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Résumé
La Numération Formule Sanguine (NFS) est un des examens les plus prescrits dans
le monde car il fournit aux praticiens une information sur l’état de santé global du
patient. De manière générale, une NFS recense les différentes cellules sanguines,
tels que les globules rouges (GRs), les globules blancs et les plaquettes. En outre,
une mesure du volume de ces cellules est également fournie. Ces analyses sont
aujourd’hui pratiquées en routine à l’aide d’automates d’hématologie assurant une
analyse rapide des échantillons : environ 120 tests par heure.

La majorité des modules composant les automates d’hématologie actuels dé-
coulent du principe Coulter [21], qui consiste à aspirer les cellules une par une pour
les faire passer dans une zone de détection. Le concept originel est illustré sur la
Fig. 1: les cellules sont diluées dans une solution électrolytique et aspirées à travers
un micro-orifice dans lequel un fort champ électrique est imposé par deux électrodes.
Ainsi, la cellule, isolante, engendre une augmentation de résistance lorsqu’elle tra-
verse l’orifice, ce qui se traduit par une perturbation de tension aux bornes des
électrodes, que l’on désignera par le terme "pulse". En comptant les pulses, on
dénombre les cellules, et l’amplitude du pulse est considérée proportionnelle au vol-
ume de la particule associée. Notamment, les travaux théoriques de Kachel [74, 75]
donnent le volume de la particule Vp en fonction du maximum de la perturbation

Figure 1 – Principe de détection pour le comptage et la volumétrie des cellules par
principe Coulter.
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électrique ∆Um comme suit :

Vp ∝
1

E2fs
∆Um, (1)

avec E, le champ électrique vu par la cellule, et fs, le facteur de forme dépendant
de la forme et de l’orientation de la particule. Ce système simple a été amélioré
et complexifié plus récemment afin de fournir des analyses plus fines et complètes
des éléments figurés du sang en utilisant notamment des circuits fluidiques plus
sophistiqués. Cependant, la mise en application du système original est encore très
répandue, notamment grâce à son faible coût de production. Cette thèse s’intéresse
à l’analyse des GRs par les systèmes classiques tel qu’illustrés sur la Fig. 1.

Utilisés de manière intensive depuis le milieu du siècle dernier, on pourrait penser
que les compteurs Coulter sont parfaitement connus et maitrisés. Au contraire,
plusieurs artéfacts de mesure pouvant conduire à des erreurs sont toujours mal com-
pris. Ces artéfacts s’expliquent par un champ électrique E inhomogène dans la zone
de détection et par des variations de fs découlant des déformations et rotations
du GR. Etant donné que E et fs ne sont pas fixes, il devient impossible d’évaluer
Vp par une mesure de ∆Um (voir Eq. 1). Ces effets se produisent lorsqu’une cel-
lule évolue près des parois de l’orifice. En effet, dans cette région, sont observés
un champ électrique fortement inhomogène et d’importants taux de cisaillements
du champ de vitesse pouvant conduire à des dynamiques complexes de la cellule.
Dans les systèmes commerciaux actuels, ces défauts sont contournés par des mises
en oeuvre plus complexes du principe Coulter, ou par des approches de filtrage des
signaux associés à des passages proches paroi. Parmi ces méthodes, on peut trouver
la ‘focalisation-hydrodynamique’ [154] ou le tri par seuillage du temps de passage
[173]. L’hydrofocalisation force les cellules à emprunter des trajectoires au centre
de l’orifice pour s’affranchir totalement des effets de bord, mais implique une mise
en oeuvre plus compliquée. En partant du postulat que les cellules passant près des
murs sont transportées à des vitesses plus faibles, la méthode de tri proposée par
Waterman [173] consiste à rejeter les pulses les plus longs. Cependant, la durée du
pulse est fonction du volume de la particule, rendant ainsi la calibration du seuil
de tri difficile. De plus, il s’avère en pratique que les méthodes de tri actuelles ne
s’affranchissent pas totalement des effets de bord.

Pour résumer, dans les systèmes classiques, des artéfacts de nature électrosta-
tique et dynamique faussent les mesures et sont toujours incompris. En outre, les
déformations du GR induites par les forts gradients de vitesse proches des parois
influent sur la forme du pulse au travers de fs. Il est donc probable que la signature
électrique contienne une information sur la forme et la deformabilité du GR. Il est à
noter que bon nombre de pathologies affectant les GRs influent sur leur forme et leur
déformabilité (malaria [48, 112, 115, 115, 143], sphérocytose [5, 123], elliptocytose
[18, 163], sickle cell [118, 138]). Ainsi, les travaux effectués dans cette thèse sont
dédiés à la compréhension des phénomènes en jeu lorsqu’un GR évolue proche des
murs de l’orifice, et au traitement des informations morphologiques et rhéologiques
contenues dans les pulses associés à de telles trajectoires.

S’attaquer à ces problématiques avec une approche expérimentale s’avèrerait
compliqué en raison des problèmes d’accessibilité de la zone de mesure: taille de
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Figure 2 – Simulation numérique de la mesure d’impédance dans un compteur Coul-
ter industriel.

l’orifice (quelques microns), vitesse de passage des cellules (plusieurs m.s−1), pas de
fenêtre optique sur la zone de mesure. C’est pourquoi une approche numérique est
retenue pour ces travaux.

Simuler le comportement d’une particule déformable dans un compteur Coulter
induit une problématique des rapports d’échelle : loin en amont de l’orifice la par-
ticule évolue sur une longue distance à des faibles vitesses, alors qu’elle est détectée
dans un orifice de quelques microns ou elle avance à des vitesses de l’ordre de 5 m.s−1

(voir Fig. 1). Ainsi, simuler l’évolution entière d’un GR dans le compteur Coulter
n’est pas possible à cause du temps de calcul requis pour la partie amont, alors que
la zone d’interêt est limitée au voisinage de la perforation. Les premiers chapitres
traitent de cette problématique. Plus particulièrement, une méthode permettant de
s’affranchir de ces problèmes d’échelles est proposée [162] et illustrée sur la Fig. 2.
Elle consiste à simuler la dynamique du GR en deux parties (1 et 2 sur la Fig. 2). La
première (1) est une configuration d’écoulement extensionnel qui mime l’élongation
de la cellule dans la partie en amont de la zone de détection. La pertinence de cette
simulation est validée par comparaison avec un calcul fait dans la configuration réelle
complète, sur la partie amont de l’orifice. Une fois étiré (résultat du calcul 1), le
GR est placé juste avant l’entrée de l’orifice dans un domaine réduit de la configu-
ration industrielle, afin de calculer la dynamique du GR dans la zone de détection
(2). La perturbation du champ électrique associée à la dynamique de la cellule est
calculée séparément par une série de simulations électrostatiques (3). Le pulse élec-
trique est déduit en post-traitement des calculs électrostatiques (4). Il est important
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Figure 3 – Comparaison des résultats numériques avec des pulses provenant d’une
acquisition expérimentale obtenue en analysant un échantillon de sang (A et B). Les
dynamiques du GR correspondant aux illustrations A et B sont représentées en C
et D, respectivement.

de noter que la simulation dans la configuration extensionnelle (1) requiert le taux
d’écoulement perçu par la cellule lorsqu’elle se déplace dans la partie en amont de
l’orifice. C’est pourquoi un calcul sans particules dans la configuration totale du
compteur Coulter est nécessaire (0). Une ligne de courant (LDC) provenant de ce
calcul préliminaire peut être extraite. L’évolution temporelle du taux d’écoulement
le long de la LDC choisie est donnée en paramètre du calcul (1), comme illustré sur
la Fig. 2.

Cette méthode a été validée au regard des lois empiriques et par comparaisons
avec des résultats expérimentaux. Par exemple, la Fig. 3 superpose des résultats
numériques avec des données expérimentales, pour des GRs. Les pulses ont été
simulés en considérant un GR passant au milieu de la zone de détection et proche de
la paroi (A et B, respectivement). Plus précisément, une LDC passant par le centre
de l’orifice est retenue pour obtenir le pulse numérique montré sur la Fig. 3A, alors
que la Fig. 3B provient d’une LDC passant à 5 µm de la paroi. Les dynamiques de
GR associées aux pulses numériques illustrés en A et B sont montrées en C et D,
respectivement.

Les résultats numériques mettent en lumière les effets de bord de type hydro-
dynamique et électrique (voir Fig. 3D). Pour un passage au centre, une signature
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Figure 4 – Distributions des hauteurs de pulse obtenues sur un système hydrofocalisé
(hf) et un système classique (c), avec différentes méthodes de tri (c−Log et c−WR).
Le cas c − Log est obtenu à l’aide du tri actuellement employé dans les automates
d’HORIBA Medical, alors que c−WR est obtenu avec la méthode de tri proposée
dans cette thèse.

électrique simple en forme de ‘cloche’ est obtenue (voir Fig. 3A), alors qu’un pulse
affecté par les effets de bord est plus complexe (voir Fig. 3B). En évoluant près de la
paroi, le GR tourne ce qui produit un pic sur le pulse, et tend à surestimer le volume
mesuré (le maximum du pulse). En effet, en prenant le maximum du pulse comme
mesure du volume, la taille de la cellule sera évaluée plus grande pour une trajectoire
au bord que pour une trajectoire centrale (voir Fig. 3A et B). Dans le Chap. 5, il est
proposé de détecter la rotation de la cellule à partir de la forme du pulse associé pour
avoir un meilleur tri de signaux et une meilleure volumétrie des particules. Il est
également montré que cette nouvelle méthode de tri fournit des résultats similaires
à l’hydrofocalisation, qui est un système coûteux permettant de forcer les GRs à
passer au centre des orifices, ce qui élimine les artéfacts de mesure. Sur la Fig. 4, on
compare la distribution de ∆̃Um (ie. maximum des pulses) obtenue à l’aide d’un sys-
tème hydrofocalisé (‘hf ’) avec des distributions obtenues avec un système classique,
pour différentes méthodes de tri (‘c’, ‘c − Log’, ’c −WR′). Le cas ’c’ fait référence
à l’acquisition classique, sans tri appliqué. La distribution référencée par ‘c − Log’
est obtenue après application de la méthode de filtrage implémentée dans les auto-
mates d’ HORIBA Medical. Enfin, la distribution ‘c −WR’ est obtenue grâce au
tri proposé dans cette thèse. On constate qu’avec l’hydrofocalisation, la distribution
des volumes (ie. hauteurs de pulse) est symétrique et Gaussienne (cas ‘hf ’), alors
que sur le système classique les volumes mesurés sont dissymétriques (‘c’). Le tri
’c − Log’ améliore la symétrie de la distribution mais le résultat n’est toujours pas
en accord avec l’hydrofocalisation. En revanche la méthode proposée (‘c−WR’) est
symétrique et se superpose au résultat provenant du système hydrofocalisé.

Les signaux rejetés par le tri discuté ci-dessus sont impactés par les effets de
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Figure 5 – Représentation des acquisitions en fonction de deux métriques M1 et
M2, introduites dans le cadre de cette thèse. Sur ce graphique, on représente des
acquisitions faites sur des échantillons sains, traités au glutaraldehyde (contenant
des GRs plus rigides) et traités au SB3-12 (contenant des GRs plus sphériques).

bord et contiennent potentiellement une information sur la déformabilité et la forme
des cellules. Le Chap. 6 est dédié au traitement de ces informations. Par exemple,
dans une approche expérimentale, la morphologie et la rhéologie des cellules dans
un échantillon ont été modifiées, et les signaux générés lors de l’analyse ont été
enregistrés. En soumettant l’échantillon à des molécules de glutaraldehyde, des GRs
plus rigides sont obtenus. De plus, l’ajout de SB3-12 (fournit par Sigma-Aldrich)
dans la solution électrolytique tend à rendre les GRs sphériques. Des acquisitions
faites à plusieurs concentrations en SB3-12 et glutaraldehyde montrent des résultats
en dehors d’une normalité préétablie. On a notamment pu définir deux métriques
M1 etM2 (non détaillées ici) qui mettent en exergue les acquisitions faites sur des
échantillons anormaux (dans lesquels du SB3-12 ou du glutaraldehyde a été ajouté).
Sur la Fig. 5, sont représentées différentes analyses sur un graphe M1/M2. Plus
précisément, y sont dépeintes les acquisitions à différentes concentrations en SB3-
12 et en glutaraldehyde, mais aussi la cohorte d’analyses faites sur des échantillons
de sang sains. On peut lire que les échantillons anormalement rigides (par l’ajout
de glutaraldehyde) ou sphériques (par l’ajout de SB3-12) sortent du cluster des
acquisitions sur sangs normaux. Par ailleurs, les échantillons de GR rigidifiés et
sphérisés apparaissent de manière distincte sur un tel graphe.

Les métriques M1 et M2 étant définies à l’échelle de l’acquisition entière, la
méthode illustrée sur la Fig. 5 n’est pas adaptée pour des anomalies n’affectant
qu’une petite proportion des cellules. Détecter des sous-populations implique un
diagnostic de l’anormalité à l’échelle du pulse et non à l’échelle de l’acquisition.
Autrement dit, il faut répondre à la question : est-ce que le pulse provient d’un GR
normal ou anormal? Des investigations allant dans ce sens sont proposées dans le
Chap. 6. Les méthodes retenues pour déterminer si la cellule est anormale au regard
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du pulse associé sont basées sur des modélisations par réseaux de neurones. Par
exemple, la Fig. 6 concerne la modélisation par un réseau de neurones du problème
qui consiste à classifier les pulses en trois familles suivant si ils ont été générés par un
GR normal, traité au SB3-12 (anormalement sphérique) ou traité au glutaraldehyde
(anormalement rigide). L’architecture du modèle est représentée sur la Fig. 6A et la
précision du modèle après l’apprentissage est renseignée sous la forme d’une matrice
de confusion en Fig. 6B. Il est à noter que la matrice de confusion est évaluée à partir
d’un jeu de données qui n’a pas été impliqué dans la phase d’apprentissage. Montrant
une précision supérieure à 92 % pour chaque classe, ce modèle est encourageant et
ouvre la voie à la détection de sous populations de GRs pathologiques. En outre,
il est possible de détecter le type d’anomalie (ie. rigide ou sphérique) à partir du
pulse. Par conséquent, être spécifique sur le type de pathologie peut également être
envisagé par ce type de méthode.

En résumé, les travaux effectués s’intéressent aux systèmes d’analyse cellulaires
par la mise en oeuvre du principe Coulter originel. Une méthode numérique pour
simuler le comportement des GRs dans ces systèmes est introduite. Cette dernière
est validée par comparaisons avec une approche expérimentale, et semble donc
reproduire les principaux mécanismes en jeu. De manière inédite, cette étude
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numérique propose des scenarii crédibles expliquant les pulses complexes générés
par des passages proches-paroi. Cette compréhension nouvelle des signaux a permis
l’élaboration de critères de tri fournissant une mesure plus précise du volume des
cellules. Enfin, dans une approche expérimentale, il est montré que les pulses induits
par des passages proche paroi sont sensibles à la forme et à la deformabilité du GR.
De plus, des méthodes dédiées au traitement des informations de morphologie et de
rhéologie cellulaire sont proposées.
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1.1 Context

The work presented in this thesis was performed in the framework of a collab-
oration between HORIBA Medical and IMAG (‘Institut Montpelliérain Alexan-
der Grothendieck’). HORIBA Medical is the segment among the five branches of
the group HORIBA that is dedicated to the development and the manufacturing
of haematological automata. At IMAG, numerical software devoted to the anal-
ysis of medical devices in contact with blood is developed (YALES2BIO https:
//imag.umontpellier.fr/~yales2bio/).
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CHAPTER 1. INTRODUCTION

Coulter counters are empirical systems dating back to the middle of the last
century and make part of the current haematological instruments. They allow the
counting and the volumetry of blood cells by monitoring their electrical print when
they flow in a sensing zone. The blood analysis provided by such systems is an essen-
tial part of clinical diagnosis, which makes blood analysis one of the most frequent
medical analysis performed worldwide. Because haematological analysis provided
by industrial automata is nowadays a common practice, it might be thought that
Coulter counters are perfectly mastered. However, it appears that misunderstood
artefacts falsify the volume measurements of cells and the information contained in
results from Coulter counters is not fully exploited.

Motivated by recent increases in computers power, numerical simulation has en-
countered major breakthroughs and intended to provide relevant indications on the
dynamics of blood cells in Coulter counters, and the associated electrical prints. The
purpose of this work is to bring new insights on the empirical haematological system
by the use of numerical simulation and to elaborate methods for a more complete
and accurate diagnosis of the analysed cells. For this purpose, associating the strong
industrial expertise of HORIBA Medical (that has been on the haematological mar-
ket for decades) with the knowledge and tools developed at IMAG appears to be a
suited approach.

Hence, in this first chapter, grounding concepts on haematology, Coulter counter,
and numerical simulation are given.

1.2 Basic concepts in haematology

1.2.1 Composition and principal functions of blood

Human tissues need to be supplied continuously in oxygen and nutrients to ensure
the vital functions of the human body. In addition, wastes produced by human
tissues such as carbon dioxide must be evacuated. These two essential tasks are
maintained during the entire life of living beings by the cardiovascular system. It is
composed of the blood vessels and of the heart, a muscle ensuring an uninterrupted
flow of blood that contains the aforementioned substances.

Blood is made up of a carrying fluid called plasma and blood cells, such as Red
Blood Cells (RBCs), white blood cells and platelets (see Fig. 1.1). The plasma is
a fluid mostly composed of water (around 90 %) in which are diluted a variety of
substances like hormones, proteins or urea. RBCs are in charge of the transport of
dioxygen from the lungs to the different organs and the removal of carbon dioxide,
waste of the organs works. They represent about 45% of the total blood volume
and 98% of the total number of cells in suspension in the plasma. Platelets are
small cell fragments that play a role in the coagulation reaction that occurs in case
of injuries of the blood vessel endothelium. White blood cells are the cells of the
immune system and fight off foreign germs, bacteria or viruses, for instance.
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Figure 1.1 – Blood composition.

1.2.2 Haematopoiesis

Each type of blood cells has a specific role, but all of them originate from the bone
marrow in which they are produced in a process called hematopoiesis (see Fig. 1.2).
All blood cells arise from the evolution of a stem cell called hemocytoblast. In the
bone marrow, hemocytoblasts may undergo various evolutions that are represented
by the different branches in Fig. 1.2.

The branch denoted by thrombopoiesis in Fig. 1.2 refers to the platelet produc-
tion. The initial stem cell evolves to a megakaryocyte in the bone marrow. Being
too large to join the blood circulation, megakaryocytes split in several cell fragments
(called platelets) when leaving the bone marrow to enter in the circulating blood.

RBCs stem from the erythropoiesis (see Fig. 1.2) in which the stem cell matures
through erythroblast and reticulocyte stages. Between these two steps, the erythrob-
last loses its nucleus to become a reticulocyte (a better view is given in Fig. 1.3A
and B, respectively). Reticulocytes are RBCs (or erythrocytes) that contains RNA
that will disappear after a few days (about 72 hours). Some of the reticulocytes
complete their maturation to RBCs in the blood circulation. A normal concentra-
tion of reticulocytes in the blood is around 80 000/mm3, which represents about 1%
of the RBCs population. However, if the RBCs production is abnormally high, the
circulating blood contain more reticulocytes and even erythroblasts. This may oc-
cur in case of severe hemorrhage, bleeding, or regenerative anemia. Note that RBCs
are the sole enucleated cells, allowing them to deform and cross microscopic blood
vessels, called microcapillaries. This is where most of gases exchanges (dioxygen and
carbon dioxide) take place.
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Branches referred to as granulopoiesis, monocytopoiesis and lymphopoiesis illus-
trate the genesis of the three main types of white blood cells (viz. granulocytes,
monocytes, and lymphocytes, respectively) that are shown in Fig. 1.3D, E and F.
The three main populations of white blood cells may be subdivided into more sub-
populations. For example, granulocytes originating from granulopoiesis (see Fig. 1.2)
include basophils, neutrophils, and eosinophils. Each population of white blood cell
is dedicated to the safeguard against specific foreign invaders. This means that an
abnormal population of a specific white blood cell type may provide information
on the kind of infection the immune system faces. Granulocytes (basophils, neu-
trophils, and eosinophils) have characteristic sizes between 11 µm and 15 µm, while
monocytes are the biggest with sizes included in between 15 µm and 25 µm. Re-
garding lymphocytes, specifically ‘small lymphocytes’ (see Fig. 1.2), sizes around
9 µm are generally encountered whereas ‘large lymphocytes’ have sizes similar to
granulocytes. However, these latter (‘large lymphocytes’) represent only 10% of lym-
phocytes. Generally, the three main types of white blood cells may be differentiated
by size criteria.

10 µm

Figure 1.2 – Haematopoiesis: evolution of the initial multi-potential stem cell to
blood cells (coming from https://en.wikipedia.org/wiki/Haematopoiesis)
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(A) (B) (C)

(D) (E) (F)

Figure 1.3 – Microscope views of blood cells. (A) erythroblast, (B) reticulocyte, (C)
erythrocyte, (D) granulocyte, (E) monocyte, (F) lymphocyte.

1.2.3 Haematological parameters currently available in industrial
automata

Haematology is the science dedicated to the study and the treatment of blood dis-
eases. This includes the study of pathologies affecting directly plasma and blood
cells, but also disorders in their production. Measuring the concentration and the
size of white blood cells provides information on the presence of undesirable for-
eign agents such as bacteria and viruses, but also on inflammations. Defaults in
organs oxygenation are deduced from abnormal RBCs populations. Consequently,
numbering and sizing blood cells provide clinicians with a global idea on the patient
health state. Since the middle of the 20th century, haematological automata render-
ing rapidly and automatically a Complete Blood Count and differentiation of cells
(CBC+DIFF) have been commercialized. The efficiency, the moderate cost and the
rich indications provided by haematological automata make the CBC+DIFF exam
one of the most performed clinical analysis (about 80 CBC+DIFF each minute in
the US in 2014). Table. 1.1 gives a non-exhaustive list of parameters evaluated
by haematological automata. Parameters related to blood cells concentrations are
provided (RBC, PLT, WBC, Monocytes, Lymphocytes, Granulocytes). Parameters
giving indications on RBCs and platelets volumes (MCV, RDW, MPV) may also
be found in CBC+DIFF outcomes. Note that haemoglobin contained in RBC is
also measured (Hb). This may be done by absorbance measurement. An idea of
the normal range is also provided in Tab. 1.1 although it should be noted that the
normality depends on the sex, the ethnic group, and the age of the patient [83, 157].
This must be accounted for in the diagnosis based on CBC outcomes.

Haematological parameters are of first importance in the clinical decision mak-
ing. In particular, a combination of MCV and RDW was historically used for a
classification of anemias[34, 44], but more recently RDW arouse interest of many re-
search groups as a marker of various human disorders such as: inflammatory Bowel
disease [178], heart failure [99], coronary artery disease [92] and cancers[82, 93, 145],
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Parameter Normal range Description
Min Max

RBC [1012/L] 4.01 6.04 RBCs concentration.
MCV [fL] 80 100 Mean Cell Volume (MCV) of RBCs.
RDW [%] 12.2 15.4 RBCs Distribution Width, giving an in-

dication on the volume distribution ar-
round the MCV.

Hb [g/L] 130 180 Haemoglobin concentration.
Hct [%] 33 50 Hematocrit.

WBC [109/L] 4 11 White Blood Cells concentration.
Monocytes [109/L] 0.2 0.8 Monocytes concentration.

Lymphocytes [109/L] 1.5 4.5 Lymphocytes concentration.
Granulocytes [109/L] 2.0 8.0 Granulocytes concentration.

PLT [109/L] 150 450 Platelets concentration.
MPV [fL] 8 14 Mean platelets volume.

Table 1.1 – Typical haematological parameters rendered in a Complete Blood Count
and differenciation of cells (CBC+DIFF) and the associated range of normal values.

for instance. The reader is referred to the synthesis work of Salvagno et al.[144] for
an overview of pathologies related to RDW.

Most of the parameters provided in CBC+DIFF are related to cells volumes and
their concentration. In the following section, the empirical method introduced by
Coulter [21] to assess such quantities is presented.

1.3 Coulter counters

Some of the haematological parameters currently provided in CBC+DIFF require
the counting and the sizing of blood cells. In 1953, Coulter [21] introduced a fast
and automatic device dedicated to the numeration of a large number of microscopic
cells and the measurement of their volume.

The Coulter principle is depicted in Fig. 1.4: particles suspended in an elec-
trolytic solution are pumped into a micro-orifice commonly called aperture, sapphire
or ruby. An electrical field is imposed with a constant intensity using two electrodes.
According to Ohm’s law, a particle flowing through the sapphire changes the total
resistivity of the system and induces a tension pulse. If sufficiently separated from
the others, one particle produces one pulse, and its maximum is assumed to be
proportional to the particle volume. Thus, counting the pulses and measuring their
amplitude give the concentration and the volume distribution of the cells.

A typical volume distribution obtained by analyzing directly a blood sample is
shown in Fig. 1.5A. Two blood cells types appear in the distribution: RBCs, corre-
sponding to the larger cells with volumes around 90 µm3; platelets, observed at low
volumes around 10 µm3. As stated in Tab. 1.1, platelets are fewer than erythro-
cytes, thus explaining their low count compared to RBCs. The volume distribution
of RBCs is right-skew, which is a typical result of Coulter counters[12]. This point

6



CHAPTER 1. INTRODUCTION

Figure 1.4 – Principle of a Coulter counter device for particle counting and sizing
and typical orders of magnitude of size and flow velocity.

is discussed in detail in the following sections. Because of their small concentration
(see Tab. 1.1), white blood cells are not visible in Fig. 1.5A. They are expected to
account for in the RBCs population but are neglectable from a statistical point of
view. Measuring the white blood cells population requires to first lyse the RBCs
before the sample analysis. After RBCs lysis, the three principal white blood cells
populations are retrieved, as shown in Fig. 1.5B. Remind that these three kinds of
cells may be segregated with a size criterion. The Coulter principle thus allows the
differentiation of three types of white blood cells. However, more complex systems
equipped with an optical sensor can separate the three subtypes of granulocytes.
Such systems are often included in top-of-the-range automata.

1.3.1 Theoretical background for cells volumetry

Analytical studies of Grover et al. [53] and Hurley [68] show that the change of
resistivity caused by the presence of an infinitely small and insulating particle in a
homogeneous electrical field is proportional to its volume:

∆R = ρefs
S2 Vp, (1.1)

with ∆R the resistance variation, Vp the particle volume, ρe the fluid resistivity, S
the aperture cross-section and fs the particle shape factor depending on the shape
and the orientation of the cell. The configuration considered in analytical develop-
ments is illustrated in Fig. 1.6. The homogeneity of the electrical field is allowed
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Figure 1.5 – Typical volume histograms obtained by analysing a blood sample with
a Coulter counter. (A) is obtained when the blood sample is analysed directly. (B)
is obtained if the RBCs are lysed before the analysis. In doing so, the three main
types of white blood cells are visible.
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Figure 1.6 – Simplified configuration of a detection aperture used in theoretical
studies.

whether the cathode and anode are located at the channel inlet and outlet (see
Fig. 1.6). Furthermore, the particle must be small compared to the aperture so that
the electrical field is disturbed only in the close neighbourhood. Regarding Eq. 1.1,
the measurement of the change of resistivity yields the particle volume if and only
if its shape and its orientation are constant. RBCs are able to deform and reorient
when submitted to hydrodynamic forces, which may cause changes in their shape
factor. Note also that the electrical field in the sensing zone is not homogeneous
owing to the device geometry, as shown in numerical simulations of Isèbe & Nérin
[69] and the experimental measurements of Kachel [74] (see Fig. 1.7, left picture),
contrary to the assumption made in Eq. 1.1 [53, 68]. This is due to the electrodes
location that are placed away from the aperture in practice (see Fig. 1.4), contrary
to the idealized case of the analytical developments (see Fig. 1.6).

Concerning the electrical field heterogeneity, the experimental observations of
Kachel [74] support a linear relationship between the squared electrical field and the
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Figure 1.7 – Figure proposed by Kachel in [74] and [75]. The left picture shows
the squared electrical field (E2) isolines in percentage of E2 assessed in the orifice
middle section. The right picture depicts E2 undergone by particles following the
four trajectories of the left figure. E2 is expressed according to the dimensionless
axial position in the orifice (x/d). With d the orifice diameter and x the coordinate
along the aperture principal axis. Vertical dashed lines represent the orifice limits.

electrical perturbation, thus leading to a second version of Eq. 1.1:

∆R = E2fs
ρei2

Vp, (1.2)

The intensity is denoted by i (see Fig. 1.4) while E designates the electrical field
magnitude . If the shape factor fs is constant, the electrical pulse is proportional to
the squared electrical field E2 observed by the particle along its trajectory. Typical
E2 seen by particles depending the path followed are shown in Fig. 1.7. Note that the
volume measurement is taken as the maximum of the electrical perturbation because
all pulses are assumed to have a ‘bell-shape’ (see centered paths in Fig. 1.7).

Analytical expressions for the shape factor are available for the case of particles
with simple shapes, such as spheres and ellipsoids [53, 170]. Examples of shape
factors for different particle shapes are presented in Fig. 1.8A [173]. In particular,
model by Velick et al. [170] may be applied for any ellipsoid with one of its principal
axes aligned with the electrical field. Breitmeyer et al. [10] later modelled the impact
of the ellipsoid orientation on the shape factor:

fs = f// − (f// − f⊥)cos2θ (1.3)

For a given ellipsoid principal axis, f// and f⊥ denote the ellipsoid shape factors
when the chosen principal axis is aligned and perpendicular to the electrical field,
respectively. The angle θ denotes the orientation between the electrical field and the

9



CHAPTER 1. INTRODUCTION

(A) (B)

Figure 1.8 – (A) Shape factor for simple particles shapes as presented by Waterman
et al. [173]. (B) Resistance variation caused by an ellispsoid particle in a homo-
geneous electrical field depending on its orientation (figure presented by Qin et al.
[133]).

Figure 1.9 – Pulse showed by Golibersuch [50] displaying several peaks, that are
supposed to be induced by rotations of the particle.

chosen principal axis. Qin et al. [133] retrieved numerically the impact of the particle
orientation on the electrical resistance variation as shown in Fig. 1.8B. The resistance
variation is shown to increase when the particle longest axis gets perpendicular to
the electrical field. On the contrary, the minimal resistive perturbation is observed
when it is aligned with the electrical field (see Fig. 1.8B). Golibersuch obtained
pulses presenting several peaks analyzing RBCs by the use of a Coulter counter
with a long aperture [50] (see Fig. 1.9). These peaks are explained by a rotation of
the cell that induces a periodic variation of the shape factor.

In summary, the impact of the electrical field inhomogeneity is better understood
since Kachel’s publication [74] and the shape factor for simple and rigid particles is
well characterized. However, the description and understanding of how deformable
particles behave in this kind of configurations and the consequences on the apparent
shape factor along their passage through a Coulter counter are still lacking.
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(A) (B)

Figure 1.10 – Observation of RBCs crossing a constricted channel as shown by Kachel
in [76]. In (A), cells are enforced to move by the wall while in (B), cells go through
the orifice by following a central trajectory.

1.3.2 Undesirable artefacts

As shown by Fig. 1.7, cells flowing in the vicinity of the aperture walls encounter
regions with a dense electrical field. Hence, according to Eq. 1.2, the electrical
pulse arising from a near-wall path is intended to reach higher values than a pulse
generated by a cell evolving in the core region of the aperture, independently on the
actual cell volume.

As previously discussed, RBCs rotations were pointed out in the literature. In
particular, Kachel [76] observed reorientation of RBCs when they cross the detection
area in the proximity of the aperture walls, while cells are oriented with the axial
direction when they flow in the center of the micro-orifice (see Fig. 1.10). Regarding
Eq. 1.3 and Eq. 1.2, changes in the particle orientation would modify the electrical
perturbation through variations of the shape factor fs. Actually, such rotations
are induced by a substantial velocity shear by the wall. Indeed, Reynolds number
(Re) of about 200 is indicative of such configurations, that is based on the aperture
diameter (about 50 µm) and a typical velocity inside of the aperture (around 5
m.s−1). Based on the approximation 0.05×D×Re [31] (D being the orifice diameter),
the hydrodynamic entry length is thus evaluated to 500µm, while a typical orifice
length is 75µm. As a consequence, the velocity profile is flat in the core region of
the micro-orifice and rotation may occur only for near-wall trajectories, where large
velocity shear is present. Besides, biological cells are deformable and RBCs were
shown to undergo complex deformations and dynamics [2, 3, 91, 110] under shear
flows. Deformations are intended to play an important part in the changes of shape
factor but no quantitative assessment of fs for deforming cells is available in the
literature.

Two types of edge-effects occur in Coulter counters. The first type is purely
electrical and arises when a particle reaches the intense electrical field around the
aperture corners (see Fig. 1.7). The second type, of hydrodynamical nature, is ob-
served when the particle is subjected to shear rates large enough to induce rotations
and deformations. These edge-effects tend to overestimate the volume of particles
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Figure 1.11 – Pulses height distributions obtained by Waterman et al. [173]. The
represented distributions are related 25 %, 65 % and 100 % of the total acquisition.
The percentage of retained pulses depends on the rejection criterion applied to the
duration of the pulses.

undergoing trajectories close to the orifice edges and explain the right-skew volume
distribution observed for RBCs (see Fig. 1.5A), instead of a Gaussian-like distribu-
tion [129]. Methods consisting in rejecting from the analysis the pulses impacted
by edge-effects were introduced, as in the work from Waterman et al. [173] that
supports the removal of long pulses. Although this approach is found to sharpen the
measurements, the volume distribution still displays a right-skew curve, as shown
in Fig. 1.11. Because the pulse length depends directly on the cell size (viz. the
targeted feature), thresholding the pulse duration may operate differently from a
sample to another, depending on particle volumes in the sample. This is why filter-
ing strategies accounting for both the pulse duration and the pulse heigh (function
of the cell size) were introduced. Such sorting strategies are still used today by the
way. For instance, in HORIBA Medical automata, one may find the following condi-
tion that pulses must satisfy to be accounted for in the assessment of haematological
parameters:

W < A
√
log(H)−B, (1.4)

in which W and H denote the length and the maximum of the pulse, respectively.
They are sometimes called the width and height of the electrical signature, respec-
tively. Variable A and B are calibrated built-in parameter of the filter. The filter
of Eq. 1.4 is developed by assuming that the pulse is defined by a function of time
f(t) whose expression is:

f(t) =


H× e

− (t−t0)2

2σ2
1 , t < to

H× e
− (t−t0)2

2σ2
2 , t > to

(1.5)

More information on such type of filter may be found in [70]. Brian [12] improved
the volume distribution by spherizing the RBCs and taking longer apertures. In

12



CHAPTER 1. INTRODUCTION

Figure 1.12 – Principle of the ‘hydrodynamical focusing’ systems (figure from [69]).
The blood sample is pinched in the center of the orifice by the sheathing flow.

this respect, most of the dynamical edge-effects are hidden by the spherical aspect
of the cell and the use of longer apertures provides a more homogenous electrical
field [75]. However, extending the aperture length increases the probability of sev-
eral cells passing through the sensing region at the same time, which makes the
measurement unreliable. Moreover, spherizing cells implies the development of a
specific reagent. In an alternative approach, Spielman [154] proposed to enforce
central particles paths by using a sheathing flow, as sketched in Fig. 1.12. This
method called ‘hydrodynamical focusing’ was proven to retrieve symmetrical and
Gaussian-like volume distributions of RBCs.

1.3.3 Motivations

A variety of pulse signatures are reported in the literature. Grover [53] observed
‘bell-shaped’ pulses and ‘M-shaped’ pulses when spheres pursue central and near-
wall trajectories, respectively (see Fig. 1.13A and B, respectively). These pulses sig-
natures are in agreement with the E2 profiles proposed by Kachel [74] (see Fig. 1.7).
Analyzing aspherical pollen particles, Grover [54] retrieved long pulses presenting
a peak as shown in Fig. 1.13C and D. Stating that particles evolving near the ori-
fice edges are transported at a lower velocity, he concludes that such signatures are
generated by near-wall paths. RBCs following a central path generate ‘bell-shaped’
pulses as well but complex signatures are obtained if they undergo near-wall tra-
jectories [75] (see Fig. 1.13E and F, respectively). The complex signatures arising
from near-wall paths are related to measurement errors, so that intensive efforts
have been made to eliminate them from the analysis. Generally, the efficiency of
methods ensuring the processing of ‘bell-shaped’ pulses of centred paths goes hand
in hand with their complexity of implementation. Furthermore, the improvement in
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(A) (B)

(C) (D)

(E) (F)

Figure 1.13 – Oscilloscope graphs obtained by Grover with spherical particles [53]
(A and B) and aspherical pollen particles [54] (C and D). The horizontal axis refers
to time and the vertical axis expresses the electrical perturbation (in Volt). In C
and D, long pulses generated by near-wall path are superimposed with shorter pulses
coming from central trajectories. Pictures (E) and (F) originating from Kachel[75]
work are oscilloscope observations of pulses generated by RBCs evolving in the center
and near the wall, respectively.

the accuracy of the measurements with a simple method is still an interesting task,
from an industrial point of view.

Although they are unsuited for the volume measurement, pulses impacted by
dynamical edge-effects may provide information on the shapes and deformations of
the particles. For instance, by the use of a long aperture in which all particles may
rotate several times, Golibersuch [49] claimed the assessment of the particle spheric-
ity from the electrical pulse. As previously discussed, velocity gradients present near
the wall are expected to deform biological cells, thus inducing changes in the shape
factor. Hence, the electrical pulse may contain indications on the ability of the cell
to deform, on its "deformability". The deformability of blood cells may be altered in
the case of pathologies. Methods such as micro-pipette [136, 146], optical tweezers
[23, 64, 94, 98], and atomic force microscopy [11, 60, 77] allows an assessment of the
deformability of cells, but only for limited number of cells in a sample. In this re-
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spect, diseases affecting the mechanical behaviour of a small portion of cells cannot
be treated with such approaches. Besides, the aforementioned techniques are not
automatic and generally require the intervention of a specialist. This explains the
emergence of various methods achieving a deformability diagnosis of a large number
of blood cells, in a moderate time. Among this large panel of high throughput meth-
ods one should cite measurement systems based on: Transit Through Constrictions
[1, 9, 141, 183], hydrodynamic streching [13, 14, 28, 51, 182] and optical cytometry
[55, 56, 134, 155]. Because Coulter counters analyse thousands of cells in a few
seconds, assessing the deformability from impedance pulses would represent a novel
high throughput technique for the rheological characterization of blood cells.

