulation

2.2.1 Governing equations of turbulent reacting flows

In terms of the material derivative
(

D
Dt = ∂

∂t + uj
∂

∂xj

)
the Navier-Stokes equations for mass and

momentum read

Dρ

Dt
= −ρ

∂uj

∂xj
(2.4)

ρ
Dui

Dt
= − ∂p

∂xi
+

∂τij

∂xj
+ ρ fi (2.5)

where ρ, u, p, τij and fi stand for the density, the velocity, the pressure, the viscous tensor and
the volume force respectively. The subindices i = 1 to 3 and j = 1 to 3 denote the component
of the specific vector/tensor. The equation that characterizes reacting flows is the one denoting
the balance of species k.

ρ
DYk

Dt
= ω̇k −

∂

∂xi
(ρVk,iYk) = ω̇k −

∂Jk

∂xi
(2.6)

where Yk is the mass fraction of species k, ω̇k is the reaction rate of the species k, Vk,i is the
diffusion velocity of species k in the direction i and Jk is the diffusion flux of species k. The
energy equation can be defined in multiple forms [74]. The equation for the total energy et =
e + u2

i /2 is
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ρ
Det

Dt
= − ∂qi

∂xi
− ∂

∂xi

(
puj
)
+

∂

∂xj

(
τijuj

)
+ Q̇+ ρ fiui (2.7)

Here qi represents the energy flux and and Q̇ is the heat source term. Q̇ can be, for instance, the
energy released by an electrical spark, a laser or a radiative flux. It should not be confused with
the heat released by combustion. The balance equation of enthalpy is the one used to account
for the energy balance in the present study:

ρ
Dh
Dt

=
Dp
Dt
− ∂qi

∂xi
+ τij

∂ui

∂xj
+ Q̇+ ρ fiui (2.8)

This equation is derived by combining the balance equation for the internal energy e with the
definition of enthalpy dh = de + d(p/ρ). The term τij

∂ui
∂xj

is known as the dissipation function
and represents the work done by the viscous stresses due to the deformation of a fluid particle.

2.2.2 Large Eddy Simulation

The dynamics of reactive flows is exactly described by the Eqs. (2.4)-(2.8). Nevertheless, no ana-
lytical solution exists for such a non-linear and coupled differential system of equations. There
is only one way to follow so that Navier-Stokes equations become solvable: discretize them.
The numerical schemes used for such discretizations must be of high order so that numerical
stability and precision is assured, and the grid must be extremely refined so that ‘physical’ so-
lutions are obtained: reactive flows contain fluid structures that range from the smallest scales
of turbulence (the kolmogorov scale η ∼ Re−3/4 m) or the flame thickness (∼ 10−4 m) to the
scales that can be of the size of the entire physical domain as the acoustic waves length (∼ 1 m).
It is then understandable that with today computer’s performance it is impossible to resolve
such equations for systems size that exceed some centimeters. A system as big as a combus-
tion chamber is therefore unresolvable. Fortunately, an approach solution has been proposed
[79] in which only the bigger scales of turbulence are explicitly computed and the smallest are
modeled. This technique is known as the Large Eddy Simulation LES. In order to solve only
the large structures of turbulence, Navier Stokes equations must be filtered:

f̄ (x) =
∫

f (x′)L(x− x′)dx′ (2.9)

where L stands for the LES filter. The Favre filter is the one usually applied and is defined
as 2 f̃ = ρ f /ρ̄. The filtered quantity ( f̄ or f̃ ) is explicitly resolved in the numerical simulation
whereas f ′ = f − f̄ corresponds to the unresolved part.

2The meaning of the symbols (̄) and (̃) given in this section stands only for this section.
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From this definition it is possible to write the system of equations that govern LES for non-
reacting flows. It yields [74]

Mass
∂ρ̄

∂t
+

∂

∂xj

(
ρ̄ũj
)

= 0 (2.10)

Momentum
∂ρ̄ũi

∂t
+

∂

∂xj

(
ρ̄ũiũj

)
+

∂ p̄
∂xi

=
∂

∂xj

[
τ̄ij − ρ̄

(
ũiuj − ũiũj

)]
(2.11)

Chemical species

∂ρ̄Ỹk

∂t
+

∂

∂xj

(
ρ̄ũjỸk

)
=

∂

∂xj

[
Vk,jYk − ρ̄

(
ũjYk − ũjỸk

)]
+ ¯̇ωk (2.12)

Enthalpy

∂ρ̄h̃s

∂t
∂

∂xj

(
ρ̄ũjh̃s

)
=

Dp
Dt

+
∂

∂xj

[
λ

∂T
∂xj
− ρ̄

(
ũjhs − ũjh̃s

)]
+ τij

∂uj

∂xi

− ∂

∂xj

(
ρ

N

∑
k=1

Vk,jYkhs,k

)
+ ¯̇ωT

(2.13)

where hs stands for the sensible enthalpy of the mixture. The quantities (ũiuj − ũiũj), (ũjYk −
ũjỸk) , (ũjhs − ũjh̃s), Vk,iYk and ( ¯̇ωk) are known as the unresolved Reynolds stresses, unresolved
species flux, unresolved enthalpy flux, filtered laminar diffusion fluxes and filtered chemical
reaction rate respectively. These terms, which need to be modeled, are the quantities that ac-
count for the influence of the small structures on the entire physical system. LES system of
equations for reactive flows may vary somehow with respect to Eq. (2.10) - Eq. (2.13) due to
the combustion model applied. As an example in the Thickened Flame combustion model TF
[11, 17, 74], viscous terms (as for instance the filtered diffusive species flux J̄j,k and the filtered
heat flux q̄i) and notably the filtered chemical reaction rate ¯̇ωk are weighted by several factors
in order to account for the ‘new’ thickness of the flame.

Large Eddy Simulation has become an important tool for the simulation and post-processing
analysis of turbulent flows. It offers the best promise in the foreseeable future for the estimation
of noise from flows at Reynolds Numbers of interest in both open and closed systems. In
aeroacoustics, LES plays an important role in the study of aerodynamical generated noise of
numerous practical cases that range from air jets, high-lift devices or landing gears in an aircraft
to the rear-view mirror of a car or the blades of a wind turbine [65, 8]. In reactive flows, LES
has been successfully applied to partially premixed and non-premixed open flames [70, 36] as
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well as in more complex cases such as gas turbine combustors [21, 82, 90]

Direct computations of noise resolve the flow field together with the sound radiation. A com-
pressible LES code is therefore required in addition to high-resolution numerical schemes in
order to minimize both dispersion and dissipation. Moreover, the computational domain must
be large enough to include the sources of noise as well as part of the acoustic near field [54].
Very expensive computational costs can arise since hydrodynamic and acoustic scales differ by
a large amount in typical applications where the Mach number is moderate. This is even more
true when dealing with thermoacoustics since the transport equation of each species (Eq. 2.12)
must be considered in order to solve the problem of compressible multicomponent reactive
flows. Hybrid methods for noise computation has been developed in order to overcome these
constraints.

2.3 Hybrid computation of noise: Acoustic Analogies

In hybrid approaches, the computation of sound is made in two different steps. The sources of
noise are modeled first, which requires a proper estimation of the flow and the flame dynamic
properties. These sources are assumed independent of any acoustic quantity. The far field
acoustic radiation is then predicted from the different noise sources. Acoustic propagation
is calculated based on equations relevant to acoustic phenomena. The derivation of a wave
equation governing sound propagation in an arbitrary mean flow (and therefore accounting
for mean flow-acoustic interactions) remains a difficult and controversial task in aeroacous-
tics [4]. Since the sources of noise and the acoustic radiation are computed separately, the
computational effort is less critical than in direct sound computations. The sources of noise
can be computed by numerical codes with lower-resolution schemes provided that numer-
ical dissipation is carefully controlled [103] and that the acoustic source formulations fulfill
true radiation characteristics (dipole, quadrupole, etc). Regarding thermoacoustics, and more
specifically combustion noise, it has been established that turbulent flames behave like low fre-
quency monopoles [9]. After the different sources have been computed, the sound radiation,
due to these sources, is evaluated by solving the wave operator coming from an acoustic anal-
ogy equation [28, 36, 97]. Notably, Strahle’s formulation of Lighthill’s analogy [50, 98] and the
extension of the Phillips’ analogy [39] which takes into account the conservation equation of
multicomponent reacting flows. Alternative methods include the Linearized Euler equations
or its APE formulation [10, 5].

2.3.1 An energy expression useful for acoustics

The combustion process, and therefore the heat released by combustion ω̇T is contained into
enthalpy h. This thermodynamical variable can be expressed as the sum of both sensible en-
thalpy of the mixture hs and the enthalpy of formation of the mixture ∆h0

f .
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h = hs + ∆h0
f (2.14)

Both hs and ∆h0
f can be expressed as the sum of the contributions of each species k. Hence:

h = ∑
k

hs,kYk + ∑
k

∆h0
f ,kYk (2.15)

Introducing now the specific heat of species k at constant pressure cp,k, the material derivative
of sensible enthalpy hs can be obtained by

Dhs

Dt
=

D
Dt ∑

k
hs,kYk =

D
Dt ∑

k
cp,kTYk (2.16)

= ∑
k

cp,kT
DYk

Dt
+ ∑

k
cp,kYk

DT
Dt

(2.17)

= ∑
k

hs,k
DYk

Dt
+ cp

DT
Dt

(2.18)

And as a consequence

Dh
Dt

= ∑
k

hs,k
DYk

Dt
+ cp

DT
Dt

+ ∑
k

∆h0
f ,k

DYk

Dt
(2.19)

Expression (2.19) can be re-stated considering changes in pressure , density and mass fraction
rather than changes in temperature. Considering the ideal gas equation,

P = rρT =

(
R ∑

k

Yk

Wk

)
ρT (2.20)

where Wk is the molecular weight of species k and R = 8.314 J mol−1K−1, the differential of
temperature yields

dT =
∂T
∂p


ρ,Yk

dp +
∂T
∂ρ


p,Yk

dρ + ∑
k

∂T
∂Yk


ρ,p,Yl 6=k

dYk (2.21)

dT =
1
ρr

dp− T
ρ

dρ− T ∑
k

W
Wk

dYk (2.22)

The term T ∑k
W
Wk

dYk can be expressed as Td(ln r). Replacing Eq. (2.22) into Eq. (2.19) leads to
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ρ
Dh
Dt

= ρcp

[
1
ρr

Dp
Dt
− T

ρ

Dρ

Dt
− T

D
Dt

(ln r)
]

+ ρ ∑
k

(
hs,k + ∆h0

f ,k

) DYk

Dt
(2.23)

The last term of Eq. (2.23) can be developed so that heat release due to combustion ω̇T comes
up. This term is defined as ω̇T = −∑k(hs,k + ∆h0

f ,k)ω̇k [74]. Using the balance of species
(Eq. 2.6) results in

∑
k

(
hs,k + ∆h0

f ,k

)(
ω̇k −

∂Jk

∂xi

)
= ∑

k
hs,kω̇k + ∑

k
∆h0

f ,kω̇k −∑
k

hs,k
∂Jk

∂xi
−∑

k
∆h0

f ,k
∂Jk

∂xi
(2.24)

= −ω̇T −∑
k

hk
∂Jk

∂xi
(2.25)

Equation (2.8) is combined with Eqs. (2.23),(2.25) so that

cp

r
Dp
Dt
− cpT

Dρ

Dt
− ρcpT

D
Dt

(ln r)− ω̇T −∑
k

hk
∂Jk

∂xi

=
Dp
Dt
− ∂qi

∂xi
+ τij

∂ui

∂xj
+ Q̇+ ρ fiui

(2.26)

Dividing everywhere by (cpT) and neglecting volume forces ( fi = 0) yields

Dp
Dt

(
1

rT
− 1

cpT

)
− Dρ

Dt
− ρ

D
Dt

(ln r)

+
1

cpT

[
−ω̇T −∑

k
hk

∂Jk

∂xi
+

∂qi

∂xi
− τij

∂ui

∂xj
− Q̇

]
= 0

(2.27)

A similar derivation for the material derivative of the density ρ can be found in [4]. The re-
sulting expression is really useful to study acoustics, as both Dρ

Dt and 1
c2

Dp
Dt appear explicitly.

Reorganizing Eq. 2.27 and knowing that cp = rγ/(γ− 1)

Dρ

Dt
=

1
c2

Dp
Dt

+
(γ− 1)

c2

[
−ω̇T −∑

k
hk

∂Jk

∂xi
+

∂qi

∂xi
− τij

∂ui

∂xj
− Q̇

]
− ρ

D
Dt

(ln r) (2.28)

where the velocity of sound c =
√

γrT has been introduced.
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2.3.2 The Lighthill’s Analogy

When considering frozen vortical structures or a frozen flame, clearly all the forces implied in
each of these physical mechanisms are totally balanced and no sound is produced. But once
unsteadiness occurs, these forces are not balanced anymore. In the case of turbulence, for ex-
ample, the reciprocal motion of the surrounding gas tries to compensate for this ‘unexpected’
dynamics. Nevertheless, this reciprocal motion fails in completely absorbing the vortical en-
ergy and therefore local compressions and dilatations due to compressibility are transmitted
to the adjacent particles: sound has been generated. Into the source region (vortex/flame dy-
namics) the flow can be consider incompressible, forasmuch as the compressible part of the
pressure fluctuation p′a is much smaller than the pressure fluctuations generated by both un-
steady vorticity p′h (if sound is generated by turbulence) or unsteady temperature p′f (if sound
is generated by combustion). In this region, pressure fluctuations can be then computed by
solving a poisson equation ∇2 = ψ where ψ is a function of the implied sources. In the far-
field, on the contrary, the fluctuations due to acoustics p′a are much more important than the
significatively much smaller p′h,p′f . In the case of turbulence, for instance, it is known that hy-
drodynamic pressure fluctuations are negligible in the far field since they typically decay at
least as the inverse third power of the distance to the sources [80]. Pressure fluctuations p′a may
be assessed then by solving an acoustic wave equation.

Lighthill’s analogy is considered as the starting points of aeroacoustics as a research field. The
Navier-Stokes equations are rearranged so that the resulting formulation has the ‘shape’ of a
inhomogeneous wave equation: in the left hand side (LHS) the acoustic operator and at the
right hand side (RHS) the sources responsible for noise generation. Neglecting volume forces,
the mass and momentum equations (Eqs. 2.4 and 2.5) can be expressed in their conservative
forms:

∂ρ

∂t
+

∂ρuj

∂xj
= 0 (2.29)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
(2.30)

Applying the time derivative ∂
∂t to Eq. (2.29), the spatial derivative ∂

∂xi
to Eq. (2.30) and sub-

stracting them results in

∂2ρ

∂t2 −
∂2 p
∂x2

i
=

∂2

∂xi∂xj

(
ρuiuj − τij

)
(2.31)

In order to construct the D’Alembertian operator, the term 1
c2

∞

∂2 p
∂t2 is added to both RHS and LHS

of Eq. (2.31). c∞ represents the sound velocity in the quiescent propagation media (far field). It
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yields

1
c2

∞

∂2 p
∂t2 −

∂2 p
∂x2

i
=

∂2

∂xi∂xj

(
ρuiuj − τij

)
− ∂2ρ

∂t2 +
1

c2
∞

∂2 p
∂t2 (2.32)

A density-pressure relation for the region far from noise sources (subindex ∞) is now added
to the RHS of Eq. (2.32). This term ( 1

c2
∞

∂2 p∞
∂t2 − ∂2ρ∞

∂t2 ) is in fact zero since at infinity the flow is
considered at rest and isentropic. Eq. (2.32) becomes

1
c2

∞

∂2 p
∂t2 −

∂2 p
∂x2

i
=

∂2

∂xi∂xj

(
ρuiuj − τij

)
− ∂2

∂t2

[
(ρ− ρ∞)− 1

c2
∞

(p− p∞)
]

(2.33)

The last term of Eq. (2.33), discussed by Morfey [61] in 1973, is known as the excess of density
ρe = (ρ− ρ∞)− 1

c2
∞
(p− p∞) and can be seen as an estimator of the deviation from the adiabatic

relation dρ = dp/c2
∞. Eventually, the Lightill analogy reads

1
c2

∞

∂2 p
∂t2 −

∂2 p
∂x2

i
=

∂2

∂xi∂xj

(
ρuiuj − τij

)
− ∂2ρe

∂t2 (2.34)

For an isentropic flow the excess of density ρe is clearly zero. In such a case, the responsible
for noise generation is the unsteady turbulence, ∂2

∂xi∂xj

(
ρuiuj − τij

)
, a term which is known as

the aerodynamic source of noise. Moreover, at high Reynolds number the contribution of the
viscous tensor τij is negligible in comparison to the Reynolds tensor ρuiuj. Reactive flows are,
on the contrary, of course non-isentropic. It will be seen in the following that in such flows the
term ρe is the responsible for most of the noise production. The purpose now is to express the
material derivative of the excess of density Dρe

Dt as function of the material derivative of density
Dρ
Dt .

Dρe

Dt
=

∂ρe

∂t
+ uj

∂ρe

∂xj
=

∂ρe

∂t
+

∂

∂xj
(ρeuj)− ρe

∂uj

∂xj
(2.35)

=
∂ρe

∂t
+

∂

∂xj
(ρeuj) +

ρe

ρ

Dρ

Dt
(2.36)

Replacing by the definition of ρe
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D
Dt

[
(ρ− ρ∞)− 1

c2
∞

(p− p∞)
]

=
∂ρe

∂t
+

∂

∂xj
(ρeuj) +

[
(ρ− ρ∞)− 1

c2
∞

(p− p∞)
]

1
ρ

Dρ

Dt
(2.37)

Dρ

Dt
− 1

c2
∞

Dp
Dt

=
∂ρe

∂t
+

∂

∂xj
(ρeuj) +

Dρ

Dt
− ρ∞

ρ

Dρ

Dt
− 1

c2
∞ρ

(p− p∞)
Dρ

Dt
(2.38)

and resolving for ∂ρe
∂t

∂ρe

∂t
=

ρ∞

ρ

Dρ

Dt
+

1
c2

∞ρ
(p− p∞)

Dρ

Dt
− 1

c2
∞

Dp
Dt
− ∂

∂xj
(ρeuj) (2.39)

The energy equation in terms of the material derivative of the density Dρ
Dt was obtained in

section 2.3.1. Equation (2.28) is thus introduced leading to

∂ρe

∂t
=

ρ∞

ρ

(γ− 1)
c2

(
−ω̇T −∑

k
hk

∂Jk

∂xi
+

∂qi

∂xi
− τij

∂ui

∂xj
− Q̇

)
− ρ∞

D
Dt

(ln r)

+
1

c2
∞ρ

(p− p∞)
Dρ

Dt
− 1

c2
∞

(
1− ρ∞c2

∞
ρc2

)
Dp
Dt
− ∂

∂xj
(ρeuj)

(2.40)

The complete equation is then obtained in the frame of Lighthill’s analogy. This exact reformu-
lation of the Navier-Stokes equations reads

1
c2

∞

∂2 p
∂t2 −

∂2 p
∂x2

i
=

∂2

∂xi∂xj

(
ρuiuj − τij

)

+
∂

∂t

[
ρ∞

ρ

(γ− 1)
c2

(
ω̇T + ∑

k
hk

∂Jk

∂xi
− ∂qi

∂xi
+ τij

∂ui

∂xj
+ Q̇

)
+ ρ∞

D
Dt

(ln r)

]

+
1

c2
∞

∂

∂t

[(
1− ρ∞c2

∞
ρc2

)
Dp
Dt
− p− p∞

ρ

Dρ

Dt

]

+
∂2

∂xj∂t
(ρeuj)

(2.41)

As it can be observed, the sources contributing to noise in reacting flows are multiple. It is
observed that the heat release ω̇T, the diffusion flux of species Jk as well as the non-isomolar
combustion due to changes in r generate noise. The heat flux qi, the dissipation function τij

∂ui
∂xj

and the energy sources applied to the system Q̇ are also responsible for noise generation. The
terms present on the third line of Eq. (2.41) are related to the inhomogeneities of the flow respect
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to the propagation media. Finally, the last term of Eq. (2.41) stands for the noise produced by
the acceleration of density inhomogeneities and should be related to the indirect combustion
noise.

Lighthill’s analogy is a suitable formulation when sources are compact and the radiation of
sound takes place in a quiescent field. Extensions of Lighthill’s analogy in order to account for
turbulence-body interactions has been derived by Curle [20] and Ffowcs-Williams and Hawk-
ings [106]. As stated in the introductory part of this section, the acoustic operator of Lighthill’s
analogy does not account for acoustic-flow interactions. All these possible interactions are im-
plicitly included in the source terms and therefore density fluctuations on the sources cannot
be neglected. However, in order to compute this compressible sources it would be necessary to
resolve the pressure field in which these sources are embedded or, in other words, to solve the
problem itself. Some simplifications then must be considered.

Simplifying Lighthill’s Analogy

Equation (2.41) is an exact derivation of the Navier-Stokes equation and therefore until now no
assumptions or simplifications have been done. Nevertheless, this equation in this way does
not present a significant utility. Assumptions must be considered so that Lighthill’s equation
become tractable and therefore solvable. The idea is then only to consider the predominant
mechanisms generators of noise. In doing so, diffusive fluxes of species Jk and the dissipation
function τ ∂ui

∂xj
are first neglected. Q̇ vanishes if no external energy sources are applied to the sys-

tem and ∂qi
∂xi

is zero if heat fluxes are considered small. Moreover, at high Reynolds number the
viscous tensor τij is negligible if compared to the Reynolds stresses ρuiuj and the propagation
media is considered homogenous (p, ρ, c → p∞, ρ∞, c∞) so that all the third line disappears.
Further on, combustion can be considered isomolar if air is used as oxidizer so that D

Dt (ln r)
vanishes and for low Mach numbersM the acceleration of density inhomogeneities ∂2

∂xj∂t (ρeuj)
can be neglected . The simplified Lighthill Equation then reads

1
c2

∞

∂2 p
∂t2 −

∂2 p
∂x2

i
=

∂2

∂xi∂xj

(
ρ∞uiuj

)
+

(γ− 1)
c2

∞

∂ω̇T

∂t
(2.42)

Hassan demonstrates in his work [32] that noise produced by combustion is much more im-
portant than the one generated by turbulence. Note that the combustion source of noise is a
monopole ( ∂

∂t ) whereas the aerodynamic source of noise is a quadrupole ( ∂2

∂x2
i
). A quadrupolar

source of noise is known to be a bad radiator of sound if compared to a monopolar source and
therefore the aerodynamic source can be neglected. Finally, heat release ω̇T and pressure p are
decomposed by its mean and fluctuating parts (p = p̄ + p′ , ω̇T = ¯̇ωT + ω̇′T ). Combustion
noise in a quiescent media is given then by
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1
c2

∞

∂2 p′

∂t2 −
∂2 p′

∂x2
i

=
(γ− 1)

c2
∞

∂ω̇′T
∂t

(2.43)

where ∂ p̄
∂xi
≈ 0 due to theM = 0 assumption. It is useful also to solve this wave equation in

the frequency domain. Considering harmonic perturbations of pressure p′ and the heat release
ω̇′T:

p′(x, t) = <( p̂(x)e−iωt) (2.44)

ω̇′T(x, t) = <( ˆ̇ωT(x)e−iωt) (2.45)

where ω = 2π f and f is the oscillation frequency in Hertz. Equation (2.43) then becomes

∂2 p̂
∂x2

i
+

ω2

c2
∞

p̂ = −iω
(γ− 1)

c2
∞

ˆ̇ωT (2.46)

Equation (2.46) is commonly known as the Helmholtz equation. Expressions (2.43) and (2.46)
can be easily solved by means of the Green’s functions as shown in section 2.3.4.

2.3.3 The Phillips’ Analogy

Lighthill’s theory considers the radiation of sound throughout a uniform media caused by
stationary or moving sources. In spite of the fact that directivity is accounted for in Lighthill’s
formulation, this directivity is only caused by the convective pattern of sources (if any) which
is not completely true. In real flows the propagation media is non-homogeneous at least in
the vicinity of the sources region (within about a wavelength or so) and most of the directivity
encountered in an acoustic field is originated by the acoustic-mean flow interactions that takes
place in this non-homogeneous near field [31].

Phillips’ rearrangement of the Navier-Stokes equations is considered as the first significative
work that takes into account some of all possible acoustic-flow interactions. In this moving-
media wave equation, acoustic-mean flow interactions are accounted for in the respective
acoustic operator. Combining first and second law of thermodynamics results in

1
cp

Ds
Dt

=
1

γp
Dp
Dt
− 1

ρ

Dρ

Dt
(2.47)

A new variable is introduced by Phillips [66] and is defined as π = 1
γ ln(p/p∞). It can be
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straightforward included in Eq. (2.47)

1
cp

Ds
Dt

=
Dπ

Dt
− 1

ρ

Dρ

Dt
(2.48)

and by using the continuity equation

1
cp

Ds
Dt

=
Dπ

Dt
+

∂uj

∂xj
(2.49)

The variable π can also be introduced in the momentum equation. It yields

Dui

Dt
+

1
ρ

∂p
∂xi
− 1

ρ

∂τij

∂xj
= 0 → Dui

Dt
+ c2 ∂π

∂xi
− 1

ρ

∂τij

∂xj
= 0 (2.50)

The material derivative D
Dt is now applied to the Eq. (2.49) and the spatial derivative ∂

∂xi
to the

momentum equation.