Considering rigid spheres that maintain a constant shape factor, the pulses sig-
natures are well known and explained by the squared electrical field (see Eq. 1.2).
On the contrary, in the case of deformable cells, pulses impacted by edge-effects are
still misunderstood. Due to the difficulties in accessing the RBC dynamics within
the measurement zone (small sensing region (tens of µm), large velocity (≈ 5 ms−1),
no optical access, very short time of exposure (10 µs)), numerical simulations would
be an appealing way of tackling this question. Also, simulations allow controlling
the input parameters, which is particularly difficult to do in experiments with bio-
logical cells. In other words, numerical simulation of the dynamics of the RBCs in
Coulter counters and of the associated electrical perturbation is expected to bring
new information useful to explain and characterize the links between the mechanical
properties of the cells and their electrical signatures.

Once a relation is made between geometrical and mechanical properties of cells
and their electrical responses, one may rely different statistical methods to process
the experimental signals and infer the properties of the cells. For instance, neural
networks enable the building of complex models from a database: they represent
an interesting approach to process cells information embedded in electrical prints,
in a complementary way to numerical simulation. Remind that industrial Coulter
counters are nowadays widely exploited to assess patients CBC. Consequently, from
a hardware point of view, no further developments are needed and implementing an
additional signal processing to assess richer information about cells would be most
probably doable at low industrial development cost.

The present work is dedicated to RBCs, the most deformable and numerous
blood cells. The remaining of this opening chapter presents an overview of the
existing methods to simulate flowing RBCs.

1.4 Numerical simulation of RBCs

An appealing approach for investigating electrical prints generated by RBCs in the
microscopic aperture of Coulter counters is the numerical simulation. In this section,
the properties of RBCs in terms of shape, composition and mechanical behaviour
are first presented. Then, an overview of the existing numerical models and their
applications in the prediction of RBCs dynamics is given. Finally, the challenges of
simulating deformable RBCs in Coulter counters are succinctly introduced.
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Figure 1.14 – Discocyte shape of RBCs as shown by Abkarian and Viallat [4].

1.4.1 A close-up look on red blood cells

Erythrocytes are enucleated cells. Hence, a RBC may be viewed as a microscopic
drop of fluid (cytoplasm) surrounded by a thin solid membrane. Measurements of
Evans and Fung [33] shed light on the discocyte shape of the cell, for which they
proposed the following parametrization:

z(r) = ±RO2

√
1−

(
r

RO

)2
×
(
C0 + C2

(
r

RO

)2
+ C4

(
r

RO

)4
)

(1.6)

Figure 1.14 illustrates the RBC shape as stipulated by Eq. 1.6, by defining RO =
3.91 µm, C0 = 0.81 µ, C2 = 7.83 µm and C4 = -4.39 µm. A typical RBC volume is
93 µm3 while the membrane area is about 133 µm3 [33] . By defining the reduced
volume (Q) as the cell volume divided by the volume of the sphere having the same
surface than the membrane, a typical Q for RBCs is 0.65. Note that for a spherical
particle, the reduced volume (Q) equals 1.0, thus 0.65 emphasises the deflated aspect
of RBCs. This property plays an important role in the deformability of such cells.

Because the membrane is supposed infinitely thin, its mechanical response only
depends on three types of deformation: changes of area, shear deformations, and
bending [4, 113]. Area and shear deformations are observed in the membrane two-
dimensional plane whereas bending expresses changes of the membrane profile. The
RBCs membrane is a complex structure composed by a lipid bilayer underlined by
a cytoskeleton. The lipid bilayer regulates the membrane permeability while the
cytoskeleton preserves the cell integrity [4]. Both account in the membrane mechan-
ical behaviour: the lipid bilayer was shown to resist bending and surface variations,
while the cytoskeleton resists shear deformations and area dilatations (but less than
the lipid bilayer). These elastic properties come in addition to a membrane viscosity
that is often neglected in numerical simulations [19, 20, 107, 161]. Such behaviours
of the membrane are measurable with various methods. The reader is referred to
the review by Darling and Dino Di Carlo [24] for more information on the subject.
In general, the membrane is viewed as a continuous medium and the mechanical
modulus quantifying the aforementioned behaviours are defined. Classical values of
the membrane global (lipid bilayer + cytoskeleton) parameters are given in Tab. 1.2,
in which Gs stands for the shear modulus, Eb, the bending modulus and Ea, the
area modulus. These parameters rate the rigidity of the membrane against the three
aforementioned modes of deformation. The cytoplasm content also plays a part in
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Membrane elastic parameters
Gs 5.5±3.3 × 10−6 N.m−1

Ea 0.39±0.11 N.m−1

Eb 1.14±0.9 × 10−19 J

Table 1.2 – Typical mechanical parameters of the membrane of RBCs[4, 46].

RBCs mechanical behavior. Measurements reported in the literature [16, 79] sup-
port an internal viscosity six times higher than plasma, at the body temperature.
The internal to external viscosity ratio was proven to drive the cell dynamics in
shear flows [2, 4, 91, 107, 110, 152].

RBCs pathologies may impact the membrane mechanical parameters (see Tab. 1.2),
the reduced volume (Q), the cell shape, and its content. For instance, malaria (plas-
modium falciparum) increases the cell reduced volume [115, 143] and the membrane
shear modulus [48, 112, 115] but also reduces the haemoglobin concentration [122],
that is related to the internal viscosity [79]. Furthermore, the presence of the par-
asite within the membrane should change the global rigidity of the cell. Spherical
and ellipsoidal RBCs arise from hereditary spherocytosis [5, 123] and elliptocytosis
[18, 163], respectively. One may also cite sickle cell anemia that leads to rigid RBCs
with a sickle-like shape [118, 138]. Hence, morphological and rheological information
of RBCs represent a real interest to diagnose pathologies.

1.4.2 RBCs simulations, State of the art

Simulating flowing RBCs implies the modelling a Fluid-Structure Interaction (FSI)
problem between incompressible fluids (internal and external fluids) and a thin mem-
brane. Remind that RBCs are highly deformable, thus making the small deformation
assumption invalid. The modelling of FSI for large solid deformations represents a
challenging task that is still investigated.

Different methods to achieve such modelling are proposed in the literature. These
methods may differ in the way the fluid and/or the membrane are treated. The
fluid dynamics may be predicted by approaching the solution of Navier Stokes
equations using a finite volume [111], a finite difference [6, 32, 179] or a finite
element method [26, 71]. The Lattice-Boltzmann equation that was shown to
converge to Navier-Stokes equations (by the Chapman-Enskog expansion) is also
widely used [86, 87, 104, 137, 158–160]. Navier-Stokes equations write the con-
servation laws of the fluid macroscopic quantities whereas the Boltzmann equation
expresses the advancement of a mesoscopic quantity that is the probability density
function of the molecules composing the fluid to go in different directions. Parti-
cle based methods are also used, such as the dissipative particles dynamics (DPD)
method [37, 39] and the multiparticle collision dynamics (MPC) method [108, 109].
Concerning the modelling of the solid membrane, two main approaches are gener-
ally combined with Particle based, LB and Navier-Stokes methods. The first one
[7, 19, 20, 86, 111, 111, 175–177] consists in describing the membrane as a continuous
medium by the use of strain energy functions. For example, the RBC membrane is
generally modeled with the Skalak law [151] that accounts for the shear and area
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modulus (see Tab. 1.2) and the Helfrich bending energy [63] that models the bending
withstanding of the membrane. The principle of the second approach is to consider
the membrane as a set of particles linked to each others by a network of springs
[38, 39, 121]. Finally, assuming a Stokes flow, the boundary integral method has
been used by many authors [29, 30, 41, 43, 88–90, 171, 172].

The different models have been validated and, in the case of RBCs, were mostly
applied in simple configurations such as optical-tweezers [36, 95, 149, 150], Shear
Flows [25, 91, 107, 152] and micro channels [40, 165, 181], for instance. Numerical
simulation of the dynamics and deformation of RBCs under flow has tremendously
developed over the last years, but the application to industrial geometries is still lim-
ited. Its application to Industrial Coulter counters is expected to yield new insights
in the behaviour and the electrical signature of RBCs in the sensing region, but
has never been performed before to fully characterize an industrial system. Numer-
ical studies of particles dynamics in Coulter counters have mainly considered rigid
particles, both spherical [57] and aspherical [69]. Gibaud et al. [46, 47] performed
the first simulations of deformable RBCs in Coulter counters, but the study was
restricted to hydrofocalized analysers, and the simulations suffer from limitations
on the initial conditions, as detailed in the next paragraph.

1.4.3 Issues involved when tackling the numerical simulation of
RBCs in Coulter counters

A computation of the entire analysis of RBCs by Coulter counters is not possible,
due to the large number of cells and above all the huge ranges in both length and
time scales when the entire device is considered. As shown in Fig. 1.4, the size of
the measurement region (where the electrical field is strong enough so that the cell
can be detected) is of a few tens of micrometers and cells pass through the sapphire
in a few tens of microseconds. On the contrary, far from the sapphire, they are
suspended in a tank of a few centimeters (5 cm) and they flow at a velocity of the
order of 10−3 ms−1. The separation of scales leads to prohibitive computational
times, while the measurement region is very limited. An option is to focus on the
measurement region only, but cells deform before being detected by the counter [74].
Gibaud et al. [46, 47] computed the signal associated with RBCs but neglected part
of the upstream deformations for computational reasons. This explains why most
existing numerical simulations have only considered rigid particles [57, 69], thus
circumventing the challenge of the scale separation by reducing the computational
domain to the region where the impedance signal is detected. This cannot be done
when deformable particles are considered. A method to tackle such simulations
was developed in this thesis and has been published in[162]. It will be detailed in
Chap. 4.

1.5 Thesis objectives and outlines

Numerical simulations of RBCs would give a new insight on the electrical prints
arising from industrial Coulter counters. In this respect, an original sequence of
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simulations is proposed to overcome the multi-scale issue that arises naturally. A
numerical pipeline dedicated to rigid spheres is presented in Chap. 3 and extended to
deformable particles in Chap. 4. The numerical results are validated by comparisons
with theoretical statements and experimental measurements. The simulations of
the pipeline are performed with different solvers of YALES2BIO software, that are
presented in Chap. 2, at first.

In particular, the proposed numerical approach is employed to highlight the
variety of complex pulses originating from RBCs evolving near the aperture walls (see
the end of Chap.4). Besides these pulses are associated with particular dynamics in
the aperture and the shape factor of a deforming RBC is modeled. These numerical
results thus explain the mechanisms involved in the complex pulses obtained from
particles flowing along a near-wall trajectory.

Errors in the volume measurement generated by near-wall trajectories were dis-
cussed in Sec. 1.3.2. These deficiencies are currently balanced by filtering strategies
or hardware improvements of the original Coulter principle. Filtering methods are
simpler of implementation but the lack of knowledge on the edge-effects limited
their development in the past. Thanks to the understanding brought by the numer-
ical simulation, an original filter is proposed in Chap. 5 and shown to accurately
reproduce results from hydrodynamical focusing.

In Chap. 6, cells morphology and rheology are shown to impact the measure-
ment. Then, methods for processing the cells features from the electrical pulses
are introduced. Among them, NNs are employed to characterize the RBCs. The
training of such NNs requires a database composed of many couples ain/aobs, in
which ain is the pulse and aobs the cell parameters. Note that knowing aobs may be
problematic with an experimental approach. This is the case if aobs represents the
mechanical parameters (Gs, Ea ...) of the cell, for instance. Numerical simulation
allows constructing any couples ain/aobs, which makes the association of numerical
simulations with NNs promising. In particular, this strategy is used in Chap. 6
for modeling the inverse problem of numerical simulations and is also employed in
Chap. 5 to develop a filtering method. However, because of simulations times, the
main drawback of such a coupling is the computational cost to pay for a sufficient
number of couples ain/aobs. This is why the strategy of achieving NN models from
experimental data will be preferred in some applications of Chap. 6.
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In Coulter counters, RBCs suspended in an electrolytic solution flow through
a micro-orifice in which a dense electrical field is imposed by two electrodes (see
Fig. 1.4). Moreover, RBCs are enucleated cells viewed as a drop of fluid sur-
rounded by a solid membrane. Hence, simulating the impedance measurement of
RBCs in a Coulter counter implies a three-way coupling problem: Solid/Fluid flow;
Solid/Electrical field; Fluid flow/Electrical field.

In practice, the suspending fluid and the cells move at velocities much lower
than the velocity of light. The electrostatic assumption is then made which means
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the electrical field develops instantly despite the fluid and particles motions. Cou-
pling between the fluid-flow and the electrostatic field are neglected. In addition,
dielectrophoretic forces acting on the membrane are not accounted for, despite the
ability of RBCs to be polarized [116, 132]. These assumptions allow considering a
Solid/Fluid problem completely separated from Solid/Electrostatic problems since
RBCs motions depend only on Fluid-Structure Interactions.

In YALES2BIO software, Solid/Fluid and Solid/Electrostatic problems are treated
with two distinct solvers (FSIS and ESS, respectively). The solvers employed in the
context of this thesis are as follows:

1) A Navier Stokes Solver (NSS) that computes the flow of incompressible fluids.
2) A Fluid-Structure Interaction Solver (FSIS) that couples solver NSS with

infinitely thin membranes.
3) An Electrostatic Solver (ESS) calculating the electrical field in the presence

of cells.
In the present chapter, each solver is described and validation cases are presented.

Solver NSS is introduced in the first section. Then, the coupling of NSS with solid
membranes in FSIS is detailed. Finally, the solver ESS is presented.

2.1 Flow solver (NSS)

The electrolytic solution in which cells are in suspension is mainly water. Conse-
quently, the fluid motions are modeled according to incompressible Navier Stokes
equations:

∂~u

∂t
+∇.(~u⊗ ~u) = −1

ρ
∇P +∇.[ν∇~u] +∇.[ν(∇~u)T ] (2.1)

∇.~u = 0 (2.2)

where ~u denotes the fluid velocity, P the pressure, ρ the fluid density and ν the
kinematic viscosity. Note that the viscosity ν may vary in the fluid domain. This
section focuses on the numerical method in solver NSS to solve Eq. 2.1 and 2.2.

2.1.1 Time advacement

The fluid equations presented above are solved with a prediction correction method
[17]. From the fluid quantities at the beginning of the time step (indicated by a
superscript n), a predicted velocity (~u∗) is computed by advancing the momentum
equation Eq. 2.1 without the pressure term. For the sake of simplicity, an explicit
Euler time advancement scheme is retained in the following development:

~u∗ − ~un

∆t = −∇.(~un ⊗ ~un) +∇.[νn∇~un] +∇.[νn(∇~un)T ] (2.3)

Generally, ~u∗ is not divergence free as prescribed in Eq. 2.2, thus a correction must
be performed on the predicted velocity. In this respect, the corrected velocity at the
end of the time step (~un+1) must satisfies:

~un+1 − ~un

∆t = −∇.(~un ⊗ ~un)− 1
ρ
∇Pn+1 +∇.[νn∇~un] +∇.[νn(∇~un)T ] (2.4)
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By subtracting Eq. 2.4 with Eq. 2.3, the following equation is obtained:

~un+1 − ~u∗

∆t = −1
ρ
∇Pn+1 (2.5)

Then, applying the divergence operator on each side of the above equation leads to:

∇.~u
n+1

∆t −∇.
~u∗

∆t = −∇.[ 1
ρ
∇Pn+1]

Now imposing that the velocity ~un+1 is divergence-free, a Poisson equation for the
pressure is obtained:

1
ρ
∇.[∇Pn+1] = 1

∆t∇.~u
∗ (2.6)

Once the Poisson equation (Eq. 2.6) solved, the velocity field is corrected using
Eq. 2.5.

2.1.2 Space discretization

Finite Volume Method

According to the time advancement procedure, spatial discretizations for Eq. 2.3,
2.5 and 2.6 are needed. In YALES2BIO, this is done by the use of a Finite Volume
Method (FVM) consisting in splitting the fluid domain into several control volumes
that are represented by squares in Fig. 2.1. A control volume Ωi is bounded by
∂Ωi that is the union of several faces Si,j . Each face Si,j is defined as the frontier
between control volumes Ωi and Ωj . The macroscopic fluid quantities (P and ~u) are
assessed at the discretization nodes ~xi assumed to be located at the center of mass of
the control volumes Ωi. The spatial discretization is then developed by integrating
Eq. 2.3, 2.5 and 2.6 over each control volume Ωi and balancing the fluxes over faces
Si,j .

Integrating Eq. 2.3 over a control volume Ωi leads to:

1
∆t

∫
Ωi

(~u∗ − ~un)dV =
∫

Ωi
−∇.(~un ⊗ ~un) +∇.[νn∇~un] +∇.[νn(∇~un)T ]dV (2.7)

Then, using the Ostrogradski theorem, integrals over Ωi may be rewritten as inte-
grals over ∂Ωi:

1
∆t

(∫
Ωi
~u∗dV −

∫
Ωi
~undV

)
= −

∫
∂Ωi

[~un ⊗ ~un] d~S +
∫
∂Ωi

νn∇~und~S

+
∫
∂Ωi

νn(∇~un)Td~S
(2.8)

By construction, integrals over ∂Ωi equals the sum of integrals over faces Si,j (see
Fig. 2.1):

1
∆t(

∫
Ωi
~u∗dV −

∫
Ωi
~undV ) = −

∑
j

∫
Si,j

[~un ⊗ ~un] d~S +
∑
j

∫
Si,j

νn∇~und~S

+
∑
j

∫
Si,j

νn(∇~un)Td~S
(2.9)
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~xi

~xj

~xi,j

~ni,j

Si,j

~ex

~ey

Ωi
∂Ωi

Ωj

Figure 2.1 – Control volumes involved in the finite volume method for the spatial
discretization. Although this representation is in two dimensions, the notations
stand for three-dimensional control volumes.

When integrating ~u over Ωi, the Taylor development implies:∫
Ωi
~udV =

∫
Ωi
~ui +∇~u|i(~x− ~xi) +O(||~x− ~xi||2)dV (2.10)

The discretization nodes ~xi being placed at the center of mass of Ωi, the integral of
the second-order term vanishes. Hence, at the second-order of accuracy, the previous
equation simplifies as: ∫

Ωi
~udV = ~uiVi (2.11)

With Vi referring to the volume of Ωi. Then, using Eq. 2.11 to approximate the
volume integrals in Eq. 2.9 leads to:

Vi
∆t(~u

n+1
i − ~uni ) = −

∑
j

∫
Si,j

[~un ⊗ ~un] d~S +
∑
j

∫
Si,j

νn∇~und~S

+
∑
j

∫
Si,j

νn(∇~un)Td~S
(2.12)

In an equivalent manner, Eq. 2.5 and Eq. 2.6 lead respectively to:

Vi
∆t(~u

n+1 − ~u∗) = −1
ρ

∑
j

∫
Si,j

Pn+1d~S, (2.13)

and 1
ρ

∑
j

∫
Si,j

∇Pn+1.d~S = 1
∆t

∑
j

∫
Si,j

~u∗.d~S (2.14)

By defining operators C(~u, ~u), G(P ), D(~u), L(P ), Lcv(ν, ~u) and LTcv(ν, ~u) as:

C(~u, ~u) =
∑
j

∫
Si,j

[~u⊗ ~u] d~S, (2.15)
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G(P ) =
∑
j

∫
Si,j

Pd~S, (2.16)

D(~u) =
∑
j

∫
Si,j

~u.d~S, (2.17)

L(P ) =
∑
j

∫
Si,j

∇P.d~S, (2.18)

Lcv(ν, ~u) =
∑
j

∫
Si,j

ν∇~u d~S, (2.19)

and
LTcv(ν, ~u) =

∑
j

∫
Si,j

ν[∇~u]Td~S, (2.20)

Eq. 2.12, 2.13 and 2.14 respectively write:

Vi
∆t(~u

∗
i − ~uni ) = −C(~un, ~un) + Lvc(νn, ~un) + LTvc(νn, ~un), (2.21)

Vi
∆t(~u

n+1 − ~u∗) = −1
ρ
G(Pn+1), (2.22)

and 1
ρ
L(Pn+1) = 1

∆tD(~u∗) (2.23)

Operator C stems from the convective term of the momentum equation (Eq. 2.1).
The pressure gradient of the correction equation (Eq. 2.5) is related to G, while D
is used to approximate the divergence of ~u∗ in the Poisson equation (Eq. 2.6). L
is employed for the Laplacian of Pn+1 in Eq. 2.6, whereas Lcv and LTcv assess the
viscous part of Eq. 2.1. In particular:

1) L assesses the Laplacian
2) Lcv is a Laplacian accounting for a variable coefficient
3) LTcv is close to Lcv, the only difference being the transpose that is applied to

the gradient (see Eq. 2.19 and 2.20).
Numerical schemes estimating the different operators (C, G, D, L, Lcv and LTcv)

are presented in the following.

Laplacian operators

Let ~xi,j be the vertex placed at the intersection of face Si,j and vector (~xj − ~xi), as
shown in Fig. 2.1. If the control volumes are regular, ~xi,j is located at the center of
mass of Si,j , that allows the following second order developement of Eq. 2.18:

L(P )|i =
∑
j

∫
Si,j

∇P.d~S =
∑
j

∇P |i,j .~Si,j (2.24)

Note that ~Si,j equals Si,j × ~ni,j (see Fig. 2.1). The value of ∇P at node ~xi,j (denoted
by ∇P |i,j) is required in the above expression. It is approximated by writing the
Taylor developments of P at points ~xi and ~xj , in the vicinity of ~xi,j :

Pi = Pi,j +∇P |i,j .(~xi − ~xi,j) +O(||~xi − ~xi,j ||2) (2.25)
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Pj = Pi,j +∇P |i,j .(~xj − ~xi,j) +O(||~xj − ~xi,j ||2) (2.26)

Subtracting Eq. 2.26 to Eq. 2.25 and by keeping only terms of order 2 leads to:

Pj − Pi = ∇P |i,j .(~xj − ~xi)

Then, it comes that:

∇P |i,j = (Pj − Pi)
(~xj − ~xi)
|~xj − ~xi|2

(2.27)

The substitution of Eq. 2.27 in Eq. 2.24 gives the second-order accurate spatial
discretization of the Laplacian operator:

L(P )|i =
∑
j

(Pj − Pi)
(~xj − ~xi)
|~xj − ~xi|2

.~Si,j (2.28)

Note that in the case where (~xj − ~xi) is parallel to ~Si,j , this simplifies to:

L(P )|i =
∑
j

Pj − Pi
|~xj − ~xi|

Si,j (2.29)

At a second-order of accuracy, operator Lcv reduces as follows, provided ~xi,j is
the center of mass of Si,j :

Lcv(ν, ~u)|i =
∑
j

∫
Si,j

ν∇~u ~dS =
∑
j

νi,j∇~u|i,j ~Si,j (2.30)

The velocity gradient at ~xi,j (∇~u|i,j) is treated as ∇P |i,j in Eq. 2.27 but νi,j still
needs to be expressed according to nodal values of viscosity νi and νj . This is done
by writing the two following Taylor series expansions:

ν = νi,j +∇ν|i,j .(~xi − ~xi,j) +O(||~xi − ~xi,j ||2) (2.31)

νj = νi,j +∇ν|i,j .(~xj − ~xi,j) +O(||~xj − ~xi,j ||2) (2.32)

By summing Eq. 2.31 with 2.32, neglecting terms of order 3, and assuming (~xj−~xi,j)
= (~xi,j − ~xi), νi,j expresses as follows:

νi,j = νi + νj
2 (2.33)

In this way, Lcv(ν, ~u) writes:

Lcv(ν, ~u)|i =
∑
j

νi + νj
2 (~uj − ~ui)

[
(~xj − ~xi)
|~xj − ~xi|2

.~Si,j

]
(2.34)

Furthermore, with a similar approach, LTcv yields:

LTcv(ν, ~u)|i =
∑
j

νi + νj
2

(~xj − ~xi)
|~xj − ~xi|2

[
(~uj − ~ui).~Si,j

]
(2.35)
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Divergence operators

This section is devoted to operators D and C, that compute the divergence of ~u and
~u ⊗ ~u, respectively. With ~xi,j located at the center of mass of Si,j , second-order
approximations of C(~u, ~u) and D(~u) read:

C(~u, ~u)|i =
∑
j

∫
Si,j

[~u⊗ ~u] ~dS =
∑
j

[~ui,j ⊗ ~ui,j ] ~Si,j , (2.36)

and
D(~u)|i =

∑
j

∫
Si,j

~u.d~S =
∑
j

~ui,j .~Si,j (2.37)

As developed for assessing ν at point ~xi,j (see Eq. 2.33), ~ui,j is approximated by:

~ui,j = ~uj + ~ui
2

(2.38)

In this respect, injecting the above expressions in Eq. 2.36 and 2.37 yields:

C(~u, ~u)|i =
∑
j

[(
~uj + ~ui

2

)
⊗
(
~uj + ~ui

2

)]
~Si,j =

∑
j

~uj + ~ui
2 Ui,j , (2.39)

and
D(~u)|i =

∑
j

~uj + ~ui
2 .~Si,j =

∑
j

Ui,j . (2.40)

Ui,j , that is defined as ~uj+~ui
2 .~Si,j represents the flow-rate across face Si,j . Conse-

quently, applying D to ~u (see Eq. 2.40) is equivalent to balancing the flow-rates
(Ui,j) that come in and get out of the control volume Ωi.

Gradient operator

With the same assumptions that enable Eq. 2.33 and Eq. 2.38, the pressure at ~xi,j
is assessable by:

Pi,j = Pj − Pi
2 (2.41)

This allows the following development of G(P ):

G(P )|i =
∑
j

∫
Si,j

Pd~S =
∑
j

Pi,j ~Si,j =
∑
j

Pj + Pi
2

~Si,j , (2.42)

once again, provided ~xi,j is the center of mass of Si,j .

High order schemes for the spatial discretization

The derivations of the different operators proposed in this section are second-order.
Fourth-order assessments of surface integrals involved in the different operators are
available in YALES2BIO and will be used in the following simulations. The reader
is referred to works of Kraushaar [84], Vantieghem [169] and Puiseux [130] for more
details on the implementation of the fourth-order schemes in YALES2BIO. One
should also recommend the publication of De Stefano et al [156] for a more theoretical
description of high order schemes in Finite-Volume Methods.
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Velocity prediction (Eq. 2.21)

Solving the Poisson equation for
the Pressure (Eq. 2.23)

Velocity correction (Eq. 2.21)

~un, νn

~u∗

Pn+1

~un+1

n← n + 1

Figure 2.2 – Temporal loop involved in the Navier Stokes Solver (NSS).

2.1.3 Navier Stokes Solver (NSS) time stepping

Including the expressions of the different operators (see Eqs. 2.28, 2.34, 2.35, 2.39,
2.40 and 2.42) in Eqs. 2.21, 2.22, and 2.23 provides the discretization of Eqs. 2.3,
2.5 and 2.6 in both time and space. Instead of an explicit Euler scheme (used in
the former sections as an illustration), a fourth-order Runge Kutta scheme (RK4)
[148, 174] is preferred in practice. The velocity ~un is advanced to ~u∗ in four sub-steps
as: 

~u1 = ~un + 1
4∆t×RHS(~un, νn)

~u2 = ~un + 1
3∆t×RHS(~u1, νn)

~u3 = ~un + 1
2∆t×RHS(~u2, νn)

~u∗ = ~un + 1
3∆t×RHS(~u3, νn)

(2.43)

with RHS referring to the right-hand side of Eq. 2.21. Note that the kinematic
viscosity is not updated during the RK4 substeps.

A better view on the NSS solver time step is given in Fig. 2.2. The first step in
the temporal loop consists in computing a velocity prediction ~u∗ by using Eq. 2.21
(or Eq. 2.43 if a RK4 advancement is chosen). Note that ~u∗i is evaluated for each
node ~xi representing the fluid domain. Given ~u∗i , Eq. 2.23 represents a linear system
of equations for the pressure Pn+1

i . Hence, in a second step (see Fig. 2.2) the linear
system 2.23 is solved with a Deflated Preconditioned Conjugate Gradient algorithm
[105] (DPCG). Finally, once Pn+1

i is calculated, the divergence free velocity at the
end of the time step (~un+1

i ) is computed according to Eq. 2.22.

2.1.4 A few words on the boundary conditions

In the case where boundary velocities are prescribed, the following ~u∗ condition is
commonly imposed just after the prediction step (see Fig. 2.2):

~u∗|Bd = ~un+1|Bd (2.44)
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Here, Bd refers to the boundaries of the computational domain. Besides, a vanishing
pressure gradient along ~nBd (the boundaries normal) is imposed when the Poisson
equation is solved in the second step (see Fig. 2.2):

∂Pn+1

∂~nBd
|Bd = 0 (2.45)

As shown by Kim and Moin [80], applying such boundary conditions is only first-
order accurate. They proposed an improved version of Eq. 2.44, that makes the
method second-order accurate:

~u∗|Bd = ~un+1|Bd + ∆t1
ρ
∇Pn|Bd (2.46)

For more information on the boundary conditions, readers are referred to [80, 169].
In practice, ∇Pn is included in the prediction step, so that only the increment

of pressure between time step n and n+1 is calculated with the Poisson equation to
correct the predicted velocity. Adding ∇Pn in Eq. 2.3 for the prediction ~u∗ makes
the method second-order accurate even with the boundary condition of Eq. 2.44,
since the requirement of Eq. 2.46 is fulfilled on the domain bounds.

2.1.5 Fluid grids

The derivation of the spatial discretization of Sec. 2.1.2 is second-order accurate for
regular and structured grids (as for square meshes shown in Fig. 2.1). Dealing with
industrial configurations generally implies complex geometries that are difficult to
discretize with regular meshes. In the present section, the meshing process is briefly
explained.

Based on a tetrahedral grid provided by common meshing software such as
GMSH or GAMBIT, the control volumes Ωi are constructed around the vertices
of the tetrahedra. Figure 2.3 illustrates the construction of a control volume from a
2D triangular mesh. However, this can easily be extended to 3D tetrahedral grids.
The initial triangular mesh is shown in continuous lines while the control volume
built around a vertex ~xi is shown in dashed lines. The control volume is constructed
by assessing the middle of the edges of the triangles (crosses in Fig. 2.3) and the
centers of mass of the triangles (bold points in Fig. 2.3).

Regarding Fig. 2.3, it should be noted that the line Si,j (or surface Si,j , for a 3D
tetrahedral grid) is no more flat, contrary to the idealized case of Fig. 2.1. Hence,
vector ~Si,j required in the spatial discretization (see Sec. 2.1.2) takes a more intricate
definition than Si,j~ni,j . Actually, it is defined as the sum of S′i,j~n′i,j and S′′i,j~n′′i,j (see
Fig. 2.3).

Depending on the initial triangular mesh, ~xi may not be the center of mass of
the control volume. In the same way, nodes ~xi,j are generally not corresponding
to the centers of mass of faces Si,j . As a consequence, the second-order spatial
discretization developed in Sec. 2.1.2 becomes only first-order accurate. The more
regular the mesh is, the less the order of accuracy decreases. That is why regular
elements are highly recommended. Moreover, two neighbouring elements should be
close in size.
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~xi

~xj

~xij

~n′
ij

S′
ij

~n′′
ij

S′′
ij

Figure 2.3 – Construction of the control volume Ωi (drawn in dashed line) from a
triangular grid. This illustration shown in 2D stands in 3D.

2.1.6 Applications

The present model has been applied in a large panel of simulations relevant to car-
diovascular biomechanics. For example, Siguenza [148] showed that the Womersley
profiles in 2D pulsatile flows are well predicted for several pulsation frequencies.
Zmijanovic et al. [185] retrieved the transition from laminar to turbulent flow that
was observed in a series of experiments performed in different FDA laboratories.
Puiseux [131] confirms that NSS reproduces the pusatile and steady developement
lengths in cylindrical channels, as reported by Durst et al. [31] and He et al. [61],
respectively. He also validates the accuracy of NSS in a pipe bend in both pulsatile
and stationary flows by comparisons with works of Timite [164] and Siggers [147],
respectively. In a recent publication, the solver has shown really good velocity cor-
relations with 4D flow MRI measurements performed in an in-vitro configuration
[130].

2.2 Fluid Structure Interaction Solver (FSIS)

Simulating the dynamics of RBCs in flow implies the coupling of the membrane
mechanics with the flow of an incompressible fluid. In solver FSIS, this is enabled
by the Immersed Boundary Method (IBM) of Peskin [125]. This model is dedicated
to the fluid-structure interactions between an infinitely thin and massless solid with
an incompressible fluid (see Fig. 2.4). A curvilinear coordinates system (~es,~er,~eq)
is attached to the solid whereas the fluid is defined in the Eulerian coordinates
system (~ex,~ey,~ez). The system (~es,~er,~eq) is orthonormal and defined in such a way
plane (~es,~er) is tangential to the membrane and ~eq is directed outward of the cell
(see Fig. 2.4). The membrane is also observed with a Lagrangian point of view by
~X(r, s, t), which describes the membrane at time t. Because the solid dimension
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along ~eq is negligible, the coordinate q is not needed for tracking the membrane
in such a formalism. The fluid motions are modelled according to incompressible
Navier Stokes equations, as in NSS:

∂~u

∂t
+∇.(~u⊗ ~u) = −1

ρ
∇P +∇.[ν∇~u] +∇.[ν(∇~u)T ] + 1

ρ
~fv (2.47)

∇.~u = 0 (2.48)

The term ~fv is a source term accounting for the forces arising from the solid. Remind
that the kinematic viscosity ν may vary in the domain, and as discussed in the
following is higher inside of the RBC membrane. When deformed, the solid stores an
elastic energy defined byW ( ~X(r, s, t)). To recover its reference shape, the membrane
applies an elastic force on the surrounding fluid particles:

~FE = ∂W

∂ ~X
(2.49)

Peskin [125] proposed to account for the membrane forces in the momentum
equation (Eq. 2.47) through the source term ~fv . The forces coming from the solid
(~FE) are regularized as follows:

~fv(~x) =
∫

Ωs
~FE( ~X(r, s, t))δ(~x− ~X(r, s, t))drds (2.50)

Note that ~fv is expressed in an Eulerian formalism while ~FE depends on the mem-
brane Lagrangian coordinates ~X(r, s, t). The change of formalism is enabled by the
integrated Dirac function δ. Assuming that the membrane mass is negligible, the
solid is transported at the surrounding fluid velocity ~u. This implies the interpola-
tion of ~u at the membrane location:

d ~X

dt
=
∫

Ωf
~u(~x)δ(~x− ~X)d~x (2.51)

Equations 2.47, 2.48, 2.49, 2.50 and 2.51 represent the system of equations solved
in the solver FSIS. Note that without membrane in the domain, Eq. 2.49, 2.50 and
2.51 are not required, ~fv = ~0 and FSIS reduces to NSS.

Note that if Fluid/Electrostatic interactions were taken into account, an addi-
tional forcing term in the right-hand side of Eq. 2.47 would be required [169]. Be-
sides, when taking into account dielectrophoretic forces, membrane displacements
and internal energy would depend on the electrostatic field, which is not the case
here.

The treatment of Eq. 2.47 and Eq. 2.48 was detailed in Sec. 2.1. Hence, the
present section details the computation of the membrane forces ~FE , at first. Then,
the coupling procedure provided by Eq. 2.50 and 2.51 is presented for the discrete
problem.

2.2.1 Membrane discretization

The membrane of each cell is described with triangular elements in 3D. For example,
Fig. 2.5 shows the discrete membrane of one RBC. Only the cell membrane is meshed,
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Fluid domain Ωf

Ωs

~X

~es~eq

~er

~ex

~ey

~ez

Figure 2.4 – Diagram of an infinitely thin membrane (Ωs) immersed in a fluid domain
Ωf .

as highlighted in the cut view of Fig. 2.5. Besides, the surface grid is embedded in
a tetrahedral grid on which Navier Stokes equations are solved with the procedure
detailed in Sec. 2.1. Although internal and external fluids are different, they are
both treated at the same time with the method of Sec. 2.1. The membrane acts
by imposing forces on the fluid. The membrane elastic forces are split into two
components: in-plane and out-of-plane parts. As discussed in Sec. 1.4, the in-
plane contribution accounts for the area and shear resilience of the membrane while
bending resistance is involved in the out-plane forces. The two following subsections
detail the calculation of these two parts in the context of a triangulated membrane.

In plane elastic forces

The so-called Skalak law [151] provides one possible hyperelastic strain energy func-
tion Wsk of the membrane deformed in its plane:

Wsk = Gs
4 [(λ2

1 + λ2
2 − 2)2 + 2(λ2

1 + λ2
2 − λ2

1λ
2
2 − 1)] + Ea

4 (λ2
1λ

2
2 − 1)2 (2.52)

Gs and Ea are material parameters and denote respectively the shear and the area
modulus. Terms λ1 and λ2 are the principal values of strain that are computed as
the eigenvalues of the Cauchy-Green strain tensor ¯̄G:

¯̄G = ¯̄F T ¯̄F = (11 + ∂~U(~s)
∂~s

)T (11 + ∂~U(~s)
∂~s

) (2.53)

with ¯̄F , the transformation tensor. The vector ~s refers to the material location
in the membrane basis (~es,~er), while ~U is the displacement field of the membrane,
expressed in (~es,~er) as well. ¯̄G is a matrix of size 2×2, defined in the membrane
basis, and symmetrical by definition. Hence, ¯̄G is defined by three components: G11,
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Figure 2.5 – Top: Example of a membrane triangular grid shown over a fluid tetra-
hedral mesh. Bottom: zoom on the membrane mesh (left) and cut-view of the
membrane grid (right).

G22 and G12: G11 and G22 are the two diagonal components of ¯̄G and G12 is the
value taken by the non-diagonal terms of ¯̄G (since G12 = G21). From G11, G22 and
G12, the two principal values of ¯̄G (λ1 and λ2) involved in Eq. 2.52 may be written
as follow:

λ2
1 = 1

2[G11 +G22 +
√

(G11 −G22)2 + 4G2
12] (2.54)

λ2
2 = 1

2[G11 +G22 −
√

(G11 −G22)2 + 4G2
12] (2.55)

The membrane is discretized with a first-order finite element method. From a
reference state, the membrane grid is deformed as shown in Fig. 2.6. The method
proposed by Charrier et al. [15] and detailed in the following computes for each
triangular element the nodal forces (viz. the forces at the vertices of the triangles)
induced by the strain energy Wsk stored in the membrane by an arbitrary defor-
mation of the element. At the element scale, the displacement field ~U induces a
deformation of the triangle in a local coordinates system tangential to the mem-
brane (~es,~er), as shown in Fig. 2.6. In YALES2BIO, the local coordinates system is
defined in such a way that ~es is lined up with an edge of the triangle, as illustrated in
Fig. 2.6. However, for the sake of clarity, it is better to represent the deforming tri-
angle as in Fig. 2.7. Both formalisms lead to the same result since the strain energy
is invariant by rigid body movements. The triangle deformation is induced by the
vertices displacements ~U1, ~U2, and ~U3, that move M1, M2 and M3 to M ′1, M ′2 and
M ′3, respectively (see Fig. 2.7). Displacement ~U i of a vertex Mi has U is and U ir for
components, according to ~es and ~er, respectively. In the finite element formalism,
the displacement ~U of an arbitrary material point ~s (see Fig. 2.7) belonging to the
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Figure 2.6 – Sketch of the deforming triangles in the membrane plane.

triangular element is approximated by ~Uh:

~Uh(~s) =
(
Uhs (~s)
Uhr (~s)

)
=
(
{N}T {UMs }
{N}T {UMr }

)
(2.56)

{~UMs } and {~UMr } contain the vertices displacements values such as:

{~UMs } =

U
1
s

U2
s

U3
s

 , {~UMr } =

U
1
r

U2
r

U3
r

 (2.57)

The term {N}T in Eq. 2.56 is composed by the shape functions.

{N}T =
(
φ1(~s) φ2(~s) φ3(~s)

)
(2.58)

In particular, φ are linear functions constructed in a way φi(~s) equals 1 at node i and
0 at the remaining nodes. Thus, Eq. 2.56 consists in interpolating the displacements
~U1, ~U2, and ~U3 in ~s.

Substituting Eq. 2.56 in Eq. 2.53 provides an approximation of the Green-
Lagrange strain tensor in the triangular element:

¯̄G =

G11 G12

G12 G22



=

1 + ∂{N}T {UMs }
∂s

∂{N}T {UMr }
∂s

∂{N}T {UMs }
∂r 1 + ∂{N}T {UMr }

∂r


T 1 + ∂{N}T {UMs }

∂s
∂{N}T {UMr }

∂s

∂{N}T {UMs }
∂r 1 + ∂{N}T {UMr }

∂r
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M1

M2

M3

M ′
1

M ′
2

M ′
3

~U1

~er

~es

~Uh(~s)

~s

~S(~s)

~U3

~U2

Figure 2.7 – Diagram of a deforming membrane triangular element in the local
coordinates sytem.

It should be noted that {~UMs } and {~UMr } do not depend on s and r, consequently,
after some algebra the components of ¯̄G write:

G11 = 1 + 2∂{N}
T

∂s
{UMs }+ {UMs }T

∂{N}
∂s

∂{N}T

∂s
{UMs }

+ {UMr }T
∂{N}
∂s

∂{N}T

∂s
{UMr },

(2.59)

G22 = 1 + 2∂{N}
T

∂r
{UMr }+ {UMr }T

∂{N}
∂r

∂{N}T

∂r
{UMr }

+ {UMs }T
∂{N}
∂r

∂{N}T

∂r
{UMs },

(2.60)

and

G12 = ∂{N}T

∂r
{UMs }+ {UMs }T

∂{N}
∂r

∂{N}T

∂s
{UMs }

+∂{N}T

∂s
{UMr }+ {UMr }T

∂{N}
∂r

∂{N}T

∂s
{UMr }

(2.61)

Note that, combining Eq. 2.52 with Eq. 2.54, 2.55, 2.59, 2.60 and 2.61, provides an
estimation of the strain energy Wsk({UMs }, {UMr }), in the deformed element.

According to the principle of virtual works, an infinitesimal change in the vertices
positions ({δUM}) at which forces {FM} are applied results in a variation of the
element strain energy δWe:

δWe = {δUMs }T {FMs }+ {δUMr }T {FMr } (2.62)
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With the same convention used for nodal displacements, nodal forces {FMs } and
{FMr } read:

{~FMs } =

F
1
s

F 2
s

F 3
s

 , {~FMr } =

F
1
r

F 2
r

F 3
r


Assuming a homogeneous deformation in the element implies:

δWe = SeδWsk, (2.63)

in which Se is the element surface. Thus, Eq. 2.62 and 2.63 allow to write:

{δUMs }T {FMs }+ {δUMr }T {FMr } = SeδWsk (2.64)

Writing the second-order Taylor development of Wsk({UMs }, {UMr }) provides the
following expression for δWsk:

δWsk = Wsk({~UMs }+ {δ~UMs }, {~UMr }+ {δ~UMr })−Wsk({~UMs }, {~UMr })

= ~∇(Wsk({~UMs }, {~UMr }).
(
{δ~UMs }
{δ~UMr }

)

That is equivalent to:

δWsk = ( ∂Wsk

∂{UMs }
,
∂Wsk

∂{UMr }
).
(
{δ~UMs }
{δ~UMr }

)

= (∂Wsk

∂λ1

∂λ1
∂{UMs }

+ ∂Wsk

∂λ2

∂λ2
∂{UMs }

,
∂Wsk

∂λ1

∂λ1
∂{UMr }

+ ∂Wsk

∂λ2

∂λ2
∂{UMr }

).
(
{δ~UMs }
{δ~UMr }

)

= (∂Wsk

∂λ1

∂λ1
∂{UMs }

+ ∂Wsk

∂λ2

∂λ2
∂{UMs }

){δ~UMs }+ (∂Wsk

∂λ1

∂λ1
∂{UMr }

+ ∂Wsk

∂λ2

∂λ2
∂{UMr }

){δ~UMr }

(2.65)

Finally, comparing Eq. 2.64 and Eq. 2.65, one may obtain the nodal forces ({FMs }
and {FMr }) induced by the element deformation:

{FMs } = Se
∂Wsk

∂λ1

∂λ1
∂{UMs }

+ Se
∂Wsk

∂λ2

∂λ2
∂{UMs }

(2.66)

{FMr } = Se
∂Wsk

∂λ1

∂λ1
∂{UMr }

+ Se
∂Wsk

∂λ2

∂λ2
∂{UMr }

(2.67)

Note that {FMs } and {FMr } represent the nodal forces induced by the deformation
of a sole triangular element. Hence, the actual force at a membrane marker is
calculated as the summation of contributions arising from all elements to which it
belongs.

Out-plane curvature forces

Membrane bending forces derive from the Helfrich energy [63]:

Wb = Eb
2

∫
S

(2κ− co)2dS, (2.68)
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Figure 2.8 – Construction of the local coordinates system (~nO,~ξO,~ηO) at a given
membrane marker O.

in which κ denotes the mean curvature, Eb the bending modulus and co the sponta-
neous curvature. Developements by Zhong-can et al. [184] state that the membrane
curvature force at a membrane marker O expresses:

~FOb = Eb[(2κO − co)(2[κO]2 − 2κOg + κOco) + 2∇sκO]~nO, (2.69)

where κs is the Gaussian curvatures, ∇s denotes the Laplace Beltrami operator
(surface Laplacian) and ~n refers to the membrane normal. Superscript O refers to
the marker O at which the quantities are evaluated. Note that ~FOb is a force per
unit area.

Farutin et al. [35] proposed a method to compute the different curvatures of
Eq. 2.69. For the sake of completeness, the principal steps are presented in the
following. For more details in terms of theoretical developments, readers are referred
to the original publication [35].

First, given a membrane marker O, the normal at vertex O denoted by ~nO is
computed as the averaged normal of the neighbouring triangular elements (repre-
sented as black arrows in Fig. 2.8). Moreover, a local coordinates system centered
in O is defined by taking two vectors perpendicular to ~nO that are referred to as ~ξO
and ~ηO (see Fig. 2.8). Then, membrane nodes in the neighbourhood of O are chosen
and their coordinates (ξ,η) in the local coordinates system (~ξO,~ηO) are computed.
A marker near O whose location is ~X (expressed in (~ex,~ey,~ez)), has the following ξ
and η coordinates:

ξ = ( ~X − ~XO).~ξO

η = ( ~X − ~XO).~ηO
(2.70)
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With ~XO the coordinates of O in the global system. The quadratic approximations
of the global coordinates Xi (i=1,2,3) of the retained neighbours according to the
local coordinates (ξ,η) are then performed:

Xi(ξ, η) = XO
i + CXiξ |

Oξ + CXiη |Oη + 1
2[CXiηη |Oη2 + CXiξξ |

Oξ2 + CXiξη |
Oξη] (2.71)

Coefficients CXi |O are assessed by a classical least squares method. They repre-
sent the coefficients of the polynomial approximation of the global coordinate Xi

in the local coordinate system of node O. Representing the surface coordinates as
a function of a local curvilinear coordinate system (ξ , η) allows to use differential
geometry expressions to calculate the locals curvatures. The curvatures at node O
are given by:

κO = 1
2 tr(

¯̄cO[¯̄gO]−1) (2.72)

κOg = det(¯̄cO[¯̄gO]−1) (2.73)

With ¯̄cO and ¯̄gO depending of coefficient CXi |O such as:

¯̄gOαβ =
3∑
i=1

CXiα |OC
Xi
β |

O,

¯̄cOαβ =
3∑
i=1

nOi C
Xi
αβ |

O,

(α, β ∈ {ξ, η})

(2.74)

nOi stems from the normal vector components (~nO) in the global system. It should
be noted that ¯̄gO depends only on the first-order coefficients (CXiξ |O and CXiη |O)
while ¯̄cO relies on second-order coefficients (CXiξξ |O, CXiηη |O and CXiξη |O). Once κO
is evaluated for all membrane markers O according to Eq. 2.72, a last quadratic
approximation is achieved for the mean curvature κ:

κ(ξ, η) = κO + Cκξ |Oξ + Cκη |Oη + 1
2[Cκηη|Oη2 + Cκξξ|Oξ2 + Cκξη|Oξη] (2.75)

Finally, from coefficients Cκ|O, the remaining operator ∇sκO is computed as:

∇sκO = Cκαβ|O[gOαβ]−1 − ([gOαβ]−1CXiαβ |
O)([gOγε]−1Cκγ |OCXiε |O) (2.76)

Equations. 2.2.1, 2.72, 2.76 and Eq. 2.69 provide the curvature force (~FOb ) at node
O.

2.2.2 Coupling

The total elastic forces (~FE) are obtained by summing the bending part with the
in-plane deformation part (see Sec. 2.2.1). As stated in Sec. 2.2, the elastic forces
are accounted in the fluid momentum equation (Eq. 2.47) as a source term ~fv. This
is done by the regularisation equation of Peskin [125] (Eq. 2.50). These forces are
a consequence of the membrane displacement induced by the fluid. The membrane
nodes movements are computed by the interpolation equation (Eq. 2.51). Both
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interpolation and regularisation equations involve the integration of a Dirac func-
tion allowing the change of formalism (from Eulerian to Lagrangian and inversely).
Hence, in the continuous case, exchanged quantities (forces and velocities) are sim-
ply transmitted and the coupling between solver NSS and the solid membrane is
achieved straightforwardly. However, considering the discrete problem implies a
complication concerning the Dirac function. Indeed, regarding Fig. 2.5, it should
be noted that the membrane markers (viz. the vertices of the triangular meshes)
are not conforming with the fluid discretization nodes (i.e. tetrahedra vertices).
Consequently, using directly Eq. 2.50 and Eq. 2.51 is not suited. The Dirac func-
tion is then replaced by window function that must satisfy specific properties [140]
and is the equivalent in the discrete space of the Dirac function in the continuous
space. Moreover, as reported by Pinelli et al. [127], the use of irregular fluid meshes
requires a specific adaptation of the window function.

The present section deals with such issues. After introducing the discrete form of
regularization and interpolation equations (Eq. 2.50 and Eq. 2.51), the approximated
Dirac function used for the discrete problem is presented. Then, the method of
Pinelli et al. [127] to adjust the discrete Dirac function to irregular grids is explained.
Finally, the method employed to impose a different viscosity inside the cell is dealt
with.

Discrete spreading and interpolation equations

Assuming that the fluid domain is discretized with N control volumes and the mem-
brane by M markers, one may approximate Eq. 2.50 and Eq. 2.51 by:

∂ ~Xj

∂t
(t) =

N∑
i=1

~uiδh(~xi − ~Xj(t))Vi (2.77)

and
~fv(~xi, t) =

M∑
j=1

~FE |jδh(~xi − ~Xj(t))Smj (2.78)

~ui and ~FE |j stems from the fluid velocity at node ~xi and the elastic force at marker
~Xj . Vi is the control volume, while Smj denotes the area of the membrane part
surrounding marker ~Xj . In Eq. 2.77 and Eq. 2.78, the modified dirac function δh
appears. As a matter of fact, if the membrane marker is not located on a fluid node,
the classical Dirac function is not able to transfer the fluid velocity to the membrane
and the solid forces to the fluid.

Approximation of the dirac by a window function

The main idea when designing δh is that Eq. 2.78 spreads force ~FE to the neighboring
fluid nodes and Eq. 2.77 interpolates the membrane velocity from the nearby fluid
nodes. This may be done by a function with compact support that equals zero far
from the solid membrane, so that the interaction only occurs near the solid markers.
Figure. 2.9 illustrates the compact support of δh around a marker indexed by m.
Fluid nodes, represented by a square are within the support and will have a nonzero
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m′

m

Figure 2.9 – Diagram of a membrane grid shown over a fluid triangular grid. Note
that this diagram is shown in two dimensions, for the sake of clarity. Membrane
markers are shown in bold blue points that are linked by red segments. Compact
support of the window functions related to markers denoted by m and m′ are illus-
trated by dashed circles. Fluid nodes located in the support of m are highlighted
by diamond points, while those that are in m′ support are pointed by black arrows.

contribution in the computation of marker m velocity (see Eq. 2.77). Moreover,
elastic forces (~FE) at marker m are spread over all diamond nodes of Fig. 2.9 by
Eq. 2.78. The black arrows (see Fig. 2.9) mark the fluid nodes that are placed in the
compact support of δh centred on a second marker denoted by m′. Hence, diamond
points highlighted by a black arrow are coupled with bothm andm′. This illustrates
the fact that for a given fluid node ~xi, several solid markers may contribute to the
applied volumic force (~fv|i).

The approximated Dirac function δh can not be chosen arbitrarily. It must satisfy
specific conditions that are developed in the following. For an arbitrary function f ,
the window function δh is expected to lead to the approximation fh(~xo) the closest
to f(~xo) by assessing the following integral:

fh( ~xo) =
∫
f(x)δh(~x− ~xo)dxdydz (2.79)

Writing the Taylor expansion of f(~x) in the vicinity of ~xo provides the following
equation:

f(~x) = f( ~xo) +
∞∑
i

∞∑
j

∞∑
k

fxi,yj ,zk( ~xo)(x− xo)i(y − yo)j(z − zo)k (2.80)

Multiplying Eq. 2.80 by δh(~x− ~xo) and integrating over the domain yields:

fh( ~xo) = f( ~xo)
∫
δh(~x− ~xo)dxdydz

+
∞∑
i

∞∑
j

∞∑
k

fxi,yj ,zk( ~xo)
∫

(x− xo)i(y − yo)j(z − zo)kδh(~x− ~xo)dxdydz

(2.81)
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Then, imposing fh( ~xo)= f( ~xo), one may deduce from Eq. 2.81 the following condi-
tions that δh must satisfy:{

M0,0,0 =
∫
δh(~x− ~xo)dxdydz = 1

Mi,j,k =
∫

(x− xo)i(y − yo)j(z − zo)kδh(~x− ~xo)dxdydz = 0 ∀i, j, k
(2.82)

Terms Mi,j,k in Eq. 2.82 are the moments of the window function. Generally, only
the conditions on the moments of order 0 and/or 1 are taken into account. One
of the window functions implemented in YALES2BIO that fulfills the conditions on
the first order is the following, proposed by Peskin [124] and restricted to Cartesian
meshes of grid size hs:

δh(r) =
{

1
4hs (1 + cos(πr2 )) if |r| < 2

0 otherwise
(2.83)

With r = |~x−~xo|. This window function has a support of 4 grid spaces. Many other
possibilities exist for regularization, notably over 3 [140] or 2 grid spaces [52], with
more or less restrictions on the properties of the window function. The construction
of the window function is notably discussed by Peskin [125].

IBM For irregular meshes

When irregular fluid grids are considered, classical window functions like Eq. 2.83
do not comply with the conditions of Eq. 2.82. Pinelli et al. [127], using the work of
Liu and co-authors [100–102] on the so-called Reproducing Kernel Particle Method,
introduced δ̃h, a calibrated version of δh:

δ̃h(~x− ~xo) =
∑
l

∑
m

∑
n

bl,m,n(x− xo)l(y − yo)m(z − zo)nδh(x− xo) (2.84)

Equation. 2.84 is the product of a polynomial by an initial window function (δh).
The polynomial coefficients bl,m,n are set in such a way that the requirements on the
momentums of the calibrated window function are satisfied:

M̃0,0,0 =
∫
δ̃h(~x− ~xo)dxdydz = 1

M̃i,j,k =
∫

(x− xo)i(y − yo)j(z − zo)kδ̃h(~x− ~xo)dxdydz = 0
∀i, j, k, with i+ j + k ≤ P

(2.85)

, with P the order of the method. The idea of the method is that the higher P,
the closest the window function to a Dirac function. The correction of δh by a
polynomial actually enables to define the moments of the corrected window function
from those of the initial window function. Injecting Eq. 2.84 in Eq. 2.85 leads to:

∑
l

∑
m

∑
n bl,m,n

∫
(x− xo)0+l(y − yo)0+m(z − zo)0+nδh(~x− ~xo)dxdydz = 1∑

l

∑
m

∑
n bl,m,n

∫
(x− xo)i+l(y − yo)j+m(z − zo)k+nδh(~x− ~xo)dxdydz = 0

∀i, j, k, with i+ j + k ≤ P

⇐⇒
{ ∑

l

∑
m

∑
n bl,m,nMl,m,n = 1∑

l

∑
m

∑
n bl,m,nMi+l,j+m,k+n = 0 ∀i, j, k with, i+ j + k ≤ P

(2.86)
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We impose the moments of the zeroth, first and second order to be 1, 0 and 0,
respectively. Hence, Eq. 2.86 reduces to the following linear system:

M0,0,0 M1,0,0 M0,1,0 M0,0,1 M1,1,0 M1,0,1 M0,1,1 M2,0,0 M0,2,0 M0,0,2
M1,0,0 M1,0,0 M1,1,0 M1,0,1 M2,1,0 M2,0,1 M1,1,1 M3,0,0 M1,2,0 M1,0,2
M0,1,0 M1,1,0 M0,2,0 M0,1,1 M1,2,0 M1,1,1 M0,2,1 M2,1,0 M0,3,0 M0,1,2
M0,0,1 M1,0,1 M0,1,1 M0,0,2 M1,1,1 M1,0,2 M0,1,2 M2,0,1 M0,2,1 M0,0,3
M1,1,0 M2,1,0 M1,2,0 M1,1,1 M2,2,0 M2,1,1 M1,2,1 M3,1,0 M1,3,0 M1,1,2
M1,0,1 M2,0,1 M1,1,1 M1,0,2 M2,1,1 M2,0,2 M1,1,2 M3,0,1 M1,2,1 M1,0,3
M0,1,1 M1,1,1 M0,2,1 M0,1,2 M1,2,1 M1,1,2 M0,2,2 M2,1,1 M0,3,1 M0,1,3
M2,0,0 M3,0,0 M2,1,0 M2,0,1 M3,1,0 M3,0,1 M2,1,1 M4,0,0 M2,2,0 M2,0,2
M0,2,0 M1,2,0 M0,3,0 M0,2,1 M1,3,0 M1,2,1 M0,3,1 M2,2,0 M0,4,0 M0,2,2
M0,0,2 M1,0,2 M0,1,2 M0,0,3 M1,1,2 M1,0,3 M0,1,3 M2,0,2 M0,2,2 M0,0,4





b0,0,0
b1,0,0
b0,1,0
b0,0,1
b1,1,0
b1,0,1
b0,1,1
b2,0,0
b0,2,0
b0,0,2


=



1
0
0
0
0
0
0
0
0


(2.87)

Finally, once bl,m,n are assessed by solving Eq. 2.87, the calibrated window function
reads:

δ̃h(~x− ~xo) = [b0,0,0 + b1,0,0(x− xo) + b0,1,0(y − yo) + b0,0,1(z − zo)+
b1,1,0(x− xo)(y − yo) + b1,0,1(x− xo)(z − zo) + b0,1,1(y − yo)(z − zo)+

b2,0,0(x− xo)2 + b0,2,0(y − yo)2 + b0,0,2(z − zo)2]δh(~x− ~xo)
(2.88)

It should be noted that coefficients bl,m,n depend on ~xo, the center of the approxi-
mated Dirac function. This means that the linear system of Eq. 2.87 is solved once
for each membrane marker.

Variable viscosity coeficient

In some applications, the cytosol viscosity (νin) may differ from the suspending
fluid viscosity (νext). The internal viscosity (νin) is imposed by the use of the
method presented in the front-tracking method of Unverdi and Tryggvason [168].
An indicator function Ii is computed for each fluid node ~xi, in such a way that Ii
= 0 outside the membrane and Ii = -1 inside the cell. Hence, the viscosity field is
assessed by:

νi = νext + (νext − νin)Ii (2.89)

The indicator function is obtained by solving the following Poisson equation:

∇.[∇I] = ∇. ~G (2.90)

~G is computed by spreading the membrane normals on the fluid grid as done for the
elastic forces in Eq. 2.78:

~G(~xi, t) =
M∑
j=1

~njδh(~xi − ~Xj(t))Smj (2.91)

Equation. 2.90 is discretized with a finite volume method (as presented in Sec. 2.1.2)
and takes the following discrete form:

L(I)|i = D(~G)|i (2.92)

This linear system for the indicator function (Ii) is solved with the DPCG method
[105].
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Compute membrane forces

Spread membrane forces on
fluid nodes

Update
viscosity

Perform a Navier Stokes Solver (NSS) time step (see Fig. 2.3)

Interpolate velocity & advance
membrane markers

Volume conservation algorithm

~Xn

~FE |n

~fv|n νn

~un+1, Pn+1

~Xn+1

~Xn+1 ← ~Xn+1 + δ ~X

n← n + 1

Figure 2.10 – Temporal loop of solver FSIS.

2.2.3 Algorithm of the Fluid-Structure Interaction solver (FSIS)

Figure. 2.10 summarizes the different steps required for solving the fluid-structure
interaction between an elastic membrane and an incompressible fluid in the solver
FSIS. At the beginning of the time step, the viscosity field is updated from the
membrane markers positions ( ~Xn) according to Eq. 2.89. Then, membrane elastic
forces are computed from ~Xn by applying Eq. 2.69 on each marker and assessing
Eq. 2.66 and 2.67 on each triangular element. Thereafter, the membrane forces
(~FE |n) are spreaded on the fluid nodes by applying the regularization equation
(Eq. 2.78) with the calibrated window function. The source term (fv|n) and the
viscosity (νn) being known, the fluid quantities (~u and P ) are advanced as done
in solver NSS (see Fig. 2.2), the regularized membrane source term being treated
explicitly. Finally, solid markers are updated by interpolating the velocity on the
membrane with Eq. 2.77 and using an explicit Euler time advancement scheme. An
additional step that has not been described is called ‘volume conservation algorithm’
(see Fig. 2.10), performed to correct the well-known problem of volume conservation
of the immersed boundary method [97, 125]. It is performed at the end of the time
step and is devoted to the volume conservation of the cell. It consists in solving an
optimization problem to compute the smallest markers moves δ ~X that ensure the
conservation of the cell volume. More information on this optimization problem are
available in [46, 150].

Solver FISIS of YALESBIO have been used in several publications, showing its
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ability to recover typical dynamics behaviors of red blood cells in complex flows
[72, 91, 103, 107, 110]. In the next section an example of application is given.

2.2.4 Test case: RBC flowing in a micro-capillary

Gases exchanges between tissues and the haemoglobin contained inside RBCs occur
in micro-capillaries (vessels of a few micrometers of diameter). The shape taken
by RBCs in such vessels is expected to play an important role in the exchanges of
dioxygen and carbon dioxide. Previous experimental and numerical studies revealed
several RBCs shapes in constricted channels, depending on the flow-rate and the
constriction. The reported trends state that the discocyte is maintained at low
flowrates while a parachute shape is observed for high flow regimes. In between,
RBCs may tumble or present a slipper shape [40, 117, 166]. In this section, an
illustration of the results obtained with the solver FSIS is presented. It consists
in comparing the RBC shapes obtained from different couples constriction/flowrate
with numerical results of Fedosov et al. [40].

The computations are monitored by the following dimensionless parameters:
1) The constriction χ:

χ = Drbc

Dc
, (2.93)

involving the channel diameter Dc and a RBC characteristic size Drbc. It is defined
as the diameter of the sphere having the same surface as the cell membrane.

2) The Foppl Von Karman number FV K , that compares the membrane shear
resistance with the bending resistance:

FV K = GsD
2
rbc

Eb
. (2.94)

3) The scaled shear rate
.
γ∗:

.

γ∗= ρνextD
3
rbc

Eb

.
γm, (2.95)

in which .
γm is the shear rate assessed by .

γm = um/Dc, with um the mean velocity
in the channel.

4) The Reynolds number Re:

Re = umDrbc

νext
. (2.96)

5) The viscosity ratio:
Y = νin

νext
(2.97)

Imposing χ to 0.71, FV K to 2662, Re to 0.1 and Y to 1, three different
.
γ∗ are

tested (5, 15 and 25). Note that if χ, FV K , Re and
.
γ∗ are known, imposing Drbc,

ρ and Eb allows to derive um, Dc, Gs, νin, and νext. The area modulus Ea and
the spontaneous curvature co are not accounted for in the dimensionless parameters,
that is why they are kept constant in the cases considered (Ea = 31 N.m−1 and
co = 0 m−1, respectively). In the following, Eb = 3 × 10−19 Nm and ρ = 1000
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Figure 2.11 – Fluid domain used in the FSIS test case. The top picture illustrates
the geometry and boundary conditions. The source term (~Src) is represented by a
red arrow. Note that this source term is imposed on all nodes composing the fluid
domain. The cylinder has a length Lc of 91.5 µm and a diameter Dc of 9.14 µm. The
middle picture depicts the mesh used in the simulation. The bottom illustration
displays the initial velocity field.

kg.m−3. Moreover, the discocyte shape reported in [33], with a membrane area of
133 µm2 and a volume of 93 µm3 is retained and considered as the stress-free shape
in the simulations. Hence, the RBC has a characteristic size Drbc of 6.5 µm and the
channel diameter (Dc) equals 9.15 µm, since χ = 0.71. The RBC initially takes a
discocyte shape and the membrane is meshed with triangular elements whose the
typical size is 0.3 µm.

The fluid domain employed in the simulation that complies with χ = 0.71 is
shown in Fig. 2.11 (top figure). A null velocity is applied on the channel walls
(edges indicated as ‘wall’ in Fig. 2.11) and a periodic condition is set on boundaries
referred to as ‘periodic’. The fluid flow is forced by means of a constant source term
that is added in the volumic forces of the momentum equation:

Src = 8νextρum(
1
2Dc

)2 (2.98)

Src equals the pressure loss required for imposing a mean velocity of um in the
channel, as supported by the analytical solution of the Poiseuille flow. The initial
velocity is set according to the parabolic profile of Poiseuille:

u(r) = 2um
(

1− r2

(Dc/2)2

)
, (2.99)
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Figure 2.12 – Shapes depicted by RBCs flowing in a microcapillary defined by χ =
0.71. Top row: cut view obtained with solver FSIS. Middle row: 3D view obtained
with solver FSIS. Bottom row: typical RBCs shapes obtained by Fedosov et al.,
coming from [40]. The left, middle and right columns refer to the discocyte,
the slipper and the parachute shapes, respectively. The discocyte, the slipper and
the parachute shapes obtained with solver FSIS of the YALES2BIO software are
obtained by performing computations with

.
γ∗ equal to 5, 15 and 25, respectively

(left, middle and right columns respectively). A Reynolds number (Re) of 0.1 and
a Foppl Von Karman (FV K) of 2662 are used in these simulations.

in which u is the velocity along the channel principal axis and r is the radial position
in the channel section. The channel is meshed with tetrahedral elements having a
characteristic size of 0.3 µm (see Fig. 2.11, middle image) and the initial velocity
field is shown in Fig. 2.11 (bottom figure).

The first and the second rows of Fig. 2.12 depict the RBC shapes obtained from
the three different values of

.
γ∗ (5, 15, 25) in a cut view and a 3D view, respectively.

A discocyte shape is observed for the RBC that flows at a scaled shear rate of 5
(left column). Taking a

.
γ∗ of 15 leads to a slipper shape (middle column) while for

25, the parachute is retrieved (right column). These results are in agreement with
those of Fedosov et al. [40] who reports the same shapes for the three presented
cases. The bottom row of Fig. 2.12 shows typical shapes (discocyte, slipper, and
parachute) they obtained and good comparisons with the solver FSIS are observed.
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2.3 Electrostatic solver (ESS)

This section is devoted to the electrostatic solver (ESS) that enables the calculation
of the electrical field perturbed by an isolating cell. In the following, the mod-
elling assumptions and equations are introduced. Then, its implementation in the
YALES2BIO software is presented. Finally, solver ESS is validated by comparison
with analytical results.

2.3.1 Red blood cells in an electrostatic field

Maxwell-Ampere’s law for a linear, isotropic and homogeneous medium writes :

∇× ~B = ι0ιr(~j + ζ0ζr
∂ ~E

∂t
) (2.100)

~B and ~E are respectively the magnetic and the electrostatic fields, while ~j is the
free electric current density. ζ and ι denote respectively the permittivity and the
magnetic permeability. Indices 0 and r refer to the vacuum and the material relative
quantities. The divergence of Eq. 2.100 leads to:

∇.(~j + ζ0ζr
∂ ~E

∂t
) = 0 (2.101)

With the electrostatic assumption, Ohm’s law (~j = σ ~E) allows to rewrite the previ-
ous equation as follow:

∇.(σ ~E + ζ0ζr
∂ ~E

∂t
) = 0 (2.102)

With σ representing the material conductivity. If the electrical field ~E is constant,
Eq. 2.102 leads to a Poisson equation for the electrical potential ψ, since ~E=∇ψ.
Actually, RBCs move and disturb the electrical field, which is why ~E varies in time.
However, by performing a dimensional analysis of Eq. 2.102, one may conclude that
the unsteady term of Eq. 2.102 is negligible in such configuration [46]. Hence, the
electrical potential is obtained by solving :

∇.[σ∇ψ] = 0 (2.103)

RBCs are assumed isolating as done in previous analytical developments [53, 68],
which is not exactly true. Indeed, the RBC membrane is almost insulating depending
on the strength of the electrical field, but cytosol has a conductivity of about 0.31
S.m−1. In the present work, a zeroing conductivity is set in the volume covered by
the RBC to represent the non-conducting nature of the membrane.

2.3.2 Numerical implementation

As discussed in Sec. 2.3.1, the electrical perturbation caused by the RBC in a Coul-
ter counter is modeled with the Laplace equation for the electrical potential ψ (see
Eq. 2.103) with a vanishing conductivity coefficient (σ) inside of the membrane.
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Given the location of the membrane markers, the indicator function I is first com-
puted according to Eq. 2.90. Then, as for the kinematic viscosity ν, the conductivity
field is set as follow:

σi = σext + (σext − σin)Ii (2.104)

The assumed isolating nature of the cell is accounted by imposing σin << σext. Note
that the cell membrane location is only needed for imposing the variable conductivity
field.

Once the variable conductivity field is imposed in the domain, the Laplace equa-
tion (Eq. 2.103) is solved on a tetrahedral mesh, as for the fluid flow. The Laplace
equation is solved using a second-order operator inspired from the numerical ap-
proach of Specogna and Trevisan [153], that have better properties on irregular
meshes than the classical finite volume operator (Sec. 2.1.3). Usual conditions im-
posed on the limits of the domain are:

1) The Dirichlet boundary conditions, that are used to impose the potential on
the electrodes, for instance (see Fig. 1.4):

ψBd = bc (2.105)

The indice Bd stems from the domain limits, while bc is the imposed boundary
condition, income of the problem.

2) The Neumann boundary conditions that are generally employed for modeling
non-conducting walls of the domain:

∂ψ

∂~nBd
|Bd = 0 (2.106)

The vector ~nBd represents the vector normal to the boundary.

2.3.3 Test case: Electrical perturbation of a sphere in a
homogeneous electrical field

In this thesis, we need to calculate the electrical perturbation due to the presence
of an isolating red blood cells in a Coulter counter, as a function of its position
and deformation. Such a calculation has to be performed typically 20 times for the
passage of 1 RBC, to discretize the electrical signal in time. Hence, we need a fast
method to do so. In order to avoid re-meshing the geometry too many times, the
presence of the particle is imposed in a immersed way. In the present section, the
approach of modelling the electrical perturbation by assessing the solution of the
Laplace equation with a variable conductivity coefficient is validated by comparison
to analytical results and conformal meshes results. In particular, the resistance vari-
ation ∆R induced by a spherical particle immersed in a homogeneous electrical field
is simulated and compared with the analytical development presented in Sec. 1.3.1
(see Eq. 1.1).

The configuration is a cylindrical domain as depicted in Fig. 2.13 (top figure)
on which a voltage difference of 1.0 V is applied. The channel boundaries indi-
cated as ‘wall’ are modelled as non-conducting walls as stated by Eq. 2.106. Three
different computations are then performed (see Fig. 2.14). In the first simulation,
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Figure 2.13 – Illustration of the geometry (top) and mesh (bottom) used in the ESS
test case. Boundary condition are provided in the top picture, and the dimensions
D and L are taken as 50 µm and 200 µm, respectivelly. Note that the mesh size is
refined in the central region of domain with a size of 0.3 µm. The typical size of the
tetrahedra then increases to 1.5µm with a growth rate of 1.2.

the Laplace equation is solved with a constant conductivity equalling 2.27 S.m−1 in
the entire domain (see the top row of Fig. 2.14). The second computation is also
performed witht σ = 2.27 S.m−1, but with a spherical hole in the domain as shown
in the middle row of Fig. 2.14. The spherical hole is located at the center of the
domain and has a diameter of 5 µm. The spherical surface is assumed isolating and
homogeneous Neumann boundary conditions are imposed, according to Eq. 2.106.
Finally, in the third simulation, a variable conductivity coefficient is imposed while
solving the Laplace equation. Using the method presented in Sec. 2.3, a value of
σin = 10−12 S.m−1 is imposed inside a spherical membrane of 5 µm diameter that is
located at the center of the domain (see bottom row of Fig. 2.14). The conductiv-
ity outside of the spherical membrane is set to σext = 2.27 S.m−1, as in the former
cases. It should be noted that cases of the middle and bottom rows model the
presence of the same spherical particle, while case of the top row is used as reference
for assessing the change of resistance (∆R) induced by the particle. Cases of top
and bottom rows (see Fig. 2.14) are performed with the mesh shown in Fig. 2.13.
Regarding the case of the middle row (see Fig. 2.14) the grid is built similarly but
with a hole of 5 µm of diameter in the center of the cylinder.

The potential ψ is solved for each case discussed above and the electrical field
~E is computed as: ~E = ~∇ψ. Figure. 2.15 shows the electrical field magnitude | ~E|
for the three different cases. For the case without particle, the electrical field is
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Figure 2.14 – Illustration of the three configurations investigated in the context of the
validation case of solver ESS. The top row refers to the case without particle. In the
case illustrated in the middle row, the presence of a spherical particle is modelled
by a spherical hole in the computation domain. Note that the sphere surface is
modelled as a non-conducting boundary. Finally, in the case of the bottom row,
a vanishing conductivity coefficient is imposed inside a spherical membrane. Note
that both the spherical membrane (bottom) and the spherical hole (middle) have
diameters of 5 µm.

Case I[A] R[Ω] ∆R[Ω]
Empty 2.2275787E-05 44891.79 0.0
Hole 2.2270263E-05 44902.93 11.14
PTCL 2.2270370E-05 44902.71 10.92

Table 2.1 – Assessements of the current intensity (I), the resistance (R) and the
resistance variation (∆R) for the three different cases of Fig. 2.14. ∆R is computed
as the difference with the ‘empty’ case.

perfectly homogeneous. In the contrary, the presence of a particle disturbs ~E in its
neighbourhood (see Fig. 2.15). It is observed that the approach of vanishing the
conductivity inside a spherical membrane provides an electrical field similar to the
method that models the particle surface as a non-conducting wall.

For each computation, the current intensity I is calculated by integrating the free
current density ~j over the inlet and outlet sections of the domain (ie. the surfaces
were the tensions of 1.0 V and 0.0 V are imposed). Reminding that the current
density equals σ ~E in the electrostatic assumption, I is computed as:

I =
∫
S

~j.d~S =
∫
S
σ ~E.d~S (2.107)
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Figure 2.15 – Electrical field magnitudes obtained for the three different cases de-
picted in Fig. 2.14. The illustrations correspond to Fig. 2.14 in a row-wise fashion.

PTCL Hole Theory
∆R[Ω] 10.92 11.14 11.22
Error[%] 2.6 0.75 0.0

Table 2.2 – Comparison of the two approaches for modeling the resistive perturbation
caused by a spherical particle, with the theoretical result.

It is verified that the current through the inlet is equal to the current throught the
outlet. In Tab. 2.1, are reported the the current intensity I, and the resistance R
that derives from Ohm’s law with a tension equals to 1 V, for each simulation. Rows
denoted by ‘Empty’, ‘Hole’ and ‘PTCL’ refer to cases of Fig. 2.14 (top, middle and
bottom rows, respectively). ∆R, that is also provided in Tab. 2.1 is computed as
the resistance variation according to the ‘Empty’ case. Results obtained with the
two different approaches (‘Hole’ and ‘PTCL’) are close in terms of ∆R.

The analytical development of ∆R presented in Chap. ?? (see Eq. 1.1) predicts
a value of 11.22 Ω, which is close to the numerical results. In Tab. 2.2 assessments of
∆R obtained numerically are compared with the theory. An error of 2.6 % is made
using the variable conductivity approach while a difference less than 1 % is done
with a spherical hole. Whereas the case ‘hole’ is shown to provide more consistent
results, the variable conductivity approach is preferred in the following. Indeed,
errors are reasonable, and above all, a sole mesh may be used for different particle
shapes and locations in the domain.
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Dealing with rigid and spherical particles, this chapter represents a preliminary
numerical study of an Industrial Coulter counter. As a part of this chapter, the
configuration originating from ABX Micros 60 (HORIBA Medical) is introduced.
The ABX Micros 60 operating system is the starting point of all developments
made in the context of this thesis. Furthermore, this work paves the way to the
following chapter that will extend the procedure proposed for rigid spheres to the
case of deforming RBCs.