D
Dt

(
1
cp

Ds
Dt

)
− D

Dt

(
Dπ

Dt

)
− D

Dt

(
∂uj

∂xj

)
= 0 (2.51)

∂

∂xi

Dui

Dt
+

∂

∂xi

(
c2 ∂π

∂xi

)
− ∂

∂xi

(
1
ρ

∂τij

∂xj

)
= 0 (2.52)

The operation D
Dt

(
∂

∂xj

)
is not commutative. As a consequence

D
Dt

∂

∂xi
=

∂2

∂t∂xi
+ uj

∂2

∂xi∂xj
(2.53)

∂

∂xi

D
Dt

=
∂2

∂xi∂t
+

∂

∂xi

(
uj

∂

∂xj

)
=

∂2

∂xi∂t
+

∂uj

∂xi

∂

∂xj
+ uj

∂2

∂xi∂xj
(2.54)

∂

∂xi

D
Dt

=
D
Dt

∂

∂xi
+

∂uj

∂xi

∂

∂xj
(2.55)

Replacing the subindex j to i in Eq. (2.49) and accounting for the previous relation, Eq. (2.51)
becomes

D
Dt

(
1
cp

Ds
Dt

)
− D2π

Dt2 −
∂

∂xi

Duj

Dt
+

∂uj

∂xi

∂ui

∂xj
= 0 (2.56)
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Finally, Eqs. (2.52) and (2.56) are sum leading to the final expression for the Phillip’s analogy.

D2π

Dt2 −
∂

∂xi

(
c2 ∂π

∂xi

)
=

∂uj

∂xi

∂ui

∂xj
− ∂

∂xi

(
1
ρ

∂τij

∂xj

)
+

D
Dt

(
1
cp

Ds
Dt

)
(2.57)

In order to have an explicit expression for Phillip’s analogy with all the possible sources in a
reacting flow, the energy equation Eq. (2.28) is combined with Eq. (2.47) leading to

1
cp

Ds
Dt

=
(γ− 1)

ρc2

[
ω̇T + ∑

k
hk

∂Jk

∂xi
− ∂qi

∂xi
+ τij :

∂ui

∂xj
+ Q̇

]
+

D
Dt

(ln r) (2.58)

The Phillip’s equation for reacting flows reads

D2π

Dt2 −
∂

∂xi

(
c2 ∂π

∂xi

)
=

∂uj

∂xi

∂ui

∂xj
− ∂

∂xi

(
1
ρ

∂τij

∂xj
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+
D
Dt

[
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ρc2

(
ω̇T + ∑

k
hk

∂Jk

∂xi
− ∂qi

∂xi
+ τij :

∂ui

∂xj
+ Q̇
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+
D2

Dt2 (ln r)

(2.59)

Equation (2.59) was introduced by Chiu & Summerfield [14] and Kotake [39]. This expres-
sion accounts for some acoustic-flow interactions since gradients of the sound velocity c are
included in the acoustic operator. It has several advantages compared to Lighthill’s analogy
since mean temperature and density of the propagation media are not assumed homogeneous
in space, which is clearly the case for reacting flows. The term responsible for noise genera-
tion due to hydrodynamic fluctuations is now defined as ∂uj

∂xi

∂ui
∂xj

. The density contribution in

this term has been removed, contrary to its form in the Lighthill’s analogy ∂2

∂xi∂xj
(ρuiuj). It is

clear then that for Low Mach numbers there is not anymore ambiguity in this source defini-
tion since acoustic-flow interactions are not more included in this term [4]. Nevertheless, Lilley
[52] demonstrated that when the Mach number is not negligible, acoustic-flow interactions are
still contained in the compressible part of ui. Another interesting remark done by Bailly [4] is
that in this equation the source responsible for indirect noise (the acceleration of density inho-
mogeneities) does not longer appears. It is recommended thereby that if indirect noise is not
negligible and not strong changes in the mean flow are present, Lighthill’s analogy should be
the formulation under consideration.
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Simplifying Phillips’ Analogy

Phillips’ equation (Eq. 2.59), as Lighthill’s formulation, is an exact rearrangement of the fluid
dynamics equations. Similar assumptions as those made in section 2.3.2 are considered here.
It is assumed then that the diffusion of species Jk, the dissipation function τ ∂ui

∂xj
, external en-

ergy sources Q̇, heat fluxes ∂qi
∂xi

, the viscosity stresses τij, changes in the molecular weight of
the mixture D

Dt (ln r) and the Reynolds stress tensor ρuiuj are neglected in comparison to the
monopolar source of noise ∂ω̇T

∂t . The simplified Phillips’ equation then reads:

D2π

Dt2 −
∂

∂xi

(
c2 ∂π

∂xi

)
=

∂

∂t

(
γ− 1
ρc2 ω̇T

)
(2.60)

All quantities are decomposed by their mean and fluctuating parts. Small acoustic perturba-
tions respect to the mean pressure are considered so that π = p′/(γ p̄). Another assumption
usually made is to consider the Mach number characterizing the flow M̄ as small. In doing so,
the convective part of the material derivative vanishes and D

Dt ≈ ∂
∂t . This version of Phillips’

equation would read

1
γ p̄

∂2 p′

∂t2 −
∂

∂xi

(
c2

γ p̄
∂p′

∂xi

)
=

∂

∂t

(
γ− 1
ρc2 ω̇T

)
(2.61)

It should be noted that no assumptions about uniformity of the propagation media until now
has been done. Nevertheless this is necessary if solvable Phillips’ equation is sought. It is then
assumed that the fluctuations of speed of sound can be neglected. Note anyway that changes
in the mean flow are still considered ( ∂c̄

∂xi
6= 0)

∂2 p′

∂t2 −
∂

∂xi

(
c̄2 ∂p′

∂xi

)
= (γ− 1)

∂ω̇′T
∂t

(2.62)

Equation (2.62), as done for the Lighthill’s case, can also be expressed in the frequency domain.
Usually, a spectral evaluation of acoustics presents several advantages. In linear acoustics, for
instance, it is possible to study the contribution of each frequency separately since they do not
interact which each other. In doing so, acoustic boundary conditions can be well character-
ized by an acoustic property called impedance, which most of the time is a function of the
frequency of oscillation. Dealing with boundary conditions is more challenging when con-
sidering the time domain formalism. Another advantage of a frequential definition is that in
a spectral evaluation there is not necessity of any transient computation to reach a stationary
state. Applying harmonic perturbations (Eqs. 2.44 and 2.45) on p′ and ω̇′T results in a Helmholtz
equation written as
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∂

∂xi

(
c̄2 ∂ p̂

∂xi

)
+ ω2 p̂ = −iω(γ− 1) ˆ̇ωT (2.63)

There is not known analytical Green’s functions associated with this wave operator [4], and so
no integral formulation giving the far field pressure. Most of the time this equation is solved
numerically as in the present study.

2.3.4 Solving Lighthill’s analogy analytically

In the Lighthill’s Analogy the D’alembertian is the operator which describes the acoustic radia-
tion due to all the different sources present (Eq. 2.41). This inhomogeneous wave equation can
be expressed as

1
c∞

∂2 p
∂t2 −

∂2 p
∂x2

i
= q (2.64)

where q is an arbitrary source and c∞ is the propagation speed of the acoustic perturbations. Ex-
plicit integral solutions for this hyperbolic equation are available by means of the Green’s the-
orem. The integral solutions obtained accounts for the effect of sources, boundary conditions
and initial conditions in a relative simple formula. A Green function is written as G(x, t|y, τ)
and should be red “as the measurement of G at the observation point x at time t due to a pulse
δ produced at position y at time τ". Mathematicaly it yields

1
c∞

∂2G
∂t2 −

∂2G
∂x2

i
= δ(x− y)δ(t− τ) (2.65)

The delta function δ(t) is not a common function with a pointwise meaning, but a generalized
function formally defined by its filter property:

∫ ∞

−∞
F(x)δ(x− x0)dx = F(x0) (2.66)

for any well-behaving function F(x). Moreover, Green functions have two important properties
that must be taken into account for further developments. The first one is called ‘causality’
which states that at a time before the pulsation occurs (t < τ), G(x, t|y, τ) is equal to zero as
well as its temporal derivative. The second property is called ‘reciprocity’ and is defined as

G(x, t|y, τ) = G(y,−τ|x,−t) (2.67)
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Using now the reciprocity relation and interchanging the notation x ↔ y and t ↔ τ it can be
proved that the Green’s function also satisfies the equation:

1
c∞

∂2G
∂τ2 −

∂2G
∂y2

i
= δ(x− y)δ(t− τ) (2.68)

A formal solution of the inhomogeneous wave equation

1
c∞

∂2 p′

∂τ2 −
∂2 p′

∂y2
i

= q(y, τ) (2.69)

can be obtained by multiplying Eq. (2.68) by p(y, τ) and Eq. (2.69) to G(x, t|y, τ), substracting
them and finally integrating τ between t0 and t, and y over V. This leads to:

∫ t

t0

∫

V

[(
1

c2
∞

∂2G
∂τ2 −

∂2G
∂y2

i
− δ(t− τ)δ(x− y)

)
p′(y, τ)−

(
1

c∞

∂2 p′

∂τ2 −
∂2 p′

∂y2
i
− q
)

G(x, t|y, τ)
]

dydτ = 0

(2.70)
∫ t

t0

∫

V

[
p′

1
c2

∞

∂2G
∂τ2 − p′

∂2G
∂y2

i
− G

1
c2

∞

∂2 p′

∂τ2 + G
∂2 p′

∂y2
i

+ qG
]

dydτ − p′(x, t) = 0 (2.71)

Reorganizing the terms

p′(x, t) =
∫ t

t0

∫

V
qGdydτ−

∫ t

to

∫

V

(
p′

∂2G
∂y2

i
− G

∂2 p′

∂y2
i
−
)

dydτ +
1

c2
∞

∫ t

t0

∫

V

(
p′

∂2G
∂τ2 − G

∂2 p′

∂τ2

)
dydτ

(2.72)

And finally integrating by parts results in

p′(x, t) =
∫ t

t0

∫

V
qGdydτ −

∫ t

t0

∫

S

(
p′

∂G
∂yi
− G

∂p′

∂yi

)
nidσdτ − 1

c2
∞

[∫

V

(
p′

∂G
∂τ
− G

∂p′

∂τ

)
dy
]

t0
(2.73)

The first integral is the convolution of the source q with the pulse response G, the Green’s
function. The second integral represents the effect of differences between the actual physical
boundary conditions on the surface S and the conditions applied to G. When G satisfies the
same locally reacting linear boundary conditions as the actual field, this surface integral van-
ishes. In this case, the Green’s function under consideration is called ‘taylored’. On the other
hand, this surface integral can also vanishes when no boundaries conditions are applied (free-
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field). Finally, the last integral represents the contribution of the initial conditions at t0 to the
acoustic field and disappears if the causality condition is applied. Free-field noise computation
can then be performed by the following expression

p′(x, t) =
∫ t

t0

∫

V
q(y, τ)G(x, t|y, τ)dydτ (2.74)

If noise is generated by the unsteady heat release rate induced by combustion and if the prop-
agation of noise takes place in free-field, the simplified Lighthill’s equation Eq. (2.43) applies

1
c2

∞

∂2 p′

∂t2 −
∂2 p′

∂x2
i

=
(γ− 1)

c2
∞

∂ω̇′T
∂t

(2.75)

The farfield pressure is then given by

p′(x, t) =
∫ t

t0

∫

V
G(x, t|y, τ)

(γ− 1)
c2

∞

∂ω̇′T
∂t

dydτ (2.76)

On the other hand, the 3D temporal Green’s function is defined as

G(x, t|y, τ) = −δ(t− r/c∞)
4πr

(2.77)

where r = |x− y| . As a result, the farfield pressure radiated by a free turbulent flame can be
obtained

p′(x, t) =
(γ− 1)
4πrc2

∞

∂

∂t

∫

V
ω̇′T

(
y, t− r

c∞

)
dy (2.78)

Expression (2.78) can be found in the work of Strahle [98, 99] for instance. It can be noted
from this expression that the farfield pressure radiated from a turbulent flame results from
the contribution over the combustion region of elementary sources formed by the local time
rates of change of the heat release rate. Each source produces an elementary contribution at
the measurement location after a time delay corresponding to propagation between the source
inside the combustion region and the point of observation in the farfield. Scaling rules can also
be derived from Eq. (2.78) for the thermo-acoustic efficiency ηta, defined as the ratio between
the radiated acoustic power and the thermal power released in the flow (typically ηta ∼ 10−6−
10−5) for combustion noise in absence of instabilities.
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Useful Green’s functions

The 3D free-field Green’s function expressed in the temporal domain has already been given in
Eq. (2.77). This function has been widely used in combustion noise studies since it is associated
with the radiation of sound from a monopolar ‘spherical’ source, which is the basis of combus-
tion noise theory. In addition to this 3D Green’s function, the 2D temporal Green’s function can
also be useful for the study of noise radiation in academic cases. It reads

G(x, t|y, τ) = − c∞H [(t− τ)− r/c∞]
2π
√

c2
∞(t− τ)2 − r2

(2.79)

where H is the Heavyside function, H(u) = 1 if u > 0 and H(u) = 0 otherwise. Another useful
approach in combustion noise is the study of noise radiation under spectral analysis. Green’s
functions G are therefore expressed in the frequency domain by applying a Fourier transform
defined as follows

Ĝ(x|y, ω) =
∫ ∞

−∞
G(x, t|y, τ)e−iωtdt (2.80)

By doing so, both 3D and 2D Green’s functions in terms of frequency are obtained:

3D spectral Green’s function

Ĝ(x|y, ω) =
e−ikr

4πr
(2.81)

2D spectral Green’s function

Ĝ(x|y, ω) =
i
4

H(2)
0 (kr) (2.82)

where H(2)
0 (kr) is the Hankel function of second kind and order 0 and r = |x − y|. These

Green’s functions satisfy the wave equation written in the frequency domain

(
∂2

∂x2
i

+
ω2

c2
∞

)
Ĝ(x|y, ω) = δ(x− y) (2.83)
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It has been seen in section 2.3.4 that when considering the D’Alembert operator in the wave
equation, it is possible to obtain an explicit solution by means of Green’s functions. Notably,
this is the case for the Lighthill’s equation in both time and frequency domain (Eq. 2.43 and
2.46). On the contrary, Phillips analogy (Eq. 2.59) has no known analytical solutions since
its wave operator is much more complex. Even if this equation is simplified to Eq. (2.62) of
Eq. (2.63), the fact of having a wave operator that accounts for changes in the mean speed of
sound prevents deriving an explicit solution of this wave equation.

41
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3.1 Discretizing the Phillips’ equation

When neglecting convection, the Phillips’ wave operator reads

∂

∂xi

(
c̄2 ∂

∂xi

)
= ∇ · c̄2∇ (3.1)

This operator may be discretized by different strategies, e. g.: finite differences, finite elements
or finite volumes. The method chosen is the finite volume method. There is one main reason for
doing so: three-dimensional and complex geometries are aimed. It means that it is indispens-
able to consider unstructured meshes, which are clearly much easier accounted in the finite
volume discretization technique rather than finite differences. Also, the fact that finite volumes
methods have been conceived under the conservative philosophy, conservation equations are
satisfactorily fulfilled as long as the method is well applied in each of the control volumes. Fur-
thermore, finite volumes methods are both less expensive and much easier to understand and
to program than finite elements. Each step within the finite volume algorithm has a physical
meaning which is clearly a great advantage. There is however one main drawback when us-
ing finite volumes: it is difficult to develop higher order schemes than those of second order
when leading with three-dimensional geometries. The reason is that finite volumes have to be
well optimized in each of their steps (numerical interpolation, differentiation and integration)
which is clearly a not easy task.

Within the finite volume method several strategies arise. There are two common formulations:
the cell-centered and cell-vertex method. In the first, the discrete values of the conserved vari-
ables are stored at the center of the control volume (the grid cell) and values at the nodes are
obtained by averaging between the values of the neighboring cells. In the cell-vertex formula-
tion the discrete conservative quantities are stored at vertices of the control volumes (or grid
nodes) and values of mean fluxes are obtained by averaging all along the faces of the grid
cell. The cell-vertex formulation is the one used in this study and has been inherited by the
numerical scheme used in the AVBP solver [3].

Ni

ek

n

n

n

Ni+l
i+1

Ni−l
i−1

Figure 3.1: A triangular element

For simplicity let us consider a triangular cell although a similar analysis can be straightfor-
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ward carried out for tetrahedra. The notation used here is shown in Fig. 3.1. The index ek

stands for a cell element k that is composed by three nodes Ni±l . Each face of this triangle is
characterized by its normal vector n. The gradient operator for a quantity p̂ corresponding to
a cell element ek is discretized following Green’s theorem. It reads

∇ p̂


ek

=
1

Vek

∮

∂ek

p̂ek ndS (3.2)

where p̂ek and Vek stands respectively for the pressure and the volume associated to the cell ek.
Let us remind that in the cell-vertex method all quantities are stored in the vertices of the cell.
As a result, p̂ek must be expressed as an interpolation function g of the neighboring nodes No.
Hence p̂ek = g( p̂o) where o = ..., i − li−2, i − li−1, i, i + li+1, i + li+2, ... is a vector that contains
the neighbor nodes for a given node i and l is a vector that contains the distance between the
node i and its neighbors 1. Equation (3.2) is then expressed as:

∇ p̂


ek

=
1

Vek

∮

∂ek

g( p̂o)ndS = hek( p̂o) (3.3)

The triangular cell of Fig. 3.1 makes part of a whole set of triangular elements as shown in
Fig. (3.2). Following Green’s theorem, the divergence of c̄2∇ p̂ for the node Ni is discretized as

(
∇ · c̄2∇ p̂

) 
Ni

=
1

VNi

∮

∂Ni

c̄2
Ni
∇ p̂


ek+α

· ndS (3.4)

(
∇ · c̄2∇ p̂

) 
Ni

=
1

VNi

∮

∂Ni

c̄2
Ni

hek+α
( p̂o) · ndS (3.5)

where α is a vector that contains the distance between the cell ek and its the neighbors.

Note that a volume Vi is associated to the Node i and that this volume is enclosed by surfaces
∂VNi

2. This volume Vi is shown in the shaded region of Fig. 3.2 and ∂Ni is represented by the
thick black line enclosing it. Let us consider now what happens when this Node Ni is placed in
a boundary of the computational domain. Such a case is represented by Fig. 3.3.

The analysis is similar to that of the Eq. (3.5). Nevertheless, the Volume of the node Ni has been
truncated. The surface enclosing VNi is still represented by ∂VNi as before but in the present
case ∂VNi is splitted in S1,i and S2,i being S2,i the surface corresponding to the node Ni adjacent
to the computational boundary.

1Let us recall that for unstructured meshes a cell can be composed by nodes that are not numerate consecutivelly
(e.g.: if a node i = 5 has adjacent nodes numbered 9 and 13, then l is 4 and 8 respectively)

2We talk about a ‘volume’ VNi being enclosed by ‘surfaces’ ∂VNi . Of course for the present two dimensional case
the volume and the surface become a surface and an edge respectively.
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Figure 3.2: A set of six triangular cells embedded in a mesh grid
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Figure 3.3: A set of three triangular cells boundarying the computational domain

1
VNi

∮

∂Ni

c̄2
Ni
∇ p̂


ek+α

· ndS =
1

VNi

(∮

S1,i

c̄2
Ni

hek+α
( p̂o) · ndS

)
+

1
VNi

(∮

S2,i

c̄2
Ni

hek+α
( p̂o) · ndS

)
(3.6)

The flux of the pressure gradient across the surface S2,i is associated to the boundary conditions
imposed to the surface. This boundary condition can be expressed in terms of an acoustic
impedance Ẑ and pressure p̂. Hence (∇ p̂ · nS2,i) = f

(
ẐNi, p̂i)

)
. Expression (3.6) becomes

1
VNi

∮

∂Ni

c̄2
Ni
∇ p̂


ek+α

· ndS =
1

VNi

(∮

S1,i

c̄2
Ni

hek+α
( p̂o) · ndS

)
+

1
VNi

(∮

S2,i

c̄2
Ni

f (ẐNi , p̂i)dS
)

(3.7)

Finally, the Helmholtz equation Eq. (2.63) for the node Ni reads
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[
∇
(
c̄2∇ p̂

)
+ ω2 p̂

]
Ni

= −iω(γ− 1) ˆ̇ωT


Ni

1
VNi

(∮

S1,i

c̄2
Ni

hek+α
( p̂o) · ndS

)
+

1
VNi

(∮

S2,i

c̄2
Ni

f (ZNi , p̂i) dS
)

+ ω p̂i = −iω(γ− 1) ˆ̇ωT,i

(3.8)

Equation (3.8) must be solve for each node Ni of the computational domain. In matrix repre-
sentation, this equation can be written as

[
Ai,j + Bi,j

]
p̂o = Cj (3.9)

where

Ai,j p̂o =
1

VNi

(∮

S1,i

c̄2
Ni

h( p̂o) · ndS
)

+ ω2 p̂i (3.10)

Bi,j p̂o =
1

VNi

(∮

S2,i

f (ZNi , p̂i)dS
)

(3.11)

The matrix Ai,j is a n × n sparse polydiagonal matrix where n stands for the total number
of nodes in the computational grid. The number of diagonals depends on the degree of the
interpolation used to relate the neighboring values of Ni to obtain the respective value at Ni.
It should be clear then that Ai,j 6= 0 when Ai,j = Ai,o, or in other words, Aij is non-zero for
the neighboring nodes implied into the respective interpolation procedure. As a result Ai,j = 0
if j 6= o, i.e., j > i + l, and if j < i − l. As a consequence, Ai,j = 0 for elements far from the
mean diagonal. This can be observed in Fig. 3.4a. Let us recall that l can contain high values
for unstructured meshes.

Matrix Bi,j is a n× n sparse polydiagonal matrix and is associated to the boundary conditions.
It is non-zero when both the node Ni lies on one of the boundary surfaces and ẐNi 6= 0. As a
consequence, B does not play any role when Neumann boundary conditions are used: ẐNi = 0
or û ∝ ∇ p̂ = 0, i.e., when solid boundaries (walls) are considered. A typical distribution of the
non-zero elements of matrix Bi,j is shown in Fig. (3.4b)

Cj = −iω(γ− 1) ˆ̇ωT,i (3.12)

Ci,j is a vector of size n. It contains the sources of the acoustic problem, in our case the unsteady
heat release rate ( ˆ̇ωT). The majority of its values are zero, except for those ones where the flame
is present. The matrices Ai,j, Bi,j and the vector Cj are shown in Fig. (3.4)
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i

j

i

j

i

j

a) Ai,j b) Bi,j c) CjCT
j

Figure 3.4: Typical Matrices for a non-structured 3D problem [93]. Non-zero entries are shown
as dark points. Here CT is the transpose of C. The dyadic product CCT is shown to display the
non-zero elements of Cj

3.2 Boundary Conditions in AVSP-f

There are three types of acoustic boundaries in the numerical tool AVSP-f. The first one is of
the Dirichlet type. It means that at the boundary a zero pressure fluctuation p̂ is imposed. This
represents usually the boundary condition used at the outlet of the domain when this one is
open to the atmosphere. In order to impose p̂ = 0, it is necessary to remove the concerned
nodes from the matrix Ai,j so that the linear system to resolve is well-posed. Equation (3.9)
becomes:

[
Ai,j + Bi,j

]
p̂o = Cj ⇒

(
Ai,j


i,j 6∈∂SD

)
p̂o = Cj (3.13)

where SD stands for the surfaces in which the homogeneous Dirichlet Boundary condition is
applied. Another important boundary condition corresponds to totally reflecting boundaries,
usually applied to walls and inlets. It is of the type of Neumann since what is imposed here
is the gradient of p̂. The linearized momentum equation for low Mach number flows in the
frequency domain reads

iωû · n = ∇ p̂ · n (3.14)

It is clear that no fluctuations of velocity are allowed normal to the surface (û · n = 0) if the
gradient of the fluctuating pressure normal to the boundary is zero (∇ p̂ · n = 0). For this
homogeneous Neumann boundary condition, the system to resolve is
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[
Ai,j + Bi,j

]
p̂o = Cj ⇒ Ai,j p̂o = Cj (3.15)

in which Bi,j = 0. Finally, there is another boundary condition that imposes a relation be-
tween the acoustic velocity normal to the surface û · n and the acoustic pressure p̂. Injecting the
definition of the acoustic impedance Ẑ = p̂/iωû · n into Eq. (3.14) leads to:

Ẑ∇ p̂ ·~n− iω p̂ = 0 (3.16)

This type of boundary condition is known as a ‘Robin’ boundary condition. Note that Bi,j 6= 0
as soon as Ẑ 6= 0 and Ẑ 6= ∞ over some piece of the boundaries of the flow domain.

3.3 Solving the systemAx = b

From Eq. (3.9) it can be seen that the algebraic system to solve is of the form Ax = b. Several
approaches can be used to solve linear systems; they are divided mainly in two groups: non-
iterative methods or ‘direct’ methods and iterative methods. Within ‘direct’ methods, two ap-
proaches are most often used: the LU (or Gauss Elimination) and the QR decomposition. Both
of them have the same philosophy: “divide and conquer". In mathematical terms it means

A = LU or A = QR (3.17)

where A is a n× n matrix, L is a lower triangular n× n matrix, U is an upper triangular n× n
matrix, Q is an orthonormal3n × n matrix and R is an upper triangular n × n matrix. When
solving the linear system by the LU decomposition, three steps are followed

1. Ax = b→ LUx = b

2. solve Lw = b for the unknown w

3. solve Ux = w for the unknown x.

If a QR decomposition is preferred, three steps are also considered

1. Ax = b→ QRx = b

2. solve Qw = b for the unknown w

3An orthornormal matrix is a matrix with n orthogonal columns in which the norm of each column is equal to
one.
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3. solve Rx = w for the unknown x.

Both of these methods are suitable when dealing with small matrices (n<1000 say), but not for
very big systems since the number of floating operations scales as n3.

In order to reduce the dimension of the problem, the matrix Q ∈ Cn×n is reduced to a rectan-
gular matrix Q̂m ∈ Cn×m where m < n and the symbol (̂) represents a rectangular matrix. This
Q̂m matrix is then multiplied to the original matrix A resulting in a system AQ̂m = D̂. It yields

Ax = b → Axj = b− rm → A
(

x0 + Q̂my
)

= b− rm → r0 − D̂y = rm (3.18)

Ax b y D̂yA Q̂m

n× n n×m nn n× n n×m

m m

n n

x0 r0 rm

Figure 3.5: Reduction of the linear system

where x0 is an initial estimation of xm, xm is the approximation of the solution x at the m iter-
ation and rm = b−Axm is the corresponding residual of xm. Figure 3.5 shows that the system
to solve clearly reduces in size. To resolve the system Ax = b for x has become an analog
problem: resolve r0 − D̂y = rm for y so that rm is minimized. It should be clear then that if rm

goes to zero for a given vector y, then the corresponding xm = x0 + Q̂my can be considered a
good solution of the linear system Ax = b. It follows

Find y such that ‖r0 − D̂y‖2 = ‖rm‖2 is minimized (3.19)

where ‖ · ‖2 is the norm in the Euclidean space. This problem (Eq. 3.19) is solved by the least
square methodology [45] which will be explained in section 3.3.2. The subsequent step is to
decompose the matrix remembering the philosophy ‘divide and conquer’. The LU decompo-
sition is not considered here since this method only accounts for square matrices. Another
possibility would be the QR decomposition. Nevertheless, it has been demonstrated that the
algorithm following this procedure is unstable [101]. The reliable technique to use is known as
the Hessenberg decomposition. The matrix D̂ under this method becomes

D̂ = Q̂m+1H̃m (3.20)
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where Q̂m+1 ∈ Cn×m+1 is an orthonormal matrix and H̃m ∈ Cm+1×m is un upper-Hessenber
matrix 4.

D̂ y H̃ y

n×m

Q̂m+1

n×m + 1

m + 1×mm m

Figure 3.6: Hessenberg decomposition

The least square problem is now given by

Find y such that ‖r0 −Qm+1H̃my‖2 = ‖rm‖2 is the minimized (3.21)

Let us introduce r0 = q1‖r0‖ (see Eq. 3.43). The vector q1 can be expressed as Qm+1e1 = q1

where e1 is the canonical unit vector e1 = (1, 0, 0, ...). Furthermore, the invariance of in-
ner products means that the angles between vectors are preserved, and so are their lengths:
‖Qx‖ = ‖x‖. The final expression results in

‖Qm+1
(
‖r0‖e1 − H̃my

)
‖2 = ‖

(
‖r‖e1 − H̃my

)
‖2 (3.22)

leading to

Find y such that ‖
(
‖r‖e1 − H̃my

)
‖2 = ‖rm‖2 is minimized (3.23)

Once y is found through the least square methodology, a solution for the Axm ≈ b problem can
be found by solving xm = x0 + Q̂my. There are still two crucial issues to resolve:

1. How to construct such matrices Q̂m and H̃m?.

2. What is the ‘least square problem’ about ?

These two issues will be addressed in sections (3.3.1) and (3.3.2) respectively.

4An upper- Hessenberg matrix H is a matrix with zeros below the first subdiagonal
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3.3.1 On the Arnoldi algorithm

The most important idea to draw from concepts of inner products and orthogonality is this:
inner products can be used to decompose arbitrary vectors into orthogonal components [101].
For example, suppose that {q1, q2, · · · , qn} is an orthonormal set, and let a be an arbitrary vec-
tor. The quantity q∗a is then a scalar5. Utilizing these scalars as coordinates in an expansion, a
vector v is defined.

v = a− (q∗1a)q1 − (q∗2a)q2 − · · · − (q∗na)qn (3.24)

It is clear that the vector v is orthogonal to {q1, q2, · · · , qn}. This can be verified by multiplying
all terms by q∗i

q∗i v = q∗i a− (q∗1a)(q∗i q1)− (q∗2a)(q∗i q2)− · · · − (q∗na)(q∗i qn) = q∗i a− (q∗1a)(q∗i qi) = 0 (3.25)

Equation 3.24 is the basis of orthogonal decomposition. Let us consider now a matrix A com-
posed by n columns aj.

A =




a1

∣∣∣∣∣∣∣∣∣∣∣

a2

∣∣∣∣∣∣∣∣∣∣∣

a3

∣∣∣∣∣∣∣∣∣∣∣

· · ·

∣∣∣∣∣∣∣∣∣∣∣

an




(3.26)

At the very beginning no qj exists. It must be built iteratively as follows:

v1 = a1 → q1 =
v1

‖v1‖
(3.27)

since q1 must be also normalized. Subsequently, q2 should be then

v2 = a2 − (q∗1a2)q1 → q2 =
v2

‖v2‖
(3.28)

And after n steps, the qn vector is computed

5The symbol ()∗ represents the complex conjugate of given a quantity
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vn = an −
n

∑
j=1

(q∗j an)qj → qn =
vn

‖vn‖
(3.29)

This procedure of obtention of qn orthonormal matrices is known as the Gram-Schmidt Orthog-
onalization. This algorithm is useful to understand the basic procedure of orthogonalization.
Moreover, in addition to the matrix Q, the upper triangular matrix R is obtained straightfor-
ward by doing

rij = q∗i aj for every i 6= j and rii = ‖vi‖ (3.30)

In practice, the Gram-Schmidt formula are not applied since it has been demonstrated that this
algorithm turns out to be unstable. The Modified Gram-Schmidt algorithm computes the same
result but with a more stable algorithm as follows.

v(1)
j = aj (3.31)

v(2)
j = v(1)

j − q1q∗1v(1)
j (3.32)

v(3)
j = v(2)

j − q2q∗2v(2)
j (3.33)

... (3.34)

v(j)
j = v(j−1)

j − qj−1q∗j−1v(j−1)
j (3.35)

recalling that ∑n
j=1(q∗j v)qj = ∑n

j=1(qjq∗j )v. This algorithm should be red as:

v(1)
1 → v(1)

2 , v(2)
2 → · · · → v(1)

i , v(2)
i , · · · , v(i)

i → · · · (3.36)

It has been explained how to perform a QR factorization with an efficient algorithm. However,
as stated before, the QR factorization is not the best strategy to decompose a matrix such as
D̂ (Eq. 3.18). A better method is to factorize by Q̂m+1 and H̃. The procedure performed to
this purpose is similar to the Modified Gram-Schmidt orthogonalization and is known as the
Arnoldi Algorithm [2].

AQ̂m = Q̂m+1H̃m (3.37)

The 1st to mth column of this equation can be written as follows:
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Aq1 = h11q1 + h21q2 (3.38)

Aq2 = h12q1 + h22q2 + h32q3 (3.39)

Aq3 = h13q1 + h23q2 + h33q3 + h43q4 (3.40)
... (3.41)

Aqm = h1mq1 + · · ·+ hmmqn + hm+1,mqm+1 (3.42)

And the vectors vj are obtained as

q1 = r0/‖r0‖ (3.43)

v(1)
j = Aqj (3.44)

v(2)
j = v(1)

j − q1q∗1v(1)
j (3.45)

v(3)
j = v(2)

j − q2q∗2v(2)
j (3.46)

... (3.47)

v(j)
j = vji−1)

j − qj−1q∗j−1v(j−1)
j (3.48)

Finally, all the elements qj and hij are computed by

for j = 1 : m− 1→ qj+1 = vj/‖vj‖ and hij = q∗i Aqj for every i 6= j + 1 and hj+1,j = ‖vj‖

It should be evident from Eqs. (3.38) and (3.42) that the vectors {qj} form bases of the successive
Krylov subspaces generated by A and r defined as follows:

Km = 〈r0,Ar0, ...,An−1r0〉 = 〈q1, q2, ..., qm〉 ⊆ Cn (3.49)

where 〈·〉 means the span of. The Arnoldi process can be described as the systematic con-
struction of orthonormal bases for successive Krylov subspaces knowing that the Krylov n×m
matrix Kn is written as
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Kn =




r0

∣∣∣∣∣∣∣∣∣∣∣

Ar0

∣∣∣∣∣∣∣∣∣∣∣

A2r0

∣∣∣∣∣∣∣∣∣∣∣

· · ·

∣∣∣∣∣∣∣∣∣∣∣

An−1r0




(3.50)

3.3.2 The least square problem

Let us consider an overdetermined problem of the form

Âx = b (3.51)

This problem has not exact solution. Nevertheless the residual r = Âx− b will be minimized
if a vector x is found such that r ⊥ range(Â). In mathematical terms, it can be expressed by the
inner product

Â∗r = 0 or Â∗ Âx = Â∗b (3.52)

or if applying the QR factorization

(Q̂mR)∗r = 0 or R∗Q̂∗mQ̂Rx = R∗Q̂∗mb and then Q̂mRx = Q̂mQ̂∗mb (3.53)

and as a consequence

Âx = Q̂mQ̂∗mb = Pb (3.54)

where P ∈ Cm×m is the orthogonal projector onto range(Â). It is important to understand that
we have transformed a problem with no solution Âx = b (Eq. 3.51) into a problem with an
exact solution Âx = Pb. This exact solution x for the problem Âx = Pb is also the vector that
minimizes the residual for the first problem r = Âx− b. In terms of the problem of our interest
(Eq. 3.23), the expression giving the solution for y reads

y = R−1Q̂∗m‖b‖e1 (3.55)

where the Hessenberg Matrix has been factorized H̃m = Q̂mR.
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3.4 GMRES

The Generalized Minimal RESidual (GMRES) method is a very well known algorithm for solv-
ing linear systems of considerable size. It was proposed by Saad and Schultz in 1986 [83] in
order to solve large, sparse and non Hermitian linear systems. GMRES belongs to the class of
Krylov based iterative methods and is composed by the procedures described in the previous
sections. Fig. 3.7 shows a scheme in which the GMRES method is summarized.

Q̂m+1 H̃m

y

m = m + 1

YES 

GMRES 
m = 1

NO 

AQ̂m

xm = x0 + Q̂my

x0

η < tolerance

Figure 3.7: The GMRES Algorithm

GMRES has been chosen to solve the problem of Eq. (3.9) due to its portability, simplicity,
flexibility and efficiency. It is important to emphasize that the fact that GMRES belongs to the
class of Krylov based iterative methods allows to solve the linear system by using only Matrix-
vector products instead of storing the full matrix A.
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Stopping criteria of GMRES

In order to analyze the convergence of GMRES, it is important to know which mathematical
properties of A determine the size of ‖r‖. There are two main observations. The first is that
GMRES converges monotonically ‖rm+1‖ ≤ ‖rm‖. The reason is that ‖rm‖ is as small as possible
for the subspace Km. By enlarging Km to the space Km+1, it is only possible to decrease the
residual norm, or at worst leave it unchanged. The second is that after at most n steps the
process must converge, at least in the absence of round errors→ ‖rn‖ = 0.

Many algorithms of numerical linear algebra satisfy a condition that is both stronger and sim-
pler than stability. We say that an algorithm f̃ for a problem f is backward stable if f̃ (x) = f (x̃)
for some approximated solution x̃ = xm. Here x̃ = x + δx and f̃ = f + δ f are a perturbed so-
lution and a perturbed function respectively. The normwise backward error η is then defined
as:

η =
‖xm − x‖
‖x‖ =

‖A−1(b− rm)−A−1b‖
‖A−1b‖ =

‖rm‖2

‖b‖2
(3.56)

The backward error measures the distance between the data of the initial problem and those of
the perturbed problem. The best η one can require from an algorithm is a backward error of
the order of the machine precision. In practice, the approximation of the solution is acceptable
when its backward error is lower than the uncertainty on the data.

3.4.1 Preconditioning

The convergence of a matrix iteration depends on the properties of the matrix, i.e., the eigen-
values, the singular values, or sometimes other information. It is interesting to comprehend
that in many cases, the problem of interest can be transformed so that the properties of the ma-
trix are improved drastically. This process of ‘preconditioning’ is essential to most successful
applications of iterative methods.

Suppose we wish to solve an n × n nonsingular system Ax = b. For any nonsingular n × n
matrix M, the system MAx = Mb has the same solution. If we solve this system iteratively, the
convergence will depend on the properties of MA instead of those of A. If this preconditioner
M is well chosen, the problem may be solved much more rapidly. The best choice ever for a
preconditioner is the inverse of the system matrix A, i.e., M = A−1. Of course it would be
ridiculous to use A−1 as a preconditioner since this is already the solution of the problem. The
idea is then to make M−1 as close as A as possible. In other words, to make the eigenvalues
of M−1A be close to 1 and ‖M−1A− I‖2 small where I is the identity matrix. In doing so, a
quickly convergence of the solution is expected.

Two well known preconditioning methods are the Diagonal scaling or Jacobi (M−1 = diag(A))
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and the Incomplete Cholesky or LU factorization. These last are known as ‘incomplete’ since M−1

is allowed only to have nonzeros in the positions where A has non zeros. This is done in
order to keep the sparsity of the original matrix A. A Complete Cholesky or LU factorization
would destroy zeros leading to a dense M matrix. These preconditioner are appropiated for ill-
conditioned problems of small size. But for big and ill-conditioned A matrices, these methods
are not the best suited.

3.4.2 Dynamic preconditioning: the embedded GMRES

The right preconditioning of the Ax = b problem reads

Ax = AMc = b (3.57)

The traditional way to solve this system would be first to find a matrix M such thatAM is well
conditioned; second, to solve the system for the vector c; and finally to find x from x = Mc.
In this procedure it is imperative to explicitly construct and store the matrix M. A better way
to apply preconditioning would be to find a preconditioning matrix of size n× m by solving
an second linear system. In other words, applying GMRES to find a good preconditioner.
Recalling Eq. (3.18), we add the preconditioning matrix M into the computation

Ax = A
(

x0 + Q̂my
)

= b− rm → Ax = A
(

x0 + MQ̂mc
)

= b− rm (3.58)

where x = x0 + MQ̂mc. The matrix Ẑm, which is the proyection of M in the krylov space, is
defined as Ẑm = MQ̂m. Eq. (3.58) becomes

A
(

x0 + Ẑmc
)

= b− rm (3.59)

The preconditioning matrix M is let it to beA−1, so thatAM−1 = I. The vector zm of the matrix
Ẑm can now be found by solving the linear system

zm = Mqm → Azm = qm (3.60)

which is clearly a problem of the type Ax = b. Once the vector zm is found, the orthogonal-
ization (finding qm) is carried out applying the Arnoldi procedure to AẐm instead of AQ̂m,
resulting in a faster convergence. Figure 3.8 represents the procedure just described.

As it can be observed from Fig. 3.8 the system Ax = b is solved by one GMRES algorithm
embedded in another GMRES. As a consequence, the present strategy is called the embedded
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m = m + 1

η < tolerance

YES 

FGMRES 
m = 1

NO 

AẐm

Q̂m+1 H̃m

c

x0

xm = x0 + Ẑmc

Azm = qm

zm

Figure 3.8: The embedded GMRES Algorithm

GMRES and is the one applied in the present study to solve the linear system

(
∇ · c̄2∇+ Iω2)
︸ ︷︷ ︸

A

p̂︸︷︷︸
x

= iω(γ− 1) ˆ̇ωT︸ ︷︷ ︸
b

(3.61)

which represents the propagation of noise due to a thermal source. Note that Eq. (3.61) must
be solved once for each frequency ω. As a result, in order to build a proper spectrum of p̂ (e.g.:
0-1000 Hz ; ∆ f = 10Hz) this system must be solved around hundred times.

AVSP-f uses a CERFACS implementation of the GMRES algorithm for both real and complex,
single and double precision arithmetics suitable for serial, shared memory and distributed
memory computers [29, 30].
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4.1 Fundamental validation cases

The sound radiation produced by arbitrary 2D monopoles embedded in a free and quiescent
field is computed by the numerical tool AVSP-f. Non-reflecting boundary conditions are ap-
plied on the computational boundaries in order to mimic the free-field condition. Results ob-
tained by AVSP-f are subsequently compared to those evaluated analytically.

The non-homogenous Helmholtz equation can be written as

∇2 p̂(x, ω) + k2 p̂(x, ω) =
Ŝ(y, ω)

c̄2 (4.1)

58
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dVi

dVj

x

yi

yj

e1

e2

ri

rj

Figure 4.1: Monopoles placed at y and listener placed at x

where k = ω/c̄2 and Ŝ(y, ω) is a forcing source term. In this equation y represents the distance
from the source to the reference point and x represents the distance from the observer to the
reference point as illustrated in Fig. 4.1. The solution of this equation can be found by applying
Eq. (2.74)

p̂(x, ω) =
∫

V0(y)

Ŝ(y, ω)
c̄2 Ĝ(x|y, ω)dy (4.2)

The 2D spectral Green’s function, given by Eq. (2.82), is inserted into Eq. (4.2) resulting in

p̂(x, ω) =
i

4c̄2

∫

V0(y)

Ŝ(y, ω)H2
0(kr)dy (4.3)

where r = |x− y| and H2
0 is the Hankel function of the second kind and order 0.

4.1.1 A Monopole in free space

One fundamental validation for an acoustic code is to test its ability to compute the radiation of
sound due to a source. As a consequence, for the present case only one monopole is considered
and no boundary conditions are taken into account. Moreover, as mentioned before, the mean
field is considered homogeneous. These conditions are imposed so that a perfect isotropic
radiation pattern is obtained. The source is pointwise and is defined as
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Ŝ(y, ω) = Ŝ0δ(y− y0)e−iφ (4.4)

where Ŝ0 = 1E10 W/m3s, y0 = [0.0, 0.0] m, φ = 0 rad, and ω = 2π · 5000 rad/s. The same case is
computed with the numerical tool AVSP-f. The outputs of this code are the fields of both modu-
lus | p̂|and argument arg( p̂) of the acoustic pressure. They are illustrated in Fig. 4.2. The recon-
struction of the acoustic field in the time domain for t0 = 0 is computed by p′ = | p̂| cos(arg( p̂))
and is shown in Fig. 4.3. Fig. 4.4 shows the isotropic pattern in the sound radiation produced
by a monopolar source. It is also observed from this figure that a good agreement is reached
between analytical an numerical results.

a) Modulus of Pressure | p̂| b) Argument of pressure arg( p̂)

Figure 4.2: Outputs of AVSP-f. Monopole case

Figure 4.3: Acoustic field produced by a monopole. p′ = | p̂| cos(arg( p̂))
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Figure 4.4: Analytical solution vs Numerical solution.

4.1.2 A Dipole in free space

Once pure radiation is tested in section (4.1.1), the influence on the acoustic field of another
monopole is tested. If this monopole radiates sound out of phase with respect to the first
monopole, a substraction of acoustics fluctuations will occur leading to a diminution of the
acoustic amplitude in some regions. If this phase shift is equal to π a perfect cancelation should
occur in the plane of antisymmetry between the two monopoles. Two monopoles with such a
shift phase conform a dipole. The source is defined as

Ŝ(y, ω) = Ŝ0δ(y− y1)e−iφ1 + Ŝ0δ(y− y2)e−iφ2 (4.5)

where φ1 = φ2 + π. From Eq. (4.3)

p̂(x, ω) =
i

4c2
0

∫

V0(y)

(
Ŝ0δ(y− y1)e−iφ1 + Ŝ0δ(y− y2)e−iφ2

)
H2

0(kr)dV (4.6)

Finally

p̂(x, ω) =
i

4c2
0

(
Ŝ0δ(y− y1)e−iφ1

)
H2

0(kr1)dV1 +
i

4c2
0

(
Ŝ0δ(y− y2)e−iφ2

)
H2

0(kr2)dV2 (4.7)
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where Ŝ0 = 1E10 W/m3s, y1 = [−0.02, 0.0] m, y2 = [0.02, 0.0] m, φ1 = 0 rad, φ1 = π rad, and
ω = 2π · 5000 rad/s. Fig. (4.5) shows the solution given by the code AVSP-f. The reconstruction
of the acoustic field at t0 = 0 is evaluated by p′ = | p̂| cos(arg( p̂)). This acoustic field is shown
in Fig. 4.6. It can be observed from Fig. 4.6 and Fig. 4.7 that AVSP-f succeeds in recovering the
acoustic field produced by a dipole. The zone of silence is well seen in the line of antisymmetry
between the two monopoles, i.e., the 90◦ and 270◦ directions.

a) Modulus of Pressure | p̂| b) Argument of pressure arg( p̂)

Figure 4.5: Outputs of AVSP-f. Dipole case

Figure 4.6: Acoustic field produced by a dipole. p′ = | p̂| cos(arg( p̂))

4.1.3 Three poles out of phase in free space

From sections (4.1.1) and (4.1.2) it has been shown that AVSP-f is able to compute correctly
the radiation and cancellation between two monopoles. Smith and Kilham [95] stated that a
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Figure 4.7: Analytical solution vs Numerical solution.

turbulent flame is acoustically equivalent to a set of different monopole sources, each of them
radiating at different strength, phase and frequencies. Therefore, for a last test of this first
validation, it is interesting to evaluate the noise radiation and directivity that results from three
monopoles with arbitrary positions and phase shifts. The contribution of a third pole is just
added as a third term in Eq. (4.6). After developing, the analytical solution reads

p̂(x, ω) =
i

4c2
0

(
Ŝ0δ(y− y1)e−iφ1

)
H2

0(kr1)dV1 +
i

4c2
0

(
Ŝ0δ(y− y2)e−iφ2

)
H2

0(kr2)dV2

+
i

4c2
0

(
Ŝ0δ(y− y3)e−iφ3

)
H2

0(kr3)dV3

(4.8)

where Ŝ0 = 1E10 W/m3s; y1 = [−0.015, 0.015] m, y2 = [0.015, 0.015] m and y3 = [0.0,−0.015]
m; φ1 = 0 rad, φ2 = 1 rad and φ3 = 2 rad; ω = 2π · 5000 rad/s. Fig. (4.8) shows the solution
given by the code AVSP-f. The reconstruction of the acoustic field at t0 = 0 is evaluated by
p′ = | p̂| cos(arg( p̂)). This acoustic field is shown in Fig. (4.9). Fig. (4.10) shows that a good
agreement is obtained between both analytical and numerical results. The directivity pattern
produced by these three monopoles is satisfactorily well recovered.
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a) Modulus of Pressure | p̂| b) Argument of pressure arg( p̂)

Figure 4.8: Outputs of AVSP-f. Three monopoles out of phase

Figure 4.9: Acoustic field produced by three monopoles out of phase. p′ = | p̂| cos(arg( p̂))

4.2 The 2D premixed laminar flame

For a second validation of AVSP-f, a two dimensional burner has been chosen. There are three
main concerns in the present validation: first, the computation of the flame dynamics through
an unsteady CFD method ; second, the post-processing of the CFD results to evaluate the
sources of noise; and last but not the least, the consideration of reflecting boundaries (walls,
inlet and outlet) in the acoustic code AVSP-f.

The burner, which is based on the LeHelley’s burner configuration [33], consists of two coaxial
rectangular ducts of different height attached to each other by one of the extremes. The smaller
duct acts as the intake whereas the bigger one plays the role of the combustion chamber. The
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Figure 4.10: Analytical solution vs Numerical solution

premixed gas is a propane air mixture at stochiometric equivalent ratio. The reaction takes
place at the dump plane generating a ‘V’ flame which will be stabilized after some millisec-
onds. Subsequently, the flame is harmonically perturbed at 500 Hz so that a fluctuation of the
heat release rate is produced and hence fluctuations of acoustic pressure. AVSP-f estimates the
acoustic distribution in the burner due to the unsteadiness of the heat release.

fluctuating 
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3.
4 

m
m

 

1.3  mm 

Figure 4.11: The 2D laminar premixed flame burner
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4.2.1 CFD computation

An unsteady CFD computation is needed in order to have the quantities required for the poste-
rior determination of the source terms. AVBP [3] is the numerical solver used for the unsteady
computation of the laminar premixed flame. In this tool, the full compressible Navier Stokes
equations are solved on hybrid (structured and unstructured) grids with second order spatial
and temporal accuracy. The inlet mean velocity is equal to 4 m/s which is approximately equiv-
alent to ten times the laminar flame speed of propane at stochiometric equivalent ratio. Two
types of boundary conditions are used for treating the walls. The first one, which is applied
to the intake, imposes a non-slip boundary condition for the flow while the second one allows
the gas to flow tangentially to the chamber walls. Fig. 4.2.1 shows the boundary conditions
applied. The outlet boundary condition, which imposes a mean pressure at the outlet, needs a
little more of attention. Let us recall that one of the main assumptions of acoustic analogies is
to consider the sources of noise to be totally independent of the acoustic field. In order to make
this assumption valid, it is of extreme importance to reduce the incoming acoustic waves as
much as possible by imposing a non-reflecting boundary condition at the outlet. Note that for
this case, the chamber walls are not considered important as reflecting bodies since transversal
acoustic waves (normal to chamber walls) are not relevant for the band of frequencies under
study.

Boundary conditions in AVBP are based on a method derived by Poinsot and Lele [72] known
as NSCBC (Navier-Stokes Characteristic Boundary Conditions). In all characteristic approaches,
the main issue is the determination of the amplitudes of waves entering the computational do-
main. It has been shown that substracting totally the incoming waves (no-reflecting conditions)
may induces a drift in the mean flow values. Some reflection must be therefore tolerated in or-
der to stabilize the mean pressure at the outlet [91]. In order to characterize the reflection of a
given boundary, it is useful to introduce the reflection coefficient R̂. The reflection coefficient R̂
is defined as the ratio between the incoming wave L2 to the outcoming wave L1. It reads

R̂ = L2/L1 (4.9)

A totally non reflecting condition would mean |R̂| = 0 whereas a totally reflecting condition
would read |R̂| = 1. The linear relaxation method (LRM) [74, 91] imposes a proportional rela-
tion between the incoming acoustic waves and the difference between the pressure at infinity
p∞ (the target) and the pressure at the outlet of the computational domain p.

L2 = K(p− p∞) (4.10)

where the coefficient K stands for the relaxation coefficient. A zero value of K make L2 van-
ishing while a big value creates a strong reflection, i.e., a big value of L2. An expression that
relates the reflection coefficient R̂ with the relaxation coefficient K has been establihed by Selle



4.2 The 2D premixed laminar flame 67

et al.[91].