The first part (Sec. 3.1) is dedicated to the introduction of the numerical config-
uration arising from the ABX Micros 60 and the pipeline proposed to simulate the
pulse associated to the passage of a rigid sphere in an industrial Coulter counter.
Then, in a second part (Sec. 3.2), several spheres trajectories in the device are sim-
ulated on the basis of the method of Sec. 3.1. Dealing with spheres, the electrical
edge-effects are retrieved, and comparisons with experimental measurements vali-
date the modeling procedure.
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3.1 Numerical Configuration

The aim is to compute the electrical signal produced by a spherical isolating particle
passing through the industrial analyser. Depicted in Fig. 3.1, the ABX Micros 60
is a simple, compact and fully automatic instrument providing basic haematological
analyses. More precisely, RBCs, platelets and the three main types of white blood
cells are counted and sized by impedance measurements (see Sec. 1.3). For this pur-
pose, this automaton is composed of two chambers (viz. two Coulter counters). In
the chamber pointed as ‘RBC chamber’ in Fig. 3.1, platelets and RBCs are analysed
by diluting the whole blood in an electrolytic solution (ABX Minidil, commercialized
by HORIBA Medical). This set-up returns size distributions similar to Fig. 1.5A,
in which both platelets and RBCs populations are observable. WBC are also sized,
but their negligible concentration is assumed to not perturb the statistics. In the
‘WBC chamber’ (see Fig. 3.1), the blood sample is diluted in a solution containing
a lysing reagent that is in charge of destroying the RBCs. As discussed in Sec. 1.3,
this allows the differenciation of the three main types of white blood cells in a vol-
ume histogram (see Fig. 1.5B). This work focuses on the RBC chamber only. In
this chapter, the particular case where the RBC chamber is filled with a suspension
of rigid spheres is considered. It corresponds to a case notably performed in the
industry for calibrating the diagnostic instrument.

Figure 3.1 – Haematological automaton ABX Micros 60 developed by HORIBA
Medical.

As discussed in Sec. 1.4.3, simulating the entire evolution of the particle in the
device is not possible due to the separation of scales. However, the area of detection
is restricted to the micro-orifice neighbourhood and dealing with rigid spheres allows
starting the computations by depositing the rigid sphere just before the it enters the
sensing region. Hence, the option adopted is to focus on a single particle evolving
in the measurement region only. In that sense, the actual industrial geometry is
reduced to the detection area. By applying suited boundary and initial conditions,
it is shown that a reduced configuration reflects accurately what is happening in the
orifice.
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The modelling assumptions presented in Chap. 2 allow computing the particle
dynamics in the orifice separately from the electrical perturbation. That is why two
reduced configurations are introduced: the first one for computing the particle dy-
namics and a second one for solving the electrical field around the particle. Defining
these reduced configurations implies preparatory computations without particles in
the entire geometry. Indeed, the reliable boundary and initial conditions are de-
duced from the flow field and the electrostatic field stemming from simulations in
the whole domain.

In the following section, simulations for assessing the flow field (NSS0) and the
electrostatic field (ESS0) in the entire industrial geometry are presented. Then,
based on computations NSS0 and ESS0, the two reduced configurations are intro-
duced. Finally, the simulations of the particle dynamics (FSIS1) and the associated
electrical pulses (ESS1) (in the reduced configurations) are detailed.

3.1.1 Preliminary simulations in the industrial geometry

Figures 3.2A and B show the entirety and a slice cut of the fluid domain that corre-
sponds to the RBCs chamber of Fig. 3.1. The counting tank geometry presented in
Fig. 3.2 includes the RBC chamber, where the RBC suspension is stored, the aper-
ture where the detection of cells occurs, and an outlet duct. As already mentioned,
the aperture is very small compared to the whole geometry: 50 µm in diameter
and 75 µm long (see Fig. 3.2 C), while the height of the RBC chamber is of the
order of 5 cm. The diluted blood sample enters by the boundary indicated as inlet
and is vacuumed through the outlet surface (Fig. 3.2A), while the electrical field is
imposed by the electrodes highlighted in Fig. 3.2B. The origin of the coordinates
system (~ex,~ey,~ez) is located at the center of the micro-orifice. The aperture is aligned
with axis ~ex while ~ey is included in the middle slice plane shown in Fig. 3.2B, 3.2C
(~ez is perpendicular to the (~ex,~ey) plane).

Carrying Flow (NSS0)

The electrolytes generally used in Coulter counters are mostly water and typical
Reynolds numbers evaluated in industrial systems are higher than 100 (based on
bulk velocity in the aperture and diameter). Hence, the flow can be predicted by
the Navier Stokes equations for an incompressible fluid with constant kinematic
viscosity ν = 10−6 m2.s−1 and density ρ = 1000 kg.m−3. The velocity (~u) and
the pressure (P ) in the domain (without particles) are then assessed by the use of
solver NSS presented in Sec. 2.1.2. This simulation is referred to as NSS0 in the
following. The flow is solved by imposing a 7.74 × 10−9 m3.s−1 flow rate at the
inlet (see Fig. 3.2A), which corresponds to a pressure drop of 200 mbar between
the upstream and the downstream parts of the micro-orifice, in agreement with
the operating regime of ABX Micros 60. This simulation is performed on the grid
depicted in Fig. 3.3, for which a mesh refinement is performed around the aperture.
Specifically, a characteristic mesh size of 1.6 µm is imposed inside of the micro-orifice,
which allows a sufficient resolution of the flow field.
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(A)

Inlet

Outlet

(B)

Cathode

Anode

orifice

(C)

75µm

50µm
~ex

~ey

Figure 3.2 – (A) Fluid domain for red blood cells counting and sizing of ABX Micros
60 (HORIBA Medical). (B) Slice cut of the same geometry. The electrodes used
for applying the electrical field in the micro-orifice are highlighted. (C) Zoom on
the micro-orifice, where the cells are detected (indicative dimensions for length and
diameter are given).

Figure 3.3 – Mesh of the entire industrial configuration. The meshes size inside the
aperture is set to 1.6 µm and increases with a growth rate of 1.3 to 500 µm. The
counting chamber is hence described by 5M nodes.
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1 0.0 0.0 0.0
2 0.0 22.0 0.0
3 -40.0 0.0 0.0
4 40.0 0.0 0.0
5 -40.0 30.0 0.0
6 40.0 30.0 0.0

Figure 3.4 – Time convergence of the velocity magnitude inside of the aperture
in simulation NSS0 that computes the flow field without particles in the entire
geometry. Picture (A) shows the evolution of the velocity magnitude |~u| according
to time, while (B) specifies the locations of the points at which the velocities are
recorded.

Time evolutions of the velocity magnitude |~u| at 6 probe points are recorded
during the simulation and the flow appears to converge after a 50 µs, as shown
in Fig. 3.4A. The different probes locations are given in the table of Fig. 3.4B.
Figure .3.5A exhibits the velocity field once the simulation is converged. Close
enough to the aperture, the flow is axisymmetric, of axis ~ex. In the following, the
choice of restricting the study to the symmetrical plane (~ex,~ey) will be made.

Electrical Field without particles (ESS0)

The electrical field in the RBC chamber is obtained by solving the Laplace equation
(see Eq. 2.103), as done in previous studies[46, 69]. Hence, solver ESS introduced
in Sec. 2.3 is used to assess the electrostatic field in the industrial geometry of
Fig. 3.2, in a simulation ESS0. Specified by HORIBA Medical, the conductivity of
the electrolyte σ is set to 2.27 S.m−1[46]. Note that the conductivity is imposed
constant in the whole domain since no particles are considered in this computation.
The electrical potential is imposed to 13.9 V on the cathode and 0.0 V on the anode
(Fig. 3.2B), as in the industrial configuration. The remaining edges of the domain
are modelled as non-conducting walls by applying a Neumann boundary condition
according to Eq. 2.106. The potential ψ is solved on the mesh of Fig. 3.3 by solver
ESS, and the electrical field ~E is computed from ψ as follows:

~E = ~∇.ψ (3.1)

Figure 3.5B shows the resulting electrical field magnitude (| ~E|) around the aperture.
In the corner of the orifice, regions of dense electrical field discussed in Sec. 1.3.2 are
retrieved. In contrast, E is more homogeneous in the core region of the aperture.
Besides, the obtained results are qualitatively in agreement with the electrical field
shown in Fig. 1.7 that originates from Kachel works [74, 75]. Note also that according
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(A)
SL3

SL2

SL1

(B)
SL3

SL2

SL1

Figure 3.5 – Velocity field (A) and electrical field (B) obtained in simulations per-
formed in the entire geometry (simulation NSS0 and ESS0). Isolines are depicted
and show that most of the variations occur in a close zone around the micro-orifice.
Three streamlines SL1, SL2, and SL3 illustrate different electrical field and velocity
field that particles may undergo depending on their trajectory.

to the theory which predicts an electrical perturbation proportional to E2, this
perturbation is expected to be extremely small when the particle is a few tens of
microns away from the aperture. This limits the interaction between the signals of
the different particles of a sample.

3.1.2 Reduced configurations

As observed in Fig. 3.5B, the geometry of the industrial Coulter counter induces an
electrical field that is concentrated in the micro-orifice. This property emphasizes
the approach of reducing the computation to the sensing region since the particle
is detected only in the micro-orifice. Limiting the computation domain to the ori-
fice involves fewer discretization nodes and thus reduces computational costs. The
shortened configurations for computing the particle dynamics and for assessing the
electrical disruption are referred to as RC1 and RC2 in the following.

Reduced configuration for the fluid flow (RC1)

The reduced domain (RC1) for the fluid flow is shown in Fig. 3.6A. The initial
velocity field and the boundary conditions on the ’inlet’ surfaces (Fig. 3.6A) are
interpolated from the time-converged velocity field obtained from the simulation in
the entire industrial geometry (NSS0). On the wall faces, a zero velocity condition
is imposed. On the outlet face, a convective outlet boundary condition is set to
ensure mass conservation. In such a way, a stationary base flow inside the aperture
equivalent to the flow simulated in the whole geometry (NSS0) is retrieved. Com-
parisons of velocity profiles arising from NSS0 and a simulation in RC1 are provided
in Fig. 3.6B. Velocity profiles from the inlet, outlet and middle sections of the ori-
fice are reported. The good agreement found between both approaches validates
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Figure 3.6 – (A) Schematic of the axisymmetric reduced configuration RC1 for com-
puting the carrying flow. Slice cut of the reduced configuration shown over a small
part of the full configuration. On boundaries indicated as Inlet, a velocity profile
interpolated from computation NSS0 is imposed. The domain is characterized by
l1=75µm, l2=130µm and l3=60µm. (B) Comparison of the velocity profiles coming
from computation NSS0 and a computation performed on the reduced configuration
RC1 without particle. The velocity profiles are assessed at the inlet (x = -37.5 µm),
middle (x = 0 µm) and outlet (x = 37.5 µm) sections of the aperture. ‘Mid’, ‘In’,
and ‘Out’ refer to the inlet, middle and outlet sections, respectively. ‘FC’ and ‘RC’
stem from the full configuration and the reduced configuration, respectively.

the use of RC1 for computing the fluid flow inside the aperture instead of the full
configuration.

Reduced configuration for electrostatic computations (RC2)

Figure. 3.7A shows the electrical potential ψ obtained from computation ESS0. From
the potential field outcoming from ESS0, the reduced configuration RC2 is defined
by relevant potential isolines. In Fig. 3.7A, isolines of ψ are shown and those which
are highlighted by black arrows are retained for extracting RC2. They correspond
to potentials of 13.05 V and 0.85 V. Figure. 3.7B depicts the reduced configuration
corresponding to the selected isolines. Computing the electrical field in RC2 is done
by imposing 13.05V and 0.85V on the cutting surfaces as depicted in Fig. 3.7B,
and applying a Neumann boundary condition on boundaries indicated as ‘Wall’ (see
Fig. 3.7B).

3.1.3 Simulation of the impedance measurements for rigid spheres

Dynamics of the particle inside of the aperture (FSIS1)

Because the flow is stationary, streamlines are considered as good approximations of
achievable sphere trajectories. Given a streamline extracted from simulation NSS0,
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(A)

13.05V 0.85V13.05V

(B)

Reduced
Configuration (RC2)

Full
Configuration

13.05V 0.85V13.05V

Wall

Figure 3.7 – (A) electrical potential obtained from the electrostatic simulation per-
formed in the entire industrial geometry (ESS0). The potential isolines are shown
in black continuous lines. The two isolines used for extracting the reduced domain
RC2 are indicated by arrows. (B) Reduced configuration RC2, shown over the full
configuration. The different boundary conditions are highlighted by arrows.

the lagrangian time (τ) of a fluid particle following this streamline is computed.
Time τ = 0 refers to the moment at which the streamline crosses the aperture
inlet section (x = -37.5µm). This way, negative times refer to the upstream part
of the aperture while positive times are related to the particle evolution inside of
the orifice, and beyond. Then, computations of the particle dynamics start by
placing the sphere in RC1, on the selected streamline at the location corresponding
to τ = -5 µs (as illustrated in Fig. 3.8). It should be noted that the particles are
not enforced to follow the streamlines (small deviations are observed in practice).
Indeed, they are only needed to manage the particle path in the aperture. Rigid
spheres are modelled with a spherical membrane of diameter 5 µm. The YALES2BIO
solver is dedicated to deformable particle, so that rigid spheres are seen as viscous
capsules with membranes having high elastic moduli: Gs, Ea, Eb, co and νin are
set to 2.5×10−3 N.m−1, 2.5 × 10−1 N.m−1, 3.0 × 10−19 J, 0 and 50 × 10−6 m2.s−1

respectively, which ensures that the particle remains spherical during the simulation
(variations in diameter were less than 1 %). The particle dynamics is then solved
using solver FSIS that is detailed in Sec. 2.2 in a simulation referred to as FSIS1.
Note that the external viscosity νext and the fluid density ρ are imposed as in
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Figure 3.8 – Defining the particle initial position from a streamline. A streamline is
extracted from NSS0 in such a way it passes through a chosen point (indicated as SL
extraction point, in the graph). Then the particle initial location for computation
FSIS1 is on the extracted streamline 5 µs before the orifice inlet section. This is
illustrated for two streamlines SL1 and SL3 for which extraction points are taken as
(0 , 0, 0) and (0, 20µm, 0), respectively.

computation NSS0.

Electrical Field around the particle (ESS1)

Computations of the electrical perturbations are performed once the simulation of
particle dynamics inside the micro-orifice (FSIS1) is achieved. First, a series of
membrane positions is stored (typically every microsecond) from simulation FSIS1.
the particle position predicted by the dynamics simulation FSIS1, a variable con-
ductivity coefficient is imposed in the reduced domain RC2 by using of the method
detailed in Sec. 2.3. The assumed isolating property of particles is accounted for
by imposing a vanishing conductivity coefficient inside of the membrane. More pre-
cisely, an internal conductivity σin of 10−12 S.m−1 and an external conductivity σext
of 2.27 S.m−1 (value used in ESS0) are set. Finally, for each particle position of in-
terest, the solver ESS is run on RC2 with boundary conditions indicated in Fig. 3.7
for assessing the electrical field disturbed by the particle. An example is shown in
the middle illustration of Fig. 3.9 which shows a typical | ~E| around a spherical
particle coming from the simulation of the dynamics (left illustration). This type
of simulation is now referred to as ESS1.

Reconstruction of the electrical signal

From the electrical field ~E (see Fig. 3.9middle picture), the resistance of the system
is calculated, and compared with the resistance of the system without particle (com-
putation ESS0). This yields ∆R, the resistance variation caused by the presence of
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Figure 3.9 – Reconstruction of the electrical perturbation from the particle dynamics
inside the aperture (FSIS1). The left figure shows typical sphere following positions
in the micro-orifice over the velocity field. A membrane geometry coming from FSIS1
is used in an electrostatic simulation (ESS1) (see the middle figure). From the
electrostatic simulation, the electrical perturbation ∆R is computed (right figure).
Repeating this process for several consecutive membrane positions from FSIS1, the
electrical pulse is built point by point.

the particle in the electrical field. An example of ∆R computation is provided in the
test case of Sec. 2.3.3. Hence, repeating this process (ESS1 + ∆R calculation) for
consecutive membrane positions inside the aperture allows the construction of the
complete electrical perturbation over time, as shown in Fig. 3.9 (see right picture
of Fig. 3.9).

3.1.4 Summary of the entire procedure

Tackling the simulation of the electrical print of a rigid sphere in an industrial Coul-
ter counter is allowed by a shortening of the computation domain. This reduction
implies a prior knowledge of electrical and flow fields in the entire geometry. Hence,
the first steps of the proposed numerical pipeline (summarized in Fig. 3.10) are
the computations NSS0 and ESS0, that are dedicated to simulations in the entire
geometry of the flow field and the electrostatic field, respectively. Then, the sim-
ulation of the particle dynamics (FSIS1) is performed in a reduced configuration
RC1 on which are applied boundary and initial conditions consistently with the flow
field simulated in NSS0. The sphere is initially placed 5 µs away from the aperture
entrance on a streamline extracted from NSS0. From FSIS1, N successive positions
of the particle are used in N simulations ESS1. Computations are done in a re-
duced configuration RC2 that complies with potential isosurfaces of ESS0. Note
that potential values related to the isosurfaces involved in the extraction are used as
boundary conditions of RC2. In a simulation ESS1, a vanishing conductivity is set
in the part of RC2 that is covered by the particle position arising from FSIS1, while
the conductivity employed in ESS0 is used in the remainder of RC2. Finally, the
resistive perturbation (∆R) is obtained by comparing RWOP , the resistance without
particle stemming from ESS0, with RWP , the resistance with particle obtained from
each ESS1 calculation (see Fig. 3.10).
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Case x [µm] y[µm] z[µm]
1 0 0 0
2 0 5 0
3 0 10 0
4 0 12.5 0
5 0 15 0
6 0 16 0
7 0 17 0
8 0 18 0
9 0 19 0
10 0 20 0

Table 3.1 – Streamlines extraction points considered in the simulations.

3.2 Electrical pulses as a function of the spheres
trajectory

Using the method detailed in Sec. 3.1 and summarized in Fig. 3.10, several spheres
trajectories in the aperture were tested. In particular, 10 streamlines are extracted
from the simulation NSS0, in such a way that they pass through points listed in
Tab. 3.1. Examples of extracted streamlines are shown in Fig. 3.5, in which SL1, SL2,
and SL3 refer to cases 1, 6, and 10 of Tab. 3.1, respectively. It should be noted that
computations NSS0 and ESS0 (see Fig. 3.10) are preliminary simulations performed
only once to characterize the flow and the electrical signal without particles. In
other words, NSS0 and ESS0 are performed only once and remain valid for all cases
of Tab. 3.1.

Using the IBM requires a fluid mesh size that equals the membrane mesh size
[127]. In the simulations, the spherical membrane of 5 µm of diameter is meshed with
triangles having a characteristic size of 0.3 µm. Considering computations FSIS1,
the reduced configuration RC1 is meshed with a refinement of 0.3 µm around the ex-
pected trajectory (approximated by the streamline). That means ten different grids
are needed for tackling the 10 different cases of Tab. 3.1. For instance, Fig 3.11A
shows the grid used for case 1 in run FSIS1. Solver ESS is stationary and computa-
tions ESS1 represent only a small portion of the total computational cost. That is
why the choice was made to perform all computations ESS1 on a unique well-refined
grid adapted to all cases and shown in Fig. 3.11B. In this grid of RC2, the charac-
teristic mesh dimension is downsized to 0.3 µm around all streamlines of Tab. 3.1.

Electrical pulses of Fig. 3.12A and the corresponding spheres trajectories of
Fig. 3.12B arise from cases of Tab. 3.1. For a better visualisation, cases 2 and
3 are not represented in Fig. 3.12A, because variations in terms of electrical sig-
natures are small between cases 1 and 4. The pulse duration is found to increase
with the proximity to the aperture wall. As illustrated by SL1, SL2, and SL3 in
Fig. 3.5A, a particle following a near-wall trajectory experiences lower velocities
than on a central path. Hence, when evolving in the neighbourhood of the aperture
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(A) (B)

Figure 3.11 – Meshings of RC1 (A) and RC2 (B). The grid shown in (A) is devoted to
the FSIS1 computation of a sphere following a central trajectory. The RC2 meshing
of illustration (B) is used for all simulations ESS1 in this work.
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Figure 3.12 – Impedance pulses obtained numerically from spheres by considering
the different streamlines of Tab. 3.1. Picture (A) shows the resistive perturbations
obtained by the use of the proposed pipeline (see Fig. 3.10). Figure (B) depicts the
sphere trajectories, outcomes of simulations FSIS1.

edges, the sphere spends more time in the sensing region, which induces a longer
pulse. A flat velocity profile is present in the core region of the micro-orifice. This
is illustrated by spaced velocity isolines in the central region of the aperture (see
Fig. 3.5A), and by the velocity profiles in Fig. 3.6B. Such a flow explains the small
variations in terms of pulse durations between cases 1 and 4. In the contrary, by the
walls, the velocities decrease rapidely (see Fig. 3.5A and Fig. 3.6B), thus explaining
the substancial differences of pulse lengths from case 5 to case 10.

3.2.1 When the electrical field shapes the pulse

In the case of rigid spheres, the shape factor fs is constant so that a linear rela-
tion between the squared electrical field E2 and the electrical perturbation ∆R is
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Figure 3.13 – Comparison between the squared electrical field magnitude E2 along
the particle trajectory with the resistive perturbation obtained from rigid spheres.
Each quantity ψ(x) is scaled as : φ•(x) = φ(x)/φ(x = 0), with φ ∈ [∆R,E2]. ∆R•
and (E2)• are graphed according to the particle axial position in the aperture (viz.
x). (A), (B) and (C) stem from cases 1, 6 and 10 of Tab. 3.1, respectively.

expected:

∆R = E2fs
ρei2

Vp, (3.2)

with Vp the particle volume, ρe the fluid resistivity and i the intensity. The aim is to
validate the numerical simulations with the analytical trends. To do so, from simu-
lation ESS0, the electrical field E is interpolated along the trajectories of Fig. 3.12B.
In Fig. 3.13, the scaled squared electrical field, and the scaled resistance variation
are shown for cases 1, 6 and 10. A good agreement between E2 and ∆R is found,
that confirms the linearity claimed by Eq. 3.2 [74]. Considering the other trajecto-
ries, the same agreement is observed (not shown). Note that this agreement is not
obvious, as variations of E at the scale of the particle are not accounted for in the
analytical formula.
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3.2.2 Comparison with experimental data

Numerical results were shown to be consistent with the analytical statement of
Kachel [74, 75]. In the following, the results obtained with the proposed pipeline
are compared with experimental measurements obtained from the analysis of a
polystyrene latex bead sample. Such spherical particles have the same size than
in the simulations and are assumed undeformable and isolating.

Experimental acquisitions

With the aims of validating the numerical pulses of Fig. 3.12A, experimental signals
were recorded during the analysis of a latex bead sample by an ABX Micros 60
(simulated devise, see Fig. 3.1). Latex beads have a well-controlled diameter of 5
µm, with a typical tolerance margin around 3 %. When the sample is presented to
the ABX Micros 60, a needle withdraws a drop from the sample tube. Moved by
an electrical motor, the needle distributes the collected volume in the two chambers
(see Fig. 3.1) for analysis. In the ‘RBC chamber’, the sample is diluted by a factor
1/15000 in the ABX Minidil electrolytic reagent (HORIBA Medical). Finally, a
vacuum pump aspirates the diluted suspension through the micro-orifices of both
chambers while an electrostatic field is applied by electrodes. Remind that this
study focuses on the RBC analysis, that is why the electrical signals are recorded
for the ‘RBC chamber’ only. Note that in the ‘RBC chamber’, the pressure drop
ensuring the flow and the electrical potential imposed on the electrodes agrees with
the numerical set-up previously presented (see Sec. 3.1.1). This is a crucial point for a
direct comparison of the signals over time. During the analysis, the terminal voltage
is amplified by the ABX Micros 60 hardware system and given as an input of an in-
house LabVIEW code. Increases of the electrical tension ∆U (ie. electrical pulses)
are recorded with this set-up. Figure. 3.14 depicts the recorded signals according to
time. In ABX Micros 60, the measurement sequence lasts about 16 s, which makes
pulses of a few tens of µs undistinguishable in such representation. It is preferable
to represent the acquisition by centring the pulses in time as done in Fig. 3.15.
On this view of the experimental acquisition, ‘M-shaped’ and ‘bell-shaped’ pulses
are recognisable. Incoherent signatures are observed among the recorded electrical
prints. The latter can be explained by several particles crossing the sensing region
at the same time (also called coincidences), but also by bubbles vacuumed through
the aperture. For example, bubbles may arise from the electrodes and are generally
much bigger than particles, thus generating pulses having an amplitude larger than
the bounding box of the graph (see Fig. 3.14 and Fig. 3.15). However, the conception
of industrial devices makes them infrequent.

Superimposing results from experiments with simulations

In this part, numerical pulses are compared with experimental data. Stating that
the pulse duration contains an information on the particle trajectory, the choice
was made to compare the predicted pulses of Fig. 3.12 with experimental pulses of
Fig. 3.15 having almost the same duration. The pulse duration is measured by the
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Figure 3.14 – Impedance pulses recorded during the analysis of a latex beads sample
by an ABX Micros 60 (HORIBA Medical). The top illustration depicts the entire
acquisition over 16 s, while the bottom picture shows a 3.5 ms sequence of the full
acquisition and 4 pulses appear more clearly.

metric W (for width) that is defined as follow:

W(thresh) = T1 − T0 (3.3)

Regarding the definition of instants T0 and T1 provided by Fig. 3.16,W quatifies the
time spent by the electrical perturbation above a given threshold [183] (see thresh
in Fig. 3.16). The choice of a threshold intersecting the ascending and descending
slopes of the pulse is crucial for W to measure relevantly the cell occupation time
in the sensor.

Converting the experimental tension pulses to resistive pulses is not straight-
forward because of signal treatments performed by the ABX Micros 60 hardware
system. Therefore, experimental and numerical data are scaled in amplitude be-
fore comparisons. Considering the experimental acquisition, the tension pulses are
scaled with the mean of the ‘bell-shaped’ pulses maximum ∆Um|bs. ‘Bell-shaped’
signatures are generated by centred trajectories and were illustrated in Fig. 1.13A.
They can be extracted from the entire acquisition by the use of a convenient pulse
duration threshold. For instance, computing W(0.5V ) for all pulses of Fig. 3.15,
and keeping only those that have a duration (viz. W(0.5V )) below 17.0 µs renders
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Figure 3.15 – Impedance pulses recorded during the analysis of a latex beads sample
by a ABX Micros 60 (HORIBA Medical). For a better overview on the recorded
electrical signatures, the pulses are centred in time in this representation.

T0 T1

thresh

T ime

Figure 3.16 – Sketch of T0, T1 required for computing the W metric.

‘bell-shaped’ pulses (in this case). A simpler and more general method providing
the extraction of ‘bell-shaped’ pulses is presented in Chap. 5. Regarding numerical
resistive pulses of Fig. 3.12A, they are scaled with the maximum of case 1 (denoted
by ∆Rm|bs), which depicts a ‘bell-shape’. In summary, achieving the scaling proce-
dure converts each experimental tension pulse ∆U(t) and each numerical resistive
pulse ∆R(t) (functions of time) to dimensionless electrical disruptions ∆U∗(t) and
∆R∗(t), respectively. More precisely, ∆U∗(t) and ∆R∗(t) writes:

∆U∗(t) = ∆U(t)
∆Um|bs

, ∆R∗(t) = ∆R(t)
∆Rm|bs

(3.4)

A width computed from a pulse scaled as stipulated by Eq. 3.4 (∆U∗ or ∆R∗)
is relative to the ‘bell-shaped’ maximum, viz. ∆Um|bs or ∆Rm|bs, depending on
the source (experiment or simulation, respectively). For the sake of clarity, pulses
durations computed from ∆U∗ or ∆R∗ are denoted by Wr in the following. Notice
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that Wr may be computed directly from original pulses ∆U and ∆R with:

Wr(thresh′) =W(thresh′ ×∆Um|bs), (3.5)

or
Wr(thresh′) =W(thresh′ ×∆Rm|bs), (3.6)

respectively. The duration Wr is computed for each experimental and simulation
pulses, with thresh′ equal to 0.5. Given a pulse duration (Wr) derived from a
numerical data, experimental signatures having the same length, with a tolerance
margin of 1 µs are extracted for comparison. Figure 3.17 displays the numerical
results superimposed with experimental pulses of corresponding Wr, for the eight
cases shown in Fig. 3.12. A good agreement is found between the numerical results
and the experimental observations. Pulses that display a ‘bell-shape’ are the shortest
(see Fig. 3.17A and B), while those having a ‘M-shape’ are the longest (see Fig. 3.17F,
G and H). In between (see Fig. 3.17C, D and E), the electrical signatures depict a
plateau.

3.3 Conclusion

This chapter was devoted to the simulations of rigid beads in Coulter counters.
Dealing with undeformable spheres is a simple case since their initial state in the
computations are known, thus allowing to focus the simulations on a restricted
zone around the orifice. In particular, the electrical field is concentrated around
the aperture so that it is sufficient to start the computation 5 µs before the orifice
entrance in order to properly describe the electrical pulse.

The proposed method is a sequence of computations in which the sphere dy-
namics is solved in a Fluid-Structure Interaction (FSI) simulation and the electrical
perturbation in several electrostatic calculi. Remind that the FSI solver (FSIS) im-
plemented in YALES2BIO is devoted to highly deformable cells. Hence the sphere
rigidity in the FSI computation is ensured by significant elastic modulus for the
membrane and a substantial internal viscosity.

Several spheres trajectories are simulated and results are shown to retrieve the
linearity between the pulse and the squared electrical field, as in the theory. Besides,
the simulations are in good agreement with experiments made with rigid latex beads.

However, the presented pipeline is not suited to deformable particles. Indeed, in
such cases, there is a need for computing the deformations occurring in the upstream
part of the aperture so that depositing the particle 5 µs before the orifice inlet section
is not relevant. Tackling the simulation of the deformable particle is the purpose of
the following chapter.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 3.17 – Comparisons of simulated pulses for the case of spheres with experi-
mental pulses coming from the analysis of a latex bead sample. Graphs A, B, C, D,
E, F, G and H refers to cases 1, 4, 5, 6, 7, 8, 9 and 10, respectively (see Fig. 3.12).
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The proposed method for handling the numerical simulation of deformable par-
ticles in an industrial Coulter counter gave rise to a research article1.

Chap. 3 focuses on the introduction and the validation of a method enabling the
simulation of rigid and spherical particles in Coulter counters. When considering
rigid spheres, the hydrodynamic loads seen by the particle before it enters in the
detection area does not impact its shape and the orientation of the sphere does not
matter. Thus, what happens before the orifice is neglected, which allows to start
the computations by placing the sphere near the aperture entrance. This is only
valid when dealing with spherical and rigid particles. In contrast, RBCs (that are
aspherical and deformable) can not be treated with this approach. As a matter of
fact, deformed RBCs were observed before they enter in a constricted channel [75]
(see Fig. 1.10). Hence, starting the simulations by placing a RBC at rest just before
the orifice is irrelevant.
1Numerical simulation of deformable particles in a Coulter counter. International Journal for Nu-
merical Methods in Biomedical Engineering, aug 2019
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On the one hand, simulating the RBC evolution in the upstream part of the
aperture is required to accurately reproduce the cell dynamics in Coulter counters.
On the other hand, taking into account that part of the geometry induces far too
long computations (see Sec. 1.4.3). In this context, the first section of the present
chapter (Sec. 4.1) introduces a method to tackle such simulations with reasonable
computational costs. This original strategy is based on the pipeline of Fig. 3.10 but
adds a specific computation that accounts for the upstream dynamics of the cell.
Section. 4.2 shows how this improved pipeline can be used to decrease the overall
computational time (compared to a brute force strategy where the whole Coulter
counter is computed) and specifies the conditions under which a relevant simulation
can be performed. Finally, Sec. 4.3 presents numerical results for deformable RBCs
in a ABX Micros 60 (see Fig. 3.1) and compares the results with both theoretical
predictions and experimental data. The accuracy of the method is then illustrated,
and the variety of pulses discussed in Chap. 1 is associated with various RBC dynam-
ics in the aperture. Furthermore, this numerical method is shown to provide useful
information about the shape factor in the presence of deformation and rotation of
cells.

4.1 Numerical Pipeline

4.1.1 Overview of the numerical challenge

This section focuses on the principal issues associated with the simulation of an
impedance pulse generated by a deformable particle in a Coulter counter and pro-
vides an overview of the method proposed to achieve this task.

As for the study dealing with the rigid sphere case (Chap. 3), the operating
regime of ABX Micros 60 (HORIBA Medical) is used in the present chapter. Ex-
amples of electrical and velocity fields obtained by numerical simulations in this
industrial configuration were shown in Chap. 3 (see Fig. 3.5A and 3.5B). Inside
the micro-orifice, the electrical field is very large due to the flux conservation law;
this is where particles are detected. The aperture allows concentrating the electrical
field so that the resistance perturbation associated with the passage of a particle is
large. Besides, the field decreases rapidly when getting out of the aperture, so that
a microscopic particle is not detected outside of the orifice, which allows the sizing
of cells one by one if the sample is sufficiently diluted. Due to the contraction of
the geometry, the velocity inside the aperture is large, which yields high-throughput
measurements but also generates high-velocity gradients and viscous stresses. In
particular, high shear stresses are retrieved near the aperture walls. Due to these
shear stresses, deformable particles such as RBCs may undergo rotational motions
and complex deformations [91]. Before entering in the orifice, the velocity magnitude
raises over a short distance, causing large longitudinal strain, so that RBCs align in
the direction of the strain and elongate to a prolate ellipsoid shape, as reported by
Kachel [74] and Gibaud [46]. Far from the aperture, velocity gradients are negligible,
and no deformation is expected.

The industrial geometry may be conceptually divided into three parts, as de-

74



CHAPTER 4. NUMERICAL SIMULATION OF RED BLOOD CELLS IN AN INDUSTRIAL COULTER
COUNTER

picted in Fig. 4.1. Indeed, the RBCs are first transported without deformation in
the biggest part of the geometry (Part A). Then, they are stretched just before the
aperture entrance by an extensional flow field (Part B). Finally, RBCs are deformed
in the micro-orifice while disturbing the electrical field (Part C). Figure 4.1B reports
the characteristic RBCs transit time in those three parts in the ABX Micros 60. In
the method presented in the following, the choice was made to neglect Part A be-
cause no deformation nor electrical perturbation is expected. Thus, only Parts B and
C are considered for the modelling. However, as shown in Fig. 4.1 B, the second part
involves a time scale that is larger than the third one by several orders of magnitude.
Therefore, instead of simulating the particle evolution in the whole domain where
deformations occur (Parts B and C), we propose to split the calculation into two
simulations. First, a simulation of the stretching of the cell by a relevant extensional
flow is considered. This simulation is referred to as FSIS0. It predicts the elongation
happening in Part B of the geometry. A variable strain rate that mimics that seen by
the cell is imposed. It is extracted from the first simulation NSS0 (see Chap. 3), per-
formed on the entire geometry without particles. The calculation in the extensional
flow configuration FSIS0 yields a deformed particle, that is used in the computa-
tion of the particle dynamics inside the measurement region (FSIS1 introduced in
Sec. 3.1.3) corresponding to Part C. The particle stretched after FSIS0 is placed near
the orifice entrance in the reduced configuration of the whole geometry (RC1) that
is a restricted region around the aperture, in order to reduce the computational cost
of FSIS1. Finally, the electrical perturbation is computed by performing a series
of electrostatic simulations (ESS1) using several particle positions extracted from
FSIS1. The whole procedure is sketched in Fig. 4.2. It represents an improvement
of the pipeline of Fig. 3.10 with an additional simulation (FSIS0) that computes the
upstream dynamics. In the following, solely the case of RBCs is handled. However,
the pipeline displayed in Fig. 4.2 may be applied to any deformable particle.

Simulation NSS0, ESS0, FSIS1, and ESS1 having already been presented (see
Chap. 3), only FSIS0 is described in the following. When considering an aspherical
and deforming particle, the initial orientation of the particle in FSIS1 must be
specified. This point is also detailed in the following.

4.1.2 Extensional configuration setup

Assumption of an axisymmetric extensional flow in the upstream part

It is first shown that particles flowing in a Coulter counter are first subjected to a
purely extensional flow before entering in the aperture. From the simulation per-
formed in the whole domain (NSS0), three streamlines passing at different distances
from the aperture edges are extracted. More precisely, the selected streamlines are
chosen such as they pass through points located in the aperture at different distances
from the wall: (0,0,0), (0,15,0) and (0,20,0), coordinates given in µm. Respectively
denoted by SL1, SL2 and SL3, the streamlines were depicted in Fig. 3.5 in Chap. 3.
The streamlines curvilinear coordinate system (~es, ~er, ~ez) is defined in the following
way: ~es is aligned with the streamline; ~er is perpendicular to the streamline and
belongs to the plane (~ex, ~ey) and ~ez = ~es ∧ ~er. Time τ is established from the La-
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(A)

Part C
RBC deformation +
electrical perturbation

Part B
RBC deformation without
electrical perturbation

Part A
RBC transport
without deformation

(B)

Part Time Scale
A 50s
B 12ms
C 20µs

Figure 4.1 – (A) Schematic of the industrial geometry, divided in three parts de-
pending on the existence of particles deformation and the impact on the electrical
field. In Part A, the RBC is simply transported without deformations. In Part
B, the particle may undergo deformations but is far from the detection area. In
Part C, the RBC is deformed and disturbs the electrical field. (B) Table presenting
characteristic time scales for these three parts, for the case of an ABX Micros 60
(HORIBA Medical).

grangian coordinates system of a fluid particle moving along the selected streamline,
as done in Sec. 3.1.3. Remind that time τ is negative before the aperture entrance (x
< 37.5 µm), and positive after the orifice inlet section. If the flow is an axisymmetric
strain flow in the s direction, we should have ∂Us

∂z = -2 ∂Uz
∂z = -2 ∂Ur

∂r .
The velocity gradients in the curvilinear coordinates system are computed and

are shown against τ in Fig. 4.3. Regarding the streamline SL1 which crosses the
aperture center, Fig. 4.3A shows that ∂Uz

∂z
perfectly equals ∂Ur

∂r
for all the upstream

part of the aperture. This equality remains valid for the other streamlines SL2 and
SL3 except for very small negative values of τ (viz. except very close to the aperture
inlet). From these observations, the assumption that a particle moving along a
streamline behaves as in an axisymmetric and purely extensional flow up to -12 µs
is made. This assumption is the basis of the FSIS0 simulation type described in the
next section.

Extensional configuration setup (FSIS0)

For part B, where the RBC is deformed without impacting the electrical field, a
fluid-structure interaction simulation is performed in a simplified domain used to
impose an axisymmetric strain flow. The RBC is supposed to travel in part B along
the streamline at the surrounding fluid velocity. The particle is initially placed at the
center of a cylindrical fluid domain with possibly a non-zero initial orientation with
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Figure 4.3 – Time evolution of the velocity gradients observed by a particle moving
along the three different streamlines depicted in Fig. 3.5, as predicted from the
simulation performed on the entire industrial configuration. The graphs A, B and
C correspond to the streamlines passing by points (0, 0, 0), (0,1 5 µm, 0) and (0, 20
µm, 0), and are denoted by SL1, SL2 and SL3 in Fig. 3.5, respectively.
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Inlet

Inlet

D

l

OutletOutlet

~es

~er

~ez

θsl

Streamline

Figure 4.4 – Extensional configuration scheme (simulation FSIS0). The particle is
initially placed at rest in the center of a cylindrical fluid domain. The cylinder
diameter D and length l are respectively equal to 30µm and 50µm. Boundary
conditions that insure an extensional velocity field are set according to Eq. 4.1.

respect to axis ~es, as sketched in Fig. 4.4. From the time evolution of the stretch rate
obtained for a particular streamline (Fig. 4.3), the following time varying boundary

condition is imposed on the lateral boundary (r2 + z2 = D2

4 , s in [- l2 ,
l

2 ]) of the
cylinder:

~u = ∂Us(t)
∂s

 s

− r
2
− z

2

 (4.1)

Convective outlet boundary conditions are imposed on the two circular faces s =
-l/2 and s = l/2. According to the axisymmetric extensional assumption discussed
previously, the particle stretching is performed until 12 µs before the aperture en-
trance. A discussion on the elongation starting point is provided in a following
section. Note that the external viscosity νext and the fluid density ρ are imposed as
in computation NSS0 and FSIS. Of course, the RBC parameters (νin, Gs, Ea, Eb,
co) employed in FSIS0 and FSIS1 must be consistent.

4.1.3 Initial state of a deformable particle in FSIS1

Once stretched during simulation FSIS0, the particle dynamics inside the micro-
orifice is solved in simulation FSIS1. Contrary to the case of rigid spheres (see
Chap. 3), the RBC orientation at the beginning of FSIS1 must be specified. The
elongated cell is initially placed on the selected streamline at the point corresponding
to time -12µs in a reduced configuration of the industrial geometry (RC1). The
particle orientation θsl (see Fig. 4.4) at the end of the stretching step is recorded
and applied as the initial angle of the particle with respect to the streamline for the
dynamics simulation.
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4.2 Validation

The pipeline detailed in the last section was first tested as explained in this section.
From the computation NSS0, the streamline shown in Fig. 4.5A (SL2 in Fig. 3.5)
is extracted and different simulations varying the initial conditions are performed.
The computed cases are summarized in Fig. 4.5B. In a first study, which corresponds
to cases 1 to 4, the impact of the RBC starting time (or the distance from the
aperture at which the cell is deposited, see Fig. 4.5A) on its dynamics and the
resulting impedance pulse is dealt with. For this study, the particle stretching in the
extensional configuration (Simulation FSIS0) is bypassed and the RBC is dropped
directly on the streamline at different positions, in a full simulation FSIS1. The
initial positions are related to times corresponding to the lower bounds reported in
the ‘FSIS1’ column of Fig. 4.5B. Then, the capability of the extensional simulation
FSIS0 to reproduce the dynamics before the aperture is assessed. More precisely, as
introduced in Sec. 4.1, the RBC is first stretched in an extensional flow simulation
FSIS0, then its dynamics inside the orifice is solved in a simulation FSIS1, the
final RBC state from FSIS0 being used as an initial condition for FSIS1. This
runs sequence corresponds to case 5 in Fig. 4.5B and represents the same physical
configuration as case 1. On the contrary, cases 2-4 denote different initial locations
of the RBC. Note however that the final time (τ=18 µs) is the same for all cases.

All cases of Fig 4.5 B were computed using the same RBC. The membrane pa-
rameters (required in Eq. 2.52 and Eq. 2.69) are imposed as: Gs=2.5× 10−6 N.m−1,
Ea=2.5× 10−1 N.m−1, Eb=6.0 × 10−19 J, c0=0. All parameters are in agreement
with the range of measurements provided in the literature [4, 20, 107]. Density
variations between the internal fluid and the suspending medium are neglected since
some test cases designed to assess the impact of higher density inside the RBCs have
shown negligible effect (see App. A). In the studied configuration (ABX Micros 60,
HORIBA Medical) the sample analysis is performed at ambient temperature (21°C).
Hence, as measured in [79], higher values of internal kinematic viscosity are encoun-
tered instead of the physiological value of 6.0 × 10−6 m2 s−1 at 37 ◦C. Deduced
from Kelemen et al.’s measurements [79], an internal viscosity of 18.0 × 10−6 m2

s−1 would be imposed. However, with the aim of challenging the pipeline in a con-
figuration where the RBC is more deformable, the internal viscosity was set to 10.0
× 10−6 m2 s−1 (for this validation part). The membrane was discretized with trian-
gular elements with a characteristic size of 0.3 µm. The initial RBC orientation θsl
with respect to the streamline (Fig. 4.7) is chosen as 0.43 rad for all cases excepted
for run 5-FSIS1, where the outcome from run 5-FSIS0 was used. This problem is
symmetric with respect to the (~ex, ~ey) plane, so that the orientation is only defined
by an angle in this plane.

Using the IBM requires a fluid mesh size equal to the membrane mesh size
[125, 127]. Hence, for computation FSIS0, the mesh size is simply imposed to 0.3µm
in the whole cylinder (Fig. 4.6) while for FSIS1, a refinement of 0.3µm is achieved
around the streamline as previously stated (Sec. 3.2).

For cases 1 to 4, the RBC starting position was willingly placed relatively far
from the aperture entrance. A wider reduced configuration is used for these specific
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Case FSIS0 (µs) FSIS1 (µs) Cost (CPU-hour) ε̇0 (s−1)
1 ø [-517 , 18] 16400 1000
2 ø [-330 , 18] 12000 2000
3 ø [-130 , 18] 6500 5000
4 ø [-58 , 18] 4600 12000
5 [-517 , -12] [-12 , 18] 2000 1000

Figure 4.5 – Summary of the cases performed to assess the effect of the RBC ini-
tial position. (A) Initial RBC starting positions along the selected streamline.The
streamline corresponds to SL2 (Fig. 3.5) and is extracted from the time converged
velocity field of simulation NSS0. It is selected such as it passes by the point (0, 15,
0). (B) Characteristics of the simulations performed in terms of the physical time
range in the extensional configuration (FSIS0) and in the reduced configuration
(FSIS1). The overall computation cost and the typical strain rate (ε̇0) experienced
by the RBC at the beginning of the simulation are also reported.

Figure 4.6 – Meshes used for the computation of the extensional configuration FSIS0.
The mesh contains approximately 0.4M nodes.
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Figure 4.7 – Inertia Equivalent Ellipsoid (IEE) parameters and orientation. IEE
parameters are shown over a RBC elongated shape. The sketch is represented in the
symmetrical plane (~ex, ~ey) such as ~ez is out of plane, as the IEE parameter c.

cases with l3=150 µm (Fig. 3.6). In these cases (1 to 4), RBCs follow the streamline
within a tolerance margin of 0.3 µm (one mesh size) when travelling in the part
upstream of the aperture.

In the following, the Inertia Equivalent Ellipsoid (IEE) of the deforming RBC
[135] is used to compare the different cases considered. From the membrane nodes
position, the inertia matrix of the RBC at the center of mass is computed and
diagonalized to obtain the eigenvalues and eigenvectors. The IEE parameters, a, b
and c are then obtained by solving the following equation:λ1 0 0

0 λ2 0
0 0 λ3

 = V

5

(b2 + c2) 0 0
0 (a2 + c2) 0
0 0 (a2 + b2)

 (4.2)

The left and right terms of Eq 4.2 are respectively the diagonalized RBC inertia
matrix and the empirical inertia matrix of an ellipsoid of axes a, b and c, with V

denoting the IEE volume. Both are expressed in the eigenvectors basis. The RBC
orientation is defined according to the angle between the IEE axis corresponding to
the parameter a and the streamline (θsl) on the one hand and the ~ex axis (θ) on the
other hand (Fig. 4.7).

4.2.1 Impact of the starting position on the RBC dynamics

The purpose of this section is to illustrate the dependency of the RBC dynamics
with respect to the starting position and to exhibit a starting distance from which
the dynamics inside the aperture and the electrical perturbation are converged.

From the IEE orientation (Fig. 4.8A), one observes that for the upstream part of
the micro-orifice (τ < 0), the RBC initial angle progressively decreases to show an
orientation perfectly aligned with the streamline just before the aperture entrance.
However, inside the micro-orifice, the RBC displays a rotation that depends on
the initial starting time. Regarding the ellipsoid parameters in the upstream part,
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shown in Fig. 4.8 B-D, the RBC is deformed from an oblate shape to a quasi-prolate
shape. Indeed, initially, a = c, and both are greater than b. Then, a increases and
c decreases whereas b stays almost the same. In the aperture (τ > 0), the RBC
is compressed as shown by a decreasing a and an increasing b. This compression
occurs as the RBC progressively turns inside the aperture. In fact, for the considered
streamline, the RBC crosses a region with substantial velocity shears as it was shown
by streamline SL2 in Fig. 3.5A of Chap. 3. The shear stress undergone by the RBC
inside the aperture makes it rotate. Besides, the RBC gets compressed when its
orientation approaches the compression axis in the shearing region.

The IEE parameters and orientation inside the aperture converge with respect
to the RBC starting position. Indeed, taking case 1 as the reference, cases 2, 3 and
4 indicate that taking an earlier starting time (Fig 4.5 B) gives a result closer to
the reference. Also, case 2 shows superimposed results with case 1, regarding the
IEE parameters inside the micro-orifice (Fig. 4.8). This supports the fact that it
is sufficient to use an initial RBC location in the region where the strain rate is of
order 2000 s−1 (see Fig. 4.5) to accurately describe the RBC dynamics within the
aperture.

As a direct consequence of the RBC dynamics, the electrical perturbation also
exhibits a dependency with the starting time, as depicted in Fig. 4.9. As for the
IEE parameters, the electrical pulses for cases 1 and 2 are practically identical while
cases with a starting point closer to the orifice entry would give inaccurate results.
The difference between case 1 and case 4 maxima is evaluated to 10%.

4.2.2 Extensional configuration validation

We now compare cases 1 and 5. In both cases, the RBC is deposited at the same
location, but in case 5, the dynamics far from the aperture is computed in the ded-
icated extensional configuration (FSIS0) while it is included in a simulation FSIS1
in case 1 (remind that no calculation FSIS0 is performed for case 1).

First, Fig. 4.8 shows that the run 5-FSIS0 is in good agreement with the first
part (τ < - 12 µs) of case 1. Thus the extensional axi-symmetrical configuration
FSIS0 is proven to be suitable to reproduce the early stage of the RBC deformation.
It should be noted that the orientation corresponding to run 5-FSIS0 in Fig. 4.8D
is evaluated as the orientation of the IEE a-axis with respect to axis ~es of the
extensional configuration (Fig. 4.4). Then, comparing run 5-FSIS1 to case 1, one
may observe that a RBC dropped in the reduced configuration after being stretched
in an extensional configuration behaves as if it had undergone the full elongation
before entering the aperture. Moreover, cases 1 and 5 are perfectly consistent in
terms of impedance pulse, as shown in Fig. 4.9. The approach of solving separately
the particle elongation occurring before the sensing region allows a computation
cost reduced by a factor 8 (cases 1 and 5 Fig. 4.5B). Regarding the results shown
in Fig. 4.8 and Fig. 4.9, simulations should start at least 330 µs before the orifice
entrance. Due to the low computation cost of the extensional simulation, the choice
was made to simulate the cell elongation in the configuration FSIS0 from -517 µs to
-12 µs. Computation FSIS1 then starts from -12 µs and ends after the RBC leaves
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Figure 4.8 – Inertia equivalent ellipsoid principal axis and orientation for cases sum-
marized in Fig. 4.5B. (A) Orientation of IEE axis a with the trajectory as defined
in Fig. 4.7. (B) IEE parameter a, that tends to align with the extensional direction.
(C) IEE parameter b, perpendicular to a in the symmetrical plane (~ex,~ey). (D) IEE
parameter c that is out of the symmetrical plane lined up with ~ez.

the micro-orifice.

4.3 Results

Using the numerical pipeline of Sec. 4.1, the RBC dynamics and the induced elec-
trical perturbation are simulated by considering the same streamlines employed for
spheres in Chap. 3 (see Tab. 3.1). The RBC parameters are set as in Sec. 4.2 ex-
cept for the internal viscosity which is 18×10−6 m2.s−1, to take into account the
room temperature of the experimental acquisition [79]. The electrical responses ob-
tained by applying the pipeline of Fig. 4.2 to streamlines of Tab. 3.1 are shown in
Fig. 4.10A, while the trajectories followed by the RBC are depicted in Fig. 4.10B.
For the most centred paths, ‘bell-shaped’ pulses with a short duration are obtained,
while for trajectories near the aperture edges, more complex pulses with a longer du-
ration are observed. Comparing qualitatively results from spheres (Fig. 3.12A) with
result from RBCs (Fig. 4.10A) , it appears obvious that more complex phenomena
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Figure 4.9 – Impedance pulses obtained from a RBC with the different initial con-
ditions that are summarized in Fig. 4.5B.
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Figure 4.10 – Impedance pulses obtained numerically for different trajectories from
RBCs. Picture (A) shows the impedance pulses and (B) illustrates the related RBC
trajectories.

occur when the particle deforms and rotates.

4.3.1 Variety of deforming RBCs dynamics and impact on the
pulse

RBC rotation inside the aperture

Figure. 4.11A depicts the evolution of the IEE orientation θ (see definition in Fig. 4.7)
according to the cell position x, for each case of Fig. 4.10A (1, 4 and 5-10). For
the most centred paths (1 and 4), the cell is oriented with the aperture principal
axis (~ex). In contrast, when considering near-wall trajectories such as 5 to 10, a
substantial rotation is observed. For instance, Fig. 4.12 shows RBC consecutive
positions in the aperture for cases 1 and 10. The cell rotation is observed for a near-
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wall trajectory while an oblate elongated shape aligned with the aperture is obtained
for the central path. An interesting result is that the closer the particle path to the
aperture wall, the earlier the rotation in the aperture (see Fig. 4.11A). As stated in
theoretical developements [10, 50], such variations in the particle orientation would
induce changes in the electrical pulse. Hence, the infinity of rotation dynamics
explains the huge variety of pulse signatures reported in the literature (remind the
discussion of Sec. 1.3.2).

The electrical perturbations are shown according to the particle location in the
micro-orifice (x) in Fig. 4.11B. Regarding Fig. 4.11A and Fig. 4.11B, the cell rotation
induces a peak on the pulse, consisting of an increase in ∆R, that is shorter than the
time spent by the cell in the sensing region (viz. shorter than the pulse duration).
Considering cases 6-10, the pulses maxima are reached when the cell is perpendicular
to the orifice principal axis (θ = π/2). This is in agreement with results of Qin et al.
[133] that showed an higher resistive perturbation when the particle longest axes is
perpendicular to the electrical field (see Fig. 1.8 in Chap. 1). Despite the substantial
rotation observed for case 5 (Fig. 4.11A), the pulse maximum does not match with
the instant at which θ = π/2 (see case 5 in Fig. 4.11B). This is because the RBC
achieves a π/2 orientation outside of the orifice, where the electrical field rapidly
decreases.

RBC deformations inside the aperture

By showing the evolution of the IEE parameters, Fig. 4.13 sheds light on the defor-
mations experienced by RBCs in the micro-orifice. For the sake of clarity, only cases
1, 6 and 10 are depicted. Moreover, for the sake of completeness, the orientations θ
are recalled in Fig. 4.13A. Regarding case 1, for which a constant orientation of 0 rad
is observed, the cell shape is almost constant in the aperture (τ > 0). In contrast,
changes of orientation and deformations are visible when considering cases 6 and
10. It should be noted that in cases 6 and 10, the deformations are reflected in a
compression of the RBC as it rotates. The compression is illustrated by a decreasing
a and increasing b and c, as for the test case of Sec. 4.2. Moreover, the maximum of
this compression occurs when the cell is perpendicular to the orifice principal axis.

When RBCs rotate in the aperture (see instant 8 µs for the near-wall case in
Fig. 4.12), they may be severely compressed by the flow, which results in wrin-
kling of the surface. Wrinkling has been reported for deformable particles such as
capsules and vesicles [78, 89] due to membrane compression. In particular, sudden
compression of extended vesicles induces wrinkles whose characteristic length scale
decreases with the compression rate. Assuming that RBCs would develop similar
wrinkles, their size would be much smaller than our grid size [78] . As a conse-
quence, the simulation develops surface small amplitude oscillations at the scale of
the mesh size. This numerical artifact is classical in deformable particles simulations
[67, 89, 135, 160] and has not been found to affect the large-scale results, although it
may lead to instabilities when the membrane remains under compression for a long
time. This is not the case here, where the RBCs rapidly flip and are stretched again
by the shear flow.
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Figure 4.11 – Resistive pulses and RBC orientation according to the position inside
the aperture. (A) RBC orientation (θ is zero when the particle is aligned with the
aperture axis), (B) Resistive pulses obtained from the RBCs simulations.
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Figure 4.12 – RBC consecutive positions inside of the orifice for cases 1 (central
trajectory) and 10 (near-wall trajectory).
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Figure 4.13 – RBC IEE orientation and parameters for cases 1, 6 and 10 of Fig 4.10.
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Shape factor of deforming RBCs

In the case of rigid spheres, the shape factor fs is constant so that a linear rela-
tionship between the squared electrical field and the electrical perturbation ∆R was
observed (Sec. 3.2.1), supporting Kachel’s statement [74] that, under the assump-
tion of a constant shape factor, ∆R is directly proportional to E2. Considering
RBCs, deformations and rotations that may cause substantial shape factor varia-
tions are observed for near-wall paths. In this respect, no linearity can be expected
between E2 and ∆R (Eq. 1.2). Hereafter, the shape factor variations are modelled.
This modelling effort aims at providing a finer analysis of the pulses signatures and
uncorrelate the dynamical effects from the electrical ones.

In the following, the RBC shape factor is modeled using IEE orientation and
parameters. Provided one of the ellipsoid principal axes is aligned with the electrical
field ~E, Velick and Gorin [170] state that, in the case of a non-conducting ellipsoid
immersed in a homogeneous electrical field, the shape factor may be written as:

fs = 2
2− a b cLα

(4.3)

where a, b and c denote the ellipsoid semi-axes and Lα is an elliptical integral that
depends on the ellipsoid axis that is lined up with ~E. As an example, if axis a is
aligned with the electrical field, one has:

Lα = La =
∫ ∞

0

dλ

(a2 + λ)3/2(b2 + λ)1/2(c2 + λ)1/2 (4.4)

For the computation of Lb and Lc, the ellipsoid variables a, b and c are simply
interchanged in Eq. 4.4. In order to take into account the RBC orientation inside
the aperture, Eq. 4.3 is combined with the following relation [10]:

fs = f// − (f// − f⊥)cos2θ (4.5)

where θ is the orientation of the IEE a-axis with respect to the electrical field, while
the terms f// and f⊥ denote the shape factor of the particle when the The latter
are computed with the use of Eq. 4.3 using La and Lb, respectively.

From the RBC IEE parameters reported in Fig. 4.13, the shape factor evolution
inside the aperture is computed for cases 1, 6 and 10 by the use of Eq. 4.5. Figure 4.14
shows the scaled shape factor, the scaled electrical field squared, the scaled pulse
and the scaled product of the shape factor with the electrical field squared. For
the case of a centred path (Fig. 4.14A), the shape factor is constant within the
micro-orifice as it was suggested by observing the constant IEE parameters and
orientation in Fig. 4.13. In agreement with Eq. 1.2, the scaled electrical perturbation
is then superimposed with the squared electrical field. For a near-wall trajectory,
rotation and deformations of the RBC make the shape factor vary during the particle
evolution inside the orifice. The squared electrical field is no more sufficient to
explain the pulse signature, but as provided by equation 1.2, the product of fs with
E2 shows a good comparison with the electrical perturbation. A loss of accuracy
is nevertheless observed when approaching the aperture limits (x=± 37.5µm). On
the orifice limits, the electrical field ~E is not aligned with axis ~x, thus the IEE
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Figure 4.14 – Modelling of the pulse signatures for the case of a deformable particle
such as RBC. On those graphs, the pulse, the squared electrical field, the shape factor
and the product of the squared electrical field with the shape factor are shown. (A),
(B) and (C) refer to cases 1, 6 and 10 of Fig. 4.10. In the shown graphs, each quantity
φ(X) is scaled as: φ•(X) = φ(X)/φ(X = 0), with φ ∈ {∆R,E2, E2 × fs, fs}.

orientation θ does not measure the expected angle for equation 4.5, which explains
the differences. A correction would need to be implemented to make the model
relevant outside the orifice.

Shape factors of an aligned and a perpendicular discocyte were evaluated ac-
cording to Eq. 4.5 and compared with case 10 in Fig. 4.15. Assuming θ = 0 and
θ = π/2, a discocyte has for shape factors 1.22 and 2.8 respectively, while a RBC
evolving next to the aperture walls (see case 10) displays a shape factor that varies
in between 1.06 and 1.6. The maximum fs is obtained when the RBC is perpendic-
ular to the electrical field, while the minimum value corresponds to a well-elongated
shape that is almost aligned with the orifice principal axis (See Fig. 4.12). As shown
in Fig. 4.15, the maximum shape factor for a deformable cell is smaller than the
one calculated for a perpendicular discocyte (1.6 vs 2.8). This is because the RBC
is compressed and even tends to fold during rotation as illustrated in Fig. 4.12.
Moreover, the minimum value of the RBC shape factor is smaller than the one of a
rigid discocyte aligned with the axis (1.06 vs 1.22). This is because the deformable
cell is strongly elongated during the FSIS0 phase as illustrated in Fig. 4.8, thus

90



CHAPTER 4. NUMERICAL SIMULATION OF RED BLOOD CELLS IN AN INDUSTRIAL COULTER
COUNTER

−40 −20 0 20 40 60

1

1.5

2

2.5

3

3.5

x [µm]

f s

10

Figure 4.15 – Shape factor evolution according to the longitudinal particle position
inside the micro-orifice. The shape factors of a discocyte aligned and perpendicular
to the electrical field are also shown in red dashed lines.

reducing the projected area. Assuming that a rigid RBC (thus keeping its discocyte
shape) rotates in the aperture, one would obtain pulses with a much more important
peak. This illustrates the importance of taking into account deformations and cell
dynamics when simulating the impedance measurement of RBCs.

Impact of RBCs parameters on the impedance pulse

Simulations over different trajectories are now performed by varying the shear mod-
ulus (Gs), the internal viscosity (νin) and the reduced volume (Q) of the RBCs,
one-at-time. In doing so, the original signatures are subject to modifications shown
in Fig. 4.16. Only cases 1, 6, and 10 are displayed for the sake of concision. Pulses
associated to the different RBC dynamics are scaled by the maximum of the pulse
arising when the same cell (same shape and parameters) experiences a central tra-
jectory. Regarding the central path (see Fig. 4.16A), the electrical print does not
depend on variations of the RBC features. However, cases 6 and 10 change when
the cell parameters are modified, as shown in Fig. 4.16B and C. Increases of νin
and Gs yield pulses with a more important peak. The internal viscosity appears to
have the same impact as the membrane rigidity (driven by Gs). Indeed, the cytosol
viscosity reduces the instantaneous deformability of the cell. Hence, because of the
short loading times experienced by RBCs in Coulter counters, an increase of viscos-
ity yield a smaller RBC deformation inside the sensing region. As previously shown,
a strong compression of the cell occurs while it rotates, which appears to mitigate
the peak amplitude. Consequently, increases of νin and Gs make the RBC harder to
compress and produce a larger peak. On the other hand, the amplitude of the peak
decreases when the reduced volume (Q) is increased in the simulations. A higher
reduced volume implies a more spherical cell that tends to conceal the consequences
of the cell rotation. Results of Chap. 3 for rigid spheres are also shown in Fig. 4.16
an confirm this hypothesis, since no peak of rotation are observed for pulses referred
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Figure 4.16 – One-at-a-time sensitivity analysis of the effect of the shear modulus
Gs, the reduced volume Q and the internal viscosity νin. Picture (A), (B) and (C)
refer to the original cases 1, 6 and 10, respectively. Reference cases shown in black
are performed with Gs = 2.5 × 10−6 N.m−1, νin = 18 × 10−6m2.s−1, and Q = 0.65.
In cases referred as ↗ νin, ↗ Gs, and ↗ Q, νin = 21 × 10−6 m2.s−1, Gs = 40.0
× 10−6 N.m−1 and Q = 0.75, respectively. Results for rigid spheres arising from
Chap. 3 are also shown and referred as ‘sph’.
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as ‘sph’.
Impacts of the bending modulus Eb and the spontaneous curvature co have shown

insignificant effects on the results (not shown). Since changes of the membrane area
are less than 1 % in the original computations, the impact of the area modulus Ea is
not assessed. In a study presented in App. A, the effect of the cytosol density (ρin)
is shown to have a negligible effect on the electrical print, when physiological values
are considered.

4.3.2 Comparison with experimental data

Numerical results of Sec. 4.3.1 state that the RBC dynamics in the aperture depends
on its trajectory. In particular, the distance from the aperture walls drives the time
spent by the cell in the detection area and even the experienced rotation. More
precisely, it is shown that particles traveling close to the aperture wall spend more
time in the orifice and rotate earlier than the others. Besides, these dynamical effects
are directly visible on the generated electrical print. On the one hand, the time spent
in the orifice is linked to the electrical print duration. On the other hand, the cell
rotation increases the shape factor that induces a peak on the pulse. In summary,
approaching the orifice wall implies an increase of the duration and a shifting of
the peak to the left-hand side of the pulse. This section aims at verifying these
predictions on an experimental pulses acquisition. The pulse duration is measurable
according to the metric W introduced in Chap. 3 (see Eq. 3.3) but a measurement
of the moment at which the peak occurs still needs to be defined. This is done
first by introducing the metric P. Then, for each pulse obtained experimentally and
numerically, W is plotted against P to emphasize the close links between trajectory,
cell rotation and orifice occupation time. Finally, comparisons of the numerical
pulses with experimental signatures are presented.

Measuring the Peak Position

The position of the peak is rated as follows:

P(thresh) = T2 − T0
T1 − T0

× 100 (4.6)

Figure. 4.17 illustrates the construction of instants T0, T1 and T2 that are required
in Eq. 4.6. Note that T0 and T1 depend on a threshold while T2 corresponds to the
moment at which the pulse maximum is attained. Hence, P consists in projecting the
pulse maximum on a pulse width (W(thresh)), and assessing its relative position.
As a reminder, W(thresh) is defined as:

W(thresh) = T1 − T0 (4.7)

If the peak is observed at the beginning of the pulse, P tends to 0 %, whereas P
increases as the peak is delayed on the pulse. The cutting threshold must be chosen
in such a way it intersects the ascending and descending slopes of the electrical
signature.
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∆Rm or ∆Um

T ime

Figure 4.17 – Sketch of T0, T1 and T2 calculus.

Graphing the pulse width against the peak position

An experimental acquisition is performed as described in Sec. 3.2.2, this time by
analysing a blood sample coming from a healthy patient. As done in Sec. 3.2.2,
the experimental pulses are scaled with the averaged maximum of the ‘bell-shaped’
signatures ∆Um|bs while numerical results are scaled by the maximum of case 1
∆Rm|bs (see Fig. 4.10). This yields the scaled pulses ∆U∗ and ∆R∗:

∆U∗(t) = ∆U(t)
∆Um|bs

, ∆R∗(t) = ∆R(t)
∆Rm|bs

Note that a simple method allowing the extraction of ‘bell-shaped’ pulses from an
experimental acquisition is provided in Chap. 5.

With the same convention that defines Wr as the width calculated on a scaled
pulse (defined by Eq. 3.5 and Eq. 3.6), Pr denotes the peak position evaluated on
∆U∗ or ∆R∗. Note that Pr may be calculated directly from ∆U and ∆R as:

Pr(thresh′) = P(thresh′ ×∆Um|bs), (4.8)

and
Pr(thresh′) = P(thresh′ ×∆Rm|bs), (4.9)

respectively. If the readers feel uncomfortable with these notations, they are referred
to App. E, where they are summarized and illustrated.

Thereafter, the metrics Wr and Pr are assessed for each experimental signature
and each numerical pulse, with thresh′ = 0.5. In Fig. 4.18, the scatter plot of Wr

as a function of Pr is shown: the experimental data are shown in red points and the
numerical results are depicted in black points connected with a black dashed line.
The numbers in Fig. 4.18 refer to the different simulated cases of Fig. 4.10.

In such a representation, electrical pulses are organized in two main branches
that are connected at Pr ≈ 80 % and Wr ≈ 17 µs. The lower branch, for which
Wr < 17 µs, refers to cases 1-5 from simulations. More precisely, it corresponds
to the region of the aperture that extends from the perfectly centred path, to the
first trajectory for which the cell can reach a π/2 orientation inside the aperture (in-
between cases 5 and 6). The upper branch (Wr > 17 µs) corresponds to simulated
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Figure 4.18 – Scatter plot of Wr according to Pr for the experimental acquisition
(red points) and the numerical results (black points connected by a dashed line).
Metrics are calculated with a relative threshold of 0.5.

trajectories 5-10 and display a decreasing pulse duration (Wr) with respect to the
peak position (Pr). This is in agreement with the previous statement that when the
trajectory progressively approaches the aperture wall, the peak occurs sooner and
the pulse becomes longer.

A third cluster placed in the region of low Pr (between 5% and 15%) is ob-
served experimentally, but not obtained by considering trajectories of Fig. 4.10 in
the simulations. These pulses may be explained by trajectories even closer to the
orifice edges. Considering such trajectories however leads to unstable computations.
Further developments are needed to accurately reproduce this isolated cluster but
preliminary indications are available in App. B.

Superimposing numerical and experimental pulses

Let define PPn andWn, respectively Pr andWr computed for an arbitrary numerical
pulse, as far as PPe and We are the same metrics but for a given experimental
pulse. In Fig. 4.19, each numerical pulse is superimposed with experimental pulses
satisfying PPn − 2% < PPe < PPn + 2% and Wn − 1µs < We < Wn + 1µs. Note
that the pulses are centred in time for better comparisons.

The pulse signatures predicted numerically are well retrieved experimentally de-
spite the variable amplitudes that originates from the scattered RBC volumes within
a blood sample. Nevertheless, some experimental pulses exhibit shapes that do not
correspond to numerical results. However, these cases are rare and can be explained
by particle coincidences in the aperture.

Note also that the amplitude of the numerical pulses associated with rotating
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cells seem in the lower range of the experimental data. In other words, simulations
possibly overpredict the compression of the rotating cells in the aperture. In our
simulations, membrane viscosity has been neglected and this assumption is a possible
cause for this relative discrepancy.

4.4 Conclusion

In this chapter, a method for tackling the numerical simulation of a deformable
particle in a Coulter counter was presented. This approach takes into account the
cell deformation occurring before it enters in the sensing region. A complex pipeline
composed of several simulations is required to achieve results.

Note that in the range of the electrical field observed in the studied configu-
ration (of the order of 1.0 × 106 V.m−1), RBC electro-deformations were reported
[132][116], so that greater deformation should be expected if dielectrophoretic (DEP)
forces were taken into account. Besides, due to the short loading times experienced
by RBCs in the presented simulations (a few tens of µs), the membrane viscos-
ity would play an important role in the maintaining of the cell shape although it
was not accounted for. Further investigations about the impact of DEP forces and
membrane viscosity should be performed in the future. Still, good comparison with
experimental data was obtained, demonstrated that the proposed pipeline and cur-
rent assumptions are appropriate to represent the main mechanisms at play.

A variety of rotation dynamics was observed numerically and shown to depend on
the RBC path in the aperture. On a perfectly centred path, the cell is aligned with
the aperture principal axis during its entire evolution in the sensing region. Then,
the more the trajectory is close to the aperture wall, the more the RBC experiences
an important rotation, in such a way it achieves a half-turn in the near vicinity of
the orifice edges. This infinity of rotation dynamics explains the huge variety of
pulses reported in the literature for aspherical and/or deformable particles. The
cell rotation produces an increase of the shape factor fs, which yields a peak on
the electrical pulse (viz. a short increase of the electrical perturbation). Hence, a
particle flowing in the wall vicinity is seen bigger than if it has followed a centred
path since the pulse maximum is taken as a measurement of the RBC volume. This
explains and illustrates the dynamical edge-effects leading to measurement errors.
A substantial deformation of the RBC is observed as it rotates on a near-wall path.
This deformation consists of a cell compression that appears to limitate the rise in
fs and thus the peak amplitude. Consequently, the RBC deformability may impact
the peak of rotation.

Regarding these results, two questions arise:
1) From the new understanding of the dynamical edge-effects, is it possible to

develop an original filtering method to improve the volume measurements?
2) The electrical pulses originating from near-wall trajectories depend on the

cell deformability. Hence, is it possible to process the RBC deformability from the
associated electrical print?

96



CHAPTER 4. NUMERICAL SIMULATION OF RED BLOOD CELLS IN AN INDUSTRIAL COULTER
COUNTER

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 4.19 – Comparison of numerical and experimental pulses. The numerical
pulses are superimposed with experimental (in red continuous line) data that have
the same width and peak position metrics, with a tolerance margin of ±1µsec and
±2% respectively. Graphs A, B, C, D, E, F, G and H refers to cases 1, 4, 5, 6, 7, 8,
9 and 10, respectively.
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Results presented in this chapter gave rise to patent filing1.
In Sec. 1.3.2, edge-effects producing skews in the measurement of the cell volume

were discussed. These artefacts overestimate the volume of the RBC passing near
the edge of the orifice, as demonstrated in the former chapter, and induce the typical
‘right-skew’ volume distribution (an example was shown in Fig. 1.5A). By enforcing
particles to pursue central trajectories, hydrodynamical focusing [154] was found to
produce a symmetrical distribution. However, this method implies a more complex,
technologically demanding, implementation of Coulter counters. Methods consist-
ing in rejecting inaccurate pulses were introduced [173]. Although improving the
volume distributions of the analyzed particles, these methods are unable to retrieve
a Gaussian-like distribution [129].

Generally, the pulse maximum is taken as the measurement of the particle volume
Vp. However, in addition to Vp, the electrical perturbation depends on the squared
electrical field E2 and the shape factor fs, which are directly impacted by the edge-
1Medical analysis device by impedance signal processing, 2019, Patent pending (FR)
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effects. This explains the measurement errors, since the relationship between the
measured volume and the actual volume Vp depends on whether the particle expe-
rienced edge effects or not. In particular, the numerical study of Chap. 4 shed light
on electrical and hydrodynamical edge-effects. In particular, it was shown that both
types may be stratified from their impact on the electrical print. On the one hand,
electrical artefacts are related to increases in the electrical field E occurring near the
aperture walls: particles passing close to the wall do not perturb the same electrical
field as particles flowing on the aperture axis, hence the different signals. On the
other hand, hydrodynamical edge-effects consist in particle rotation and deformation
that lead to changes in the shape factor fs. Variations in fs are observed when cells
undergo shear close to the walls. Such velocity gradients make the cell rotate, which
increases fs. Moreover, substantial deformation come with the rotation. These edge
effects produce complex signatures such as ‘M-shaped’ when dealing with spheres
(see Fig. 3.17F-H), or pulses with a peak if RBCs are considered (see Fig. 4.19D-H).
In contrast with near-wall paths, cells flowing in the core region are edge-effects
free and classical ‘bell-shaped’ pulses are observed: they are consistent with a con-
stant fs along the trajectory, and the pulse shape corresponds to the history of E
experienced by the cell.

An overview on the impact of edge-effects is given in Fig. 5.1. Figure. 5.1A and
B show respectively the dynamics of a RBC on a central and a near-wall trajectory,
while the evolution of a rigid bead close to the wall is depicted in Fig. 5.1C. Electrical
pulses associated to these particles dynamics are displayed in Fig. 5.1D. Note that
results of Fig. 5.1 arise from simulations that were presented in former chapters.
Electrical field isolines in the aperture are superimposed with the cell dynamics of
Fig. 5.1A, B and C. Besides, regions of dense electrical field near the aperture corners
and their impacts on the electrical pulse are highlighted by blue circles in Fig. 5.1B,
C and D. Furthermore, the RBC rotation and the induced peak on the electrical
print are indicated by black arrows (see Fig. 5.1B and D). In the considered regime,
one may map the edge-effects as shown in Fig. 5.1. Considering the core region of
the micro-orifice, the velocity profile is flat and the electrical field is homogeneous,
thus no edge effects are observed in Part A. In part B, velocity gradients implying
dynamical edge-effects are present. Finally, electrical edge-effects take place near
the aperture corner (Part C).

This chapter aims at detecting and removing pulses impacted by edge effects
to provide an accurate volume measurement of particles. Note that particles going
through part C also get across part B. In other words, part C is covered by part B
so that it is sufficient to detect dynamical edge-effects to filter irrelevant pulses out.
Since particles rotate in the shearing region (Part B), it is proposed to filter hydro-
dynamical edge-effects by sensing the particle rotation from the associated electrical
pulse. In the first part, the impact of rotation on the measured volume is shown.
Then the original filter is described and applied to experimental data. Furthermore,
it is shown that the proposed method provides results closer to hydrodynamical-
focusing than the filter currently implemented in HORIBA Medical analysers. In
the last section, a second method for the detection of particle rotations is introduced.
Based on Neural-Network modelling, the latter is shown to provide results similar
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Figure 5.1 – Impact of the Edge Effects (EE) on the pulse shape. (A) and (B)
show RBC consecutive positions inside the aperture over electrical field isolines for
centred and near-wall trajectories, respectively (flow is from left to right). Picture
(C), displays a rigid bead on a near-wall trajectory. The impedance pulses related
to dynamics of (A), (B) and (C) are shown in picture (D). Notation ‘NW’ in (D)
stems from Near Wall. The cell rotation observed in (B) generates a peak on the
impedance pulses. This event is highlighted by a black arrow in (B) and (D). In
addition, the electrical EE are outlined by blue circles, as shown in (B), (C) and
(D).
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Part A

Part B

Part C

Figure 5.2 – Mapping of edge-effects in the micro-orifice. In part A, there is no
edge effects. In part B, velocity gradient induces dynamical edge effects. In part C,
regions of dense electrical field cause electrical edge-effects.
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Figure 5.3 – Simulated impedance measurements (right plot) corresponding to a
RBC following different trajectories (left plot). Impedance pulses are related to
numerical simulations presented in Sec. 4.3 and shown in Fig. 4.10. For sake of
clarity, the electrical pulses corresponding to trajectories 2 and 3 are not shown.

to the first method.