R̂ =
1

1− i 2ω
K

(4.11)

It is interesting to note that high frequency waves (a big value of ω) are less proned to be
reflected than low frequency waves. From Eq. (4.11), a cut-off pulsation can be defined as
ω = K/2 which corresponds to f = K/4π. For this specific problem, a satisfactory value of
K was found to be equal to 1000 s−1 which corresponds to a cut-off frequency around 80 Hz.
This value permits a well-posed problem since the mean flow values do not drift away and the
reflection conditions are small enough to assure an independence between the flame dynamics
and acoustics for frequencies above 80 Hz. It should be noted that for this geometry the first
longitudinal acoustic mode is of the order of 104 Hz, which is evidently much higher than 80
Hz, so that the outlet boundary condition is indeed virtually non-reflecting for the frequencies
of interest. A direct consequence is that the flow reaches a steady state after the transient phase
is finished. Figure 4.12 shows the 2D flame once the steady state has been reached.

Figure 4.12: 2D premixed laminar flame. Steady state

Once the flame is stable, the inlet velocity is modulated at 500 Hz with an amplitude of ± 0.4
m/s, which represents 10% of the mean velocity at the intake. In Fig. 4.13, four snapshots are
shown which correspond to four instants during one cycle. Table 4.1 shows the main parame-
ters of the CFD computation.

4.2.2 Input data for the acoustic code

The entire CFD computation is carried out in such a way that the Nyquist-Shannon sampling
criterion is satisfied. Letting the desired baseband bandwidth be equal to 10000 Hz, a sampling
rate of 20000 Hz is necessary, which means a sample time equal to 0.05 ms. Since the pertur-
bation of the integrated heat release is expected to be an harmonic fluctuation that completes
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Figure 4.13: 2D premixed laminar flame. Four snapshorts for one cycle. u′/ū = 0.1

Numerical scheme Lax-Wendroff
2nd artificial viscosity 0.2
4th artificial viscosity 0.05

CFL 0.7
grid type squares

nodes 31574
Pinlet 101300 Pa
Tinlet 300 K

Table 4.1: Main parameters of the CFD computation

one period in 2 ms, a well resolved signal is assured with 40 points per period. Subsequently,
the discrete Fourier transform is applied to obtain the heat release rate term as function of the
frequency. The source term is then determined by the expression

Source = −iω(γ− 1) ˆ̇ωT (4.12)

where the heat capacity ratio γ is also obtained from the CFD computation. In addition to the
source term of noise, the mean flow information is given to the acoustic code through the mean
sound velocity c̄.

Two different types of boundary conditions are used in order to mimic the acoustic behavior
of the burner boundaries. Both inlet and walls acoustic response are modeled assuming an
acoustic velocity û equal to zero. This boundary condition is representative of totally reflecting
walls. The outlet is on the contrary characterized by a specific acoustic impedance Ẑ. This
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acoustic impedance is related to the reflection coefficient R̂ by

Ẑ =
R̂ + 1
R̂− 1

(4.13)

while the reflection coefficient R̂ is obtained by the relation (4.11).

4.2.3 Results

The exercise of validation, which is illustrated in Fig. 4.14, consists in comparing the pressure
field given by AVSP-f to that one obtained directly by the CFD computation performed with
the AVBP solver. The discrete Fourier transform is applied to the temporal pressure signals
given by the CFD so that they can be compared to the sound pressure spectrum evaluated by
the acoustic code. Figure 4.15 shows the Sound Pressure Level SPL predicted by both AVBP
and AVSP-f at three different positions downstream the pulsated flame.

CFD Method 

COMPARISON 

Direct Method 

Hybrid Method 

Ac. Analogy 

c̄
q̇′

ˆ̇q

p̂p′

p̂

DFT 

DFT 

Figure 4.14: Exercise of comparison: CFD method Vs Acoustic solver

A good agreement can be observed in Fig. (4.15). A peak at 500 Hz is seen which represents
the frequency at which the flame is excited. Peaks at 1000 and 1500 Hz are also observed. They
represent the most significative harmonics of the modulation frequency. A second case is also
evaluated. The inlet velocity is now pulsated at ± 2 m/s (see Fig. 4.16) which corresponds to
50% of the mean velocity at the inlet. The pressure signal obtained by the acoustic code also
corresponds very well to the pressure signal given by the CFD computation. Figure 4.17 shows
the SPL results.

It is important to emphasize that the acoustic boundary conditions implemented in the acoustic
code must correspond to those ones imposed in the CFD simulation if a good match between
these two different methods is expected. Several computations (not shown) were made for dif-
ferent values of the impedance Ẑ at the outlet. As an example, for Ẑ = 1 (totally non-reflecting
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Figure 4.15: 2D premixed laminar flame. Comparison between LES and AVSP-f (u′/ū = 0.1).

Figure 4.16: 2D premixed laminar flame. Four snapshorts for one cycle. u′/ū = 0.5



4.2 The 2D premixed laminar flame 71

Figure 4.17: 2D premixed laminar flame. Comparison between LES and AVSP-f (u′/ū = 0.5).

condition) the amplitudes of the acoustic pressure evaluated by AVSP-f are 10% bigger than
those computed by the CFD tool.
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5.1 Introduction

The present chapter presents the computation of the noise generated by a confined turbulent
flame by both direct and hybrid approaches. Direct computation of noise means computing
the field of pressure fluctuation directly from an unsteady CFD method. Concerning confined
flames (combustion chambers), LES has been proved to correctly predict hydrodynamic related

72
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fluctuating quantities such as the velocity or the temperature field. On the contrary, acoustic
pressure fluctuations, which are much smaller in amplitude, are much more difficult to evalu-
ate and their correct estimation is linked to the order of the numerical scheme and to the degree
of resolution of the computational grid. On the other hand, hybrid approaches have not been
ever considered to compute combustion noise in confined domains. As a consequence, it is
not known yet how appropriate is their use for combustion noise estimation in combustion
chambers. There are several conceptual differences between open and confined flames that
should be considered regarding this matter. An important one is that in a confined flame there
is not such a thing of ’far field pressure’. This means that fluctuations of pressure field are
not only composed by acoustics since turbulence, and therefore hydrodynamic fluctuations,
might be of considerable importance and, as a consequence, ‘contaminate’ the acoustic field.
Another main concern is the boundary conditions: an open flame is computed considering
acoustic waves that propagate outwards the domain and for this purpose the boundaries of
the computational domain are treated to be non-reflecting; in a confined flame, acoustic waves
produced travel both inwards and outwards. Boundary conditions modeling is therefore ex-
pected to be of crucial importance because their acoustic reflection are linked directly to the
acoustic field produced. These physical concepts should be taken into account when applying
hybrid approaches for confined flames.

5.2 Experimental configuration

Both direct and indirect computations of combustion noise are performed and applied to to
swirled premixed combustor (EC2 combustor) carried out in the EM2C laboratory (École Cen-
trale Paris) [43, 44]. The EC2 combustor consists in two geometrically identical stages for air-
fuel injection, a premixer and a combustion chamber. Air is fed into each stage through a circu-
lar manifold in which a swirler is inserted. This swirler has a hollow cylinder with large lateral
openings (see Fig. 5.1a), through which air is injected in the inner premixer channel. Inside
these rectangular openings, four injectors (1 mm diameter) deliver gaseous propane perpen-
dicularly to the air flow. This cross-flow configuration enhances fuel-air mixing. The tangential
injections create a strong swirl motion in the D = 30 mm diameter inner channel, which in
turn generate a central recirculation zone at the plenum that stabilizes the flame. The flame is
controlled by the fuel-air ratio imposed in each of the two stages and is considered premixed
and compact. Note that the LES could consider modeling the lines at each stage of both fuel
and air as shown in Fig. 5.1(a). Nevertheless, important computational costs would arise due
to the small grid cells that would be necessary to mesh the fuel lines. Since an homogeneous
air-fuel mixing is considered to be achieved before arriving to the reacting zone, the fact of
meshing fuel lines far upstream from the flame might be totally unnecessary. Therefore the
present LES will only consider the air lines (simplified model shown in Fig. 5.1b) in which a
premixed mixture with equivalent ratios φ1 and φ2 is injected for each stage.

This configuration features strong combustion instabilities depending on the fuel staging ratio
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Air + C3H8 

Air + C3H8 

Manifolds 

D = 30 mm 

(a) Hollow cylinder - Actual test rig (b) Hollow cylinder simplified for LES

Figure 5.1: Schematic view of a tranversal section through the premixer and circular manifolds.

α, defined as the ratio of the fuel massflow in the furthest stage from the chamber (stage 1) to
the total fuel injected massflow.

α =
ṁ f ,1

ṁ f ,1 + ṁ f ,2
(5.1)

These instabilities are characterized by an important noise radiation due to the intense acoustic
levels reached within the chamber and the premixer. The regime in the present study is given
in Table 5.1. The gas mixture in the plenum is considered as perfectly premixed with a global
equivalence ratio of φg = 0.832.

α ṁair,1 ṁ f ,1 ṁair,2 ṁ f ,2 φ1 φ2 φg

14.5 % 20 0.20 20 1.20 0.238 1.428 0.832

Table 5.1: Present operating regime (Mass flow ṁ in m3/h).

The combustion chamber is made of two quartz windows for flame visualizations, and two
refractory concrete plates (top and bottom) which can be equipped either with small quartz
windows for Particle Image Velocimetry (PIV) laser measurements or with transducer ports for
acoustic measurements. The three PIV planes we are comparing with are shown in Fig. 5.2. The
combustion chamber and the premixer are also equipped with seven microphones (denoted M1
to M7 in Fig. 5.2) placed at equal distances along the combustor.
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Figure 5.2: Two staged swirled premixed combustor. (Courtesy of École Centrale Paris)

5.3 Combustion noise Analysis

5.3.1 Direct Approach

The AVBP solver, developed at CERFACS, is used for the LES computations [3]. In this tool, the
full compressible Navier Stokes equations are solved on hybrid (structured and unstructured)
grids with second order spatial and temporal accuracy. Subgrid scale stresses are described
by the Smagorinksy model. The flame/turbulence interactions are modeled by the Dynamic
Thickened Flame (DTF) model [17]. This combustion model has been used in numerous stud-
ies of turbulent combustors [90, 56, 96, 92] in which it has been shown to well predict ignition,
blow-off and flash-back of flames as well as acoustic-flame interactions in specific configura-
tions. The spatial discretization in AVBP is based on the finite volume method with a cell-vertex
approach, combined to a numerical scheme derived from the Lax-Wendroff scheme. AVBP has
been validated/used for a considerable number of configurations.[90, 82, 57]. The main param-
eters of the LES computation are summarized in table 5.2

Boundary Conditions in AVBP are treated by the Navier Stokes Characteristic Boundary Con-
ditions (NSCBC) method [72]. This method is already a standard technique to control wave
crossing the boundaries [74, 42, 91]. It consists in decomposing the variation of flow variables
on boundaries into terms due to ingoing and outgoing waves. While walls are always taken as
totally reflecting surfaces (no velocity fluctuations normal to the surface are allowed→ u′ = 0)
with a reflection coefficient R̂ = |R̂|ejθ (|R̂| = 1 and θ = 0), the same cannot be stated for inlet
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Numerical scheme Lax-Wendroff
2nd artificial viscosity 0.05
4th artificial viscosity 0.01

LES model Smagorinsky
Combustion model Dynamic Thickened Flame

Table 5.2: Main parameters of LES computation

and oulets. Inlets and outlets are characterized by their acoustic impedance Ẑ = p̂/(ρ̄c̄û · n).
Following [91] it is possible to relate this acoustic quantity to the NSCBC parameters (see sec-
tion 4.2.1) by the Eq. (4.11) and (4.13)

R̂ =
Ẑ + 1
Ẑ− 1

=
1

1− i 2ω
K

(5.2)

in which K is the relaxation coefficient. Classically, outlets to the atmosphere are modeled by
zeroing pressure fluctuations → p′ = 0 (|R| = 1 and θ = π). Another path was followed in
the present study, extending the computational domain to some region of the atmosphere after
the burner outlet. By doing so, the true impedance of the outlet is implicitely accounted for.
On the other hand, the acoustic impedance at the inlets of the EC2 combustor was measured
experimentally by Lamraoui [43, 44]. These values were used to characterize the reflection
coefficient R̂ in the LES performed through the relation (5.2). Similar results were obtained
when a simplified acoustic condition (u′ = 0) at the inlets was applied, proving that acoustic
conditions at the inlets are not critical in the present LES study. LES computational grid is
shown in Fig. 5.3

Inlet 
Inlet 

Inlet 
Inlet 

Outlet 

Figure 5.3: Computational grid of EC2 combustor

Two different meshes were used to compute the flow and flame dynamics of the EC2 combus-
tor; their main characteristics are given in table 5.3. The ‘coarse’ mesh has 3 millions of cells
whereas the ‘refined’ mesh is made of 10 million cells. The quality of the two LES performed
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‘coarse’ mesh ‘refined’ mesh
Nodes 706 854 1’887 891
Cells 3’824 053 10’ 518 559

Maximum grid size
in flame region ∼ 1 mm ∼ 0.5 mm

Table 5.3: The two computational grids under study

is evaluated through the Pope’s criterion [75]. The Smagorinsky filter and the grid resolution
for both cases should be sufficient to resolve at least 80 % of the energy remote from the wall.
Introducing the resolved (k f ) and the modeled (ksgs) turbulent kinetic energy , the resolved to
total kinetic energy reads:

QLES =
k f

k f + ksgs
(5.3)

where k f = 1
2 ũiũi and ksgs = 1

2 ũiui − 1
2 ũiũi = 3

2 (u′sgs)2 and (̃) stands for the LES filter. The
subgrid scale velociy is computed from

u′sgs =
νt

C∆x
(5.4)

where νt is the turbulent viscosity, ∆ is the filter width and C is a constant estimated as C ≈ 0.12
in case of isotropic homogeneous turbulence (IHT) or as C ≈ 0.06 in the case of a turbulent
channel. For this case the value of C ≈ 0.12 was used. Figure 5.4 demonstrates that, for both
LES cases, QLES is greater than 0.8 for almost the entire computational domain excepting re-
gions near walls. The premixer turbulence is however better captured by the ‘refined’ mesh. It
is well known that extremely high computational costs arise when a proper LES on boundary
layers is sought. Nevertheless, boundary layers are assumed to little contribute to noise radi-
ation/scattering of turbulent flames. A high resolution in regions near walls is therefore not
considered.

Both meshes are found to reproduce the mean PIV very well. This can be observed in Fig. (5.5).
Both LES succeed in predicting the central recirculation zone satisfactorily. The LES on the ‘re-
fined’ mesh is however more accurate for the outer region, particularly for the radial velocity.
The fluctuating velocity field is characterized by rms profiles. Figure (5.6) shows that on the
‘coarse’ mesh a high overprediction of velocity fluctuations is obtained in both axial and ra-
dial components. On the fine grid however the LES clearly recovers the experimental velocity
fluctuating field.

Acoustics and flame dynamics of the system represented by the heat release are, on the con-
trary, more difficult to evaluate than the mean and fluctuating velocity fields. The mean value
of heat release is similar in both LES and is close to the 40kW experimental thermal power, as
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a) LES 3 million Cells

b) LES 10 million Cells

Figure 5.4: Instantaneous Field of Pope’s Criterion. The black line stands for the isocontour line
QLES = 0.8
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Figure 5.5: Velocity Profiles: ◦ Experimental PIV measurements
– – – LES 3 million cells, —— LES 10 million cells

can be observed in Fig. 5.7(a). Different values in the variations of heat release are however
obtained for each LES. Strong and more regular fluctuations of heat release are obtained with
the ‘coarse’ mesh while smaller and less periodic fluctuations are given by the ‘refined’ mesh
computation. It is likely that the coarser mesh does not capture enough small turbulent scales
and trigger too large turbulent eddies. These large coherent structures might clearly have an
influence on the flame dynamics and thus in the large fluctuations of heat release. The value of
the rate of change of heat release integrated over the whole volume of the combustor has also
been computed for the two different meshes and is shown in Fig. 5.7(b). On the finer mesh a
quieter flame is obtained, considering the smaller values of rate of change of heat release com-
pared to those obtained from the coarse mesh. As a consequence, smaller rms pressure values
should be expected on the finer mesh. Acoustics in the chamber is characterized by the Sound
Pressure Level (SPL) at a given point rather than rms values of the pressure. Figure 5.8 com-
pares the SPL values at microphone 7 (see the location of M7 in Fig. 5.2) from the refined and
coarse meshes to the experimental measurements. Both LES clearly overestimate the sound
levels with a significant improvement with the finer resolution. It is then found that in order
to correctly evaluate the dynamics of a flame and the acoustics generated by this one it is not
enough to satisfactorily model the fluctuating velocity field as shown in Figs. 5.5 and 5.6. As
stated before, computing acoustic pressure fluctuations is very challenging since these values
are very small compared to the aerodynamic fields. Several additional phenomena can play
an important role and be the (partial) cause of the observed differences with the experimental
data.

First, the performed LES assumes a perfect premixed mixture of air and fuel in the reactive
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Figure 5.6: Velocity Profiles: ◦ Experimental PIV measurements
– – – LES 3 million cells, —— LES 10 million cells
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region. This assumption might be a misinterpretation of reality. Small pockets of propane-air
presenting an equivalent ratio different for φg may reach the flame influencing its dynamics
and as a consequence the radiated sound. Secondly, perfect adiabatic walls were considered
in the present LES. In [92] it was shown that accounting for heat transfer leads to a reduction
in the SPL. Some computations, not shown here, were performed considering heat transfer by
modeling approximate heat loss coefficients (as done in [92]). No significative changes on the
radiated noise were observed. Nevertheless, heat transfer might still be modeled too aprox-
imatively knowing that exact values of heat transfer coefficients are extremely difficult to be
obtained experimentally. A proper simulation of conjugate heat transfer including convection,
conduction and radiation might be important at some level for noise modeling in turbulent
flames, but presently remains too cumbersome. Thirdly, resolution of the computation (mesh
refinement and order of the numerical scheme) is clearly significant. High grid resolutions in
the reactive region not only means a smaller influence of the combustion model but also to
be able to account for the smallest turbulent structures present in the shear layer that might
influence the coherence of the bigger scales and thus the global turbulent interaction with the
flame. At last but not the least, another explanation lies in the experimental data. Measuring
acoustics in a confined combustion chamber is only reliable when acoustic leakages are proved
to be controlled. This is, anyway, a difficult task. It has been found by the group in charge
of EC2 at EM2C that acoustic leakages are still not totally well managed. As a result, wrong
evaluations of pressure fluctuations may arise.

5.3.2 Hybrid approach

Quantities apart from the SPL are considered well estimated from the fine mesh LES and, as
a consequence, the last can be taken as an appropriate starting point for the evaluation of the
hybrid approach in confined domains. Thus the acoustic outputs from both direct and hybrid
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Figure 5.9: Exercise of comparison: Direct Approach Vs Hybrid Approach

approaches are compared for the 10 million cells mesh independently of experimental data.
As sketched in Fig. (5.9), hydrodynamic pressure fluctuations are assumed to be small when
considering results from the direct approach. Therefore, the acoustic field resulting from the
hybrid approach is directly compared to the pressure fluctuation field coming from direct com-
putations.

The hybrid computation is performed in two steps. First, the source of combustion noise is
computed by postprocessing the data obtained from the LES computation as seen in Fig. (5.9).
The instantaneous heat release is given to the acoustic code in addition to the mean flow infor-
mation which is contained in the mean sound velocity. The acoustic tool AVSP-f computes the
acoustic field throughout the computational domain due to the given noise sources, the mean
flow field and the acoustic boundary conditions of the configuration. Figure (5.10) shows one
snapshot of the unsteady heat release rate obtained from LES whereas Fig. (5.11) illustrates the
mean sound velocity c̄ over a longitudinal cut of the EC2 combustor. The source of noise is
given to AVSP-f as a function of frequency. The discrete Fourier transform is therefore applied
to the temporal sources obtaining as a consequence the modulus |Ŝ| and the argument arg(Ŝ)
for each frequency of interest. Figure 5.12 shows the combustion source for a frequency equal to
377 HZ. As an exercise of visualization, both argument and modulus of the source at 377 Hz are

combined so that S(t)


f =377Hz
= |Ŝ|eiarg(Ŝ)e−iωt where ω = 2π · 377 rad/s. It is interesting to

observe the monopolar behaviour of the combustion source of noise for this frequency, which
is the one corresponding to the highest level of pressure fluctuation (see the peak at around 377
Hz in Fig 5.13).

The simplified Phillips equation written in the zero Mach number limit given by Eq. (2.63)
is solved in the frequency domain. It consists then in solving the linear system Ax = b (see
Eq. 3.61) as many times as the number of desired frequencies f . For this case, the systemAx = b
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Figure 5.10: Typical iso-surface of the instantaneous unsteady heat release rate ω̇T

Figure 5.11: Mean sound velocity c̄ over a longitudinal plane of the EC2 combustor

(a) (b) (c) (d) (e)

Figure 5.12: The combustion source of noise oscillating at 377 Hz. 5 snapshots during one cycle.

was solved 500 times within a band of frequencies from 25Hz to 2500Hz, with a frequency step
of f = 25Hz. Overall good agreement is found between the direct and hybrid approaches.
Figures 5.13 and 5.14 show the sound pressure levels obtained for microphones 5, 6 and 7 (see
the location of M5, M6, M7 in Fig. 5.2).

It is interesting to notice that the hybrid computation manages to recover not only the magni-
tude of the acoustic pressure over almost all the spectrum, but also the shape of the acoustic
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(a) Microphone 5 (b) Microphone 6

Figure 5.13: Sound Pressure Levels from the direct and hybrid approaches
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Figure 5.14: Sound Pressure Levels from the direct and hybrid approaches

waves. Figure 5.15 shows the strongest acoustic wave, the quarter wave mode, that resonates
at 377 Hz. The pressure fluctuations along the axis of the combustor at different times within
a cycle are observed. As both methods yield the same envelope of variations at this frequency,
the pressure fluctuation recovered by the direct computation can be seen as almost completely
caused by acoustics.

In Fig. 5.13 some zones of the spectrum still show some differences between hybrid and direct
computations. Let us focus on the low frequency zone of the spectra before the peak at 377
Hz. At this frequencies it is found that there is a significant hydrodynamic contribution in the
direct computation that triggers higher pressure fluctuations. Figure 5.16 shows two interesting
situations. The hybrid approach is based on the low Mach number assumption; in other words,
the flow is considered stationary. Moreover, no strong gradients of the sound velocity c̄ are
observed in the premixer region, which means that acoustic waves will propagate through this
zone as if a quiescent medium was present. As a result, all acoustic modes of the chamber
are excited when computing noise through the hybrid approach. Figure 5.16(a) shows that
when considering frequencies close to the first eigen-frequency of the system (240 Hz), the
quarter wave mode of the premixer is excited. Fluctuations of different nature are shown in
Figure 5.16(b) which illustrates LES results. Although there is a strong coherence of the pressure
fluctuations in the chamber region, these fluctuations do not come from acoustics. Moreover,
the strong level of turbulence present in the premixer region prevents any important acoustic
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Figure 5.15: Longitudinal pressure Waves oscillating at 377 Hz

oscillation to be triggered in this region.
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Figure 5.16: Longitudinal pressure Waves oscillating at 251 Hz

In Fig. 5.17 two different types of pressure waves are observed at microphone 5 for the direct
and hybrid computations in the region around 1000 Hz. Whereas a pure acoustic standing
wave is obtained by the hybrid approach, a perturbed pressure wave is obtained in the direct
computation results. A pure standing acoustic wave can naturally have an acoustic pressure
node. If this pressure node is present close to the region of the measurement device a low
value of pressure fluctuation will be obtained. This is what happens for microphone 5 in the
zone close to 1000 Hz (Fig. 5.17a). Obviously, when the pressure fluctuations not only con-
tain acoustics but also hydrodynamic perturbations as in the direct computations (Fig. 5.17b),
no pressure node can be observed and the resulting SPL is much higher than in the hybrid
computation case. Similar conclusions can be drawn at frequencies around 1650 Hz where a
pressure node is found close to Microphone 6 (Fig. 5.18).

In order to not have any ambiguity measuring acoustic pressure fluctuations due to the pres-
ence of pressure nodes, a more appropriate quantity to evaluate at the microphone positions is
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Figure 5.17: Longitudinal pressure Waves oscillating at 954 Hz
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Figure 5.18: Longitudinal pressure Waves oscillating at 1658 Hz
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the acoustic energy. For low Mach number flows, the acoustic energy is defined as [74]

Eac =
p′2

ρ̄c̄2
+ ρ̄u′2 (5.5)

From the definition of the acoustic energy (Eq. 5.5), it is observed that even though pressure
nodes takes place at a given location, the energy contained is different from zero: it is given
then by the acoustic velocity which is expected to be maximum at pressure nodes. As a con-
sequence, spectra without strong local minima are obtained. The acoustic energy spectrum for
microphones 5, 6 and 7 is shown in Figs. 5.19 and 5.20
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Figure 5.19: Acoustic energy. Direct and hybrid approaches
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Figure 5.20: Acoustic energy. Direct and hybrid approaches

Although there is an overall good agreement for the three microphones, the energy contain is
bigger for the signals coming from the direct approach. This is easily noticed at microphone 7
in Fig. 5.20. In the next, a procedure is exposed so that pure acoustic signals could be retrieved
from the LES performed.