5.1 Discrepancy in the volume measurement with
classical Coulter counters

This section aims at introducing the fundamental concept from which the proposed
filters are derived. More precisely, the impact of the cell rotation on the measured
volume and its link with the trajectory are explained. The argumentation is based
on numerical results of Sec. 4.3. As a reminder, the electrical perturbation of a
RBC was assessed for ten different trajectories. In all cases the same RBC is used,
with identical geometrical characteristics and mechanical properties. Only its initial
location (and thus its trajectory and dynamics in the aperture) changes. Some of
the electrical pulses are reminded in Fig. 5.3.
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Figure 5.4 – Reliance of the measured volume (A), the particle orientation at the
moment at which the pulse reaches its maximum value ∆Rm (C), and the R metric
(D), according to the distance from orifice center of mass. Parameters pu and pd
required for assessing R are set to 7/8 and 1/2, respectively. Picture (B) illustrates
how the distance from the aperture center D and the orientation at ∆Rm (θm) are
defined.

5.1.1 Errors in the measured volume

In a Coulter counter, the maximum ∆Rm is taken as a measurement of the particle
volume Vp. One may thus conclude from Fig. 5.3 that errors of about 55 % may
be made on the volume, depending on the trajectory. For instance, the maxima of
cases 1 and 10 in Fig. 5.3 are respectively 12.6 Ω and 19.3 Ω, thus a RBC following
a near-wall path is seen 1.53 times bigger than a cell evolving in the core region.

Figure. 5.4A displays the evolution of the measured volume ∆Rm according to
the cell distance with respect to the aperture central axis D. As shown in Fig. 5.4B,
D is evaluated as the distance between the RBC center of mass and point (0,0,0)
at the moment when the trajectory crosses the orifice middle section (viz. plane
(~ey, ~ez)). From Fig. 5.4A, the measured volume in the core region of the aperture
(D ∈ [0 ; 13 µm]) is stable around 12.6 Ω. Taking the perfectly centred path as the
reference, the error at D=13 µm is 3 %. Overestimations of the cell volume become
much larger for D > 13 µm: ∆Rm is an increasing function of D between 13 µm
and 17µm and then appears to stabilize around a value of 19.3 Ω. This discrepancy
in measured volume explains the typical ‘right-skew’ volume distributions observed
experimentally (discussed in Chap. 1, shown in Fig. 1.5A).
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5.1.2 Impact of the cell rotation on the measured volume

As discussed previously, variations of the shape factor fs are observed near the orifice
edges. Such changes in fs result in the cell rotation that increases the electrical
perturbation. In that sense, the isolating particle resists more to the electrical
current, which yields a peak on the electrical pulse and overestimates the cell volume
(compared to a centred trajectory).

As represented in Fig. 5.4B, the orientation of the cell when the pulse maximum
is reached (θm) is evaluated for the 10 cases of Fig. 5.3. In Fig. 5.4C, the evolution
of θm according to D is depicted. If D > 16 µm, the time spent by the cell in the
detection area is sufficiently long (because of low velocities near the wall) and the
shear undergone by the particle is sufficiently strong for the RBC to reach a π/2
orientation inside of the aperture. On the contrary, in the core region of the micro-
orifice, there is a flat velocity profile: the cell does not rotate and θm ≈ 0 when D
< 13 µm. Between 13 µm and 16 µm, the cell undergoes shear but does not spend
enough time in the aperture to reach θm = π/2.

It should be noted that both ∆Rm and θm display a sigmoid-like profile (see
Fig. 5.4A and C), thus supporting the approach of detecting the RBC rotation to
select relevant pulses for the volume measurement. In particular, when θm ≈ 0 rad,
∆Rm takes a value close to 12.6 Ω (see D < 13 µm) whereas if θm = π/2, ∆Rm
shows its maximum value that is around 19.3 Ω (D > 16 µm). Moreover, if D is in
the range [13 µm ; 16 µm], θm increases from 0 rad to π/2 rad, in a same way ∆Rm
increases from its minimal value to its maximal value (12.6 and 19.3 Ω, respectively).

As highlighted by black arrows in Fig. 5.1B and D, the RBC rotation in the
aperture produces a peak in the impedance pulse. A peak is defined as an increase
in the electrical perturbation whose length is shorter than the pulse duration. A
method designed to detect such peaks is described in the next section

5.2 Detection of the particle rotation from the
electrical pulse

In Sec. 5.1, the link between the particle rotation and the error on the measured
volume was established. Considering near-wall paths, RBCs rotate, which induces
a peak on the electrical perturbation. A simple metric computed from the pulse is
introduced in Sec. 5.2.1, which enables a separation between ‘bell-shaped’ pulses and
pulses presenting a peak. In Sec. 5.2.2, this criterion is shown to provide an expected
Gaussian-like volume distribution of RBCs. Furthermore, the proposed filter is
compared with hydrodynamical-focusing [154] and the filter currently implemented
in HORIBA Medical automata.

5.2.1 Metric definition

The metric denoted by R is computed as the ratio of the two pulse widths (see
Eq. 3.3) defined in Fig. 5.5A. By defining Wu and Wd as Wu = W(∆Rm × pu) and
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Figure 5.5 – Illustration of the calculation of Wu and Wd required for assessing the
metric R (A). Calculation of R on case 1 and case 10 of Fig. 5.3 are given in (B)
and (C), respectively. Computations of Wu and Wd are shown for resistive pulses
∆R, but the method stands for tension pulses ∆U .

Wd = W(∆Rm × pd), the metric R takes the following expression:

R = Wu

Wd
× 100, in % (5.1)

Parameter pd should be chosen in such a way ∆Rm × pd intersect the ascending and
descending slopes of the pulse, and Wd informs on the time spent by the particle in
the micro-orifice. If a peak is present on the pulse, Wu meant to measure the time
spent in the peak. Hence, pu must be defined so that ∆Rm × pu crosses the peak.
Notice that in the absence of peak, Wu should be closer toWd. Hence, R is intended
to take a low value in case of peak of rotation (see Fig. 5.5B) and a high value for
a ‘bell-shaped’ pulse without peak (see Fig. 5.5C). Note that Wd increases when
the cell trajectory gets closer to the aperture edges. This is expected to reinforce
the difference between Wu and Wd if the pulse presents a peak. R is evaluated
for the 10 simulated cases depicted in Fig. 5.3 and its evolution according to D is
shown in Fig. 5.4D. For assessing these R values, pu and pd are set to 7/8 and 1/2,
respectively. When θm is small (D < 13 µm), high values ofR are obtained (between
60 and 70 %), while for cases where the RBCs may reach θm = π/2 (D > 16 µm),
R is below 30 %.

By comparing Fig. 5.4A and D, it is seen that rejecting pulses for which R is
below 55% would allow to reduce the maximum measured volume (∆Rm) from 19.3
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Ω to 14.0 Ω (∆Rm for a central path being 12.6 Ω). Consequently, the maximum
overestimation should be reduced from 53 % to 10 %. The R metric thus appears
to be relevant to isolate the complex pulses presenting a peak of rotation from the
‘bell-shaped’ pulses for which RBCs do not rotate. Hence, a filter based on R may
be introduced. This filter consists in rejecting pulses having a width ratio (R) below
55%. Applying such a filter is expected to reduce errors in the measured volume
and provide a more accurate assessment of haematological parameters related to
the RBCs volumes. The accuracy of the R based filter is evaluated in the following
section for the case of experimental data.

5.2.2 Application to experimental data

A blood sample coming from a healthy patient is analysed by the use of a Yumizen
H2500 (HORIBA Medical). This haematology analyser is equipped with different
measurement units dedicated to specific tasks. In a first device, RBCs counting and
sizing are performed with a classical Coulter counter whose configuration was used
for the numerical simulations (Sec. 3.1). In a second system, optical measurements
are included in a hydro-focused Coulter counter. This module is used for detect-
ing platelets among other blood cells (most of them being RBCs) by combining
impedance and optical measurements. During the blood sample analysis, electri-
cal pulses from both aforementioned systems are recorded. Pulses from the system
equipped with hydrofocusing will be used as the reference for assessing the accuracy
of the R based filter. Optical measurements performed in the second device are not
needed and are not recorded.

For each pulse coming from the classical Coulter counter, the maximum (∆Um),
the width (W, see Eq. 3.3) and the width ratio (R) are computed. Parameters pu
and pd required for the calculation of R are taken as 7/8 and 1/2, respectively. The
pulses durations (W) are computed with a threshold of 0.28 V according to Eq. 3.3,
a typical pulse amplitude being around 1.5 V. Figures. 5.6A and 5.6B show the
scatter plots of W as a function of ∆Um and R as a function of ∆Um, respectively.
Stating that longer pulses are related to near wall trajectories, Waterman et al.
[173] proposed to reject pulses that have a width above a certain threshold. Such
a filter may be represented as a horizontal line in Fig. 5.6A. In Yumizen H2500,
instead of a constant width threshold, pulses that are placed above a logarithmic
curve are rejected (see Fig. 5.6A). As discussed in Chap. 1, this curve is defined by
the following expression:

W = A
√
log(∆Um)−B, (5.2)

with A and B set to 2.01e-05 and -2.4, respectively. These two types of filters appear
to split the pulse population arbitrarily. In contrast, two distinct clusters separated
by a threshold of 52 % with respect to the R axis are observed (see Fig. 5.6B) This
threshold agrees with the value of 55 % that was predicted numerically. It should be
noted that the cluster located below R = 52 % spreads between 1.25 V and 2.8 V
along the ∆Um axis, while the cluster above R = 52 % takes ∆Um values included
in [0.7 V ; 2.2 V]. This supports the numerical results stating that pulses with low
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(A) (B)

Figure 5.6 – Scatter plots of the experimental results for a blood sample analysed
with Yumizen H2500 device. (A), Scatter plot of W against ∆Um. (B), Scatter plot
of R according to ∆Um. Pulses width are calculated with a threshold of 0.28 V,
while pu and pd required for assessing R are set to 7/8 and 1/2, respectively. In (A)
the filter by Waterman [173] is illustrated with the horizontal continuous line, and
the logarithmic filter from HORIBA Medical is shown in dashed line. In (B), the
introduced R-based filter is represented as a horizontal continuous line.

R are linked to cells rotations and volumes overestimations (see Fig. 5.4A ,C and
D).

Histograms of ∆Um obtained with the classical counter and the hydrofocused
counter are shown in Fig. 5.7A. They are denoted by ‘c’ and ‘hf’, respectively. Us-
ing hydrodynamical-focusing gives a symmetrical and Gaussian-like ∆Um distribu-
tion while a right-skewed volume distribution is retrieved with the Classical system.
Two filters are applied on the data coming from the classical counter. Applying
the built-in Yumizen H2500 filter that consists in rejecting the pulses placed above
the logarithmic function of Fig. 5.6A provides the distribution indicated as ‘c-Log’
in Fig. 5.7A. Case ‘c-Log’ is more symmetrical than ‘c’, but is still right-skewed.
However, rejecting pulses having a width ratio (R) below 52 % renders a perfectly
symmetrical distribution, as depicted by case ‘c-WR’ in Fig. 5.7A.

The signal is treated an amplified differently between hydrofocused and classi-
cal systems. This explains the offset between the distribution obtained from the
hydrofocused system (case ‘hf’) and distributions arising from the classical system
(cases ‘c’, ‘c-Log’ and ‘c-WR’). Hence, in order to provide a quantitative compar-
ison between both systems, pulses amplitudes are calibrated before computing the
probability density functions shown in Fig. 5.7B. More precisely, pulses maxima
coming from the classical counter system are calibrated with ∆Um|cbs (ie. the aver-
aged ∆Um of case ‘c-WR’) and ∆Um from the hydrofocused device are scaled with
∆Um|hfbs (the averaged ∆Um of case ‘hf’). As illustrated in Fig. 5.7A, ∆Um|hfbs ≈
2.25 V and ∆Um|cbs ≈ 1.3V. The calibrated volume measurements are denoted by
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∆̃Um. A good comparison is observed between hydrofocused and classical systems,
provided that the R based filter is used.

Electrical pulses arising from the classical and the hydrofocused Coulter coun-
ters were recorded for 4 blood samples more. The electrical signals from these two
systems were respectively calibrated with ∆Um|cbs and ∆Um|hfbs , measured on the
first blood sample and illustrated in Fig. 5.7A. In other words, the blood sample
from wich distributions of Fig. 5.7A arise is used as a calibrator. Then, averages
and standard deviations of ∆̃Um are calculated and referred as mean(∆̃Um) and
std(∆̃Um). Note that the averaged ∆̃Um assesses the Mean Corpuscular Volume
(MCV), while the standard deviation leads to the RBCs Distribution Width (RDW)
when divided by mean(∆̃Um). As discussed in Chap. 1, such haematological pa-
rameters (in particular the RDW) are essential for the diagnosis of various diseases
[144].

Figure 5.8 shows the correlations of mean(∆̃Um)and std(∆̃Um) between the
hydrofocused system and the classical system for different applied filters. Regarding
the averages (Fig. 5.8A), good Pearson correlation coefficients (R2) are obtained
for all cases (‘c’, ‘c-Log’ and ‘c-WR’). Showing a R2 of 0.99, the R-based filter
is nevertheless in better agreement with the reference than cases ‘c-Log’ and ‘c’,
whose R2 = 0.96 and R2 = 0.93, respectively. Regarding the standard deviation,
results show that unfiltered data from the classical counter is poorly correlated to
the reference data from the hydrofocused system (see Fig. 5.8B, R2 = 0.6). The
correlation is improved with the logarithmic filter (see case ‘c-Log’ in Fig. 5.8B),
but the original filter appears to better correlate with the hydrodynamical-focusing
(R2 = 0.78 for ‘c-Log’ and R2 = 0.92 for ‘c-WR’).

In summary, the introduced R metric enables a filtering of pulses impacted
by the edge-effects. After filtering, symmetrical volume distributions in agreement
with the results from an hydrofocused Coulter counter are obtained. Besides, very
good correlations are obtained with the hydrofocused system in terms of statistics,
thus paving the way to an accurate assessment of haematological parameters with
a simpler and cheaper implementation. A further study is intended to defined the
optimal couple pu/pd, and the sensibility of the R-based filter to such parameters.

5.3 Neural Network modeling for detecting particles
rotation

Detecting the particle rotation from the pulse and excluding the pulse from the
measurement statistics is shown to fix the right-skewed volume distribution ob-
tained with classical Coulter counters. The detection is enabled by a simple metric
computed from the pulse ( see R in Sec. 5.2.1). With the aim of proposing an al-
ternative to sort the pulses, a second method based on this principle is proposed in
the following. The detection of rotations is allowed by a Neural Network (NN) that
is trained with numerical data, as explained in Sec. 5.3.1. Then, in Sec. 5.3.2, NN
results are compared with the R based filter previously introduced.

NNs are models built by combining simple mathematical objects called neurons
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Figure 5.7 – Pulses maxima (∆Um) distributions depending on the system and the
applied filter. (A) Histogram obtained from classical and hydrofocused Coulter
counters are referred to ‘c’ and ‘hf’, while histograms obtained after applying the
R-based filter and the logarithmic filter on the classical system are denoted ‘c-WR’
and ‘c-Log’, respectively. The ∆Um averages of cases ‘c-WR’ and ‘hf’ are referred to
∆Um|cbs and ∆Um|hfbs and highlighted by vertical black lines. (B) Probability density
functions of the calibrated pulse maxima (∆̃Um). Pulses from the classical system
are scaled with ∆Um|cbs while pulses from the hydrofocused counter are scaled with
∆Um|hfbs .
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(A)

(B)

Figure 5.8 – Correlations of hematological parameters between the classical Coulter
counter and the hydrofocused Coulter counter, depending on the applied filter. Cor-
relations of averages and standard deviations are shown in (A) and (B), respectively.
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Figure 5.9 – (A) Principle of an elementary neuron that computes y from a given
number of inputs xi. (B) Illustration of a simple Neural Network (NN).

(see Fig. 5.9A). Given a numberN of inputs xi, it computes z, the sum of xi weighted
by parameters wi:

z =
N∑
i=1

xiwi (5.3)

Then, an activation function fa is applied to the weighted sum z, that leads to the
neural output y:

y = fa(z)

= fa

(
N∑
i=1

xiwi

) (5.4)

The combination of these elementary neurons enables the construction of com-
plex and non-linear models. As illustrated in Fig. 5.9B, neurons are generally or-
ganised in layers: neurons are connected to each elements of the preceding and
following layers. Such a NN structure is commonly called Multi-Layer Perceptron
(MLP). Given a problem that consists in predicting apred ∈ RNo from ain ∈ RNi , the
latter (ain) is given as an income to the input layer. Then, ain is propagated in the
NN until the output layer, that yields the model prediction apred. In this respect, the
input and output layers must contain Ni and No neurons, respectively. Hence, NNs
may handle problems of arbitrary dimensions. Furthermore, provided the number
of neurons is sufficient, NNs were proven to approach any continuous functions in
a compact subset of space [22, 66]. From a database composed of couples ain/aobs,
the model weights w are learned in such a way the NN predicts apred the closest to
aobs, given the corresponding ain. This is done with a gradient descent method. (1)
A ain associated to aobs is drawn randomly from the training database, and given
to the MLP for assessing apred. Given aobs and apred, the loss function FL rates
the prediction error. (2) The gradients of FL with respect to the model weights are
computed and used for enhancing the model. (3) A new couple ain/aobs is chosen
and the procedure is repeated from step 1. Note that this procedure update the
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Figure 5.10 – Neural Network architecture used for detecting the particle rotation
from the electrical pulse. The hidden layer is Fully-Connected (FC) to input and
output layers and contains 20 Neurons (20N).

model parameters once for each couple ain/aobs. In practice, the training database
is split in several batches (groups of pairs ain/aobs) that are treated at the same
time for upgrading the model. All batches are employed for the weights updating in
a training iteration commonly called ‘epoch’. Generally, several epochs are required
for the model to converge to an optimum. For a more detailed introduction to NNs,
readers are referred to App. C.1.

5.3.1 Model description

The modelling is performed with a MLP whose architecture is shown in Fig. 5.10.
It is composed of a single hidden layer and all activation functions of the model are
sigmoid functions. The MLP takes an electrical pulse as input to predict whether
the cell has undergone a rotation. In the following, we detail how input and output
layers are designed to tackle this clustering problem. Then, the training step of the
model from numerical data is presented.

NN Input Layer

Electrical pulses are temporal sequences whose sampling is monitored by a given
time step (typically 1 µs). However, signals durations depend on the trajectory, so
that pulses may be described with temporal series of variable sizes. For example,
a long pulse like case 10 is described with more points than a shorter one like case
1 (see Fig. 5.3). This makes pulses unprocessable by the MLP because the input
layer must have a specific size. This section describes the pulse treatment applied
to address this issue.

Overcoming this problem is done by scaling the pulse with a pulse width (W)
(see Eq. 3.3) before resampling the signal with a series of Ns points. Figure. 5.11
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illustrates the full strategy when applied to cases 1 and 10, from simulations. Infor-
mation about the particle rotation is expected to be in the pulse shape but not in
the pulse amplitude. This is why the choice was made to scale the electrical print by
its maximum, as shown in Fig. 5.11A. Then, using a threshold of 0.5 × ∆Rm, pulses
widths W1 and W10 are computed for cases 1 and 10, respectively (see Fig. 5.11A).
Once scaled in both amplitude and time, cases 1 and 10 may be represented as in
Fig. 5.11B. Note that the part of ∆R/∆Rm above 0.5 is placed between t/W(∆Rm

2 )
= 0 and t/W(∆Rm

2 ) = 1, for the sake of convenience. Then, pulses are sampled with
Ns points between t/W(∆Rm

2 ) = 0 and t/W(∆Rm
2 ) = 1. In this manner, cases 1 and

10 lead to ‘1 sampled’ and ‘10 sampled’, as shown in Fig. 5.11B.
Once treated, the pulse is described with a series of Ns values of ∆R/∆Rm,

denoted as Pi in Fig. 5.11C (i ∈ [1 , Ns]). This set of Pi is taken as the input of
the NN. Furthermore the time during which the pulse is higher than a threshold
is intended to provide relevant indications on the trajectory, which itself has been
shown to drive the rotation undergone by particles (see Fig. 4.11A). Therefore,
W(∆Rm

2 ) is given as an input parameter, in addition to the set of Pi. In the table
shown in Fig. 5.11D, the input values related cases 1 and 10 are shown in the ‘input’
column (for Ns = 8). This way, cases 1 and 10 are represented with the same number
of variables (Ns + 1) while they are of different lengths initially. A drawback of this
method is that short pulses are better described than longer ones. This implies
the choice of a sufficiently large Ns to properly characterize the longest pulses. In
practice, Ns = 20 will be used in the following sections.

This treatment is illustrated for numerical resistive pulses ∆R in Fig. 5.11 but the
process remains valid for experimental tension pulses ∆U . Furthermore, the choice
of scaling the pulse by its maximum was also motivated by the aim of designing a
NN suited for experimental data, while it is trained from a numerical database.

NN output layer

The output layer is composed of a single neuron that renders the model prediction:
did the cell undergo a rotation in the aperture or not? From a mathematical point
of view, these two options constitute a binary choice that is translated by either 0
or 1, respectively. As shown in Fig. 5.1A, in case 1, the RBC does not rotate in
the aperture, so that an output value of 1 is associated with case 1, as shown in
Fig. 5.11D (see column ‘Output’). In contrast, case 10 is associated with an output
value of 0 because the RBC rotates in the orifice, as depicted in Fig. 5.1B.

As it was shown in Fig. 5.4C, a smooth transition in θm exists between cells that
do not rotate at all and cells that can reach an orientation θm of π/2. Consequently,
it is choosen to set an output of 1 if θm < 0.3 rad and a value of 0 if θm > 0.3 rad.
This is represented as an horizontal line in Fig. 5.12A, which shows θm as a function
of D for the database considered in the following (discussed in the next section).

Remind that the activation function used for all neurons is the sigmoid function.
This is why the model is unable to give back a strict value of 0 nor 1 but renders a
score included in [0 , 1] (due to the definition of the sigmoid function). Hence the
clustering must be done by thresholding the NN score. A threshold of 0.5 on the
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Case Sampling: P1, ... , PNs W(∆Rm
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2 0.5 0.8 0.98 0.84 0.71 0.69 0.72 0.5 26.3 0

Figure 5.11 – Treatment applied to pulses in order to make them readable by the
MLP of Fig. 5.10. The process is illustrated for two different pulses predicted by
numerical simulations (cases 1 and 10). (A) Pulses are first scaled by their maximum
(∆Rm). (B) The timescale is divided by the metric W, computed with a threshold
of 0.5 (see picture A). This is equivalent to calculateW with a of 0.5 × ∆Rm on the
original pulse (ie. before it is scaled by ∆Rm). Note that for the sake of clarity, the
part of the pulse that is above 0.5 is represented between 0 and 1. (C) The pulse
is then resampled as a series of Ns Pi between 0 and 1. (D) The MLP of Fig. 5.10
takes as input the series of Pi amplitudes (i ∈ {1 ; 2 ; ... ; Ns }) in addition to the
associated W (see input column, Ns = 8 in this example). The output associated
with the pulse depends on whether θm is greater or lower than 0.3 rad (see output
column). Note that the treatment is illustrated for a resistive pulse from simulation,
but the procedure is applicable for tension experimental pulses.
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NN score is an intuitive way to doing that for instance. Note that considering a
score between 0 and 1 assesses the sharpness of the model decision-making (viz. if
the NN is sure about its classification or not).

Numerical database

The numerical database involved in this modelling is composed of 85 simulations and
their associated pulses. More precisely, it is composed by cases 1-85 of Tab. D.1 (see
App. D). The streamline monitoring the particle trajectory varies in a range covering
the major part of the aperture. It is defined by the scalar ra (see Tab. D.1) that
is related to the point (0, ra, 0) from which the streamline is extracted. Moreover,
the shear modulus Gs, the internal viscosity νin, the reduced volume Q and the cell
volume were varied during the database building. This is done to make the model
robust with respect to changes in the RBC properties.

Cases 1-85 of Tab. D.1 are represented in a scatter graph of θm according to D
in Fig. 5.12A. The database is split into a ‘training dataset’ and a ‘test dataset’. The
‘training dataset’ is used for updating the NN weights during the training step, while
the ‘test dataset’ is only employed for assessing the model accuracy. More precisely,
the ‘test dataset’ is made up of cases 2-21, of Tab. D.1 (see Appendix. D). The target
value is set according to the condition on θm, as discussed in the previous section.
Figures. 5.12B and C show cases that have a target value of 1 and 0, respectively
(viz. θm < 0.3 rad and θm > 0.3 rad). Note that pulses are treated as detailed in
Fig. 5.11 by using Ns = 20.

Training of the Neural Network

The NN illustrated in Fig. 5.10 is built by means of TensorFlow (https://www.
tensorflow.org/). The model weights are updated with the ADAM method [81]
which is a variant of the classical descent gradient method. In particular, error
gradients are calculated with the back-propagation method presented in App. C.
Furthermore, the loss function to minimize is the Root Mean Square (RMS) error.
The training procedure is performed over 10 000 epochs (number of iterations, see
App. C) with a batch size that equals the ‘training dataset’ size.

In the right column of Fig. 5.13 are shown NN scores against θm for different
epochs of the training. The epoch is indicated by the vertical line shown in the
graph of the left column (see Fig. 5.13), which depicts the evolution of the RMS
error according to the training epoch. In the first epoch, the NN score is almost
constant but rapidly takes a sigmoid-like profile according to θm (see first and second
rows of Fig. 5.13). At epoch 4000, θm < 0.3 and θm > 0.3 are already separated by
a threshold of 0.5 on NN score. As the model learning progresses, the transition in
NN scores occurring around 0.3 rad becomes steeper. For instance, at the end of the
NN training (epoch 10 000), NN scores between 0.95 and 1.0 are observed for θm <
0.3 rad, while NN scores between 0.0 and 0.05 are obtained when θm > 0.3 rad.

Note that the ‘test dataset’ depicts the same trend than the ‘training dataset’,
for all epochs of the training. This supports the fact that no overfitting takes place
during the model training. As well, the error made on the ‘test dataset’ decreases
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Figure 5.12 – Representation of the database used for training the MLP. Picture (A)
display θm according to D for the training and test datasets. In (B) and (C), are
shown pulses for which θm is greater and lower than 0.3 rad, respectively.

Confusion Matrix θm < 0.3 rad θm > 0.3 rad
NN Score > 0.5 5 0
NN Score < 0.5 0 15

Table 5.1 – Confusion matrix on the test dataset obtained by applying the MLP of
epoch 10000.

during the whole training in a way similar to the error on the ‘training dataset’.
Reminding that the ‘test dataset’ is not used for updating the NN, one may conclude
that the model successfully learned the problem. The confusion matrix assessed for
the ‘test dataset’ in Tab. 5.1 emphasise this point by showing a perfect clustering
of θm < 0.3 and θm > 0.3 with a threshold of 0.5 on NN score. The model of epoch
10 000 was used for assessing Tab. 5.1.

A robustness test was also performed by changing the test dataset. By defining
cases 22-24, 26-31, and 33-38 (see Tab. D.1) as the ‘test dataset’ and the remaining
cases included in 1-85 as the ‘training dataset’, the model was shown to converge
and similar results were obtained (not shown).
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Figure 5.13 – Evolution of the MLP predictions (ie. NN score) according to θm,
during the training step (Right graphs). Left pictures illustrate the considered
epoch as a vertical line over the graph showing the RMS error against the training
epoch. The six rows correspond to epochs 0, 2000, 4000, 6000, 8000 and 10000, from
the top-down.
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Figure 5.14 – Distributions obtained on an experimental pulses acquisition. Distri-
butions shown refer to the entire acquisition ‘c’, the part of the acquisition for which
R > 52 (‘c-WR’), and parts of the acquisition that shows a NN score above and
below 0.5.

5.3.2 Comparison with the Width Ratio based filter

Concerning pulses predicted by numerical simulations, the NN has been shown to
detect accurately the cell rotation (see Tab. 5.1). However, numerical data are not
plagued with experimental errors and noise. Hence, there is a need for assessing the
model accuracy in the case of experimental data. In this section, the R-based filter
of Sec. 5.2 is compared with the NN model of Sec. 5.3.1.

The experimental pulses coming from the analysis of the blood sample of Chap. 4
(see Sec. 4.3.2) are treated as done in Fig. 5.11 and given to the NN of epoch 10 000
for assessing the NN scores. Applying a threshold of 0.5 to the NN scores leads to two
pulse populations. The ∆Um histograms for these two populations and for the whole
set of pulses are depicted in Fig. 5.14. Note that ‘c’ denotes the distribution arising
from the entire acquisition, without filtering. Besides, the ∆Um histogram obtained
after applying the R-based filter of Sec. 5.2 is shown for comparison (see ‘c-WR’ in
Fig. 5.14). For the entire population (case ‘c’), the typical right-skew distribution is
again shown, while thresholding NN scores enables a symmetrical ∆Um distribution.
Pulses with a peak of rotation that yields an overestimation of the cell volume are
well sorted and are gathered in the distribution of NN scores below 0.5. This is
supported by higher values of ∆Um recovered for case ‘NN score < 0.5’ compared to
‘NN score > 0.5’. Although both ‘NN score > 0.5’ and ‘c-WR’ depict symmetrical
distributions, the MLP seems more restrictive. Indeed, fewer pulses meet the ‘NN
score > 0.5’ requirement than ‘c-WR’. More precisely, the R-based filter conserves
around 55 % of the pulses while only 45 % of the whole acquisition is retained with
the NN.

We now analyse the sorting with respect to different metrics of the pulses (their
width, peak position, width ratio). Figure 5.16A and B show scatter plots of Wr as
a function of Pr by coloring in blue the points that are related to pulses for which R
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Figure 5.15 – Bell-shape signatures extracted from an experimental pulse acquisition
by means of the NN filter: NN score > 0.5 (see left picture). The averaged signature
is represented with a bold continuous black line, and ∆Um|bs is illustrated with the
double arrow. The right plot displays the remaining of the acquisition (viz. pulse
for wich NN score < 0.5).

> 52 % and NN score > 0.5, respectively. The numerical results of Fig. 5.3 are also
displayed in order to indicate the associated trajectories. Remind that Wr and Pr
correspond to metrics W and P but computed from a threshold relative to ∆Rm|bs
or ∆Um|bs, whether a numerical or experimental pulse is considered, respectively.
∆Rm|bs equals the maximum of case 1 in Fig. 5.3 while ∆Um|bs is calculated as
the averaged maximum of the ‘bell-shaped’ signatures, from the considered experi-
mental acquisition. The extraction of ‘bell-shaped’ pulses for calculating ∆Um|bs is
allowed by the R-based filter or the NN model (see Fig. 5.15). This convention was
indispensable for comparing simulation and experimental results in former chapters
(Chap. 3 and Chap. 4). An overview on all these quantities related to electrical
pulses is given in App. E.

The R-based filter seems to retain pulses generated by RBCs following trajec-
tories between case 1 and case 5 (see blue points in Fig. 5.16A). More restrictively,
the NN is shown to be limited to trajectories in between cases 1 and 4 (see Fig. 5.3
and Fig. 5.16B). This explains the fewer number of pulses accounted in case ‘NN
score > 0.5’ compared to case ‘c-WR in distributions of Fig. 5.14.

A better view of the differences between the two methods (viz. the R based
filter and the NN) is provided by plotting R against Pr, as done in Fig. 5.16C and
D. Again, pulses whose R is above 52 % and NN whose score is higher than 0.5 are
colored in blue in Fig. 5.16C and D, respectively. By representing the acquisition on
a R/Pr graph, the population for which Pr is around 80% is scattered in terms of R
while it is concentrated along the Wr axes in a Wr/Pr scatter plot. This highlights
the transition between cases 4 and 6. As a reminder, the RBC slightly rotates in
case 4, whereas it achieves a π/2 orientation in the orifice when considering case 6
(see Fig. 4.11A). Hence, by comparing Fig. 5.16C and D the conclusion that the NN
is more sensitive to cells rotations is drawn. This is likely due to the fact that a
condition of θm < 0.3 rad is more restrictive than thresholding R to 52 %, in terms
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(A) (B)

(C) (D)

Figure 5.16 – Comparison of the R based filter and the NN filter on bi-dimensional
representations of an experimental acquisition. Numerical results of Chap. 4 are also
shown, which gives an idea on the pursued trajectories. The numbers shown in these
graphs are related to the different cases of Fig. 5.3. Note that the same experimental
acquisition used in Chap. 4 is considered in these graphs. Top row (A and B) graphs
Wr against Pr, while the bottom row (C and D) illustrates R according to Pr.
In graphs of the left column, pulse for which R > 52 are highlighted in blue. In
pictures of the right column, pulses for which NN score > 0.5 are colored in blue.
The dimensionless threshold involved in the calculations of Wr and Pr is set to 0.5,
as in Chap. 4.
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of measurements errors (see Fig. 5.4).

5.4 Conclusion

In classical Coulter counters, errors in the assessment of the particle volumes may oc-
cur because of the edge-effects. This edge-effects overestimate the cell volume, thus
leading to a right-skewed volume distribution. Hydrodynamical-focusing enforces
centered trajectories of cells, removes the edge-effects and allows a Gaussian distri-
bution. However hydrofocused systems are more expensive and complex in terms
of implementation. This is why classical Coulter counters with methods aiming at
filtering the edge-effects are still employed in haematological automata. Actually,
the development of filtering strategies was limited by the lack of knowledge on the
edge-effect and the expected Gaussian distributions are not obtained. Based on new
insights provided by numerical simulations of RBCs in a classical Coulter counter,
filtering methods were proposed in the present chapter. This original family of meth-
ods consists in detecting and rejecting from the analysis the pulses subjected to a
cell rotation in the sensing region. Two examples for detecting the cell rotation were
given, and both were shown to provide a Gaussian volume distribution. In a first
method, a metric is used to isolate the ‘bell-shaped’ pulses (suited for measuring
the volume) from pulses presenting a peak of rotation. This metric is defined as
the ratio of two widths computed from the pulse and denoted by R. In the second
method, a NN is trained from a numerical database. More precisely, it is trained to
reject pulses generated by RBCs that reach at least 0.3 rad in the micro-orifice.

The choice of parameters pu and pd required for R may likely be optimized for
providing a better sorting. A further study on the impact of these parameters on the
R-based filter is intended in the near future. Note that the two proposed methods
would be simple of implementation in current automata, in particular the R-based
filter.
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Classically, a Coulter counter is used to count the cells, and measure their size,
yielding for the RBC population the mean corpuscular volume (MCV) and the RBCs
distribution width (RDW). However, we have shown that non-hydrofocused counters
measure an apparent volume, which is reliable only if cells pass close to the aperture
axis. The pulses associated with cells passing close to the aperture wall are more
difficult to interpret. Their amplitude is not only proportional to the volume but also
depends on the cell dynamics. A hydrofocused counter would eliminate such pulses
and provide a robust volumetry measurement. However, cells properties determine
their dynamics underflow: instead of seeing the near-wall behaviour as a bias on the
volume measurement, one may use non-hydrofocused counters to infer more RBCs
properties than just their size.

Indeed, it is well-known that RBCs properties are affected by numerous patholo-
gies (malaria, spherocytosis, elliptocytosis, sickle cell, thalassemia). Measuring sev-
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T0 T2 T1

thresh

∆Rm or ∆Um

T ime

Figure 6.1 – Sketch of T0, T1 and T2 calculus.

eral thousands of RBCs in routine exams may thus provide the physician with valu-
able information about the health of the patient. This exploratory chapter deals with
the assessment of RBCs morphological and mechanical information from impedance
pulses. Detecting abnormal pulses that could be generated by pathological cells
implies the definition of standard impedance pulses (viz. the results which can be
expected from healthy people). A normal (healthy) exam from a non-hydrofocused
Coulter counter is thus defined in a first step. Then, by affecting the RBCs in
an experimental approach, it is shown that results out of the normality ranges are
obtained. This chapter ends with a preliminary study of the inverse problem of
numerical simulations of Chap. 4. In particular, a NN assessing some of the RBCs
parameters (shear modulus, internal viscosity ...) from the corresponding pulse is
presented.

6.1 Defining the normality on a given system

Hereafter, several blood samples collected from healthy patients are analysed to de-
fine the normality of impedance signals. The normality is observable in a qualitative
way on proper representations or may be assessed quantitatively by observing di-
rectly the pulses signatures and assessing their relative proportions. In the following,
the pulses normality for an ABX Micros 60 is presented. Note that the normality
would depend on the device and must be defined for each automaton.

6.1.1 Summary of the introduced pulses representations

In industrial counters, the pulse characterization is reduced to the assessment of
their maxima (∆Um) and their duration (W). The logarithmic filter currently im-
plemented in Yumizen H2500 and ABXMicros 60 (see Sec. 5.2.2) is a perfect example
of existing treatments applied to impedance pulses: it is only based on ∆Um andW.
New insights, supplied by numerical simulations, led to the introduction of original
metrics: R that measures the peak of rotation and P, that indicates the moment
at which the peak occurs in the pulse. As a reminder, W and P are expressed as
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(A) (B)

(C) (D)

(E) (F)

Figure 6.2 – Pulses representations introduced in the framework of this thesis. The
left column shows the classical scatter plots while the right column shows the
density contours. The retained density iso values are: 0.00025, 0.0005, 0.001, 0.0015,
0.0025. Metric R is calculated with pu = 7/8 and pd = 1/2, while Wr and Pr are
computed by using a threshold of 0.5.
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follow:
W(thresh) = T1 − T0, (6.1)

P(thresh) = T2 − T0
T1 − T0

× 100, (6.2)

in which instants T0, T1 and T2 are defined as in Fig. 6.1. Besides, R, that is defined
as a width ratio reads:

R = W(pu ×∆Um)
W(pd ×∆Um) , (6.3)

with pu and pd being user-defined parameters defined so that: 0 < pd < pu < 1.
Thresholding a pulse with absolute value as done in the computation of W and

P makes the results dependent on the cell volume. Hence, in order to provide
comparisons between different samples, it is preferable to scale the pulses with the
mean amplitude of ‘bell-shaped’ signatures ∆Um|bs (known as a robust measurement
of the mean cell volume MCV), before calculating W and P. Computing W and P
in such a way makes them relative to the MCV, thus they are denoted by Wr and
Pr, for the sake of clarity. In other words, Wr and Pr writes:

Wr(thresh′) =W(thresh′ ×∆Um|bs), (6.4)

and
Pr(thresh′) = P(thresh′ ×∆Um|bs), (6.5)

Illustrated in App. E, this convention was used in former chapters for comparing
numerical results with experimental data. Notice that this is not required for R
that involves thresholds defined as percentages of the pulse maximum ∆Um.

Based on these metrics, informative representations of the acquisitions are al-
lowed, as illustrated in Fig. 6.2. Plotting Wr against Pr (Fig. 6.2A and B) was
shown to organize pulses according to their trajectory in Chap. 4. Combining R
and ∆Um in a scatter plot highlights volume overestimations, and allows a filtering
aiming at avoiding sizing errors (Fig. 6.2C and D). Finally, scatter plots of R against
Pr (Fig. 6.2E and F) reveal the intermediate rotation dynamics in the aperture (viz.
from trajectories related to small rotations in the orifice to the first trajectory on
which particles may reach π/2 rad in the aperture). The representations of Fig. 6.2
are typical of healthy blood samples, but for the sake of concision, comparisons with
other healthy blood samples are not shown.