5.4 Filtering a LES pressure field to find the corresponding acoustic field

Velocity fluctuations obtained by LES are composed of both hydrodynamics and acoustics
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u′i,LES = u′i,hyd + u′i,ac (5.6)

Appling the operator ∂/∂t to Eq. (5.6) leads to

∂u′i,LES

∂t
=

∂u′i,hyd

∂t
+

∂u′i,ac

∂t
(5.7)

From linear acoustics, the momentum equation is given by

ρ̄
∂u′i,ac

∂t
= −∂p′ac

∂xi
(5.8)

where [̄] and []′ represent respectively the mean and fluctuating flow. Combining Eqs. (5.8) and
Eq. (5.7) leads to

−1
ρ̄

∂p′ac
∂xi

+
∂u′i,hyd

∂t
=

∂u′i,LES

∂t
(5.9)

Finally the divergence operator to this equation is applied to yield

− ∂

∂xi

(
1
ρ̄

∂p′ac
∂xi

)
+

∂

∂xi

(
∂u′i,hyd

∂t

)
=

∂2u′i,LES

∂xi∂t
(5.10)

5.4.1 Finding ∂ui,hyd
∂xi

Neglecting viscosity, species diffusion and heat conduction the Navier-Stokes equations for
reacting flows read

∂ρ

∂t
+ ρ

∂uj

∂xj
+ uj

∂ρ

∂xj
= 0 (5.11)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
(5.12)

ρcp
∂T
∂t

+ ρcpuj
∂T
∂xj

= ω̇T (5.13)

In the low-Mach number approximation, the thermodynamic pressure p̄ only depends on tem-
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perature. The equation of state is simply

p̄
r

= K0 = ρT (5.14)

Replacing Eq. 5.14 in the left hand side of the Eq. (5.13) leads to

ρcp
∂K0/ρ

∂t
+ ρcpuj

∂K0/ρ

∂xj
= ω̇T (5.15)

Developping Eq. (5.15), and combining it with Eq. (5.11) results in a simplified equation in
which density ρ is not anymore present. It reads

∂uj

∂xj
=

1
cpK0

ω̇T (5.16)

This velocity field is supposed to be composed only by hydrodynamics, due to the fact that in
the low Mach number model the acoustic wave length is infinitely long and then ∂uac/∂xj ≈ 0.
One can state that the divergence of the fluctuating velocity is

∂u′j,hyd

∂xj
=

1
cpK0

ω̇′T (5.17)

5.4.2 Finding the Acoustic Pressure

Injecting Eq. (5.17) into Eq. (5.10) leads to

− ∂

∂xi

(
1
ρ̄

∂p′ac
∂xi

)
=

∂

∂t

(
∂u′i,LES

∂xi
− ω̇′T

cpK0

)
(5.18)

or in the frequency domain

∂

∂xi

(
1
ρ̄

∂ p̂ac

∂xi

)
= iω

∂ûi,LES

∂xi
− iω

ˆ̇ωT

cpK0
(5.19)

Finally, multiplying everywhere by γ p̄
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∂

∂xi

(
c2 ∂ p̂ac

∂xi

)
= iωγ p̄

∂ûi,LES

∂xi︸ ︷︷ ︸
T1

− iω
γ p̄ ˆ̇ωT

cpK0︸ ︷︷ ︸
T2

(5.20)

It has been found by the author that the contribution of T2 for this case should be neglected to
improve the results. As a consequence, Eq. (5.20) simplifies to:

F ( p̂ac) =
∂

∂xi

(
c2 ∂ p̂ac

∂xi

)
= iωγ p̄

∂ûi,LES

∂xi
(5.21)

5.5 LES Vs Hybrid Results

Figures 5.21 and 5.22 shows the Sound Pressure Level (SPL) given by the solution of Eq. (5.21)
(LES ‘Filtered’), the hybrid computation and the direct approach for microphones 5, 6 and 7.
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Figure 5.21: Sound Pressure Levels from the direct and hybrid approaches
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Figure 5.22: Sound Pressure Levels from the direct and hybrid approaches

After extracting the acoustic field from the complete pressure fluctuation field, it is seen that
results match pretty well with the values predicted by the hybrid method, especially for micro-
phones 6 and 7. There is a high contain of hydrodynamic fluctuations at low frequencies (before
400 Hz) that has been removed as it can be noted if comparing Figs. 5.16(b) and 5.23(b). The
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acoustic field predicted by the hybrid computation is now much closer to that one predicted by
the direct method when considering the combustion chamber, as observed from Fig. 5.23.
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Figure 5.23: Longitudinal pressure Waves oscillating at 251 Hz

Considering the pressure wave at 377 Hz (Fig. 5.24), it is observed that it does not change too
much after filtering, as can be appreciated by comparing Fig. 5.15(b) with Fig. 5.24(b). As it has
been already stated in section 5.3.2, this pressure wave is mainly composed by acoustics since it
corresponds to the quarter wave mode of the combustion chamber. The resemblance between
hybrid and direct approaches results increases after filtering and is now remarkable.
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Figure 5.24: Longitudinal pressure Waves oscillating at 377 Hz

The local minimum around 1650 Hz shown in the SPL spectrum for microphone 6 (Fig. 5.21b)
is well recovered after extracting acoustics from LES. This is due to the fact that once hydro-
dynamic fluctuation have been extracted, a pressure node close to microphone 6 appears as
shown by Fig. 5.26(b). On the contrary, the acoustic signal corresponding to microphone 5
Fig. 5.21(a) presents important differences with respect to the one computed by the hybrid ap-
proach. The local minima around 1000 Hz corresponding to the hybrid method is recover at a
lower frequency (around 750 Hz) and the pressure node observed in the combustion chamber
after extracting hydrodynamics is placed relatively far from that one predicted by the hybrid
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approach, as can be observed from Fig. 5.25.
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Figure 5.25: Longitudinal pressure Waves oscillating at 954 Hz
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Figure 5.26: Longitudinal pressure Waves oscillating at 1658 Hz

Considering now the acoustic energy, it is observed from Figs. 5.27 and 5.28 that the values
predicted by the hybrid approach are in a good agreement to that ones computed by LES after
extracting the acoustic contain from the complete pressure fluctuations. It is noticeable then
that the energy coming from hydrodynamic fluctuations has been removed.

Note that some caution must be taken when computing the Fourier transform of the divergence
of the velocity (See T1 Eq. 5.20). If a rectangular window is applied to the temporal signal, a
really good correspondance is seen only for frequencies lower than 400 Hz (not shown). On the
other hand, if a gaussian window is applied, a good agreement is seen over the entire frequency
band, except at a very low frequencies. This is the case for the spectra shown (Figs. 5.21, 5.22,
5.27 and 5.28) where the signal does not capture the good acoustic level before 200 Hz.
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Figure 5.27: Acoustic energy. Direct and hybrid approaches
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Figure 5.28: Acoustic energy. Direct and hybrid approaches

5.6 Conclusions

Combustion noise of a premixed swirled combustor has been assessed by two different numer-
ical approaches: a direct computation in which the noise produced by the flame is calculated
together with the flow and flame dynamics, and a hybrid computation in which the acoustic
field is evaluated from the sources of noise in a separate step.

Classical comparisons between mean and fluctuating (rms) velocity fields were performed be-
tween two LES on a ‘coarse’ mesh (3 millions cells) and a ‘refined’ mesh (10 millions cells), and
PIV measurements. Mean velocity fields (axial and radial) were well predicted by both LES
cases, whereas only the ‘refined’ mesh succeed in recovering the proper rms velocity fields. It
was then observed that satisfactorily predicting the velocity fluctuating field does not mean
to reproduce correct flame dynamics and heat release. On the one hand, the mean heat re-
lease corresponding to the experimental thermal power is well captured by both LES. On the
other hand, significative differences are found between the two simulations when looking at
the shape of the instantaneous heat release and its rate of change. As a consequence, a right
estimate of the combustion noise radiation is not reached either. Several phenomena might be
the cause of such a misprediction. A lack in numerical resolution can be one possible explana-
tion: computing the small turbulent length scales in the shear flow region might be significant
since these eddies might have a non-negligible influence on the flame dynamics and, as a con-
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sequence, on the noise prediction. A higher grid resolution in the flame region also decreases
the influence of the combustion model, which might have a certain effect when computing the
values of rate of change of heat release. Moreover, an accurate prediction of heat transfer might
also be a crucial factor, and exact modeling of convection, conduction and radiation might be
important in combustion noise modeling.

The output from the hybrid computation is a pure acoustic field due to the turbulent flame.
Good agreement is found in almost the entire SPL spectrum when comparing the results of
both direct and hybrid computations. Nevertheless, there are still some differences in specific
zones of the spectrum. Hybrid computation results only consider pure acoustic waves, and at
given frequencies these pure acoustic waves may present acoustic nodes that may take place
close to the acoustic sensor position. This leads to a low fluctuation of pressure at this position
and hence, to a low value of the SPL spectrum at these frequencies. Moreover, hydrodynamics
was proved to be strong at low frequencies and hence, using a LES pressure field to estimate
combustion noise is not enough: extracting acoustics from the complete pressure field is essen-
tial. A procedure to separate acoustic from hydrodynamics has been proposed. A validation of
this procedure is made by comparing the resulting signal to combustion noise predicted by the
Hybrid approach.
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6.1 Introduction

The prediction of combustion instabilities in combustion chambers embedded in complex sys-
tems, such as aeronautical engines, is extremely difficult due to all the different phenomena
that must be taken into account: the two way interaction between the flame and the most
representative turbulent length scales of the reacting and burnt gases, the two way interaction
between the flame and the radiated acoustic waves produced by this one, the possible coupling
between entropy waves (hot spots generated by the flame) and the acoustic waves produced
due to non-homogeneities in the mean flow and evidently the role played by the boundary
conditions (inlets, outlets and walls) as surfaces that directly interact with the acoustic, entropy
and vortical waves present into the system.

Different strategies have been developed over the years [78, 71, 48, 22, 77] in order to under-
stand the physics of all these interactions and to create methodologies to control or avoid them.
In the last recent years, reacting and compressible Large Eddy-Simulation (LES) has shown its
capability to study the dynamics of turbulent flames [17, 69, 67, 90, 82, 68, 84]. Due to its intrin-
sic nature (resolution of the unsteady 3D Navier-Stokes equations) LES is able to predict the
interactions between the flame, the turbulent flow and the acoustic modes of the chamber, and
for some particular configurations [56] to distinguish between stable and unstable combustion
systems. In despite of this, LES remains today very CPU demanding and its use for paramet-
ric studies on aeronautical engines design is excluded. In order to overcome this constraint,
several methods have been proposed:

1) Navier-Stokes equations are simplified to quasi-1D Linearized Euler equations LEE [64, 5].
This strategy leads to consider only the main fluctuations on the flow (still remaining small in
comparison to mean flow values) and the flame which is modeled as a source term. This source
term can be coupled to the acoustic field and be responsible for thermo-acoustic instabilities or
it can be decoupled and be responsible only for sound generation. Another important charac-
teristic of these methods is that they can also take into account possible couplings of entropy
or vorticity with acoustic modes.

2) The three dimensional wave equation is considered and resolved in the frequency domain.
The underlying numerical tools, commonly known as Helmholtz solvers, are very useful in
order to find the acoustic modes of a real combustor with its geometrical complexity. The
influence of the flame dynamics on the acoustic system can also be accounted for. Several
studies show their ability to predict combustion instabilities [56, 89, 62] in real combustion
chambers. Nevertheless, these methods still present some drawbacks. The wave equation
solved does not contain terms of convection, and as a consequence, the mean flow is neglected
which can lead to wrong predictions of the propagation speed and wave length which in turn
leads to mis-estimations on the resonant frequencies and the grow rates of the acoustic modes.
Moreover, entropy and hydrodynamic modes are totally left out of the physics under study,
although they play an important role.
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The reliability of all these strategies is subjected to the precision at which boundary conditions
are modeled. Useful methods have been developed to model the acoustic impedances of in-
lets/outlets and they have shown to be successful for some particular cases [41]. The general
idea is to solve the perturbation equations in a quasi-1D domain which represents the regions
either upstream (for the diffuser) or downstream (for the nozzle) of the combustion chamber.
Feeding this domain with an incoming acoustic wave, the equivalent impedance can be as-
sessed as soon as the outgoing wave is computed from the perturbation equations. Such a
strategy was detailed in [41] in the case of perturbations propagating in an isentropic mean
flow. In this chapter, it is generalized to the case where neither the enthalpy nor the entropy or
the mean flow are constant.

This chapter is organized as follows. First, the quasi 1D LEE system is presented. Compared
to [64], these equations contain additional terms that account for the compression or expansion
stages in the system. Second, analytical solutions are derived to systems use to validate quasi
1D LEE numerical tool in three specific cases: isentropic compact nozzles [55], one dimensional
flames and one dimensional compressors.

6.2 The quasi 1D Linearized Euler Equations - SNozzle

After applying the quasi 1D approximation, i.e., neglecting the in-plane correlation terms, the
quasi-1D LEE for mass, momentum and entropy are written in non-conservative form [64]

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u
∂x

+
ρu
S

∂S
∂x

= 0 (6.1)

ρ
∂u
∂t

+ ρu
∂u
∂x

+
∂p
∂x
−z = 0 (6.2)

ρT
∂s
∂t

+ ρTu
∂s
∂x
− Q̇ −Wk = 0 (6.3)

where S , Q̇, z and Wk stand for the cross section area, an external energy source, the force
added by the compressor, and the work done by the compressor respectively. Except for the
mass balance equation which now contains an additional term accounting for the transversal
section S , it is observed from Eqs. (6.1) to (6.3) that the quasi 1D LEE system is essentially the
1D restriction of the 3D Euler equations. Considering harmonic perturbations (φ′ = φ̂e−iωt),
where φ(x, t) = φ̄(x) + φ′(x, t), the quasi 1D LEE system in the frequency domain becomes

(
∂ū
∂x

+ ū
∂

∂x
+

ū
S

∂S
∂x

)
ρ̂ +

(
∂ρ̄

∂x
+ ρ̄

∂

∂x
+

ρ̄

S
∂S
∂x

)
û− jωρ̂ = 0 (6.4)
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(
1
ρ̄

∂c̄2

∂x
+

ū
ρ̄

∂ū
∂x

+
c̄2

ρ̄

∂

∂x

)
ρ̂ +

(
∂ū
∂x

+ ū
∂

∂x

)
û + (γ− 1)T̄

(
1
p̄

∂ p̄
∂x

+
∂

∂x

)
ŝ− ẑ− jωû = 0 (6.5)

γr ¯̇Q
ρ̄ p̄

ρ̂ +
∂s̄
∂x

û +

(
ū

∂

∂x
+ (γ− 1)

¯̇Q
p̄

)
ŝ− r

p̄
ˆ̇Q− Ŵk − jωŝ = 0 (6.6)

This system of equations can be expressed as an algebraic linear system in the form

A




ρ̂

û
ŝ


 =




0
ẑ

r
p̄

ˆ̇Q+ Ŵk


 (6.7)

where

A =




∂ū
∂x + ū ∂

∂x + ū
S

∂S
∂x − jω ∂ρ̄

∂x + ρ̄ ∂
∂x + ρ̄

S
∂S
∂x 0

1
ρ̄

∂c̄2

∂x + ū
ρ̄

∂ū
∂x + c̄2

ρ̄
∂

∂x
∂ū
∂x + ū ∂

∂x − jω (γ− 1)T̄
(

1
p̄

∂ p̄
∂x + ∂

∂x

)

γr ¯̇Q
ρ̄ p̄

∂s̄
∂x ū ∂

∂x + (γ− 1)
¯̇Q
p̄ − jω


 (6.8)

The Quasi-1D Linearized Euler Equations (Eqs. 6.4, 6.5 and 6.6) are solved by a numerical tool
called SNozzle. Within the computational domain, these equations are discretized by finite
differences FD with a second order centered scheme. At the inlet, first order FD downwind
scheme is applied whereas at the outlet first order FD upwind scheme is used. A staggered grid
arrangement (velocity fluctuations stored at the cell edges, density and entropy fluctuations
stored at the cell centers) has been used in order to avoid the pressure field to be contaminated
by the classical odd-even decoupling phenomenon (reference). The Jacobi preconditioner is
used to improve the quality of the matrixA (Eq. 6.8) and the linear system is solved by inverting
the preconditioned matrix through the LU factorization.

6.3 The 1D linearized Euler equations for compact systems

In order to validate the numerical too SNozzle, analytical solutions are derived for compact
regions where the mean enthalpy or entropy changes. The starting point for this derivation are
the 1D Euler equations for mass, momentum and total enthalpy.
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∂ρ

∂t
+

∂

∂x
(ρu) = 0 (6.9)

∂ρu
∂t

+
∂

∂x
(ρu2) = −∂p

∂x
+ z (6.10)

∂ρht

∂t
+

∂

∂x
(ρuht) = Q̇+Wk (6.11)

Integrating over the 1D domain between positions x1 and x2 results in

∫ x2

x1

∂ρ

∂t
dx +

∫ x2

x1

∂

∂x
(ρu)dx = 0

∫ x2

x1

∂ρ

∂t
dx + (ρu)

∣∣∣∣
x2

x1

= 0
(6.12)

∫ x2

x1

∂ρu
∂t

dx +
∫ x2

x1

∂

∂x
(ρu2)dx +

∫ x2

x1

∂p
∂x

dx−
∫ x2

x1

zdx = 0

∫ x2

x1

∂ρu
∂t

dx + (ρu2)
∣∣∣∣

x2

x1

+ p
∣∣∣∣

x2

x1

−F = 0
(6.13)

∫ x2

x1

∂ρht

∂t
dx +

∫ x2

x1

∂

∂x
(ρuht)dx−

∫ x2

x1

Q̇dx−
∫ x2

x1

Wkdx = 0

∫ x2

x1

∂ρht

∂t
dx + (ρuht)

∣∣∣∣
x2

x1

− q̇−W = 0
(6.14)

where the following notations have been introduced:
∫
Q̇dx = q̇,

∫
zdx = F and

∫
Wkdx =

W . After linearizing and recalling that ht = cpTt, Eqs. (6.12), (6.13) and (6.14) become

(
ρ̄u′ + ρ′ū

) ∣∣∣∣
x2

x1

= −
∫ x2

x1

∂ρ′

∂t
dx (6.15)

(
p′ + ρ′ū2 + 2ρ̄ūu′

) ∣∣∣∣
x2

x1

−F ′ = −
∫ x2

x1

∂

∂t
(
ρ̄u′ + ρ′ū

)
dx (6.16)

[
cpT̄t(ρ̄u′ + ρ′ū) + ρ̄ū(cpT′ + ūu′)

] ∣∣∣∣
x2

x1

− q̇′ −W ′ = −
∫ x2

x1

∂

∂t
[
ρ′cpT̄t + ρ̄

(
cpT′ + ūu′

)]
dx

(6.17)
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Considering now harmonic oscillations (φ′ = φ̂e−iωt) leads to:

(ρ̄û + ρ̂ū)
∣∣∣∣

x2

x1

= iω
∫ x2

x1

ρ̂dx (6.18)

(
p̂ + ρ̂ū2 + 2ρ̄ūû

) ∣∣∣∣
x2

x1

− F̂ = iω
∫ x2

x1

(ρ̄û + ρ̂ū) dx (6.19)

[
cpT̄t(ρ̄û + ρ′ū) + ρ̄ū(cpT̂ + ūû)

] ∣∣∣∣
x2

x1

− ˆ̇q− Ŵ = iω
∫ x2

x1

[
ρ̂cpT̄t + ρ̄

(
cpT̂ + ūû

)]
dx (6.20)

The contribution of the RHS terms on the above equations goes to zero for compact regions
(x1 → x2). Equations (6.18), (6.19) and (6.20) are then simplified to

ρ̄1û1 + ρ̂1ū1 = ρ̄2û2 + ρ̂2ū2 (6.21)

p̂1 + ρ̂1ū2
1 + 2ρ̄1ū1û1 + F̂ = p̂2 + ρ̂2ū2

2 + 2ρ̄2ū2û2 (6.22)

cpT̄t1(ρ̄1û1 + ρ̂1ū1) + ρ̄1ū1(cpT̂1 + ū1û1) + ˆ̇q + Ŵ = cpT̄t2(ρ̄2û2 + ρ̂2ū2) + ρ̄2ū2(cpT̂2 + ū2û2)
(6.23)

where the indices 1 and 2 denote the regions upstream or downstream of any infinitely thin
compact element; ˆ̇q, F̂ and Ŵ being the total heat, force and work associated to this element.
Equations (6.21) - (6.23) generalize the results of Dowling [22] to the case where the compact
interface between states 1 and 2 generates a force F̂ and the associated work Ŵ .

6.3.1 The transmitted and reflected waves

In the frequency domain, acoustic and entropy waves ŵ are defined by their amplitude |ŵ| and
phase φ, so that ŵ = |ŵ|eiφ. They read [55]

ŵ+ =
p̂

γ p̄
+

û
c̄

= |ŵ+|eiωx/c̄(1+M̄) (6.24)

ŵ− =
p̂

γ p̄
− û

c̄
= |ŵ−|e−iωx/c̄(1−M̄) (6.25)

ŵS =
p̂

γ p̄
− ρ̂

ρ̄
= |ŵS|eiωx/ū (6.26)



6.3 The 1D linearized Euler equations for compact systems 101

where ŵ+ and ŵ− represent the acoustic waves propagating respectively in the direction of the
flow at speed (ū + c̄), and against the flow at speed (c̄− ū). ŵS stands for the entropy wave
that is convected at the mean flow velocity (ū).

The compact assumption is realistic when the length of the system L is small if compared to
the respective wavelength λ. When considering acoustics in nozzles, it is shown in [41] that
this assumption is valid nozzles for frequencies up to 700 Hz, which is already an important
bandwidth. When a wave passes through a compact domain, it is assumed then that only its
amplitude changes. The phase, on the contrary remains constant. This can be easier understood
from Fig. (6.1).

Compact Domain 

Wave 

Figure 6.1: A compact nozzle acting on a wave

As a result, the compact assumption consists simply in expressing all fluctuating quantities as
quasi-stationary (ω ≈ 0). Pressure, velocity and entropy fluctuations can be defined then as
function only of their amplitudes

p̂
γ p̄

=
1
2

ŵ+ +
1
2

ŵ− ≈ 1
2
|ŵ+|+ 1

2
|ŵ−| (6.27)

û
c̄

=
1
2

ŵ+ − 1
2

ŵ− ≈ 1
2
|ŵ+| − 1

2
|ŵ−| (6.28)

ŝ
cp

= ŵS ≈ |ŵS| (6.29)

The reflection R and transmission T coefficients are now defined. The coefficient RAA is the
reflection coefficient that measures the amplitude of the outgoing acoustic wave w−1 with re-
spect to an incoming wave w+

1 when it is assured that no incoming entropy waves are present
ŵS

1 = 0. RSA is also a reflection coefficient, but instead of RAA, relates the amplitude of an
outgoing acoustic wave w−1 with respect to an incoming entropy wave ŵS

1 . In this case, no in-
coming acoustic waves are present ŵ+

1 = 0. The transmitted waves T are defined in a similar
way. This definition is shown in table 6.1. All the possible waves ŵ that can appear in a 1D
system are shown in Fig. (6.2)

Six other coefficients are now defined, which are helpful to express Eqs. (6.21), (6.22) and (6.23)



102 Chapter 6: Boundary conditions for low Mach number acoustic codes

RAA → ŵ−1 /ŵ+
1 → with ŵS

1 = 0
RSA → ŵ−1 /ŵS

1 → with ŵ+
1 = 0

TAA → ŵ+
2 /ŵ+

1 → with ŵS
1 = 0

TSA → ŵ+
2 /ŵS

1 → with ŵ+
1 = 0

TAS → ŵS
2 /ŵ+

1 → with ŵS
1 = 0

Table 6.1: Wave coefficients definition

w1
S 

w1
+ 

M2 
w2

- 

w2
+ 

w1
- 

M1 

w2
S 

Compact Domain 

Subsonic Region Subsonic Region 

w1
S 

w1
+ 

M2 
w2

- 

w2
+ 

w1
- 

M1 

w2
S 

Compact Domain 

Subsonic Region Supersonic Region 

(a) (b)

Figure 6.2: Some possible configurations under the compact assumption

as function principally of the mach number M̄ = ū/c̄.

A1 =
γ p̂
2
|ŵ+

1 |, B1 =
γ p̂
2
|ŵ−1 |, A2 =

γ p̂
2
|ŵ+

2 |, B2 =
γ p̂
2
|ŵ−2 |, E1 = cp|ŵS

1 |, E2 = cp|ŵS
2 |

(6.30)

Here A and B have (Pa) units while E has (kJ/kgK) units. Considering also a perfect gas T̂
T̄ =(

p̂
p̄ −

ρ̂
ρ̄

)
, Eqs. (6.21) to (6.23), under the compact assumption, become

A1(1 + M̄1)/c̄1 − B1(1− M̄1)/c̄1 − ρ1c̄1M̄1E1/cp =

A2(1 + M̄2)/c̄2 − B2(1− M̄2)/c̄2 − ρ2c̄2M̄2E2/cp
(6.31)

(1 + M̄1)2A1 + (1− M̄1)2B1 − ρ1c̄2
1M̄2

1E1/cp + F̂ =

(1 + M̄1)2A2 + (1− M̄2)2B2 − ρ2c̄2
2M̄2

2E2/cp
(6.32)

(1 + M̄1)a1c̄1A1 + (1− M̄1)a2c̄1B1 − ρ1c̄3
1M̄3

1E1/2cp + Ŵ/c̄1 + ˆ̇q/c̄1 =

(1 + M̄2)a3c̄2A2 + (1− M̄2)a4c̄1B2 − ρ2c̄3
2M̄3

2E2/2cp
(6.33)
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with a1 = M̄1 + 1
2M̄2

1 + 1
γ−1 , a2 = M̄1 − 1

2M̄2
1 − 1

γ−1 and a3 = M̄2 + 1
2M̄2

2 + 1
γ−1 . These

equations (6.31, 6.32 and 6.33) are solved for three unknowns out of six: A1, A2, B1, B2, E1 and
E2. As a consequence, three of these six coefficients must be imposed to the problem.

6.4 Transmitted and reflected acoustic waves in isentropic nozzles

As already stated in the introductory part of this section, determining appropriate acoustic
boundary conditions for combustion chambers is crucial in order to correctly predict combus-
tion instabilities. These acoustic boundary conditions depend on the mean flow either up-
stream (Compressors) or downstream (Turbines). As a first step, it is useful to consider the
mean flow in these regions as isentropic (Ŵ, ˆ̇Q = 0) and isenthalpic (F̂) = 0. This means that
the combustion chamber is only surrounded by perfect diffusers and nozzles.

The unchocked Nozzle

A subsonic system need to be acoustically constrained both at the inlet and at the outlet. In or-
der to acoustically characterize the nozzle independently from boundary conditions, the outlet
is fixed as totally non-reflecting (w−2 = 0 → E2 = 0). Eqs. (6.31) and (6.33) are re-arranged to
obtain the following general expressions [55]

RAA = B1/A1 =
(M̄1 − M̄2

M̄1 + M̄2

)(M̄1 + 1
M̄1 − 1

)(
1− 1

2 (γ− 1)M̄1M̄2

1 + 1
2 (γ− 1)M̄1M̄2

)
(6.34)

RSA = B1/E1 =
(M̄2 − M̄1

1− M̄1

)( M̄1

1 + 1
2 (γ− 1)M̄1M̄2

)
(6.35)

TAA = A1/A2

(
2M̄2

1 + M̄2

)(
1 + M̄1

M̄1 + M̄2

)(
1 + 1

2 (γ− 1)M̄2
2

1 + 1
2 (γ− 1)M̄1M̄2

)
(6.36)

TSA = E1/A2

(M̄2 − M̄1

1 + M̄2

)( 1
2M̄2

1 + 1
2 (γ− 1)M̄1M̄2

)
(6.37)

The chocked Nozzle

The mass flow through a chocked nozzle is constrained by
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ṁ =
pt,1√
γtTt,1

Acrγ

(
γ + 1

2

)− γ+1
2(γ−1)

(6.38)

Derivating the logarithm of Eq. (6.38) results in a simple expression [41]

û1

c̄1
− γ

2
M1

(
p̂1

γ p̄1
+

1
2
M̄1

ρ̂1

ρ̄1

)
= 0 (6.39)

which if combined with the expression of waves (section 6.3.1) results in

RAA =
1− 1

2 (γ− 1)M̄1

1 + 1
2 (γ− 1)M̄1

(6.40)

RSA =
1
2M̄1

1 + 1
2 (γ− 1)M̄1

(6.41)

TAA =
1 + 1

2 (γ− 1)M̄2

1 + 1
2 (γ− 1)M̄1

(6.42)

TSA =
1
2 (M̄2 − M̄1)

1 + 1
2 (γ− 1)M̄1

(6.43)

It is important to emphasize here that since the nozzle is chocked, the flow after the throat
is supersonic. As a consequence acoustic waves should not be imposed at the outlet of the
computational domain. Doing so would result in an ill-posed problem.

6.4.1 Acoustic Response of Chocked and Unchocked Nozzles

As stated before, the compact assumption is very useful to study the acoustic response of a noz-
zle when the acoustic wave length λ is much larger than the nozzle length. When acoustic and
entropy disturbances fluctuate at large frequencies, the jump conditions showed previously be-
come unsuited since they do not account for phase changes across the nozzle. In order to study
the influence of ‘non-compactness’ different methods are found in the literature [12, 59, 55]. In
[55] it is stated that the main influence of the nozzle finiteness is to alter the phase between the
two wave trains. This can be modeled by considering that the mean flow velocity changes lin-
early through the nozzle. Nevertheless, this assumption is too restrictive for real systems. For
reliable computations, it is then mandatory to resolve the mean flow in the nozzle. If non-linear
acoustics and complex geometries are considered, the only possibility would be to resolve the
complete set of Euler equations in the time domain. Nevertheless, three dimensional Euler
computations are computational expensive and the consideration of non-linearities is not al-
ways necessary. If a three dimensional nozzle can be seen as axysymmetric and planar waves
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are expected, an approximate yet accurate method to study the acoustics of such a system is to
resolve the quasi-one dimensional and Linearized Euler Equations (section 6.2).

Two different nozzle configurations are studied. They are shown in Figure (6.3) and the mean
flow and geometrical parameters are given in table (6.2).

M1 M2 

A
1 A

c 

A
2 

M1 M2 

A
1 

A
2 

(a) (b)

Figure 6.3: Chocked and Unchocked configurations studied

Unchocked Chocked
Case Case

A1/Ac 5.651 5.873
A2/Ac 1.000 1.032
M2 0.8 1.2
M1 0.1
T1 1300K
P1 800 kPa

Table 6.2: Mean flow inlet conditions and geometrical parameters

In order to test the reliability of the SNozzle tool (see section 6.2), the results given by this solver
are compared to those obtained by solving the complete set of Euler Equations using the LES
AVBP solver. Besides, they are compared to the analytical results obtained under the compact
assumption. More precisely, the following approaches are compared in what follows:

• Analytics: The acoustic parameters RAA, RSA, TAA, TSA are computed through the rela-
tions proposed by Marble & Candel [55]. Equations (6.34) to (6.37), and (6.40) to (6.43) are
then used.

• Quasi-1D LEE (SNozzle): The inlet Mach number M̄1, temperature T̄1 and pressure P̄1

are given as inputs to SNozzle as well as the geometry (x coordinate and section area S).
The outlet is taken as totally non reflecting (w−2 = 0), whereas at the inlet either w+

1 or wS

are imposed. Two thousand points are used for both geometries.

• The 3D Euler Equations (AVBP): The LES solver AVBP (see section 5.3.1) is used, in
which the viscous terms of the Navier Stokes equations have been neglected. Care has
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to be taken specially with the use of the inlet boundary condition, since it must impose
both the mean flow and either the entropy or acoustic wave [37]. Therefore, the inlet
must be non reflecting so that the reflected w−1 be completely evacuated. The mesh is
composed of sixty thousand nodes which is equivalent to the two thousand nodes mesh
for the Quasi-1D LEE solver.

6.4.2 Results

The value of both transmission and reflection coefficients are shown in Fig. (7.4). They are
plotted against the non-dimensional frequency Ω = ωln/c̄1 where ω is the angular frequency,
ln the length of the nozzle and c̄1 the speed of sound at the inlet. It is observed that analytical
results are well suited when considering small frequencies (Ω → 0). Both numerical tools
converge to Marble & Candel expressions when λ � ln for all coefficients, excepting RSA

where the AVBP solver, which solves the 3D Euler equations, fails to reproduce the analytical
value. Despite our efforts, no definite explanation was found for this result, even if artificial
viscosity and lack of grid refinements seem to be good candidates for explaining such errors.
Note however that the error is for the RSA coefficient which is always the smallest one.

At small frequencies, it is observed that the main influence of a chocked nozzle is the increase
of noise (ŵ+

2 ↗) due to entropy waves, as already stated in [47]. This can be seen in the value
of TSA (ŵ+

2 /ŵS
1 ) which is twice larger when the nozzle is chocked. The reflected wave ŵ−1

increases also but to a less extend. On the other hand, the acoustic response of the nozzle due
to an incoming acoustic wave remains quite similar (TAA and RAA) for both unchocked and
chocked configurations.

When the reduced frequency increases, the value of the acoustic coefficients starts to move
away smoothly from the analytical results. Up to Ω ≈ 2 results given by both numerical
solvers can be considered similar. At higher frequencies, the 3D Euler solver curves represent-
ing TAA and RAA start to decrease faster, the largest differences appearing for RAA and the
unchocked case. This is due to the numerical scheme used in the 3D Euler solver, which ap-
pears to be dissipative for small length waves. Recall that the mesh is kept unchanged when
Ω increases so that numerical errors increase. On the other hand, a higher spatial resolution is
considered in the quasi-1D LEE solver (2000 cells) and the corresponding results are virtually
free of numerical errors (it has been checked that grid convergence is reached for the results
displayed).

6.5 When entropy does not remain constant through a duct

In the previous section the influence of the inlet/outlet Mach number M̄ on the transmitted
and reflected waves was studied in isentropic nozzles. The aim of this section is not anymore to
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Figure 6.4: Reflection and Transmission coefficients for both unchocked and chocked cases
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evaluate the acoustic response of a system due to changes in the mean flow caused by section
variations, but to study the influence of an entropy variation on the acoustics of a given system.
As a result, a thin one-dimensional flame will be considered. This flame, which is character-
ized by a mean entropy jump, is located at the middle of a constant section duct (Fig.6.5). An
incoming acoustic wave w+

1 is imposed at the inlet and the acoustic reflected wave w−1 gener-
ated by the flame is evaluated. In addition, the acoustic transmitted wave w+

2 and the entropy
wave wS

2 created after the entropy jump are also computed. This study will be carried out both
analytically (Eqs. 6.31, 6.32 and 6.33) and numerically by resolving the LEE system thanks to
the SNozzle tool (section 6.2).

Non Reflecting condition at the outlet 

w1
+ 

w1
- 

1D Flame 

w2
S 

M1 
w2

+ 
M2 

Figure 6.5: 1D Flame

6.5.1 Analytic Solution : Building the linear system of equations

After having neglected B2 and E1, the sources due to the presence of a compressor F̂ and Ŵ ,
and the unsteady source of energy ˆ̇q the system of equations to resolve become

(1 + M̄1)/c̄1A1 − (1− M̄1)/c̄1B1 = (1 + M̄2)/c̄2A2 − ρ2c̄2M̄2E2/cp (6.44)

(1 + M̄1)2A1 + (1− M̄1)2B1 = (1 + M̄2)2A2 − ρ2c̄2
2M̄2

2E2/cp (6.45)

(1 + M̄1)a1c̄1A1 + (1− M̄1)a2c̄1B1 = (1 + M̄2)a3c̄2A2 − ρ2c̄3
2M̄3

2E2/2cp (6.46)

with a1 = M̄1 + 1
2M̄2

1 + 1
γ−1 , a2 = M̄1 − 1

2M̄2
1 − 1

γ−1 and a3 = M̄2 + 1
2M̄2

2 + 1
γ−1 . These

equations (6.44, 6.45 and A.1) are resolved for three unknowns: B1, A2 and E2. The coefficient
A1 is the amplitude of the forced acoustic wave and must be given as an input to the problem.
Note that for this particular case ˆ̇q was set to zero. This term could be also model as ˆ̇q =
cp(T̄t2 − T̄t1)(ρ̄1û1 + ρ̂1ū1) as done in [22].
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6.5.2 The mean flow in SNozzle

Before performing any analysis on fluctuating quantities, it is necessary to define the baseline
flow of the 1D Flame configuration. The1D flame is considered to produce a jump of temper-
ature at x = 0. This temperature jump must be as smooth as possible so that gradients of all
related quantities are properly computed. The temperature profile, shown in Fig. 6.6(a) is built
from an hyperbolic tangent function. The mean value of the entropy s̄ is function of the mean
density ρ̄ and the mean temperature T̄. It reads

s̄ = cv ln
[

RT̄
ρ̄γ−1

]
(6.47)

Along this study the perturbations of the heat release ˆ̇q(t) = 0 are neglected. Nevertheless a
profile of the mean heat release ¯̇q is present and defined as

¯̇q =
P̄ū
r

∂s̄
∂x

(6.48)
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Figure 6.6: Typical Profiles

The mean quantities ū, ρ̄ and p̄ are obtained in such a way that the Euler equations for steady
flows are satisfied. Figures 6.6, 6.7 and 6.8 show the mean profiles of heat release, pressure,
velocity, density and the Mach number for the case in whichM1 = 0.1.
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6.5.3 Results

The 1D Flame system is considered compact since the flame thickness δ f remains small for all
the acoustic wave lengths λ studied. For this reason, the present analysis focuses mainly on the
effects of both the inflow Mach Number M̄1 and the temperature jump (T̄2/T̄1).

Figure (6.9) shows the values of the coefficients RAA, TAA and TAS (see table 6.1) obtained by
both the analytical and the LEE approaches for two different values of T̄2/T̄1.
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Figure 6.9: 1D Flame - Entropy Jump Case. Lines correspond to analytical solutions. Symbols
(4,5,◦) represent SNozzle solutions

.

Good agreement is found between analytical solutions and SNozzle results. It is observed that
the lower the inflow Mach number M̄1, the bigger the amplitude of all the waves w−1 ,w+

2 and
wS

2 . The temperature jump T2/T1 has a strong but opposite effect on both transmitted acoustic
wave and generated entropy wave. A high value of T2/T1 generates a high amplitude entropy
wave. On the other hand, this high value of T2/T1 creates a reduction of the amplitude of the
transmitted acoustic wave so that the energy of the fluctuations is conserved through the flame
[64].
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6.6 Transmitted and Reflected Waves through an ideal Compressor: the en-
thalpy jump case

In the previous two sections, the focus was on the acoustic response of ducts due to:

• a change in the mean flow due to variations of section area: the nozzle case.

• a change in the mean flow due to an entropy jump : the 1D flame case.

The purpose of this section is to focus on the acoustic response of a system when the changes in
the mean flow are due to enthalpy jumps. The case to study here is then an ideal compressor.
The first step when modeling a compressor is to consider it as an isentropic element that creates
a difference in both the total pressure and the kinetic energy in the flow, i.e., an element that
exerts a work on the flow by changing its total enthalpy. The case considers a constant section
duct (as in the 1D flame case) with a jump of total enthalpy at the middle. This is represented
in Fig. (6.10)

w2
+ 

w2
- 

p’=0 

Compressor 

M1 M2 

A
tm

os
ph

er
e 

Impossed 

Figure 6.10: compressor

In this configuration an upstream acoustic wave w−2 is imposed at the outlet while a Dirichlet
acoustic condition is imposed at the inlet (p′ = 0). This analytical/numerical setup is a crude
representation of the inlet air circuit and compressor of an aeronautical engine. The acoustic
waves, produced in the combustion chamber, travel upstream through the compressor until
reaching the atmosphere which is considered as a totally reflecting acoustic condition ( p′ = 0
→ R = 1 with a phase φ = π). As done before, this study is carried out both analytically and
numerically (SNozzle).

6.6.1 Building the linear system of equations for the analytical solution

Equation (6.22) is the momentum equation of the 1D LEE for compact systems. The influ-
ence of the compressor into the system is accounted by the term F̂ . Nevertheless, the most
practical characterization of a compressor in a 1D system is simply by its total pressure ratio
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πc = pt,2/pt,1 where the indices [1] and [2] represent the flow upstream and downstream of the
compressor respectively. It is then useful to redefine Eq. (6.13) as function of the parameter πc.

F = (ρu2)
∣∣∣∣
2

1
+ p

∣∣∣∣
2

1
+
∫ x2

x1

∂

∂t
(ρu) dx (6.49)

F = ∆pt + ∆ek +
∫ x2

x1

∂

∂t
(ρu) dx (6.50)

where pt = p + ρu2/2 and ek = ρu2/2. From Eq. (6.50) it is observed that the compressorF acts
as an element that exerts a change in the total pressure pt of the flow as well as in its fluctuating
kinetic energy ek. The parameter πc is now inserted into the expression leading to

F = pt1(πc − 1) + ∆ek +
∫ x2

x1

∂

∂t
(ρu) dx (6.51)

Equation (6.51) is now linearized and expressed in the frequency domain. It yields

F̂ = p̄tπ̂c + p̂t,1(π̄c − 1) + ∆êk − iω
∫ x2

x1

(ρ̄û + ûρ̂) dx (6.52)

where êk = ρ̂ū2/2 + ρ̄ūû and p̂t = p̂ + ρ̂ū2/2 + ρ̄ūû. For a compact system the integral can be
neglected and Eq. (6.52) results in

F̂ = p̄tπ̂c + p̂t,1(π̄c − 1) + ∆êk (6.53)

In Appendix A, it is shown that π′c is a complex term that depends mainly on the mean and
fluctuation value of the enthalpy both upstream and downstream of the compressor. Neglect-
ing this term might be an strong assumption. The conditions of a compressor such that π′c ≈ 0
are discussed in Appendix A. Nevertheless, it is practical as a first approximation and it is use-
ful to see the influence of the mean value of the total pressure ratio π̄c. After this assumption,
the momentum equation (Eq. 6.22) becomes

p̂t,1π̄c = p̂t,2 (6.54)

Finally, the system of equations to resolve is expressed as function of the Mach Number M̄.
The continuity equation (Eq. 6.31) and the momentum equation (Eq. 6.54) read
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(1 + M̄1)/c̄1A1 − (1− M̄1)/c̄1B1 = (1 + M̄2)/c̄2A2 − (1− M̄2)/c̄2B2 (6.55)

π̄cb1A1 + π̄cb2B1 = b3A2 + b4B2 (6.56)

with b1 =
(
1 + 0.5M̄2

1 + M̄1
)
, b2 =

(
1 + 0.5M̄2

1 − M̄1
)
, b3 =

(
1 + 0.5M̄2

2 + M̄2
)

and b4 =(
1 + 0.5M̄2

2 − M̄2
)

In addition the acoustic condition at the inlet (p̂ = 0) must be taken into account. This is done
simple by doing A1 = B1eiπ = −B1. The coefficient B2 which is related to the forced wave at
the outlet must be given by the user. The system is resolved then to find the values of A1, B1

and A2.

6.6.2 The mean flow in SNozzle

The main effect of a compressor is to add energy to the flow by increasing its total pressure p̄t.
A typical profile of p̄t corresponding to a compressor of thickness δc is shown in Fig. 6.11(a).
This jump of total pressure is built from the following hyperbolic tangent function

p̄t = p̄t1 + 0.5p̄t1 (π̄c − 1)
[

1 + tanh
(

k(x− xm)
xm − xups

)]
(6.57)

which satisfies the isentropic expression:

π̄c =
p̄t2

p̄t1
=
(

T̄t2

T̄t1

)γ/(γ−1)

(6.58)

The subindices [1] [2] stand for upstream and downstream of the compressor respectively. The
Mach number profile M̄ for the case in which M̄2 = 0.025 is shown in Fig. 6.11(b).

All mean quantities satisfy the Euler equations for steady and isentropic flows. Mean profiles
of pressure, velocity, density and temperature are shown in Figs. 6.12 and 6.13 for the case in
which π̄c = 2 and M̄2 = 0.025.

6.6.3 Introducing πc in the momentum equation

Let us recall the momentum equation of the Quasi-1D LEE system. It reads



6.6 Transmitted and Reflected Waves through an ideal Compressor: the enthalpy jump case 115

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

x 10
5

X (m)

p̄
t

(P
a
)

δC

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

X (m)

M̄

δC

(a) Total Pressure p̄t. π̄c = 2 (b) Mach number M̄

Figure 6.11: Mean Flow. Typical Profiles
.

!!"# !!"$ ! !"$ !"#
!"%

$

$"#

$"&

$"'

$"%

#

#"#
()$!

*

X (m)

p̄
(P

a
)

δC

!!"# !!"$ ! !"$ !"#
%

$!

$$

$#

$&

$'

$(

$)

$*

X (m)

ū
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(
1
ρ̄

∂c̄2

∂x
+

ū
ρ̄

∂ū
∂x

+
c̄2

ρ̄

∂

∂x

)
ρ̂ +

(
∂ū
∂x

+ ū
∂

∂x

)
û + (γ− 1)T̄

(
1
p̄

∂ p̄
∂x

+
∂

∂x

)
ŝ− jωû− ẑ = 0 (6.59)

From Eq. (6.13), it is known that F (x) =
∫

zdx, or in other words z = ∂F
∂x , where F is given

by Eq. (6.52). Since in the Quasi-1D LEE F is function of x, Eq. (6.50) can be re-stated as

F (x) = ∆pt + ∆ek +
∫

∂

∂t
(ρ(x)u(x)) dx (6.60)

F (x) = pt(x)− pt,1 + ek(x)− ek,1 +
∫

∂

∂t
(ρ(x)u(x)) dx (6.61)

z(x) =
∂

∂x
[pt(x) + ek(x)] +

∂

∂t
[ρ(x)u(x)] (6.62)

In seek of readiness, the argument (x) is dropped. Linearizing and considering harmonic oscil-
lations:

ẑ =
∂ p̂t

∂x
+

∂

∂x

(
ρ̄ūû +

1
2

ρ̂ū2
)
− iω (ρ̄û + ρ̂ū) (6.63)

In order to allow a fair comparison with the analytical solution (section 6.6.1), it is necessary
that the computation is made in such a way that π′c = 0. This means that
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p̂t

p̂t,1
=

p̄t

p̄t,1
thus

∂ p̂t

∂x
=

p̂t,1

p̄t,1

∂ p̄t

∂x
(6.64)

The profile of p̂t is given by a smooth hyperbolic tangent relation as seen in Fig. 6.14. From
Eq. (6.64), the (∂ p̂t/∂x) term in Eq. (6.63) must be written as
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Figure 6.14: Mean and Fluctuation profiles of total pressure

∂ p̂t

∂x
= p̂t1 f (x, π̄c) with (6.65)

f (x, πc) = 0.5 (π̄c − 1)
[

1− tanh2
(

k(x− xm)
xm − xups

)] [
k

xm − xups

]
(6.66)

6.6.4 Results

Two different cases are considered, corresponding to two different values of πc = p̄t2/ p̄t1. The
value of the reflection coefficient R = w+

2 /w−2 is computed by using both the analytical and the
numerical approach (SNozzle). In order to observe the influence of the forcing frequency on
the values of R, results are plotted as a function of an adimensional frequency.

Ω = f L/c̄2 (6.67)

where L represents the length of the compressor and c̄2 the velocity of sound at the outlet. The
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values of R computed by SNozzle match the values of R given analytically when the length
wave is extremely large compared to L (Ω ≈ 0). This is shown in Figs (6.15) and (6.16) .
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Figure 6.15: Modulus of the Reflection Coefficient. Lines represent SNozzle solutions. Symbols
(◦) stands for Analytical results

.

From Fig. (6.15) it is observed that, for a given π̄c, lower values of M̄2 lead to smaller values
of |R|. For high values of π̄c, the magnitude or the reflection coefficient increases significantly
mainly for low forcing frequencies. It should be clear then that the inclusion of an enthalpy
jump is crucial for the estimation of acoustic boundaries to impose at the edge of a combustion
chamber within an aeronautical engine.
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Computation of the Reflection Coefficient on the

Inlet air circuit of an Helicopter combustor
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7.1 Motivation

The numerical tool described in Chapter 6 can be used to compute the equivalent impedance
of any airline with compressor or turbine. It is applied in this chapter to an actual aeroengine
which is know from experiments to oscillate at 250 Hz for certain operating conditions. Com-
bustion instabilities emerge due to a coupling between the unsteady heat released by the flame
and the acoustic field of the chamber. In order to characterize this unstable mode, it is impor-
tant to know whether it corresponds to an acoustic mode of the combustor. For this purpose, a
Helmholtz solver [56, 89, 62] is used to compute the different acoustic modes of this system. At

120
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first, simplified acoustic boundary conditions are imposed at both inlet and outlet (u’=0). They
can be considered as fully reflecting conditions as if they were a rigid wall. In a second step,
the impedance computed by the SNozzle tool for the inlet of the combustion chamber is used
instead of the simple u′ = 0 condition.

When the simple condition (u’=0) is used, the Helmholtz solver computes an acoustic mode
around 500Hz which is considered a value far from what is observed in experiments. It is
well known that the resonant modes of a system are fully dependent on the acoustic boundary
conditions used [56]. A viewpoint often put forward is that the bad prediction of the resonant
frequency by the Helmholtz solver is probably due to the crude treatment of acoustics at both
the inlet and the outlet. In the combustion chamber studied, the flow is shocked at the outlet.
In this case, and for low frequencies, it is known that the reflection coefficient can be considered
close to that of a rigid wall. On the other hand, the same cannot be stated for the Inlet. Acoustic
properties of the combustion chamber inlet are fully dependent on the upstream configuration
of the combustor. The question that is investigated in this chapter is then to know whether
using a more accurate description of the inlet impedance leads to large changes in the mode
computed by the Helmholtz solver, hopefully in better agreement with the experiments. This
exercise also serves as an illustration of the capability of the SNozzle tool to represent complex
intakes.

Aeronautical engines are complex systems in which the combustion chamber is present just in a
tiny region after the compressor stages. From the point of view of the combustor, the upstream
region is then composed by several compression stages in which acoustics depends on enthalpy
jumps (compressors), the intake acoustic condition (usually related to the atmosphere) and
the geometry of the entire system. Figure (7.1) shows the intake duct of a typical helicopter
combustor.

SNozzle has been developed for computing the acoustic response of a quasi-1D system due
to an acoustic perturbation. This numerical tool considers non-negligible Mach Numbers as
well as total pressure jumps in the mean flow. SNozzle is then considered appropriate to eval-
uate the acoustic impedance at a specific transversal plane of systems such as of the present
aeronautical airline. Once the acoustic impedance is evaluated, this acoustic condition can be
imposed in the Helmholtz solver. Resonant frequencies closer to the experimental measure-
ments are expected. Insignificant changes in the computed mode would support the idea that
the disagreement between the computed and observed mode is not due to errors in the inlet
impedance description.

7.2 Mean parameters of the Intake Duct

SNozzle needs two thermodynamical parameters (Temperature and Pressure) , the Mach num-
ber at the outlet (see Fig. 7.1) and the Section Area as a function of the curvilinear axis (Fig. 7.2).
The position and the total pressure jump due to the compressors is also needed in order to
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Figure 7.1: Airline Configuration

characterize the mean flow.
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Figure 7.2: Adimensional section area of the aeroengine airline

Figure (7.3) show the mean field of total pressure and total temperature computed by SNoz-
zle. In real engines, this pressure jump is not performed isentropically. As a consequence the
evaluation of a polytropic coefficient ηp is essential.

p̄t2

p̄t1
=
(

T̄t2

T̄t1

)γηp/(γ−1)

(7.1)
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In the present helicopter system, this coefficient is close to 0.87 for the first compressor stage
and ηp = 0.9 for the second one. The mean field can be, as a result, be modeled properly in the
computational analysis. This is shown in Fig. 7.3.
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Figure 7.3: Total Pressure and Total Temperature profiles

7.3 Acoustic Evaluation

The reflection coefficient R = w+
2 /w−2 is computed for the outlet section of the intake duct

which corresponds to the inlet of the helicopter combustion chamber. It is evaluated for two
different cases:

• CASE A→ Airline with total pressure jump: The Evaluation of acoustics is done for the
geometry including the compressors. It means that a total pressure jump is imposed to
the mean flow.