6.1.2 Normality of pulses signatures

The purpose of this section is to evaluate the reproducibility of electrical signatures
when healthy blood samples are considered. From graphsWr/Pr (see Fig. 6.2A and
B), specific pulses signatures can easily be extracted, as stated in Chap. 4.

By analyzing 22 blood samples coming from healthy patients by the use of ABX
Micros 60, graphs similar than Fig. 6.2 are obtained. For each acquisition, the
procedure detailed in Chap. 5 (R-based filter) is used to extract the ‘bell-shaped’
population and compute ∆Um|bs, the mean of their maxima. Then, metrics Wr

and Pr are assessed for each pulse. Specific boxes on the Wr/Pr representation are
then used to extract typical pulse signatures from the acquisition. Figure 6.3 shows
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Box1
Box2

Box3
Box4

Box5

Box6
Box7

Box8

Box9

Figure 6.3 – Illustration of boxes employed for the extraction of pulse signatures,
shown over the scatter graph Wr/Pr for a healthy blood sample. A threshold of 0.5
is used for computing Wr and Pr, according to Eq. 6.4 and 6.5.

the position of the chosen boxes, which were chosen after comparison of the results
associated to numerous samples. Of course, this is only one example of a relevant
set of boxes to sample the full measurement. Given a box of Fig. 6.3, pulses are
extracted and the average pulse is calculated as illustrated in Fig. 6.4.

A comparison box by box of the mean pulses coming from the 22 acquisitions is
presented in Fig. 6.5 (shown in black continuous lines). Note that each pulse is scaled
in amplitude by ∆Um|bs arising from the acquisition to which it belongs: the pulse
that is expressed by a function of time ∆U(t) leads to ∆U∗(t) = ∆U(t)/∆Um|bs.
These comparisons support the reproducibility of pulses signatures from a healthy
sample to another. Whatever the box, the average pulse from healthy samples are
very similar, thus defining a ’normal’ pulse expected for a healthy patient. A pulses
normality can be defined, thus opening the way to the detection of abnormalities.

6.1.3 Pulses statistics

Indications provided by pulses signatures can be supplemented by their respective
statistics. In particular, the pulses proportion in each box is evaluated for the 22
samples and the results are summarized in Fig. 6.6. Assessments on the 22 healthy
samples are represented as bars in Fig. 6.6 while error margins are defined as twice
the standard deviation. Almost one-half of the acquisition is located in box1 (around
45 %),which corresponds to central trajectories, while the remaining boxes contain
only a few percent each. Error bars of Fig. 6.6 support that the pulses distribution
between boxes is repeatable from a blood sample to another. Besides, they give
indications on boxes sensitivity. For example, boxes 4, 5, 8 and 9 are intended to
be more responsive to abnormalities than others, because of their small acceptable
ranges.
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Figure 6.4 – Example calculation of an averaged pulse. In this example, pulses were
extracted employing Box9.

One should recognize that the boxes definition could be optimized. Still, the
presented approach is applicable to any set of boxes.

6.2 Detecting abnormal Cells

This section is dedicated to the detection of unusual pulses, that are assumed to
be caused by abnormal cells. Abnormal RBCs are obtained by diluting a healthy
blood sample in reagents affecting their shape and rheology. Two chemical agents
are used separately: glutaraldehyde, which is known to fix the RBCs membrane
[91], and a surfactant n-Dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate also
called sulfobetaine 3-12, noted SB3-12 in this report (provided by Sigma-Aldrich),
that is shown to make RBCs spherical. Glutaraldehyde is a molecule that cross-
links membrane proteins, thus stiffening the cell. Indeed, several studies reporting
a reduction of the RBCs deformability when they are submitted to glutaraldehyde
are available in the literature [42, 62]. Furthermore, this molecule was shown to
fix RBCs, even if they are deformed in flow [91]. The discocyte shape of RBCs is
maintained at low glutaraldehyde concentration [114]. Contrary to glutaraldehyde,
SB3-12 has not been intensively studied. However, an expertise on the impact of this
molecule on RBCs may be found at HORIBA Medical. Experiments revealed that
RBCs are spherical at SB3-12 concentrations of about 100 mg.L−1 (see Fig. 6.7). In
addition, such changes appear to produce rapidly, since all cells are round 20 s after
they have been submitted to SB3-12.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure 6.5 – Box-wise comparison of mean pulses. The extraction is done according
to boxes of Fig. 6.3. 22 blood samples coming from healthy patients are shown in
black lines in these graphs. Besides, results from samples treated with glutaralde-
hyde at 0.5 % and SB3-12 at 90 mg/L are displayed.
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Figure 6.6 – Pulses populations in boxes of Fig. 6.3. Bars plot refers to the normal-
ity computed as the average of 22 healthy blood samples. The error margins are
calculated as twice the standard deviations, which arise from the 22 healthy blood
samples. The populations assessed for a blood sample treated with glutaraldehyde
and SB3-12 at concentrations of 0.5 % and 90 mg.L−1 (respectively) are also shown.

Figure 6.7 – Microscopic images of RBCs suspended in a PBS solution (left picture)
and in a SB3-12 solution at 100 mg.L−1 (right picture).

6.2.1 Evidence of the geometrical and rheological information
embedded in impedance pulses

Experimental protocol

Changing the RBCs geometrical and rheological characteristics is done by adding
specific reagents in a ABX Minidil solution (ie. the electrolytic solution in which
RBCs are suspended during the analysis). More precisely, dilutions of SB3-12 and
glutaraldehyde in ABX Minidil at different concentrations are prepared. In par-
ticular, SB3-12 dilutions cover a range varying between 0 and 90 mg.L−1, while
glutaraldehyde is diluted at various concentrations in the range [0 % , 0.5 %]. Then,
pulses acquisitions are performed with an ABX Micros 60, as usual, but replacing
the classical reagent (ABX Minidil) with the modified solutions. On ABX Micros
60, the replacement of the electrolytic solution is done by interchanging the reac-
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tant bottles with a simple ‘plug and play’ procedure. Besides, the ’CLEAN ALL
REAGENT’ command is run for removing the former solution from the needle and
the system pipes. Two blood samples are analysed with these modified solutions.
The first sample is used in acquisitions with the different SB3-12 solutions, while
the second one is involved in experiments with the various glutaraldehyde prepara-
tions. Acquisitions are performed twice to make sure that results are repeatable. In
addition, reference pulses acquisitions are also performed for all samples with the
original ABX Minidil solution. Notice that such acquisitions were accounted for in
the normality definition of Sec. 6.1.

Comparisons with the predefined normality

Figure. 6.8 displays typical Wr/Pr representations arising from pulses acquisitions
with SB3-12 and glutaraldehyde. Especially, graphs of the left column derive from
the acquisitions at glutaraldehyde concentrations of 0 %, 0.15 % and 0.5 % (A,
C and E, respectively), while figures of the right column arise from experiments
involving the following SB3-12 concentrations: 0 mg.L−1, 30 mg.L−1 and 90 mg.L−1

(B, D and F, respectively). Note that left and right columns are obtained with two
different samples.

At zero concentrations of glutaraldehyde and SB3-12, graphs are in good agree-
ment with the normal scatter plots expected (see the comparison between Fig. 6.8A
and Fig. 6.8B with Fig. 6.2B). However, adding the aforementioned molecules in
the electrolytic solution impacts the distribution and location of pulses in a Wr/Pr
representation, as shown in Fig. 6.8C, D, E and F. Moreover, the locations of pulses
in such a plot are shown to be related to SB3-12 and glutaraldehyde concentrations.

Box-wise pulses proportions are assessed for the acquisitions with glutaraldehyde
at 0.5 % and SB3-12 at 90 mg.L−1. The obtained percentages are superimposed with
the bar graph defining the normality in Fig. 6.6. Regarding the statistics, the added
reagents induce deviations with respect to the normality. In particular, assessments
for the acquisition involving SB3-12 are systematically out of the tolerance margins.
In box6, SB3-12 produces a reduction of the population, in contrast with glutaralde-
hyde that increases the proportion of pulses. The two reagents have also opposite
effects on box7. This suggests that a sample of rigid RBCs and a sample of spherical
erythrocytes are distinguishable by statistical evaluations. It should be noted that
glutaraldehyde leaves Box8 and 9 unpopulated, so does SB3-12 with Box9.

As done for healthy blood samples in Sec. 6.1.2, the averaged pulse is computed
for each box of Fig. 6.3 from acquisitions corresponding to Fig. 6.8E and F (viz.
with glutaraldehyde at 0.5 % and SB3-12 at 90 mg.L−1, respectively). The resulting
mean signatures are compared in a box by box manner with the normality in Fig. 6.5.
Regarding boxes related to the most centred paths, small deviations, and even no
deviations are observed in terms of averaged pulses (see Box1 and Box2 in Fig. 6.5).
Stiffening RBCs with glutaraldehyde tends to increase the magnitude of the peak
that emerges when the cell rotates (see case ‘gluta’ in Fig. 6.5C, D, E, and F). This
is consistent with the numerical results of Chap. 4. As a reminder, when evolving
in the vicinity of walls, the RBC rotation induces a peak on the associated pulse.
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(A) (B)

(C) (D)

(E) (F)

Figure 6.8 – TypicalWr/Pr graphs obtained with different concentrations of SB3-12
and glutaraldehyde. Graphs are shown in terms of density iso values, that are taken
as: 0.00025, 0.0005, 0.001, 0.0015, 0.0025. Left pictures are obtained from a blood
sample that was treated with glutaraldehyde at concentrations of 0 % (A), 0.15 %
(C) and 0.5 % (E). Right pictures are obtained from another blood sample but
treated at SB3-12 concentrations of 0 mg.L−1 (B), 30 mg.L−1 (D) and 90 mg.L−1

(F). Metrics Wr and Pr are computed by using a threshold of 0.5.
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Besides, a strong compression of the cell occurs while it rotates, which appears to
mitigate the peak amplitude. Consequently, a rigid cell that cannot compress is
expected to produce a larger peak. Regarding boxes 7, 8, and 9, a substantial effect
of glutaraldehyde is observed. However, boxes 8 and 9 are sparsely populated with
glutaraldehyde, which makes the averaged signatures irrelevant for these two cases
(see Fig. 6.6 in which pulses proportions for the case of glutaraldehyde are available).
Contrary to glutaraldehyde, SB3-12 is shown to reduce the importance of the peak
(see Fig. 6.5C, D and E). Indeed, the consequence of cells rotations is limited by
the spherical aspect taken by RBCs suspended in a SB3-12 solution. Simulations
performed by increasing the reduced volume Q (thus the cell sphericity) have shown
the same trend in Chap. 4. Note that box6 and box9 are emptied when RBCs are
submitted to SB3-12 (see Fig. 6.6), which makes pulses referred to as ‘SB3-12’ in
Fig. 6.5F and I irrelevant. Lastly, spherical RBCs generate pulses that conform with
the normality, regarding box7 and box8 (Fig. 6.5G and H).

In summary, spherizing or stiffening RBCs directly impacts the electrical signa-
tures. Omitting boxes 1 and 2, glutaraldehyde and SB3-12 have distinct effects on
the electrical prints. In particular, spherizing the cell reduces the magnitude of the
peak of rotation in contrast with a more rigid RBC that generates a more important
peak.

Designing global markers

In the last section, morphological and rheological alterations of RBCs were shown
to deviate the measurements from a predefined normality. The demonstrations were
based on the Pr/Wr plane. In the present section, indicators for abnormal samples
are introduced but this time based on Pr/R representations, since such plots ap-
pear more sensitive to RBCs disorders. As supported by Fig. 6.9 which is based on
the same data as Fig. 6.8, R/Pr graphs emphasize the differences between spher-
ized and stiffened RBCs, even when intermediate concentrations of glutaraldehyde
and SB3-12 are considered (see Fig. 6.9C and D, respectively). When monitoring
the acquisitions with Pr/Wr plots, discrepancies are less obvious, in particular for
intermediate cases (see Fig. 6.8C and D). Indeed, in such a representation, acqui-
sitions broadly conserve the same arrangement: two branches intersecting at Pr ≈
80 %, and an isolated cluster located at Pr ≈ 15 %. Note that apart from the main
cluster related to central paths, data organisation in a R/Pr graph may completely
differ from the normality when RBCs are altered (comparing Fig. 6.9A and B with
Fig. 6.9C, D, E and F).

Stating that the representation of Fig. 6.9 is more sensitive to shape and me-
chanics alterations, a second set of boxes is defined, this time on a R/Pr graph (see
Fig. 6.10). This second set of boxes is indexed by a prim superscript. In each box,
the pulses proportion but also averages of R and Pr are calculated. Boxes were
chosen manually to maximize as much as possible the differences between the re-
sults with spherized RBCs and rigidified RBCs, regarding the computed quantities
(viz. boxes statistics and averages of R and Pr). In particular, box3′ is chosen be-
cause a considerable increase of the population is expected for spherical RBCs (see
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(A) (B)

(C) (D)

(E) (F)

Figure 6.9 – Typical R/Pr graphs obtained by analysing blood with solutions of
SB3-12 and glutaraldehyde. Graphs are shown in terms of density iso values, that
are taken as: 0.00025, 0.0005, 0.001, 0.0015, 0.0025. Left pictures are obtained from
the same blood that was treated with glutaraldehyde concentrations of 0 % (A), 0.15
% (C) and 0.5 % (E). Right pictures are obtained from another blood sample, but
treated with SB3-12 concentrations of 0 mg.L−1 (B), 30 mg.L−1 (D) and 90 mg.L−1

(F). Metric R is calculated with pu = 7/8 and pd = 1/2, while Pr is assessed by
using a threshold of 0.5.
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Figure 6.10 – Second set of boxes, defined over aR/Pr graph. MetricR is calculated
with pu = 7/8 and pd = 1/2, while Pr is assessed by using a threshold of 0.5.

Fig. 6.9F). Furthermore, box4′ is retained because rigid cells tend to leave this part
of the plot unpopulated (see Fig. 6.9E), while spheres remain and spread along the
R axis (see Fig. 6.9F). One should also cite box5’, in which substantial differences
between both types of alteration are observed (see Fig. 6.9E and 6.9F).

More sophisticated methods may provide automatically the set of boxes. The
presented results must be viewed as an example of processing the data for assessing
morphological and rheological information.

Overall, 18 values per sample are calculated from the 6 boxes of Fig. 6.10: for
each of the 6 boxes, the proportion of pulses with respect to the total number
of pulses, the mean value of R and the mean value of Pr are calculated. In the
following, only the most relevant quantities are presented, for the sake of concision.
Figure. 6.11 shows the evolutions of pulses proportions in box3′ and box5′ according
to the concentrations of glutaraldehyde (A and B, respectively) and SB3-12(C and D,
respectively). Remind that for each concentration the blood samples were analysed
twice, which provides an indication of the repeatability of the observations. The
normality is assessed by considering the 22 healthy blood samples of Sec. 6.1 and
represented as horizontal lines in Fig. 6.11. The average over these 22 samples is
depicted with a red continuous line, while the tolerance margin (defined as twice the
standard deviation) is shown in black dashed lines.

As the concentrations of glutaraldehyde and SB3-12 increase, the populations in
box3′ and box5′ get out of the normality. Assuming that SB3-12 and glutaralde-
hyde concentrations are respectively correlated to RBCs sphericity and rigidity, it
appears that proportions in box3′ and box5′ measure such cells features. However,
both glutaraldehyde and SB3-12 tend to increase the pulses percentages in box3′
and box5′. Hence, considering a single quantity enables the detection of abnormal-
ities but does not supply the type of disorder. Nevertheless, by combining various
parameters extracted from boxes of Fig. 6.10, a separation becomes possible. For
example, Fig. 6.12 shows the averaged Pr in box3′ against proportions of pulses in
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Figure 6.11 – Typical evolutions of boxes statistics according to glutaraldehyde and
SB3-12 concentrations. The red and continuous line refers to the average on the 22
healthy blood introduced in Sec. 6.1, while the tolerance margin is represented in
dashed lines. This range is defined as twice the standard deviation.

box3′. The 22 samples defining the normality and the acquisitions with different
concentrations of glutaraldehyde and SB3-12 are represented. The cluster related
to normal samples corresponds to an averaged Pr (in box3′) included in [63 % ; 73
%] and a box3′ populations below 1.5 %. Then, two distinct branches emerge from
the normality. They are related to glutaraldehyde and SB3-12, as highlighted in
Fig. 6.12. Consequently, provided cells are sufficiently impacted, one may deduce
the type of disorder by assessing the acquisition location on the graph of Fig. 6.12.
However, studying averaged quantities and statistics in boxes may only supply a
global idea on the sample state.
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Figure 6.12 – The averaged PeakPos in box3′ is graphed against the pulses propor-
tion in box3′.

6.2.2 Screening RBCs subpopulations

In Sec. 6.2.1, it is shown that impedance pulses contain information about cell mor-
phological and/or rheological disorders. Examples of signal processing enabling the
diagnosis of the type of disorder have also been presented. The introduced methods
require a normality definition that is available in Sec. 6.1. Although treatments
achieved in Sec. 6.2.1 provide a straightforward detection of abnormalities, they are
limited to pathologies affecting a substantial proportion of the RBC population.
Remind that such procedures are based on statistical assessments and averaged
quantities. Hence, more advanced methods allowing the cell diagnosis from the
electrical pulse are required to capture small populations of abnormal RBCs. This
section is devoted to neural network modellings that are built in that sense. Firstly,
a NN is trained to detect abnormal pulses. Then, a second NN is trained with the
aim to detect the type of abnormality: rigidity or sphericity (viz. glutaraldehyde or
SB3-12, respectively).

As described in Sec. 5.3, NNs are models made of interconnected neurons that
are generally organised in successive layers. When neurons are linked to all neu-
rons of the preceding and following layers, the NN is called multi-layer perceptron
(MLP). Such an architecture may lead to models having a substantial number of
parameters (called weights) when the problem suffer from high dimensionality is-
sue. In following modellings, Convolutional Neural Networks (CNNs) are employed.
Convolutional Neural Networks (CNNs) can prevent hyper-parametrized models by
restricting relevantly inter-layer connections. They are dedicated to structured in-
put variables from a single source, whose organisation is informative (as for pixels
composing an image, and electrical pulses). CNNs involve convolution layers that
consist in scanning the input data with several filters (also called kernels) to detect
the presence of pertinent features to address the desired modelling. A convolution
layer is thus parametrised by the number, the size (Nk) and the increment S of the
kernels (step by which filters are moved on the input data). Scanning the input data
with a kernel leads to a ‘feature map’, so that a convolution layers is composed of
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Figure 6.13 – The treatment performed on impedance pulses to define them all with
a given number of points. Left and right pictures illustrate the method on two
different initial pulses. The electrical signal is first scaled by its maximum ∆Um.
Given a threshold, the signal is completed with a constant ∆t, until the pulse is
defined between [0 ; Tw]. In this example, Tw is set to 49 µs while ∆t is chosen as 2
µs.

as many features maps as kernels involved. Features maps are taken as an input by
the following layer, that can be either a convolution or a fully-connected layer. The
reader is referred to App. C for more details on these concepts related to CNNs.

Abnormality sensor

CNN structure: The detection of abnormal pulses is performed by using a CNN.
Depending on the trajectory followed by the cell, the generated pulse is more or
less long. Hence, assuming a constant recording time step (∆t), electrical prints
are described by temporal sequences of variable sizes. This is problematic since
feedforward neural networks take as input an imposed number of variables. Using a
CNN, the procedure introduced in Sec. 5.3.1 to tackle this issue is not suited. Indeed,
CNNs involve convolution layers enabling the recognition of specific patterns when
dealing with structured input data. The later defines data stemming from the same
source whose arrangement is informative. Yet, this is not the case in the approach
of Sec. 5.3.1, where both the pulse duration and the resampled signal are defined as
input of the model (see Fig. 5.11). Hence, the treatment illustrated in Fig. 6.13 is
performed directly on the pulses to make them all intelligible for the CNN. First,
the pulse is scaled in amplitude by its maximum ∆Um. The procedure consists in
building the treated pulse from ∆U/∆Um, with chosen increment (∆t), duration
(Tw) and threshold (see Fig. 6.13). The treated pulse is defined as the sequence of
duration Tw, sampled with a time step ∆t, which equals the maximum between the
threshold and ∆U/∆Um. In doing so, all pulses are represented by NLo=Tw/∆t
points. Left and right pictures of Fig. 6.13 illustrate this process when performed
on two pulses with different durations. Once treated, both are represented with
temporal series of the same lengths. Note that the original signal must be located
between instants 0 and Tw, as shown in Fig. 6.13.

The retained CNN is composed of 8 layers. In the following, Tw is set to 49 µs,
the threshold is taken as 0.2 and ∆t equals 1.0 µs. Consequently, the size of the input
layer is NL0 = 50. The input layer is followed by two convolutional layers and four
fully-connected layers leading to the output layer containing a single neuron. This
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Figure 6.14 – CNN employed for the detection of abnormal pulses. In this illustra-
tion, ‘Cv’ refers to convolutional layers while ‘FC’ denotes fully-connected layers.
Along with ‘FC’ notations, the number of neurons is specified as ‘XN’, with X the
number of neurons belonging to the layer. The convolution kernels of ‘Cv 1’ and
‘Cv 2’ have sizes N1

k and N2
k , equalling 8 and 3, respectively.

architecture is sketched in Fig. 6.14. The first convolution layer (Cv 1) involves
6 kernels of size 8 (N1

k ) that scan the pulse with an increment S of 1. Remind
that 6 kernels involve as many features maps (Nft = 6). Considering the second
convolutional layer (Cv 2), 3 kernels of size N2

k = 3 with a step S = 1 are defined.
Note that the sizes of the fully-connected layers (see FC in Fig. 6.14), are filled out
in the illustration. All neurons of the model are associated with a sigmoid activation
function. Especially, by choosing a sigmoid function for the neuron of the output
layer, the model renders a score included in [0 ; 1]. A value of 1 refers to a normal
pulse while 0 is associated with abnormal pulses.

Data base: Data stem from the experimental acquisitions previously discussed.
In particular, pulses involved in the normality definition (Sec. 6.1) are retained
in addition to pulses recorded when SB3-12 and glutaraldehyde are added in the
suspending solution; only glutaraldehyde and SB3-12 concentrations included in
[0.3 % ; 0.5 %] and [60 mg.L−1 ; 90 mg.L−1] are accounted for. This means the
model is designed to detect RBCs that are significantly impacted. Reagents used
for the acquisitions belonging to the database are summarized in Tab. 6.1. As
stated in Sec. 6.1, pulses obtained by using the ABX Minidil solution are considered
as normal observations (see Tab. 6.1). An outlet value of 1 is then associated with
such pulses, during the training procedure. Acquisitions made with SB3-12 and
glutaraldehyde are considered as abnormal observations and are then coupled with
an outlet value of 0.

Pulses observed while cells undergo central trajectories were shown to be less
sensitive to changes in the RBCs characteristics (see Fig. 6.4A and B). Hence, these
latter are removed from the database beforehand. The R-based filter introduced
in Chap. 5 enables this extraction as illustrated in Fig. 6.15. From a pulse, R is
calculated and if it is above 52 % the pulse is rejected from the database. For
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Data Base
Normal Abnormal

ABX Minidil Gluta [%] SB3-12 [mg.L−1]
∈ [0.3 ; 0.5] ∈ [60 ; 90]

Table 6.1 – Summary of the acquisitions selected for training the CNN aiming at
detecting abnormal cells. The normality is defined by acquisitions made with ABX
Minidil, while abnormal observations stem from acquisitions with SB3-12 and glu-
taraldehyde. The considered SB3-12 and glutaraldehyde concentrations are indi-
cated.

(A) (B) (C)

Figure 6.15 – Rejection of pulses induced by centred trajectories. This is done by
keeping pulses from which R is below 52 % (A). In graph (B), the retained and
conserved pulses are respectively represented in red and blue on aWr/Pr graph. In
(C), solely the retained signatures are illustrated, on the same representation than
in B. Metric R is calculated with pu = 7/8 and pd = 1/2, while Wr and Pr are
computed by using a threshold of 0.5.

example, in Fig. 6.15A pulses leading to R above 52 % are colored in blue. Fig-
ure 6.15B illustrates the acquisition in a Wr/Pr graph, with the same color code
than as in Fig. 6.15A. Then, Fig. 6.15C gives an insight on the retained signatures
on aWr/Pr representation. In this manner, pulses from box1 and box2 (see Fig. 6.3
and Fig. 6.15B) are removed from the dataset. The process shown in Fig. 6.15 is
applied to all acquisitions involved in Tab. 6.1.

CNN training: The database of Tab. 6.1 is split into two datasets: a training
dataset and a test dataset. Only the training dataset is used in the CNN training,
the test dataset is used for assessing the model accuracy. The CNN weights are
updated with the ADAM algorithm [81] in a mini-batch gradient descent approach.
The batch size is set to 200, and the learning is run over 1000 epochs on the training
dataset. The loss function is the root mean squared (RMS) error and its gradients
are calculated with a back-propagation method. During the training step, the error
made on the test dataset is calculated. In Fig. 6.16A, the RMS errors on the training
and test datasets are shown according to the training epoch. During the entire
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Figure 6.16 – Overview of the CNN training (architecture shown in Fig. 6.14). (A)
The evolution of the root mean squared (RMS) errors on both training and test
datasets are graphed according to the epoch. (B) Confusion matrix obtained by
applying the CNN of epoch 500 to the test dataset.

training, the error on the training data decreases. However, from epoch 500, the
RMS error on the test data stalls and even takes a slightly increasing trend. This
suggests that the model is over-fitting the training data. Hence, the accuracy of
the CNN is assessed on the test dataset with the CNN configuration of epoch 500.
The efficiency of the CNN is evaluated by comparing the model predictions with
the expected values (viz. 1 for normal pulses and 0 for abnormalities). The CNN
renders a score between 0 and 1. Hence, the CNN classification is done by applying
a threshold on the CNN score: a CNN score above 0.5 predicts a normal pulse,
while a score below 0.5 indicates an abnormal signature. In this way, the confusion
matrix shown in Fig. 6.16B is obtained, which demonstrates the good accuracy of the
model. Indeed , among normal pulses of the test dataset, about 96 % are predicted
as normal, while 97 % of abnormal pulses are seen as abnormal.

Clustering types of abnormalities

An important issue arising from the results of the previous section is the possibility
of diagnosing the type of abnormality affecting a sub-population. In the following,
a first answer is given.

Again, a CNN modelling is employed to tackle this question. Based on the
architecture of Fig. 6.14, the CNN of Fig. 6.17 is proposed. The only difference
being in the output layer that contains 3 neurons instead of a single one. Each
neuron is associated with a specific class, that allows the clustering of three groups:
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Figure 6.17 – CNN used for recognizing the type of disorder that affects the RBC.
The architecture shown in Fig. 6.14 is the basis of the proposed CNN, but with two
additional neurons in the output layer. Each neuron of the output layer is related
to a specific class (Normal, SB3-12 or glutaraldehyde).

normal RBCs, spherized RBCs (submitted to SB3-12), and rigid RBCs (treated with
glutaraldehyde). This is illustrated in Fig. 6.17 (see output layer). Depending on
the class, the corresponding output neuron is expected to activate (viz. it takes a
value of 1), while the remaining render a values of 0. Hence, during the learning
step, pulses stemming from acquisitions with ABX Minidil are associated to an
output of [1 ; 0 ; 0], pulses obtained with SB3-12 are coupled with [0 ; 1 ; 0], while
signatures outcome of acquisitions with glutaraldehyde take a [0 ; 0 ; 1] output. The
training is performed as done in the previous section: a batch size of 200 is chosen,
the learning is done with ADAM algorithm [81] in 1000 epochs on the database
of Tab. 6.1, and the loss function is expressed as the RMS error. Note that the
treatment illustrated in Fig. 6.15 is performed to reject pulses that are irrelevant
for the assessment of RBCs morphological and rheological disorders. Figure. 6.18A
depicts the evolution of the RMS errors on the training and test datasets during
the CNN learning. Regarding the training dataset, the error falls during the whole
learning, while the test dataset stalls from about epoch 500. Hence, the CNN state
of epoch 500 is retained for the following applications.

Once the training step achieved, applying the model to the test data leads to the
confusion matrix presented in Fig. 6.18B. Given a pulse, the CNN renders a vector
of three components that are included in [0 ; 1]. The classification is then done by
retaining the class corresponding to the output neuron of maximum value. Regarding
normal pulses, both CNNs (see Fig. 6.14 and Fig. 6.17) have an accuracy of almost
96 %, as stated in Fig. 6.16B and Fig. 6.18B. The correctness on abnormalities is
around 92 % for the two different types (SB3-12 and glutaraldehyde), as shown
in Fig. 6.18B. Hence, recognizing the type of disorder from the pulse appears to be
possible. Note that 5.1 % of the pulses obtained using SB3-12 are predicted as pulses
stemming from acquisitions with glutaraldehyde, while 3.9 % of pulses generated by
cells treated with glutaraldehyde are seen as signals resulting from an analysis with
SB3-12. That means 97.6 % of RBCs in SB3-12 and 95.7 % of RBCs analysed in
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Figure 6.18 – Overview of the CNN training (architecture shown in Fig. 6.17). (A)
Root mean squared (RMS) error for the training and test datasets according to the
epoch. (B) Confusion matrix obtained by applying the CNN of epoch 500 to the
test dataset.

glutaraldehyde are diagnosed as abnormal. Hence, one may conclude that the two
approaches (CNNs of Fig. 6.14 and Fig. 6.17) are almost equivalent in terms of
abnormality detection.

Future improvement

Results provided by CNNs of Fig. 6.14 and Fig. 6.17 are encouraging but further
studies are needed to provide more accurate results. As shown by off-diagonal values
in confusion matrices of Fig. 6.16B and Fig. 6.18B (i.e. the prediction errors),
sub-populations representing only a few percent of the sample would be hardly
traceable. It should be noted that coincidences (several particles crossing the orifice
at the moment) are not removed from the dataset, which may alter the model
training and skew assessments of Fig. 6.16B and Fig. 6.18B. Filtering signatures
induced by such events is indispensable for detecting small abnormal populations
(below 1 %, for instance). Furthermore, the reliance of the results on the CNNs
architectures (Fig. 6.14 and Fig. 6.17) is intended in the future. This point represents
an interesting direction for improving the prediction of both models.

6.3 Towards a complete RBCs characterization

The purpose of this section is to model the inverse problem of numerical simulations
presented in Chap. 4. More precisely, one aims at evaluating the RBC parameters
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from the associated electrical print. In that respect, the retained approach is to
train a NN from numerical pulses obtained with varying RBC parameters.

Numerical simulations allow the building of couples ain/aobs, in which ain repre-
sents the electrical pulse and aobs refers to the RBC parameters. In a first attempt
of modelling, aobs was composed by: the internal viscosity (νin), the shear modulus
(Gs), the reduced volume (Q) and the streamline. Remind that the streamline is
used to manage the cell trajectory in the aperture. It is defined by a point (0 , ra
, 0), by which the streamline gets through. The coordinate ra is included in [0 µm
; 25 µm], and refers to the distance from the aperture centerline. As previously
stated, the flow is axisymmetric around the aperture, that is why all the considered
streamlines are in the plane (~ex,~ey). The curvature modulus (Eb) and the spon-
taneous curvature (co) have been verified to have negligible effects in a reasonable
physiological range. Hence, they are kept constant in all simulations of the numerical
database. Moreover, the RBC area modulus Ea is also kept constant, since changes
of area were less than 1 % in the reference simulations of Fig. 4.10 (see Sec. 4.3).
Note also that the effect of the internal density on the electrical pulse is insignif-
icant, as stated in App. A. It turns out that the learning step of such an inverse
problem is not possible (not shown). In particular, the NN is unable to accurately
predict internal viscosities and shear moduli (νin and Gs, respectively). As shown in
Chap. 4 (see Fig. 4.16B and C), the shear modulus Gs and the internal viscosity νin
have the same impact on the electrical signature. This highlights a non-uniqueness
issue and explains why this attempt in modeling the inverse problem fails.

In the first section, the direct problem is modelled with a NN, and shown to
support the assumption of non-uniqueness above-mentioned. Then, in a second
section, it is proposed to combine νin and Gs in a single parameter for modelling
the inverse problem (see Sec. 6.3.2). This approach allows to manage a simplified
inverse problem with a NN.

6.3.1 Direct problem

Handling the direct problem consists in building a Neural Network that takes the
cell parameters as input and gives back the electrical pulse. Hence, in this section,
couples ain/aobs in the numerical database are made of the RBC parameters (νin,
Gs, Q and ra) and the electrical pulse, respectively.

Model definition

Amulti-layer perceptron (MLP) is retained for the modelling. The MLP architecture
is illustrated in Fig. 6.19. Given the RBC parameters, the MLP is intended to
provide a resampled pulse and its duration, assessed by W with a threshold of 0.5
× ∆Rm (∆Rm is the pulse maximum). This formalism was detailed in Sec. 5.3.1:
the pulse amplitude is scaled and the timescale is divided by the pulse duration
(W(∆Rm

2 )), prior to performing the pulse resampling with Ns = 20 points. In this
way, the association of the series of Ns scaled amplitudes with W(∆Rm

2 ) defines the
electrical print by Ns + 1 variables (that equals 21 in the dealt case). Hence, the
output layer of the MLP (see Fig. 6.19) contains 21 neurons. The MLP contains 6
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Figure 6.19 – The architecture of the MLP used to model the direct problem. The
model takes as an input the RBC parameters and renders the electrical signature
formatted as presented in Sec. 5.3.1. More precisely, the model output is composed
of a resampled pulse of size Ns equalling 20, and the pulse duration (W(∆Rm

2 )).

hidden layers whose sizes are given in Fig. 6.19. The activation functions are sigmoid
function except for the output layer for which the identity is used.

Training and accuracy of the model

The database is built by the use of the pipeline presented in Chap. 4 and all the
performed cases are listed in App. D.1. Couples ain/aobs involved in the present
study refer to cases 86-382 in App. D. The model is trained with cases 86-318 of
Tab. D.1, while cases 319-382 define the test dataset. Pulses from the database are
converted as stated in Sec. 5.3.1. The batch size is the same as the training dataset
and the gradient descent algorithm is performed over 20000 epochs. The learning
step converges rapidly to an optimum as shown by Fig. 6.20A. In addition, the RMS
for training and test data are similar, indicating that no over-fitting occurred during
the learning. Indeed from epoch 1000 results do not change significantly.

Applying the trained MLP to the test data, it is observed that electrical pulses
are accurately retrieved. For example, Fig. 6.20B, C, D, and E compare pulses
predicted by the MLP with the original pulses stemming from numerical simulations,
for 4 cases from the test dataset. Note that the predicted pulses in these graphs are
reconstructed from the outcome of the MLP (see Fig. 6.19). This explains why the
predictions take values included in 0.5 and 1, in terms of amplitude (see Fig. 6.20B,
C, D, and E).

Remind that substantial efforts are required to simulate the numerical database
from which the MLP arises. However, once trained, this MLP can provide the
impedance pulse almost instantly by providing it with the RBC parameters. Hence,
it may represent an efficient tool for simulating an entire acquisition.

Introduction of an original viscosity parameter

In this section, the trained MLP is used to emphasize the non-uniqueness of the
inverse problem. A pulse from the test dataset is taken as the reference and compared
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Figure 6.20 – Training and test of the direct model provided by the MLP of Fig. 6.19.
Picture (A) shows the evolution of the RMS errors for the training and test data
according to the epoch. Figures (B), (C), (D), and (E) are examples of pulses
predicted by the MLP superimposed with the actual signatures from simulations.
Note that pulses considered in (B), (C), (D), and (E) are part of the test dataset
and stem from cases 326, 336, 351 and 364 of Tab. D.1 (in App. D), respectively.

with predictions of the MLP. By varying inputs νin and Gs in the MLP and by
comparing predicted pulses with the reference pulse, an error map is obtained. The
RMS error is employed for comparing MLP predictions with the reference. The two
remaining parameters required for the MLP (viz. Q and ra) are kept constant and
equal the values associated with the reference pulse.

Figure. 6.21 illustrates the RMS error according to νin and Gs, for three different
reference pulses. Note that the error is shown over the simulated ranges of Gs and
νin. Error isolines are also represented in Fig. 6.21. No optimal couple Gs / νin
minimizing the RMS error appears clearly in these graphs. Isolines are almost
straight and parallel lines. Notice that in the case of perfectly straight and parallel
isolines, an infinity of couples Gs / νin minimizes the RMS error. This statement
supports the non-uniqueness issue encountered in the inverse problem previously
discussed.

Circumventing this issue is done by replacingGs and νin by a new parameter νapp,
the apparent viscosity. Remarking that all error isolines have almost the same slope
(see Fig. 6.21), νapp is defined as the projection of Gs and νin on a line perpendicular
to error isolines. The projection direction is highlighted in Fig. 6.21 by red double
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Figure 6.21 – Errors between the MLP prediction and target pulses according to νin
and Gs. Left, middle and right stem from cases 320, 362 and 374 of Tab. D.1.
Double arrows in these plots conform with Eq. 6.6.

arrows. In particular, νapp is defined by:

νapp = νin + Gs
S

(6.6)

Regarding error isolines for several reference pulses from the test dataset, parameter
S is set as 14 N.s.m−3. For the calculation of νapp, νin and Gs are expressed in
the international units system, although it is not the convention used in Fig. 6.21.
Hence, with νin covering a range [15 × 10−6 m2.s−1; 21 × 10−6 m2.s−1] and Gs
included in [2.5 × 10−6 N.m−1; 40 × 10−6 N.m−1], the introduced parameter νapp
varies from 1.518 × 10−5 m2.s−1 to 2.386 × 10−4 m2.s−1. Note that this combination
is of course completely dependent on the system and on the operating conditions.