• CASE B→ Airline without total pressure jump: In order to assess the actual influence
of the compressors on the acoustics of the system, the acoustic response of the intake is
done without any total pressure jump. In fact, this is how the reflection coefficient was
used to be computed [41] before the development of the Snozzle tool.

It is noticeable that the presence of the compressors increases the amplitude of the reflected
wave (Fig. 7.4 a). When no total pressure jump is imposed, the amplitude of the reflected wave
is similar to the forced one, while is twice as large when the work done by the compressor is
accounted for. The phase of R (Fig. 7.4 b) also changes when the compressors are added to the
system.
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Figure 7.4: Reflection Coefficient

7.4 Helmholtz Solver Computation

AVSP [56, 89, 62] is the Helmholtz solver used to find the acoustic modes of the aero-engine
of interest. The acoustic information given to AVSP for describing the boundary conditions is
expressed in terms of the acoustic admittance Y at the inlet of the chamber. It is related to the
reflection coefficient as follows

Y =
R− 1
R + 1

(7.2)

and its evolution with frequency is diplayed in Fig. 7.5
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AVSP computes the resonant modes of the combustor accounting for these values of Y. Table
7.1 displays the frequency of the first computed eigenmode.

From table 7.1, it is clear that no variations are found on the resonant frequency of the aero-
engine. This frequency corresponds to 508 Hz which also the one when the Neumann condition
u′ = 0 is applied at the inlet. The Modulus and the Argument of the pressure are displayed in
Fig. 7.6.

It is interesting then to analyze in which cases, the compressor would change the resonant
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INLET B.C Eigen-frequency Eigen-frequency IM
(real part) (imaginary part)

u′ = 0 507.9 Hz -2.3 Hz
Airline with total pressure jump 508.8 Hz -4.4Hz

Airline without total pressure jump 508.5 Hz -4.6 Hz

Table 7.1: Eigen-Frequencies found by AVSP. Ardiden Combustor

Inlet 

Outlet 

u′ = 0

u′ = 0

Inlet 
u′ = 0

Outlet 
u′ = 0

(a) (b)

Figure 7.6: Acoustic Mode of the Aeroengine combustor. 507.9 Hz
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chamber

frequency of the combustor. Figure 7.7 shows the correspondance between |R|,Arg(R) respect
to real(Y), imag(Y). The Neumann Condition u′ = 0 corresponds to a case in which |R| = 1
and Arg(R) = 0, which in turn is equivalent to real(Y) = 0 and imag(R) = 0.

Changing the phase of R while maintaining |R| = 1 is equivalent to change imag(Y) while
keeping real(Y) = 0. On other hand, if Arg(R) is fixed to zero but |R| changes, it corresponds
to a variation of real(Y) maintaining imag(Y) = 0. By doing so, it is possible to compute the
correspondant resonant frequencies for the following hypothetical and extreme cases:

• The compressor does not change the phase of the acoustic waves but only their amplitude
ratio, i.e., Arg(R) = 0 and |R| varies from 0.1 to 1000.

• The compressor does not change the amplitude of the waves but only produce a phase
shift, i.e., |R| = 1 and Arg(R) varies from −π to π.
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Figure 7.7: Admittance Vs Reflection Coefficient

From Fig. 7.8 it is understood that a considerable variation is produced on the resonant fre-
quency when the phase is shift at the inlet of the combustor. This Frequency can vary by
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100Hz when modifying the phase from −π to π. On the contrary, varying the modulus of the
reflection coefficient |R| does not imply a significative change in the Eigen-Frequency of the
combustor. Given the very large variations of |R| and arg(R) considered in Fig. 7.8, the results
also demonstrate that the large disagreement between the computed (500 Hz) and observed
(250 Hz) mode for this combustion chamber cannot be only due to a wrong representation of
the inlet impedance. The results obtained from SNozzle and reported in table 7.1 suggest that
improving the inlet condition has in fact no effect on the result.
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Figure 7.8: Eigen Frequency Vs Reflection Coefficient

7.5 Conclusions

The approach used to model the compressor as an element that perturbs the acoustics of the
airline might be still too approximative. The inclusion of π′c 6= 0 into the compressor acous-
tic model might contribute to a stronger variation on both |R| and Arg(R) at the inlet of the
combustor. Nevertheless, it has been seen that the lowest possible eigen-frequency in the Aero-
engine combustor corresponds to a value around 410 Hz, which is still too far from what is
found in experiments: 250 Hz.

It is highly probable then that the resonant frequency found experimentally does not corre-
spond to an acoustic mode of the combustor. This frequency might be linked instead to a
combustion instability known as ‘rumble’, which is due to a coupling between entropy waves
convected at the mean flow and the acoustic waves generated at the high pressure distributor.
In order to verify if this instability mechanism is present, it is necessary to use an acoustic code
that accounts for the presence of a mean flow. i.e., to consider the complete set of Linearized
Euler Equations instead of the Helmholtz equation.
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A
About the π′c = 0 assumption

A.1 When is π′T equal to zero?

Let us recall the equation of conservation of the total energy through a compressor. It is defined
as

ρ1u1ht,1 +W = ρ2u2ht,2 (A.1)

whereW is the work done by the compressor. This equation can be also written as

πTρ1u1ht,1 = ρ2u2ht,2 (A.2)

where πT is the total enthalpy ratio between the upstream and downstream flow. Equation
(A.1) can be re-written as

ρ1u1ht,1 + ρ1u1∆ht = ρ2u2ht,2 (A.3)

where ∆ht = ∆(Uvθ) is related to the conservation of the rothalpy (see Fig. A.1)

I = ht,1 −U1vθ1 = ht,2 −U2vθ2 (A.4)
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w1

w2

vθ,1

vθ,2

U

U

Figure A.1: Velocity triangles

Considering now U1 = U2 = U for an axial compressor and ρ1u1 = ρ2u2 due to mass conser-
vation, it is possible to express Wc as function of U and vθ ,

W
ρ1u1

= ht,2 − ht,1 = U(vθ,2 − vθ,1) (A.5)

and introducing now πT

ht,1(πT − 1) = U(vθ,2 − vθ,1) (A.6)

Let us now define a parameter ζ = Uvθ
ht

. The variable πT is then expressed as

ht,1(πT − 1) = ζ1ht,1 − ζ2ht,2 = ζ1ht,1 − ζ2πTht,1 (A.7)

(πT − 1) = ζ1 − ζ2πT (A.8)

Finally, resolving for πT, it yields

πT =
ζ1 + 1
ζ2 + 1

(A.9)

Applying the differential of the logarithm to Eq. (A.9) results in

π′T
π̄T

=
ζ ′1

ζ̄1 + 1
− ζ ′2

ζ̄2 + 1
(A.10)
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The fractional variation of ζ can in turn be found. It yields

ζ ′

ζ̄
=

v′θ
v̄θ
− h′t

h̄t
(A.11)

From Eq. (A.10), it is then possible to state that π′T = 0 if both ζ ′1 and ζ ′2 are zero, or if ζ ′1
ζ̄1+1 =

ζ ′2
ζ̄2+1 which is equivalent to

ζ ′1 = π̄Tζ ′2 (A.12)
(

v′θ,1

¯vθ,1
−

h′t,1
h̄t,1

)
ζ̄1 = π̄T

(
v′θ,2

¯vθ,2
− h′t,2

h̄t,2

)
ζ̄2 (A.13)

(
v′θ,1

¯vθ,1
−

h′t,1
h̄t,1

)
v̄θ,1

h̄t,1
= π̄T

(
v′θ,2

¯vθ,2
− h′t,2

h̄t,2

)
v̄θ,2

h̄t,2
(A.14)

This relation can be splitted. Therefore π′T is zero if both

v′θ,1

v̄θ,1

v̄θ,1

h̄t,1
= π̄T

v′θ,2

v̄θ,2

v̄θ,2

h̄t,2
(A.15)

and

h′t,1
h̄t,1

v̄θ,1

h̄t,1
= π̄T

h′t,2
h̄t,2

v̄θ,2

h̄t,2
(A.16)

or if

v′θ,1

¯vθ,1
=

h′t,1
h̄t,1

or
v′θ,2

¯vθ,2
=

h′t,2
h̄t,2

(A.17)

Equations (A.15) and (A.16) can be simplified in Eqs. (A.18) and (A.19) respectively. It results
in

v′θ,1 = v′θ,2 (A.18)
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and

π̄Th′t,1v̄θ,1 = h′t,2v̄θ,2 (A.19)

Summarizing, the fluctuation of the parameter π′T can be neglected if

v′θ,1 = v′θ,2 and π̄Th′t,1v̄θ,1 = h′t,2v̄θ,2 (A.20)

or

v′θ,1

¯vθ,1
=

h′t,1
h̄t,1

or
v′θ,2

¯vθ,2
=

h′t,2
h̄t,2

(A.21)

The parameter πT is related to the total pressure ratio πc as πT = π
(γ−1)/γ
c . The fractional

variation of πc is written.

π′T
π̄T

=
γ− 1

γ

π′c
π̄c

(A.22)

It is observed then that making π′T = 0 is equivalent to make π′c = 0, which is a clear simpli-
fication for the definition of the differential equation of momentum in SNozzle. Indeed, doing
π′c = 0 means that p′t,2/p′t,1 = π̄c
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Publications

In this appendix two publications are shown. They were realized during the work on this Ph.D.

Assessment of combustion noise in a premixed swirled combustor via Large-eddy
simulation

Silva, C., Leyko, M., Nicoud, F., and Moreau, S.
Computers & Fluids, accepted (2010)

This article shows the computation of noise in a premixed swirled combustor by both direct
and hybrid approaches. The direct approach is performed by a LES solver (AVBP) while the
hybrid approach is carried out by an acoustic solver (AVSP-f) developed during this thesis.
Results coming from both approaches are compared and discussed.

Extracting the acoustic pressure field from Large-eddy simulation of confined
reactive flows

Silva, C., Nicoud, F., and Moreau, S.
in 16th AIAA/CEAS Aeroacoustics. Stockholm, Sweden (2010)

Based on the previous work, it has been realized that it is not appropriate to directly compare
the pressure fluctuations coming from LES and those coming from the acoustic solver when
computing noise in a confined domain: hydrodynamic pressure fluctuations must be removed
from the pressure field so that a proper acoustic field is obtained. A method to extract the
acoustic field from the entire pressure field given by LES is proposed.
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Assessment of combustion noise in a premixed swirled combustor

via Large-eddy simulation

Camilo F. Silva∗ and Matthieu Leyko †

CERFACS, 31057 Toulouse, France

Franck Nicoud ‡

Université Montpellier II, 34095 Montpellier, France

Stéphane Moreau §

Université Sherbrooke, 2500, boul. de l’Université Sherbrooke (Québec), Canada J1K 2R1

Abstract

Today, much of the current effort in combustion noise is the development of efficient numerical
tools to calculate the noise radiated by flames. Although unsteady CFD methods such as LES or
DNS can directly provide the acoustic field radiated by noise sources, this evaluation is limited to
small domains due to high computational costs. Hybrid methods have been developed to overcome
this limitation. In these schemes, the noise sources are decoupled from the radiated sound. The
sources are still calculated by DNS or LES codes whereas the radiated sound is evaluated by acoustic
codes using an acoustic analogy.

In the present paper the assessment of combustion noise is conducted by both direct (LES) and
hybrid computations in a premixed swirled combustor. Some comparisons of the sound pressure levels
resulting from both approaches are shown, and the main differences between the two methods are
explained.

keywords: combustion noise, acoustic analogy, direct computation, hybrid computation.

1 Introduction

Today Large Eddy Simulation (LES) has become an important tool for the simulation and post-processing
analysis of turbulent flows. It offers the best promise in the foreseeable future for the estimation of noise
from flows at Reynolds Numbers of interest in both open and closed systems. In aeroacoustics, LES
plays an important role in the study of aerodynamical generated noise of numerous practical cases that
range from air jets, high-lift devices or landing gears in an aircraft to the rear-view mirror of a car or the
blades of a wind turbine [1, 2]. On the contrary, thermoacoustics is less understood than aeroacoustics.
This is caused by additional physical phenomena implied such as the addition of unsteady heat release
to the turbulent flow. Yet, LES has been successfully applied to partially premixed and non-premixed
open flames [3, 4, 5] as well as to more complex cases such as gas turbine combustors. [6]
∗Corresponding author. Ph.D. Student, CFD Team, 42, Av. Gaspard Coriolis; silva@cerfacs.fr. Tel: (33).(0)5.61.19.31.10
†Ph.D. Student, CFD Team, 42, Av. Gaspard Coriolis; leyko@cerfacs.fr
‡Professor, Université Montpellier II, I3M - CNRS UMR 5149 - CC51, franck.nicoud@univ-montp2.fr
§Professor, GAUS, Mechanical Engineering Department, Université de Sherbrooke, stephane.moreau@usherbrooke.ca.
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Computational techniques for the estimation of sound can be classified into two broad categories: direct
computations and indirect, or hybrid, computations. LES is present in both categories. Direct compu-
tations resolve the flow field together with the sound radiation. A compressible LES code is therefore
required in addition to high-resolution numerical schemes in order to minimize both dispersion and dissi-
pation. Moreover, the computational domain must be large enough to include the sources of noise as well
as part of the acoustic near field [7]. Very expensive computational costs can arise since hydrodynamic
and acoustic scales differ by a large amount in typical applications where the Mach number is moderate.
This is even more severe when dealing with thermoacoustics since the transport equation of each species
must be considered in order to solve the problem of compressible multicomponent reactive flows.

In hybrid approaches, the computation of sound is made in two different steps. The sources of noise
are modeled first, which requires a proper estimation of the flow and the flame dynamic properties.
These sources are assumed independent of any acoustic quantity. The far field acoustic radiation is
then predicted from the different noise sources. Acoustic propagation is calculated based on equations
relevant to acoustic phenomena. The derivation of a wave equation governing sound propagation in an
arbitrary mean flow (and therefore accounting for mean flow-acoustic interactions) remains a difficult and
controversial task in aeroacoustics [8]. Since the sources of noise and the acoustic radiation are computed
separately, the computational effort is less critical than in direct sound computations. The sources of noise
can be computed by numerical codes with lower-resolution schemes provided that numerical dissipation
is carefully controlled [9] and that the acoustic source formulations fulfill true radiation characteristics
(dipole, quadripole, etc). Regarding thermoacoustics, and more specifically combustion noise, it has been
established that turbulent flames behave like low frequency monopoles [10]. After the different sources
have been computed, the sound radiation, due to these sources, is evaluated by solving the wave operator
coming from an acoustic analogy equation [4, 5, 11]. Notably, Strahle’s formulation of Lighthill’s analogy
[12] [13] which takes into account the conservation equation of multicomponent reacting flows and Phillips’
analogy [14]. Alternative methods include the Linearized Euler equations or its APE formulation [15, 16].
Acoustic analogies are satisfactory for open systems, i.e. when the acoustic fluctuations produced by the
source propagate to the infinite and anechoic far-field. Moreover, in these cases, it is relatively easy to
distinguish pure acoustics from hydrodynamic pressure fluctuations in the region of interest (farfield):
hydrodynamic pressure fluctuations are negligible in the far field since they typically decay at least
as the inverse third power of the distance to the sources [17]. Less is known about aeroacoustics in
confined domains where acoustic and hydroynamic pressure fluctuations are both present. Interesting
developments have been done to account for turbulence-body interaction [18, 19] . More recently, Schram
used a modified Curle’s analogy combined with a boundary element method (BEM) for evaluating the
acoustic field produced by a non-compact turbulent source in a confined domain[20].

In the field of thermo-acoustics, it seems that no significative work has been done for evaluating the
noise produced by confined flames using hybrid approaches. In reactive flows, confined systems might
present an important interaction between the flame, the turbulent flow and the walls of the system.
However if this interaction is not strongly present, the flame can be assumed independent of the acoustic
field generated and acoustic analogies should apply. The general objective of this study is therefore to
investigate whether acoustic analogies might be considered for the evaluation of noise in such confined
domains.

2 Combustion noise through Phillips’ analogy

The first attempt to include inhomogeneities of the mean flow into the acoustic wave operator is due to
Phillips [21] who derived the following expression:
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(1)

where π is a function of the logarithm of the pressure π = (1/γ) ln(p/p∞). The first term in the RHS is
related to the noise created by turbulence. The second term is the monopole source of noise due to the
unsteady heat release induced by the flame. The third one is linked to the noise produced by molecular
transport whereas the gradient of the viscous tensor appears in the fourth term. Finally, the last term is
known as the non-isomolar combustion source of noise.

In order to simplify this equation, one may consider different realistic assumptions in order to evaluate
the acoustics for low mach number reactive systems [22]. Therefore, it is stated that

• The pressure level of the oscillations are small compared to the local mean pressure. p′/p0 � 1.

• The system is nearly isobaric so that p0 ≈ const.

• The mean flow is small so that the convective terms in the equation are negligible.

As a consequence, the acoustic wave equation for low mach number reacting flows reads

∇ · (c20∇p′)−
∂2p′

∂t2
= −(γ − 1)

∂q̇′

∂t
− γp0∇v : ∇v +

γp0

W0

∂2W ′

∂t2
(2)

where c0, p, γ, q̇, v, W represent the speed of sound, the pressure, heat capacity ratio, the heat release
rate, the velocity vector and the mixture molar weight respectively. The symbols ()0 and ()′ define mean
and fluctuating quantities respectively. As it can be noticed in the left hand side of Eq. 2, the speed
of sound c is placed inside the divergence operator. This ensures to capture acoustic fluctuations with
strong variations of the mean temperature as it occurs close to the flame front.

In the combustion case exposed in this paper, the non-isomolar combustion noise does not play an
important role since the reactant mixtures are highly diluted in nitrogen. Further on, the aerodynamic
source of noise is considered small with respect to the noise source associated with the perturbation of
the heat release rate [23]. The inhomogeneous wave equation then reduces to

∇ · (c20∇p′)−
∂2p′

∂t2
= −(γ − 1)

∂q̇′

∂t
(3)

3 Description of the acoustic Tool

Under harmonic oscillation assumptions, the pressure fluctuation p′ and the heat fluctuation q̇′ are ex-
pressed as follows [24]:
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p′(−→x , t) = <(p̂(−→x )e−iωt) (4)

q̇′(−→x , t) = <(ˆ̇q(−→x )e−iωt) (5)

where ω = 2πf . The quantities p̂ and ˆ̇q are complex amplitudes which depend on space only and are
related by the so called Helmholtz equation :

{
∇ · c20∇p̂+ ω2p̂ = iω(γ − 1)ˆ̇q in Ω
+ Boundary Conditions on Γ

(6)

When solving eq. 6 for pressure, the combustion term ˆ̇q must be either known or modeled. If thermoa-
coustic eigen modes are sought for, ˆ̇q is considered as a function of the acoustic pressure at some reference
position, ˆ̇q = ˆ̇qamp(p̂, ω) so that eq. 6 is an eigenvalue problem which must be solved by using dedicated
numerical methods [25]. On the contrary, when dealing with combustion noise the flame is considered as
an autonomous acoustic source that generates combustion noise and ˆ̇q reduces to a fixed forcing term:

{
∇ · c2∇p̂+ ω2p̂ = iω(γ − 1)ˆ̇qnoise(ω)
+ Boundary Conditions

(7)

For Eq. 7 the mathematical problem to solve is a linear system:

A︸︷︷︸
∇·c2∇+ω2I

x︸︷︷︸
p̂

= b︸︷︷︸
iω(γ−1)ˆ̇qnoise

(8)

This Linear system is solved by the Generalized Minimum REsidual (GMRES) method. This algorithm
was chosen mainly due to its portability, simplicity, flexibility and efficiency . GMRES solves large, sparse
and non Hermitian linear systems and belongs to the class of Krylov based iterative methods. This is an
important feature that allows using only Matrix-vector products when solving Eq. 8, instead of storing
the full matrix A.

The present numerical tool uses a CERFACS implementation of the GMRES algorithm for both real
and complex, single and double precision arithmetics suitable for serial, shared memory and distributed
memory computers [26].

4 Experimental Configuration

Both direct and indirect computations of combustion noise using the above methodology are assessed
by comparing with the experiment in a swirled premixed combustor (EC2 combustor) carried out in
the laboratory EM2C (École Centrale Paris) [27][28]. The EC2 combustor consists in two geometrically
indentical stages for air-fuel injection, a premixer and a combustion chamber. Air is fed into each stage
through a circular manifold in which a swirler is inserted. This swirler has a hollow cylinder with large
lateral openings (see Fig. 1a), through which air is injected in the inner premixer channel. Inside these
rectangular openings, four injectors (1 mm diameter) deliver gaseous propane perpendicularly to the air
flow. This cross-flow configuration enhances fuel-air mixing. The tangential injections create a strong
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swirl motion in the D = 30 mm diameter inner channel, which in turn generate a central recirculation
zone at the plenum that stabilizes the flame. The flame is controlled by the fuel-air ratio imposed in each
of the two stages and is considered premixed and compact. Note that the LES could consider modeling
the lines at each stage of both fuel and air as shown in Fig. 1(a). Nevertheless, important computational
costs would arise due to the small grid cells that would be necessary to mesh the fuel lines. Since an
homogeneous air-fuel mixing is considered to be achieved before arriving to the reacting zone, the fact of
meshing fuel lines far upstream from the flame might be totally unnecesary. Therefore the present LES
will only consider the air lines (simplified model shown in Fig. 1b) in which already a premixed mixture
with equivalent ratios φ1 − φ2 is accounted for each stage repectively.

Air + C3H8 

Air + C3H8 

Manifolds 

D = 30 mm 

(a) Hollow cylinder - Actual test rig (b) Hollow cylinder simplified for LES

Figure 1: Schematic view of a tranversal section through the premixer and circular manifolds.

This configuration features strong combustion instabilities depending on the fuel staging ratio α, defined
as the ratio of the fuel massflow in the furthest stage from the chamber (stage 1) to the total fuel injected
massflow.

α =
ṁf,1

ṁf,1 + ṁf,2
(9)

These instabilities are characterized by an important noise radiation due to the intense acoustic levels
reached within the chamber and the premixer. The regime in the present study is given in Table 1.
The gas mixture in the plenum is considered as perfectly premixed with a global equivalence ratio of
φg = 0.832.

α ṁair,1 ṁf,1 ṁair,2 ṁf,2 φ1 φ2 φg
14.5 % 20 0.20 20 1.20 0.238 1.428 0.832

Table 1: Present operating regime (Mass flow ṁ in m3/h).

The combustion chamber is made of two quartz windows for flame visualizations, and two refractory
concrete plates (top and bottom) which can be equipped either with small quartz windows for Particle
Image Velocimetry (PIV) laser measurements or with transducer ports for acoustic measurements. The
three PIV planes we are comparing with are shown in Fig. 2. The combustion chamber and the premixer
are also equipped with seven microphones (denoted M1 to M7 in Fig. 2) placed at equal distances along
the combustor.

5
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Microphones 

7mm 

17mm 

27mm 

PIV Planes 

Figure 2: Two staged swirled premixed combustor. (Courtesy of École Centrale Paris)

5 Combustion noise Analysis

5.1 Direct Approach

AVBP, developed by CERFACS, is the parallel solver used for the LES computations [29]. In this code,
the full compressible Navier Stokes equations are solved on hybrid (structured and unstructured) grids
with second order spatial and temporal accuracy. Subgrid scale stresses are described by the Smagorinksy
model. The flame/turbulence interactions are modeled by the Dynamic Thickened Flame (DTF) model
[30]. This combustion model has been used in numerous studies of turbulent combustors [31][39][40][41] in
which it has been shown to well predict ignition, blow-off and flash-back of flames as well as acoustic-flame
interactions in specific configurations. The spatial discretization in AVBP is based on the finite volume
method with a cell-vertex approach, combined to a numerical scheme derived from the Lax-Wendroff
scheme. AVBP has been validated/used for a considerable number of configurations.[31, 32, 33]

Boundary Conditions in AVBP are treated by the Navier Stokes Characteristic Boundary Conditions
(NSCBC) method [34]. This method is already an standard technique to control wave crossing the
boundaries [35][36][37]. It consists in decomposing the variation of flow variables on boundaries into
terms due to ingoing and outgoing waves. While walls are always taken as totally reflecting surfaces (no
velocity fluctuations normal to the surface are allowed → u′ = 0) with a reflection coefficient R = |R|ejθ
(|R| = 1 and θ = 0), the same cannot be stated for inlet and oulets. Acoustics of both inlets and outlets
is characterized by their acoustic impedance Z = p′/(ρ0c0~u

′ · ~n). Following [37] it is possible to relate
this acoustic quantity to the NSCBC parameters and is therefore straighforward to consider in the LES.
This procedure was carried out with experimental data provided in [27][28]. Similar results were obtained
when simplified acoustic conditions (u′ = 0) were applied, proving that acoustic conditions at the inlets
are not critical in the present LES study. Classically, outlets to the atmosphere are considered restrictive
to pressure fluctuations→ p′ = 0 (|R| = 1 and θ = π). It is though preferred to extend the computational
domain to some region of the atmosphere after the burner outlet. By doing so, the true impedance of
the outlet is implicitely accounted for.

Two different meshes were used to compute the flow and flame dynamics of the EC2 combustor. The
‘coarse’ mesh has 3 millions of cells whereas the ‘refined’ mesh is made of 10 million cells. The quality
of the two LES performed is evaluated through Pope’s criterion [38]. The smagorinsky filter and the
grid resolution for both cases should be sufficient to resolve at least 80 % of the energy remote from the
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wall. The ratio of the resolved turbulent kinetic energy kf with respect to the modeled turbulent kinetic
energy ksgs is then quantified.

QLES =
kf

kf + ksgs
(10)

where kf = 1
2 ũiũj and ksgs = 1

2 ũiuj− 1
2 ũiũj = 3

2 (u′sgs)
2 and (̃) stands for the LES filter. Figure 3 demon-

strates that, for both LES cases, QLES is greater than 0.8 for almost the entire computational domain
excepting regions near walls. The premixer turbulence is however better captured by the ‘refined’ mesh.
It is well known that extremely high computational costs arise when a proper LES on boundary layers
is sought. Nevertheless, boundary layers are assumed to little contribute to noise radiaton/scattering of
turbulent flames. A high resolution in regions near walls is therefore not considered.

a) LES 3 million Cells

b) LES 10 million Cells

Figure 3: Instantaneous Field of Pope’s Criterion. The black line stands for the isocontour line QLES =
0.8

Both meshes are found to reproduce the mean PIV very well. This can be observed in Fig. 4. Both

7
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LES succeed in predicting the central recirculation zone satisfactorily. The LES on the ‘refined’ mesh is
however more accurate for the outer region, particularly for the radial velocity. The fluctuating velocity
field is characterized by rms profiles. Figure 5 shows that on the ‘coarse’ mesh a high overprediction of
velocity fluctuations is obtained in both axial and radial components. On the fine grid however the LES
clearly recovers the experimental velocity fluctuating field.
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Figure 4: Velocity Profiles: ◦ Experimental PIV measurements
– – – LES 3 million cells, —— LES 10 million cells

Acoustics and flame dynamics of the system represented by the heat release are, on the contrary, more
difficult to evaluate than the mean and fluctuating velocity field. The mean value of heat release is similar
in both LES and is close to the 40kW experimental thermal power, as can be observed in Fig. 6(a).
Different values in the variations of heat release are however obtained for each LES. Strong and more
regular fluctuations of heat release are obtained with the ‘coarse’ mesh while smaller and less periodic
fluctuations are given by the ‘refined’ mesh computation. It is likely that the coarser mesh does not
capture enough small turbulent scales and trigger too large turbulent eddies. These large coherent
structures might clearly have an influence on the flame dynamics and thus in the large fluctuations of
heat release. The value of the rate of change of heat release integrated over the whole volume of the
combustor has also been computed for the two different meshes and is shown in Fig. 6(b). On the
finer mesh a quieter flame is modeled, considering the smaller values of rate of change of heat release
compared to those obtained from the coarse mesh. As a consequence, smaller rms pressure values should
be expected on the finer mesh. Acoustics in the chamber is rather characterized by the Sound Pressure
Level (SPL) at a given point than rms values of the pressure. Figure 7 compares the SPL values at the
microphone 7 (see the location of M7 in Fig. 2) of the computations on the refined and coarse meshes
to the experimental measurements. Both LES clearly overestimate the sound levels with a significant
improve on the finer. It is then found that in order to correctly evaluate the dynamics of a flame and
the acoustics generated by this one it is not enough to satisfactorily model the fluctuating velocity field
as shown in Figs. 4 and 5. As stated before, computing acoustic pressure fluctuations is very challenging
since these values are very small compared to the aerodynamic fields. Several additional phenomena can
play an important role.

First, the performed LES assume a perfect premixed mixture of air and fuel in the reactive region. This
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Figure 5: Velocity Profiles: ◦ Experimental PIV measurements
– – – LES 3 million cells, —— LES 10 million cells
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Figure 7: Sound Pressure Level

assumption might be a misinterpretation of reality. Small pockets of propane-air presenting an equivalent
ratio different for φg may reach the flame influencing its dynamics and as a consequence the radiated
sound. Secondly, perfect adiabatic walls were considered in the present LES. In [41] it was shown that
accounting for heat transfer leads to a reduction in the SPL. Some computations, not shown here, were
performed considering heat transfer by modeling approximate heat loss coefficients (as done in [41]).
No significative changes on the radiated noise were observed. Nevertheless, heat transfer might still be
modeled too aproximatively knowing that exact values of heat transfer coefficients are extremely difficult
to be obtained experimentally. A proper simulation of conjugate heat transfer including convection,
conduction and radiation might be important at some level for noise modeling in turbulent flames, but
presently remains too cumbersome. Thirdly, resolution of the computation (mesh refinement and order
of the numerical scheme) is clearly significant. High grid resolutions in the reactive region not only means
a smaller influence of the combustion model but also to be able to account for the smallest turbulent
structures present in the shear layer that might influence the coherence of the bigger scales and thus
the global turbulent interaction with the flame. At last but not the least, another explanation lies in
the experimental data. Measuring acoustics in a confined combustion chamber is only reliable when
acoustic leakages are proved to be controlled. This is, anyway, a difficult task. It has been found by the
concerned EC2 experimentalists that acoustic leakages are still not totally well managed. As a result,
wrong evaluations of pressure fluctuations may arise.

5.2 Hybrid approach

The acoustic outputs from both direct and hybrid approaches are compared for the 10 million cells
mesh independently of experimental data. As sketched in Fig. 8, hydrodynamic pressure fluctuations
are assumed to be small when considering results from the direct approach. Therefore, the acoustic field
resulting from the hybrid approach is directly compared to the pressure fluctuation field coming from
direct computations.

The hybrid computation accounts for two steps. First, the source of combustion noise is computed by
postprocessing the data obtained from the LES computation (instantaneous heat release rate in addition
to mean flow parameters taken from the 10 million cells numerical results). Secondly, the simplified
Phillips equation written in the zero Mach number limit given by Eq. 7 is solved in the frequency domain.
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Overall good agreement is found between both direct and hybrid approaches in Fig. 9 which shows the
sound pressure levels obtained by microphones 5 and 7 (see the location of M5, M7 in Fig. 1).
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Figure 9: Sound Pressure Levels from the direct and hybrid approaches

It is interesting to notice that the hybrid computation manages to recover not only the magnitude of
the acoustic pressure over almost all the spectrum, but also the shape of the acoustic waves. Figure
10 shows the strongest acoustic wave, the quarter wave mode, that resonates at 377 Hz. The pressure
fluctuations along the axis of the combustor at different times within a cycle are observed. As both
methods yield the same envelope of variations at this frequency, the pressure fluctuation recovered by
the direct computation can be seen as almost completely caused by acoustics.

In Fig. 9 some zones of the spectrum still show important gaps between hybrid and direct computations.
For example in Fig. 11 two different types of pressure waves are observed at microphone 5 for the
direct and hybrid computations in the region around 1000 Hz. Whereas a pure acoustic standing wave
is obtained by the hybrid approach, a perturbed pressure wave is obtained in the direct computation
results. A pure standing acoustic wave can naturally have an acoustic pressure node. If this pressure
node is present close to the region of the measurement device a low value of pressure fluctuation will be
obtained. This is what happens for microphone 5 in the zone close to 1000 Hz (fig. 11a). Obviously,
when the pressure fluctuations not only contain acoustics but also hydrodynamic perturbations as in the
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direct computations (Fig. 11b), no pressure node can be observed and the resulting SPL is much higher
than in the hybrid computation case. Similar conclusions can be drawn at very low frequencies (before
the peak at 377 Hz) where the significant hydrodynamic contribution in the direct computation triggers
higher pressure fluctuations.
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Figure 10: Longitudinal pressure Waves oscillating at 377 Hz
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Figure 11: Longitudinal pressure Waves oscillating at 954 Hz

6 Conclusions

Combustion noise of a premixed swirled combustor has been assessed by two different numerical ap-
proaches: a direct computation in which the noise produced by the flame is calculated together with the
flow and flame dynamics, and a hybrid computation in which the acoustic field is evaluated from the
sources of noise in a separate step.

Classical comparisons between mean and fluctuating (rms) velocity fields were performed between two
LES on a ‘coarse’ mesh grid (3 million cells) and a ‘refined’ mesh grid (10 million cells), and PIV
measurements. Mean velocity fields (axial and radial) were well predicted by both LES cases, whereas
only the ‘refined’ mesh succeed in recovering the proper rms velocity fields. It was then observed that
satisfactorily predicting the velocity fluctuating field does not mean to reproduce correct flame dynamics
and heat release. On the one hand, the mean heat release corresponding to the experimental thermal
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power is well captured by both LES. On the other hand, significative differences are found between the
two simulations on the shape of the instantaneous heat release and its rate of change. As a consequence,
a right estimate of the combustion noise radiation is not yet well obtained. Several phenomena might
be the cause of such a misprediction. A lack in numerical resolution can be one possible explanation:
computing the small turbulent length scales in the shear flow region might be significant since these
eddies might have a non-negligible influence on the flame dynamics and, as a consequence, on the noise
prediction simulations. A higher grid resolution in the flame region also decreases the influence of the
combustion model, which might have a certain effect when computing the values of rate of change of
heat release. Moreover, an accurate prediction of heat transfer might also be a crucial factor, and exact
modeling of convection, conduction and radiation might be important in combustion noise modeling.

The output from the hybrid computation is a pure acoustic field due to the turbulent flame. Good
agreement is found in almost the entire SPL spectrum when comparing the results of both direct and
hybrid computations. Nevertheless, there are still some differences in specific zones of the spectrum.
Hybrid computation results only consider pure acoustic waves, and at given frequencies these pure acoustic
waves may present acoustic nodes that may take place close to the acoustic sensor position. This leads
to a low fluctuation of pressure at this position and hence, to a low value of the SPL spectrum at these
frequencies. At low frequencies, the pressure fluctuations coming from the direct approach are most likely
caused not only by acoustics but also by hydrodynamic fluctuations which then leads to higher sound
pressure levels than the hybrid approach.
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Today, much of the current effort in the field of combustion noise is the development
of efficient numerical tools to calculate the noise radiated by flames. Although unsteady
CFD methods such as LES or DNS can directly provide the acoustic field radiated by
noise sources, this evaluation is limited to small domains due to high computational costs.
Hybrid methods have been developed to overcome this limitation. In these schemes, the
noise sources are decoupled from the radiated sound. The sources are still calculated by
DNS or LES codes whereas the radiated sound is evaluated by acoustic codes.

These two approaches (direct and hybrid) have been widely used to assess combustion
noise radiated by open flames. On the contrary, not significative work has been done for
evaluating noise radiated by confined flames. Moreover, several problems can arise when
attempting to compare direct to hybrid methods results from confined combustors. While
almost a pure acoustic pressure field is obtained from direct computations when considering
an open flame, for confined flames this statement does not hold: hydrodynamic pressure
fluctuations play an important role. In the present paper the assessment of combustion
noise is conducted by both direct (LES) and hybrid computations in a premixed swirled
combustor. A method to extract the acoustic field from the entire pressure field given by
LES is proposed.

keywords: combustion noise, acoustic analogy, direct computations, hybrid computations.

I. Introduction

Large Eddy Simulation (LES) has become an important tool for the simulation and analysis of turbulent
flows. It offers the best promise in the foreseeable future for the estimation of noise from flows at Reynolds
Numbers of interest in both open and closed systems. In aeroacoustics, LES plays an important role in the
study of aerodynamical generated noise of numerous practical cases that range from air jets, high-lift devices
or landing gears in an aircraft to the rear-view mirror of a car or the fan of a wind mill.1,2 Combustion noise
is, on the contrary, less understood than aeroacoustics. This is due to the different physical phenomena
implied such as the addition of unsteady heat release to the already turbulent flow. Still LES has been
successfully applied to partially premixed and non-premixed open flames3,4 as well as in more complex cases
such as gas turbine combustors.

Computational techniques for the estimation of sound can be classified into two broad categories: direct
computations and indirect, or hybrid, computations. LES is well presented in these two categories. Direct
computations resolve the flow field together with the sound radiation. A compressible LES code is therefore
∗Corresponding author. Ph.D. Student, CFD Team, 42, Av. Gaspard Coriolis; silva@cerfacs.fr. Tel: (33).(0)5.61.19.31.10
†Professor, Université Montpellier II, I3M - CNRS UMR 5149 - CC51, franck.nicoud@univ-montp2.fr
‡Professor, GAUS, Mechanical Engineering Department, Université de Sherbrooke, stephane.moreau@usherbrooke.ca.
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required in addition to high-resolution numerical schemes in order to minimize both dispersion and dissi-
pation. Moreover, the computational domain must be large enough to include the sources of noise as well
as part of the acoustic near field.6 Very expensive computational costs can arise since hydrodynamic and
acoustic scales differ to a large amount in typical applications where the Mach number is moderate. This
is even more true when dealing with thermoacoustics since the transport equation of each species must be
considered in order to solve the problem of compressible multicomponent reactive flows.

In hybrid approaches, the computation of sound is made at two different levels: 1) model the sources of
noise which requires a proper estimation of the flow and the flame dynamic properties and 2) predict the
far field acoustic radiation due to the different noise sources. Acoustic propagation is calculated based on
equations relevant to acoustic phenomena. The derivation of a wave equation governing sound propagation
in an arbitrary mean flow (and therefore accounting for mean flow-acoustic interactions) remains a difficult
and controversial task in aeroacoustics.7

These theoretical formulations are satisfactory for open systems, i.e. when the acoustic fluctuations
produced by the source propagate to the infinite and anechoic far-field. Moreover, in these cases, it is
relatively easy to distinguish pure acoustics from hydrodynamic pressure fluctuations in the region of interest
(farfield): hydrodynamic pressure fluctuations are negligible in the far field since they typically decay at least
as the inverse third power of the distance to the sources.15 Less is known about aeroacoustics in confined
domains where acoustic and hydrodynamic pressure fluctuations are both present. Interesting developments
have been done to account for turbulence-body interaction16,17 . More recently, Schram used a modified
Curle’s analogy combined with a boundary element method (BEM) for evaluating the acoustic field produced
by a non-compact turbulent source in a confined domain.18

In the field of combustion noise, it seems that no significative work has been done for evaluating the noise
produced by confined flames. In confined reactive flows, interactions exist between the flame, the turbulent
flow and the walls of the system. Moreover, hydrodynamic pressure fluctuations might be important and
should not be neglected. Consequently, the task of evaluating acoustics from a complete signal of fluctuating
pressure becomes difficult. It has been shown in19 that pressure waves coming from LES are highly disturbed
by turbulence and hence a proper comparison between LES and hybrid simulations sometimes is unachievable.
The general objective of this study is to investigate some methods to decouple hydrodynamics from acoustics
in pressure signals resulting from Large Eddy Simulations of reactive confined flows.

II. Combustion noise through Phillips’ analogy

The first attempt to include inhomogeneities of the mean flow into the acoustic wave operator is due to
Phillips20 who derived the following expression:
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(1)

where π is function of the logarithm of the pressure π = (1/γ) ln(p/p∞). The first term on the RHS
is related to the noise created by turbulence. The second term is the monopole source of noise due to the
unsteady heat release induced by the flame. The third one is linked to the noise produced by molecular
transport whereas the gradient of the viscous tensor appears in the fourth term. Finally, the last term is
known as the non-isomolar combustion source of noise.

In order to simplify this equation, one may consider different realistic assumptions in order to evaluate
the acoustics for low Mach number reactive systems.21 Therefore, it is stated that:

• The pressure level of the oscillations are small compared to the local mean pressure. p′/p0 � 1.

• The system is nearly isobaric so that p0 is nearly constant.

• The mean flow is small so that the convective terms in the equation are negligible.
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As a consequence, the acoustic wave equation for low Mach number reacting flows reads

∇ · (c20∇p′)−
∂2p′

∂t2
= −(γ − 1)

∂q̇′

∂t
− γp0∇v : ∇v +

γp0

W0

∂2W ′

∂t2
(2)

where c0, p, γ, q̇, v, W represent respectivelly the speed of sound, the pressure, heat capacity ratio,
the heat release rate, the velocity vector and the mixture molar weight. The symbols ()0 and ()′ define
respectivelly mean quantities and fluctuation quantities. As it can be noticed in the left hand side of eq. 2,
the speed of sound c is placed inside the divergence operator. This ensures to capture acoustic fluctuations
with strong variation of the mean temperature as it occurs close to the flame front.

In the combustion case exposed in this paper, the non-isomolar combustion noise does not play an
important role since the reactant mixtures are highly dilluted in nitrogen. Further on, the aerodynamic
source of noise is considered small with respect to the noise source associated with the perturbation of the
heat release rate.22 The inhomogeneous wave equation then reduces to

∇ · (c20∇p′)−
∂2p′

∂t2
= −(γ − 1)

∂q̇′

∂t
(3)

Under the harmonic oscillation assumption, in which p′(x, t) = p̂(x)e−iωt, Eq. 3 becomes



∇ · c20∇p̂+ ω2p̂ = −iω(γ − 1)ˆ̇q in Ω

+ Boundary Conditions on Γ
(4)

where ω = 2πf . The quantities p̂ and ˆ̇q are complex amplitudes which depend on space only.

III. Experimental Configuration

This article describes the evaluation procedure of noise due to the combustion within a swirled premixed
combustor26,27 (EC2 Combustor) performing both direct and indirect computations. The experimental study
is carried out in the laboratory EM2C (École Centrale Paris). The EC2 combustor consists in two geometrical
identical stages for air-fuel injection, a premixer and a combustion chamber. The flame is controlled by the
Fuel-Air ratio imposed in each of the two stages and stabilized by a swirled premixed. The test rig accounts
for 7 different measurement points of pressure (denoted M1 to M7 in fig.1) placed at equivalent distances
along the combustor.

Figure 1. Two staged swirled premixed combustor. (Courtesy of École Centrale Paris)

IV. Combustion noise Analysis

AVBP, developed by CERFACS, is the parallel solver used for the LES computations.28 In this study,
the full compressible Navier Stokes equations are solved on hybrid (structured and unstructured) grids with
second order spatial and temporal accuracy. Subgrid stresses are described by the Smagorinksy model. The
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flame/turbulence interactions are modeled by the Thickened Flame (TF) model.29 The spatial discretization
is based on the finite volume method with a cell-vertex approach, combined to a numerical scheme derived
from the Lax-Wendroff scheme. AVBP has been validated/used for a considerable number of configura-
tions.30–32

In19 the computation of the combustion noise from the EC2 combustor was carried out with two different
grid resolutions: A ’coarse’ mesh of 3 million cells and a ’refined’ mesh of 10 million cells. It was found that
both meshes reproduced sufficiently well PIV measurements33 when considering mean quantities. On the
other hand, when RMS values were considered only the refined mesh results agreed well with the experimental
results. Figure 3 shows the axial velocity profiles along the cuts displayed in Fig. 2
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Figure 2. Section cuts for velocity profiles
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Figure 3. Velocity Profiles: ◦ Experimental PIV measurements

– – – LES 3 million cells, —— LES 10 million cells

Reproducing flow dynamics in a proper way (see RMS values for the refined mesh in Fig. 3) does not mean
necessarily a good estimation of combustion noise. Computation of combustion noise is very challenging,
since a good prediction of the rate of change in the flame surface area must be achieved.34 Figure 4 shows the
Sound Pressure Level (SPL) spectrum at microphone 7 (see the location of M7 in Fig. 1) for the computations
with the refined and coarse meshes as well as the experimental measurements.33

It has been observed that in order to correctly evaluate the dynamics of a flame and the acoustics
generated by this one, the resolution of the computation (resolution of the mesh and order of the numerical
scheme) is of significative importance. The gap seen in fig. 4 between experimental results of the acoustic
spectrum and the refined LES is problably due to the lack of resolution of the computation. For this purpose,
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Figure 4. Sound Pressure Level

a computation with 50 million cells is currently being conducted.
Although the estimation of combustion noise through direct computation does not match experimental

measurements, it is still a good exercise of analysis to compare direct computation results to those given
by hybrid methods. For this comparison to take place, it is assumed that pressure fluctuations from LES
contain a negligible amount of hydrodynamics. This comparison is carried out for the 10 million cells mesh
and is independent from experimental data.

Overall good agreement is found between both direct and hybrid approaches, as shown if Figs. 5 and 6
which shows the sound pressure levels obtained for microphones 5, 6 and 7 (see the location of M5, M6 and
M7 in fig. 1) .
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Figure 5. Sound Pressure Levels from the direct and hybrid approaches
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Figure 6. Sound Pressure Levels from the direct and hybrid approaches
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Observing with attention fig. ??, it is noticeable that there are some zones of the spectrum in which
an important gap is present between hybrid and direct computations. It is probable, considering the direct
computation, that the fluctuations of pressure coming from LES are composed by both acoustic and hydro-
dynamic contributions. On the other hand, presure fluctuations coming from the hybrid computation are
totally due to acoustics. A suitable comparison is then not carried out, and it becomes important to be able
to extract acoustics from LES computations in order to evaluate in a proper way the results from the hybrid
computation.

V. Filtering a LES pressure field to find the corresponding acoustic field

Velocity fluctuations obtained by LES are composed by both hydrodynamics and acoustics

u′i,LES = u′i,hyd + u′i,ac (5)

Appling the operator ∂/∂t to Eq. 5 leads to

∂u′i,LES

∂t
=
∂u′i,hyd

∂t
+
∂u′i,ac

∂t
(6)

From linear acoustics, the momentum equation is given by

ρ0

∂u′i,ac

∂t
= −∂p

′
ac

∂xi
(7)

where []0 and []′ represent respectively the mean and fluctuating flow. Combining this term of eq. 7 into
Eq. 6

− 1
ρ0

∂p′ac

∂xi
+
∂u′i,hyd

∂t
=
∂u′i,LES

∂t
(8)

Finally the divergence operator to this equation is applied

− ∂

∂xi

(
1
ρ0

∂p′ac

∂xi

)
+

∂

∂xi

(
∂u′i,hyd

∂t

)
=
∂2u′i,LES

∂xi∂t
(9)

A. Finding ∂ui,hyd

∂xi

Neglecting viscosity, species diffusion and heat conduction the Navier-Stokes equations for reacting flows
read

∂ρ

∂t
+ ρ

∂uj

∂xj
+ uj

∂ρ

∂xj
= 0 (10)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
(11)

ρcp
∂T

∂t
+ ρcpuj

∂T

∂xj
= q̇ (12)

In the low-Mach number approximation, the thermodynamic pressure P0 only depends on temperature.
The equation of state is simply

K0 = ρT (13)

Replacing Eq. 13 in the left hand side of the Eq. 12 leads to

ρcp
∂K0/ρ

∂t
+ ρcpuj

∂K0/ρ

∂xj
= q̇ (14)

6 of 9

American Institute of Aeronautics and Astronautics

160 Chapter B: Publications



The temporal derivative of the density in Eq. 10 is combined with Eq. 14. After some algebra, the
divergence of the velocity can therefore be expressed as:

∂uj

∂xj
=

1
cpK0

q̇ (15)

This velocity field is supposed to be composed only by hydrodynamics, due to the fact that in the low
Mach number model the acoustic wave length is infinitely long. One can state that the divergence of the
fluctuating velocity is

∂u′j,hyd

∂xj
=

1
cpK0

q̇′ (16)

B. Finding the Acoustic Pressure

Injecting Eq. 16 into Eq. 9 leads to

− ∂

∂xi

(
1
ρ0

∂p′ac

∂xi

)
=

∂

∂t

(
∂u′i,LES

∂xi
− q̇′

cpK0

)
(17)

or in the frequency domain

∂

∂xi

(
1
ρ0

∂p̂ac

∂xi

)
= iω

∂ûi,LES

∂xi
− iω

ˆ̇q
cpK0

(18)

Finally, multiplying everywhere by γP0

∂

∂xi

(
c2
∂p̂ac

∂xi

)
= iωγP0

∂ûi,LES

∂xi︸ ︷︷ ︸
T1

− iω
γP0

ˆ̇q
cpK0︸ ︷︷ ︸
T2

(19)

It has been found by the author that the contribution of T2 can be neglected. As a consequence, one can
state that for a reactive flow the divergence of the hydrodynamic velocity field ( ∂uhyd

∂xi
) can be considered

zero as typically done for non-reactive flows. Equation 19 simplifies

F(p̂ac) =
∂

∂xi

(
c2
∂p̂ac

∂xi

)
= iωγP0

∂ûi,LES

∂xi
(20)

VI. LES Vs Hybrid Results

Figures 7 and 8 shows the Sound Pressure Level (SPL) given by the solution of Eq. 20 (LES ‘Filtered’)
and the hybrid computation for microphones 5, 6 and 7.
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Figure 7. Sound Pressure Levels from the direct and hybrid approaches

After extracting the acoustic field from the complete pressure fluctuation field, it is seen that results match
pretty well with the values predicted by the hybrid method, especially for microphones 6 and 7. There is a
high contain of hydrodynamic fluctuations at low frequencies (before 400 Hz) that has been removed. Also
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Figure 8. Sound Pressure Levels from the direct and hybrid approaches

the local minimum around 1500 Hz shown in the SPL spectrum for microphone 6 is well recovered after
extracting acoustics from LES. The acoustic signal corresponding for microphone 5 present on the contrary,
important differences with respect to the one computed by the hybrid approach. The local minima around
1000 Hz corresponding to the hybrid method is recover at a lower frequency (around 750 Hz).

Note that some caution must be taken when computing the Fourier transform of the divergence of
the velocity (See T1 Eq. 19). If a rectangular window is applied to the temporal signal, a really good
correspondance is seen only for frequencies lower than 400 Hz. On the other hand, if a gaussian window is
applied, a good filtering is seen over the entire frequency band, except at a very low frequencies. This is the
case for the spectra shown (Figs. 7 and 8) where the signal does not capture the good acoustic level before
200 Hz.

VII. Conclusions

It has been shown that when aiming to compute combustion noise in confined domains by a direct
method (LES in this case), the pressure field obtained contains both acoustics and hydrodynamics. More-
over, hydrodynamics was proved to be strong at low frequencies and hence, using a LES pressure field to
estimate combustion noise is not enough: extracting acoustics from the complete pressure field is essential.
In this paper, a procedure to separate acoustic from hydrodynamics has been proposed. A validation of this
procedure is made by comparing the resulting signal to combustion noise predicted by a Hybrid method.
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