6.3.2 Simplified inverse problem

Training and results

Based on the results of Sec. 6.3.1, the inverse problem is modified by replacing
parameters νin and Gs by a single variable νapp (see Eq. 6.6). Hence, the modelling
of this modified problem is done with the neural network architecture of Fig. 6.22A.
It is composed of two convolutional layers (cv 1 and cv 2), that are equivalent to those
shown in Fig. 6.14 and Fig. 6.17. Following the convolution layers, a fully-connected
layer of 40 neurons is set. Finally, the output layer is composed of 3 neurons, each
neuron being related to one of the RBCs parameters (see output layer in Fig. 6.22A).
All the activation functions of the model are sigmoid functions except the output
layer, which takes identity activation functions. The use of a sigmoid function for
the output layer would not be relevant for this regression problem because it could
only render values included in [0 ; 1]. The numerical database of Tab. D.1 is split
into two parts: a test dataset defined by cases {319, 321, 326, 329, 344, 349, 351,
355, 359, 366, 369, 370, 375, 381, 382}; a training dataset made up of the other cases
(viz. cases 86-382 without the test data). The learning step is performed in 80000
epochs with a batch size that equals the size of the training dataset. As previously
done, the cost function that rates the model error is the RMS. In Fig. 6.22B, the
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Figure 6.22 – Modelling the modified inverse problem with a CNN. The model
architecture is illustrated in A. The electrical signature is given as input of the
model and the CNN assesses the RBCs parameters. Picture B depicts the evolution
of the RMS errors for the training and test datasets during the learning step. Figure
C shows the correlations of the predicted RBC parameters with the expected values.
The CNN of epoch 20000 was retained.

evolutions of RMS errors for the training and test dataset are shown. The model
converges rapidly and the CNN state of epoch 20000 is retained. In Fig. 6.22C, the
predictions of the CNN for the training and test datasets are displayed against the
target values. Predictions for both training and test data are located on the identity
function, which validates the model training. It appears that the CNN is more
accurate in the prediction of parameter ra (see Fig. 6.22C), but results obtained for
νapp and Q are also satisfying.

Test on experimental data

Applying this model to an experimental acquisition, distributions of νapp, Q (re-
duced volume) and ra shown in Fig. 6.23 are obtained. Note that in the numerical
database from which the model has been designed, ra varies in between 16 µm and
20 µm, which corresponds to cases 6 to 10 of Chap. 4 (see Fig. 4.18), in terms of
trajectory in the aperture. Hence, from the experimental acquisition, only pulses
that satisfy R < 52 % and Pr > 20 % are retained for testing. This allows the ex-
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(A) (B) (C)

Figure 6.23 – Distributions of ra (A), Q (B) and νapp (C) predicted by the model of
Fig. 6.22 for experimental data. Vertical dashed lines represented on these graphs
refer to the bounds of the numerical database.

traction of experimental pulses that are superimposed with cases 6-10 in a Wr/Pr
plot (see Fig. 4.18). The considered experimental acquisition stems from an analy-
sis performed with ABX Minidil and belongs to the normality definition of Sec. 6.1.
Vertical lines that illustrate the boundaries of the numerical database are shown over
the distributions of Fig. 6.23. As expected, the predicted ra distribution is broadly
included within the database range (see Fig. 6.23A). However, Q and νapp distri-
butions spread out of the simulated ranges (see Fig. 6.23B and C). The predicted
reduced volumes (Q) depict an intuitive symmetrical distribution that is centered
around a reasonable value of 0.7. Regarding the νapp distribution, one can doubt
on the reliability of the model. Indeed, a substantial part of the acquisition is lo-
cated outside of the numerical range and the distribution profile is not symmetrical.
Actually, several aspects may explain the strange behaviour of the model. First,
the membrane viscosity was not accounted for in the simulations, despite the short
loading times observed in this industrial configuration. As the internal viscosity, the
membrane viscosity is expected to stiffen the cell and would probably be accounted
for in νapp. It is then probable that the simulated range of νapp is not sufficiently
extended. Besides, ABX Minidil has probably not a neutral impact on RBCs. Cells
changes inherent to this suspending solution may shift the distributions outside of
the simulated ranges.

In Fig. 6.24A and Fig. 6.24B, the predicted ra is plotted against the metrics Wr

and Pr, respectively. The trajectory ra correlates with Wr and Pr, which suggests
that the model accurately predicts the RBC trajectory (in the range simulated).
Consequently, the approach of modelling an inverse problem from numerical simu-
lations appears appropriate to characterize RBCs. However, the issues previously
mentioned must be clarified to propose an accurate assessment of Q and especially
νapp.

Despite uncertainties concerning the inverse model, its behavior when RBCs
are modified with glutaraldehyde or SB3-12 was assessed. In Fig. 6.25A and B,
Q and νapp distributions are shown for three different SB3-12 concentrations (in-
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(A) (B)

Figure 6.24 – Scatter graphs of ra according to Wr (A) and Pr (B), for an experi-
mental acquisition. Parameter ra is predicted by the CNN of Fig. 6.22. Metrics Wr

and Pr are computed by using a threshold of 0.5.

cluding 0 for reference). In the same way, Fig. 6.25C and D display respectively Q
and νapp histograms for three concentrations of glutaraldehyde. When increasing
the SB3-12 concentration, the Q distribution is shifted to the right-hand side (see
Fig. 6.25A), which is consistent with the fact that SB3-12 spherizes RBCs. However,
νapp decreases when adding SB3-12, which was not expected (see Fig. 6.25B). When
treating cells with glutaraldehyde, the model predicts increases in Q and νapp. The
growth of νapp is in agreement with previous observations reporting more rigid cells
when treated with glutaraldehyde. At substantial concentration, glutaraldehyde
was shown to alter RBCs shapes, but no quantitative measurements are available,
to our knowledge. Hence, it is difficult to conclude on the reliability of the model
that predicts a more spherical aspect of RBCs when glutaraldehyde is added in the
suspending solution.
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(A) (B)

(C) (D)

Figure 6.25 – Behavior of the CNN of Fig. 6.22 when RBCs are submitted to SB3-12
(A and B) and glutaraldehyde (C and D). Graphs A and C display Q Probability
Density Functions (PDF) while B and D depict νapp PDF.

151





C
h
a
p
te

r

7
Conclusion

Chapter contents

7.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Raised issues and perspectives . . . . . . . . . . . . . . . . . . . . . . 156

7.2.1 The close vicinity of the orifice edges . . . . . . . . . . . . . . 156
7.2.2 Completeness of the numerical model . . . . . . . . . . . . . 156
7.2.3 Improvements of abnormalities sensors . . . . . . . . . . . . . 157

7.1 Main results

This thesis presents a numerical study of electrical prints generated by particles
flowing through the sensing region of a Coulter counter.

Due to substantial differences in velocities and length in industrial Coulter coun-
ters, there is a need of focusing the computation domain to the measurement region.
In practice, calculations are performed by depositing the particle just before the
aperture in a fluid domain restricted to the detection area. In Chap. 3 , this proce-
dure was presented for the case of ABX Micros 60 (HORIBA Medical) and applied
to the prediction of electrical pulses generated by rigid spheres. Spheres lead to
‘bell-shaped’ pulses when following a centred trajectory, while the signature tends
to depict a ‘M-shaped’ by the walls. The typical ‘M-shaped’ is explained by regions
with a dense electrical field that are around the aperture corners. Numerical results
were shown to be in good agreement with an experimental pulses acquisition when
a latex bead sample is analysed. Note that a strict comparison between these two
approaches is not possible because of the accessibility of industrial systems: it is
not possible to know where the particles pass in an experiment, which precludes the
direct comparison. However, the pulse duration (rated by metric Wr, see Eq. 3.3)
is related to the particle trajectory, thus comparisons were performed by sampling
the durations of the pulses and superimposing the shapes of the numerical and the
experimental pulses having the same duration Wr.
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As a direct extension of Chap. 3 to deformable particles, Chap. 4 dealt with
the case of RBCs. Contrary to rigid spheres, RBCs deform and may rotate before
entering in the sensing region. Hence, the approach of starting the simulation by
depositing a resting RBC near the aperture entrance (as it was done for spheres in
Chap. 3) is not relevant: there is a need for accounting the cell dynamics before
the aperture. However, due to low velocities in the upstream part of the orifice,
simulating the whole RBC behaviour before it enters the aperture would lead to
tremendous computational costs. In that respect, an original pipeline was proposed
to tackle the numerical simulation of deformable particles in Coulter counters [162].
In this method, the upstream dynamics of RBCs is simulated in a relevant exten-
sional configuration which is much smaller than the entire device. Once elongated
by this extensional flow, the RBC is dropped just before the orifice entrance, in a
reduced configuration of the complete geometry. This approach was validated by
comparisons with a computation tackling the entire Coulter counter. In addition, it
is shown to reduce the CPU cost by a factor of 8. By applying this original pipeline,
a variety of RBCs dynamics was simulated. In the core region of the orifice, the
RBC depicts an elongated shape that is aligned with the perforation. Closer to
the edges, velocity shears make the RBC rotate, and a cell compression is observed
while the particle turns in the shearing region. Centered paths render ‘bell-shaped’
pulses while rotating cells produce a peak on the electrical perturbation. Besides,
it is stated that the closer the particle from the aperture wall, the sooner the cell
rotation occurs, and so does the peak in the pulse. Then, a metric measuring the
moment at which the peak occurs was introduced (Pr, see Eq. 4.6). Combining
Pr with Wr allows an arrangement of the pulses according to the RBCs trajectory.
These tendencies, originally discovered in the numerical simulations results, are also
observable in the experiments by analysing healthy blood samples. Furthermore,
the use of Pr and Wr enables the extraction of experimental signatures that were
predicted numerically. The good agreement found with the experimental data not
only validates the introduced pipeline but also explains the huge variety of pulses
signatures observed when analyzing a blood sample.

Considering both rigid spheres and deforming RBCs, two types of edge-effects
were retrieved: electrical artefacts that are caused by the regions of high local elec-
trical field; dynamical artefacts occurring when deforming and aspherical particles
evolve near the wall in the shearing region. Shear velocity gradients deform and
make the RBCs rotate, thus inducing a change of the cell shape factor that directly
impact the electrical perturbation (see Eq. 1.2) Using the inertia equivalent ellipsoid
and shape factor analytical models provided in the literature, the evolution of the
RBC shape factor inside the aperture is provided. As stipulated by the empirical
Eq. 1.2, a linear relationship between the electrical perturbation and the product of
the shape factor with the squared electrical field is retrieved. Notice that, consider-
ing rigid spheres, for which the shape factor remains constant, it was shown that the
squared electrical field is directly proportional to the electrical print. The use of the
numerical simulation with the shape factor modelling allows a better understanding
of the electrical and dynamical respective contributions to the edge-effects. The pre-
sented method represents also useful tool to assess the deformability contribution to
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the pulse shape.
Numerical results highlighted volume overestimations when pulses impacted by

edges-effects are considered. In the studied configuration, all RBCs impacted by
electrical edge-effects are also impacted by dynamic artefacts. It is then proposed to
filter pulses altered by dynamical edge-effects to achieve a more accurate assessment
of cells volumes. Generally, the pulse maximum is taken as a measurement of the
cell volume. The RBC rotation increases the shape factor fs and thus the apparent
volume for the Coulter counter. Hence, methods aiming at detecting whether the
RBC rotates were introduced in Chap. 5. A first approach detects the peak of
rotation by computing a width ratio, denoted by R (see Eq. 5.1). Calculating R for
all pulses from an experimental acquisition and applying a convenient threshold onR
for filtering irrelevant signals, symmetrical and Gaussian-like volume distributions
were obtained. Note that without any filter, the observed volume distribution is
right-skewed, as it was reported in the literature. Also, the R based filter shows a
better correlation with hydrodynamical focusing (which is the reference in Coulter
counters), in terms of average and standard deviation of measured volumes: in
hydrofocused Coulter counters, cells are enforced to flow through the detection area
by the core of the orifice, in such a way they are not impacted by edge-effects. A
second method detects the rotation by a Neural Network (NN) modelling. Probably
due to a stricter criterion for rotation detection, this second method appears to be
limited to more centred path than the R-based filter; a symmetrical distribution is
also retrieved. The approach of detecting particle rotations from electrical pulses
was subjected to patent protection, whose examination is still ongoing.

The last chapter (Chap. 6) lays the foundation of a possible characterization
of the shape and the rheology of particles by the analysis of impedance pulses.
By spherizing and stiffening RBCs with SB3-12 and glutaraldehyde (respectively),
changes may quantitatively be observed on relevant two-dimensional graphs (Wr/Pr
and R/Pr, for instance). By defining boxes on the aforementioned graphs, propor-
tions and averaged pulse signatures diverge from a predefined normality. Note that
the normality is defined from several healthy blood samples that were not treated
with glutaraldehyde nor SB3-12. Methods based on bi-dimensional graphs consist
in calculating percentages or averaged metrics (viz. R and Pr). Hence, only cases
where a substantial part of the sample is abnormal may be sensed with such methods.
This drawback was balanced by the use of Convolutional Neural Network (CNN). In
a first CNN modelling, it was shown that abnormal signatures may be distinguished
with an accuracy of about 96 %. Then, the abnormality type (SB3-12 or glutaralde-
hyde) appears to be achievable by a CNN trained to recognize three subgroups:
normal RBCs, RBCs spherized by SB3-12 and RBCs rigidified with glutaraldehyde.
A correctness of about 92 % was obtained for the diagnosis of the disorder type.

In the last part of Chap. 6, NNs are used for modelling the inverse problem
of numerical simulations. This study aims at assessing the RBC parameters from
the corresponding electrical pulse. Four parameters were retained in this study:
(1) the cell trajectory, (2) the membrane shear modulus, (3) the internal viscosity,
and (4) the RBC sphericity (or reduced volume). For this purpose, a database
of about 300 pulses was generated in a numerical approach. It was observed that
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the neural network fails in learning the inverse problem (given a pulse, provides
the 4 parameters), while the direct problem is easily achieved. The direct problem
indicating that several couples of shear modulus and internal viscosity may lead to
the same pulse signature, the choice of combining them into a unique parameter
similar to an apparent inner viscosity was made. Both internal viscosity and shear
modulus drive the capability of the RBC to being compressed in the shearing region
(near the orifice edges), thus they both induce variations of same nature on the pulse.
Combining these two parameters in the apparent viscosity, the inverse problem is
successfully learned by the CNN. Finally, when applying the CNN to experimental
data, encouraging results are obtained. The predicted trajectories correlate with Pr
andWr, which agrees with statements of Chap. 4. Moreover, RBCs reduced volume
and apparent viscosity, outcoming from the CNN, are assessed in reasonable ranges
but would require further modelling efforts (discussed in the following).

7.2 Raised issues and perspectives

7.2.1 The close vicinity of the orifice edges

A part of the experimental acquisitions was not retrieved in the simulations. This
portion represents approximatelly 6 % of the whole acquisition and is observed at
Pr values arround 10 % on graphs Wr/Pr and R/Pr. Considering a trajectory
even closer to the aperture walls seems to explain this cluster (see App. B), but nu-
merical instabilities encountered in such wall proximity make difficult any definitive
conclusions.

Despite the lack of understanding of this specific part of the acquisition, it was
shown that the related pulses signatures are reproducible from a healthy blood
sample to another. Besides, they are also sensitive to alterations of RBCs. In a
nutshell, this specific part of experimental acquisitions was not fully understood
in the context of this thesis but was proven to be sensible to morphological and
rheological disorders of RBCs. Hence, further numerical efforts are intended in the
future to reproduce accurately this type of signatures and understand the involved
mechanisms.

7.2.2 Completeness of the numerical model

The range of shear rates experienced by the cell in Coulter counters is much higher
than the configurations generally studied in the literature. Nevertheless, RBC de-
formations remain moderate. The RBC exposure times to these high shear rates
being very short, the internal viscosity plays an important role in maintaining the
cell shape. The same should be true for the membrane viscosity, although it was
not modelled in the present study.

As the membrane viscosity, dielectrophoretic (DEP) forces acting on the mem-
brane were not taken into account, although RBC electro-deformations were reported[116,
132] in the range of the electrical field observed in the studied configuration (of the
order of 1.0 × 106 V.m−1). Further investigations about the impact of DEP forces
and membrane viscosity should be performed in the future. Still, good comparison
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with experimental data was obtained, that demonstrated that the proposed pipeline
(Chap. 4) and current assumptions (Chap. 2) are appropriate to represent the main
mechanisms at play.

Nevertheless, when applying the inverse modelling of Chap. 6 on experimental
data, it appears that key components are likely missing in the numerical model.
Indeed it was suggested that the membrane viscosity would play an important role
in the original apparent viscosity. Hence, answers on the real impact of missing
physics on the results are needed before claiming a quantitative assessment of the
RBC features with an inverse modeling.

7.2.3 Improvements of abnormalities sensors

In Chap. 6, boxes on relevant two-dimensional representations of pulses were defined
manually to measure the state of normality of the sample. Note that this choice is
probably not optimal, and a better definition of boxes would potentially emphasize
abnormalities. Machine learning approaches based on k-mean methods may provide
automatically the set of boxes, for instance.

As preliminary modellings, CNNs detecting abnormal pulses were shown to pro-
vide encouraging results. Because ‘bell-shaped’ pulses are not relevant for processing
other information than its volume, a WR based filter is applied to the acquisition
before the use of such CNNs. This could alter the evaluation of sub-population
percentages. For example, adding SB3-12 or glutaraldehyde may change the pro-
portion of pulses along the WR axis. Hence, the proportion of signatures rejected
by the WR filter would depend on the RBCs morphology and rheology. In this
context assessing sub-populations after a WR separation cannot render the actual
proportion of abnormal cells. Further studies are required to fix this issue. Note
that interchanging the ‘sheathing’ fluid and the ‘blood sample’ in a hydro-focused
Coulter counter could represent an appropriate answer to this issue.

Detecting small populations of abnormal cells would require an improvement
of the current CNN models. For example, with an accuracy of the order of 96
%, detecting a pathological population of 1% appears to be an intricate task. As
previously suggested, a cleaning of the training and test datasets from coincidences
(pulses generated by several particles in the sensing region) must be performed.
Removing coincidences from the acquisitions may be done by increasing the dilution
rate of the blood sample in the electrolytic solution during the analysis. Another
approach is to conceive a method dedicated to the filtering of electrical prints arising
from such artefact.
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Modeling of the cytosol density
The internal density of RBCs is higher than plasma, water, and also the electrolytic
solution in which they are suspended in Coulter counters. Remind that such so-
lutions are mostly composed of water. In particular, when flowing near the orifice
walls, RBCs undergo curved trajectories at a significant velocity. This point gives
rise to a fundamental question: are inertial effects important in such configurations?

This section presents the developments made in the context of this thesis to
account for the internal density of RBCs. The improved model is validated with a
study of Uhlmann, which provides data for a bead falling in a viscous fluid. Finally,
the impact of cytosol density on the electrical measurement of RBCs is assessed.

A.1 Two-phase flow model

A.1.1 Modelling equations

Accounting for a different density inside the RBC membrane implies a two-phase
flow modelling that can be described with the following Navier Stokes equations:

∂ρ~u

∂t
+∇.(ρ~u⊗ ~u) = −∇P +∇.[µ∇~u] +∇.[µ(∇~u)T ] + ~fv (A.1)

∂ρ

∂t
+∇.(ρ~u) = 0 (A.2)

Here, µ denotes the dynamic viscosity that equal ρ × ν. Note that Eq. 2.47 and
. 2.48 presented in Chap. 2 are simplified versions of Eq. A.1 and . A.2, in the case
where ρ is constant in the fluid domain.

Since the two phases are unmiscible and incompressible, the density ρ of a fluid
particle should be preserved. Consequently, ρ must satisfies:

Dρ

Dt
= 0

⇐⇒ ∂ρ

∂t
+ ~u∇.ρ = 0

(A.3)

Combining Eq. A.2 with Eq. A.3 provides the following divergence free condition for
the velocity:

∇.~u = 0 (A.4)
In this respect, the problem consists in solving Eq. A.1 and Eq. A.4.
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A.1.2 Numerical treatement

In order to obtain an explicit advancement equation for the velocity ~u, the momen-
tum equation (Eq. A.1) is subject to the following developments. First, the temporal
derivative of ρ~u in Eq. A.1 is derived as follow :

ρ
∂~u

∂t
+ ~u

∂ρ

∂t
+∇.(ρ~u⊗ ~u) = −∇P +∇.[µ∇~u] +∇.[µ(∇~u)T ] + ~fv (A.5)

Then, by injecting Eq. A.2 in Eq. A.5 leads to:

ρ
∂~u

∂t
− ~u∇.(ρ~u) +∇.(ρ~u⊗ ~u) = −∇P +∇.[µ∇~u] +∇.[µ(∇~u)T ] + ~fv (A.6)

Finally, ∂~u∂t takes the following expression:

∂~u

∂t
= 1
ρ
~u∇.(ρ~u)− 1

ρ
∇.(ρ~u⊗ ~u)− 1

ρ
∇P + 1

ρ
∇.[µ∇~u] + 1

ρ
∇.[µ(∇~u)T ] + 1

ρ
~fv (A.7)

The time advancement of Eq. A.4 and A.7 is done with a prediction correction
method. From the quantities at the beginning of the time step (indicated with a
superscript n), a predicted velocity ~u∗ is obtained by advancing Eq. A.7 without the
pressure term. For the sake of simplicity, an explicit Euler scheme is used in the
developments:

~u∗ − ~un

∆t = 1
ρn
~un∇.(ρn~un)− 1

ρn
∇.(ρn~un ⊗ ~un)

+ 1
ρn
∇.[µn∇~un] + 1

ρn
∇.[µn(∇~un)T ] + 1

ρn
~fnv

(A.8)

Note that contrary to the predicted velocity ~u∗, the actual velocity at the end of the
time step (~un+1) should depend on the pressure gradient as follows:

~un+1 − ~un

∆t = 1
ρn
~un∇.(ρn~un)− 1

ρn
∇.(ρn~un ⊗ ~un)− 1

ρn
∇Pn+1

+ 1
ρn
∇.[µn∇~un] + 1

ρn
∇.[µn(∇~un)T ] + 1

ρn
~fnv

(A.9)

Then, subtracting Eq. A.9 with Eq. A.8 gives:

~un+1 − ~u∗

∆t = − 1
ρn
∇.Pn+1 (A.10)

Finally, by applying the divergence operator to both sides of Eq. A.10 and impos-
ing that ~un+1 is divergence free, the following Poisson equation for the pressure is
obtained:

∇.[ 1
ρn
∇.Pn+1] = 1

∆t∇.~u
∗ (A.11)

In summary, the predicted velocity ~u∗ is advanced with Eq. A.8 in a first time.
Provided ~u∗ is known, Eq. A.11 represents a linear system for Pn+1. Hence, Eq. A.11
is solved with a DPCG method[105] to assess the pressure, and Pn+1 is then used
to compute the velocity at the end of the time step (~un+1), as stated by Eq. A.10.

Equations. A.8, A.10 and A.11 are discretized in space by employing a finite-
volume method (See Sec. 2.1.2). The three steps composing the time advancement
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0 s 0.46 s

2.3 s

0.92 s 1.38 s 1.84 s

2.76 s 3.22 s 3.68 s 4.14 s

Figure A.1 – Simulation of a rigid bead falling in a viscous fluid. The bead is
represented over a cut view of the fluid domain on which the velocity magnitude is
shown.

of fluid equations are coupled with the solid membrane with a similar procedure than
in Sec. 2.2 (see Fig. 2.10). Note that µn and ρn are calculated from the membrane
location ~Xn at the beginning of the time step. More preciselly, the indicator function
I is assessed from ~Xn as done Sec. 2.2.2 with Eq. 2.90. Then, µ and ρ are set as:

µ = µext + (µext − µin)I, (A.12)

and

ρ = ρext + (ρext − ρin)I, (A.13)

Subscripts in and ext stem from internal and external parts of the membrane.
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Figure A.2 – Vertical velocity of the bead when falling in a viscous fluid. The
presented results are compared with those of Uhlmann[167].

A.2 Test case: bead falling in a viscous and
incompressible fluid

This section aims at validating the implementation presented in the previous section.
The tested configuration concerns a bead falling in an incompressible and Newtonian
fluid. In this context, the configuration presented by Uhlmann[167] is retained. The
fluid domain Ωf is defined as [0, 1.25 m] × [0, 1.25 m] × [0, 10 m]. The external fluid
has a density (ρext) and a dynamic viscosity (µext) of 1000 kg.m−3 and 1.04238 Pa.s,
respectively. A source term modelling the gravity is added in the right-hand side of
the momentum equation: ~g=(0, 0, -9.81 m.s−2). A density ratio (ρin/ρext) of 2.56 is
applied in such a way the particle falls in the ~g direction. The spherical membrane
has a radius Rb of 1/12 m and the different moduli required for the modelling (see
Eq. 2.52 and Eq. 2.69) are set as: Gs = 2.5 N.m−1, Ea = 2.5 × 10 5 N.m−1, Eb = 6.0
J and co = 12 m−1. Besides the viscosity ratio is set to µin/µext is imposed to 50. In
this way, the particle conserves its spherical aspect during the entire simulation. The
fluid and solid grid are respectively defined with triangular and tetrahedral elements
whose typical size equals 0.013 m. Figure. A.1 shows a sequence of sphere positions
over a cut view of the fluid domain. The velocity magnitude is represented in the
cut view. Note that the cutting plane passes through the sphere center of mass.
Hence the slice of the fluid domain may differ from a picture to another in Fig. A.1.

From the series of sphere positions, the time evolution of the particle vertical
velocity (uz) is calculated and compared with results of Uhlmann[167] in Fig. A.2.
Bead velocities are scaled with uref that equals

√
|~g|2ra. Moreover, in Fig. A.2, the

time scale is dimensionless since it is divided by tref =
√

2ra/|~g|. The bead velocity
increases in a transition period (viz. t/tref < 10) and then stabilizes at a velocity
uz/uref around 1.75. The present simulation displays an oscillating behavior of the
velocity, that occurs after the transition phase. This was not reported by Uhlmann,
as Fig. A.2 shows. Nevertheless, these oscillations appear to occur around velocities
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(A)

(B)

(C)

Figure A.3 – Consecutive RBC positions in the aperture for three different internal
densities: (A), (B) and (C) are simulated with densities of 1000 kg.m3, 1200 kg.m3

and 2000 kg.m3, respectively.

supported by Uhlmann and the proposed method is overall in good agreement with
the reference.

A.3 Heavier RBC in a Coulter counter

In this section, the impact of the cytosol density on the impedance pulse is assessed.
The case 10 performed in Chap. 4 (see Sec. 4.3) is performed two times more, but
by imposing internal densities (ρin) of 1200 kg.m3 and 2000 kg.m3. As a reminder,
the membrane is defined as follows: Gs=2.5× 10−6 N.m−1, Ea=2.5× 10−1 N.m−1,
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Figure A.4 – Impedence pulses obtained at different cytosol densities (ρin).

Eb=6.0 × 10−19 J, c0=0. The internal kinematic viscosity is set as 18×10−6 m2.s−1.
Note also that the external fluid has a kinematic viscosity (νext) and a density (ρext)
of 1×10−6 m2.s−1 and 1000 kg.m3, respectively. The cases with internal densities of
1200 kg.m3 and 2000 kg.m3 will be compared with case 10 that is actually equivalent
to a simulation performed at ρin = 1000 kg.m3 (that equals to the external density).

An internal density of 1200 kg.m3 is consistent with physiological values [106].
Hence, the case performed with ρin = 2000 kg.m3 is definetly to large. The plasma
has a density similar to water (1000 kg.m3), thus explaining the sedimentation of
RBCs under gravity. The dynamics obtained for the different internal densities
are shown in Fig. A.3. Overally, the trajectory is not significantly impacted when
increasing ρin from 1000 to 2000 kg.m3 (see Fig. A.3A, B and C). Nevertheless,
by comparing Fig. A.3A and C, it is observed that imposing an internal density
equalling twice the external density deflects the RBC trajectory to the orifice core
region, that is physically meaningful. Indeed, the RBC inertia is higher at ρin =
2000 kg.m3, thus it is more difficult for the cell to pursue the streamline on the bend
at the aperture inlet. Besides, when increasing the internal density, the cell tends to
take a crescent shape after the inlet bend. When turning in the shearing region, the
RBC is harder to set in motion with an higher ρin. Consequently, the RBC resists
more to the rotation, which yield a crescent shape (see Fig. A.3C).

In Fig. A.4, pulses related to the dynamics of Fig. A.3 are shown. Globally,
increasing ρin reduces the pulse length. Increasing ρin to 2000 kg.m3 yields a sub-
stantial impact on the pulse (see Fig. A.4), but remind that such value is not relevant.
However, considering an internal density equaling 1200 kg.m3, no significant differ-
ence with 1000 kg.m3 is observed. One conclude that the impact of the cytosol
density on the electrical pulse is negligible, in a reasonable physiological range.
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Issues and preliminary results for very
near wall trajectories

In Fig. 4.18 of Chap. 4, a cluster located at Pr around 10 % is not retrieved nu-
merically by considering trajectories of Fig. 4.10. This part of the experimental
acquisition is related to larger pulses (viz. larger Wr) than the remaining data.
Hence, a computation performed by using a streamline closer to the wall than all
cases of Fig. 4.10 is presented in the following. As presented in Chap. 4, the stream-
line extracted from the carrying flow is a key component of the pipeline for the
numerical simulation of deformable particles in Coulter counters. Although RBCs
are not enforced to pursue the streamline, it gives an a priori idea on where the
particle is going to flow in the orifice. The computation presented hereafter is not
included in the main part of this thesis because numerical instabilities make the
results questionable. Still, the presented findings appear to confirm that the afore-
mentionned pulses population is associated to trajectories in a really close vincinity
of walls.

From computation NSS0 of Sec. 3.1.1 a streamline passing by point (0, 23 µm,
0) is chosen. For comparison purposes, case 10 of Fig. 4.10 was performed from
a streamline going through (0, 20 µm, 0). Then, applying the pipeline of Fig. 4.2
renders results of Fig. B.1. In the top row, the RBC dynamics inside the aperture is
shown. Besides, a zoom in the membrane highlights the issues encountered during
such computations. Indeed, triangular elements describing the membrane intersect
at some points, which is definitely not physical. Although this computation is shown
to be unstable, the related pulse is located in the cluster that has not been retrieved
previously (see bottom row in Fig. B.1). As shown by the pulses signatures in
Fig. B.1, this cluster is made of pulses for which the electrical peak is higher than
the peak of rotation. The electrical peak arises from the dense electrical field near the
aperture corners. Remind that this phenomenon explained the typical ‘M-shapped’
pulses observed for spheres. In that sense, the metric Pr (see Eq. 4.6) does not
locate the peak of rotation but the substantial electrical peak at the very beginning
of the pulse. This explains why this pulse population is isolated in the Pr/Wr

representation of the acquisition.
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Intersection of 
triangle edges

Figure B.1 – Numerical simulation of a RBC when a streamline passing by point
(0, 23 µm, 0) is considered in the pipeline of Chap. 4. The RBC parameters are
taken as in Sec. 4.3. The top row shows a series of RBC following shapes inside the
orifice. The bottom row display the associated electrical print superimposed with
experimental pulses. In addition, the location of this numerical pulse on a Wr/Pr
graph is provided.
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Neural Networks
In the present work, NNs are used to build models allowing an assessment of cells
features when they flow in a Coulter counter. For example, cells features may include
the mechanical behaviour, the shape, or the trajectory of RBCs. These indications
should be deduced from the electrical pulses, which implies NNs that take a temporal
signal (viz. a pulse) as an income for rendering the cell characteristics.

Neural Networks (NNs) are one of the numerous machine learning methods.
The reader is referred to [59] for an overview of existing methods. Briefly, machine
learning consists in building a predictive model from a database. The two main
branches in machine learning are supervised and unsupervised learning. The latter is
not treated in this work. In supervised learning problems, the database is composed
by a number Ndata of observations that are couples ain/aobs. Machine learning
models are constructed in a way that they predict a value apred as close as aobs
from the corresponding ain, including for values that were not used to build the
model. Hence, the dataset from which the model is derived (also referred as training
database) must be representative of all the possible observations so that a substantial
number of data (Ndata) is generally required.

NNs are models built by combining simple mathematical objects called neurons
(see Fig. C.1). Given a number N of inputs xi, it computes z, the sum of xi weighted
by parameters wi:

z =
N∑
i=1

xiwi (C.1)

Then, an activation function fa is applied to the weighted sum z, that leads to the
neural output y:

y = fa(z)

= fa

(
N∑
i=1

xiwi

) (C.2)

The combination of these elementary neurons enables the construction of complex
and non-linear models. If the number of neurons is sufficient, NNs were proven to
approach any continuous functions in a compact subset of space [22, 66]. Moreover,
NNs may tackle problems of arbitrary dimensions.
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Figure C.1 – Principle of an elementary neuron that computes y from a given number
of inputs xi.

C.1 Introduction to Multi Layer Perceptrons

Let consider a problem in which No variables must be deduced from Ni inputs.
Elementary neurons (see Fig. C.1) may be combined to design a more complex
relation between inputs and outputs. The most known, used and described neurons
arrangement is called Multi-Layer Perceptron (MLP) [45, 73, 120, 139]: neurons are
organized in layers, and each neuron is linked with those of the neighbouring layers
only (see Fig. C.2).

C.1.1 Construction and prediction of a MLP

Figure. C.2 is a diagram of an arbitrary MLP. The NN is composed by Lo layers.
The outcome of the n-th neuron of the l-th layer is denoted by aln and given as an
input to each neuron of layer l + 1. The weight linking the n-th neuron of layer l
with the m-th neuron of layer l + 1 is referred as wl+1

n,m. Hence, versions of Eq. C.1
and Eq. C.2 suited to any neuron of a MLP write:

zl+1
n =

Nl∑
m=1

almw
l+1
m,n, (C.3)

and

al+1
n = fa(zl+1

n )

= fa

 Nl∑
m=1

almw
l+1
m,n

 , (C.4)

respectively. With Nl, the number of neuron in layer l. In particular, the layer
numbered by 1 takes the problem input size (N1 = Ni) while the output layer (Lo)
contains NLo neuron that equals the problem outcome dimension (No). This way,
given a1

m (for m in [1 , Ni]) and wlm,n (for m in [1 , Nl−1], n in [1 , Nl] and l in [2 ,
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Figure C.2 – Principle of an arbitrary multilayer perceptron, an organisation of
neurons by Lo successive layers. Inputs of the model a1

n are given in the first layer
while the predictions aLon (ie. the output of the model) are extracted from the last
layer of the model (Lo).

Lo]), the MLP prediction (viz. aLon for n in [1 , No]) is assessed by the feed-forward
algorithm (see Alg. 1) that propagates the income in the MLP, layer by layer.

Algorithm 1 Feed forward algorithm
Require: input parameters a1

m and all weights wlm,n
l← 2
while l ≤ Lo do
n← 1
while n ≤ Nl do
zln ← 0
m← 1
while m ≤ Nl−1 do
zln ← zln + al−1

m wlm,n
m← m+ 1

end while
aln = fa(zln)
n← n+ 1

end while
l← l + 1

end while
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C.1.2 Model training

Note that the model prediction depends on the MLP weights (wlm,n). Given a dataset
composed by Ndata observations, or couples ain/aobs (or a1/aobs), the learning step
consists in the enhancing of the NN weights in such a way the errors between the
model predictions apred (or aLo) and the actual values aobs are minimized. This
optimization problem is solved with a gradient descent method. More precisely, the
MLP weights are updated as follow:

wlm,n ← wlm,n − α×
∂FL
∂wlm,n

(C.5)

With FL, the loss function that quantifies the error between the predicted outcome
aLo and the target value aobs (note that aobs and aLo have the same dimension). An
example of loss function could be:

FL(aLo , aobs) =
NLo∑
n=1

(aobsn − aLon )2 (C.6)

In other words, given an initial guess for the weights and a couple a1/aobs, Alg. 1
is performed to calculate aLo , that is then compared with aobs by FL . Then, the
derivatives of FL according to the different weights ( ∂FL

∂wlm,n
) are used to update the

model as stated in Eq. C.5.
In the following, ∂FL

∂wlm,n
is derived for a weight linked to the output layer (Lo)

and for one that is located in a deeper layer. Based on these two examples, a
generalization of an explicit and exact descent gradient algorithm for the updating
of the NN weights is introduced. Known as ‘back propagation’, this approach was
introduced by Rumelhart [142] and improved by many authors [8, 65, 96, 119, 126,
180]. Moreover, this method can easily be adapted with improved versions of the
gradient descent algorithm, that are available in the literature [27, 81, 128].

Computation of the gradient for a weight located before the output layer:
As an example, ∂FL

∂wLo1,1
(see Fig. C.2) is treated. The chain rule allows the following

developement of ∂FL
∂wLo1,1

:

∂FL

∂wLo1,1
= ∂FL

∂aLo1
× ∂aLo1
∂zLo1

× ∂zLo1
∂wLo1,1

(C.7)

The expressions of ∂FL
∂aLo1

and ∂aLo1
∂zLo1

are known by definition and are denoted by F ′L(aLo1 )

and f ′a(zLo1 ), respectively. Besides, regarding Eq. C.3, term ∂zLo1
∂wLo1,1

equals aLo−1
1 .

Consequently Eq. C.7 may be rewritten as follow:

∂FL

∂wLo1,1
= F ′L(aLo1 )× f ′a(zLo1 )× aLo−1

1 (C.8)

Now, defining δLoi as:
δLoi = F ′L(aLoi )× f ′a(zLoi ), (C.9)
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Eq. C.8 finally writes:
∂FL

∂wLo1,1
= aLo−1

1 × δLo1 (C.10)

Computation of the gradient for a weight located in a deeper layer: Term
∂FL

∂wLo−1
2,1

(see Fig. C.2) is dealt with in the following. Once again, the chain rule is
used:

∂FL

∂wLo−1
2,1

= ∂FL

∂aLo−1
1

× ∂aLo−1
1

∂zLo−1
1

× ∂zLo−1
1

∂wLo−1
2,1

(C.11)

In Eq. C.11, f ′a(zLo−1
1 ) and aLo−2

2 appear directly (see Eq. C.3 and Eq. C.4, respec-
tively). Hence, Eq. C.11 leads to:

∂FL

∂wLo−1
2,1

= ∂FL

∂aLo−1
1

× f ′a(zLo−1
1 )× aLo−2

2 (C.12)

Moreover, it should be noted that term ∂FL
∂aLo−1

1
of Eq. C.12 may be derived as follows:

∂FL

∂aLo−1
1

=
NLo∑
i=1

∂FL

∂aLoi
× ∂aLoi
∂zLoi

× ∂zLoi
∂aLo−1

1

=
NLo∑
i=1

δLoi × w
Lo
1,i

(C.13)

The first line of Eq. C.13 illustrates that FL depends on aLo−1
1 through the NLo

ouputs aLoi . This is highlighted in Fig. C.2 by the continuous black arrows emerging
from the first neuron of layer numbered by Lo − 1. The second line of Eq. C.13 is
simply deduced from Eq. C.9 and Eq. C.3. Consequently, substituting Eq. C.13 in
Eq. C.12 provides the following expression:

∂FL

∂wLo−1
2,1

= aLo−2
2 × f ′a(zLo−1

1 )×
NLo∑
i=1

δLoi × w
Lo
1,i (C.14)

Finally, by introducing δLo−1
1 as:

δLo−1
1 = f ′a(zLo−1

1 )×
NLo∑
i=1

δLoi × w
Lo
1,i , (C.15)

Eq. C.14 yields:
∂FL

∂wLo−1
2,1

= aLo−2
2 × δLo−1

1 (C.16)

Generalization: In an analogous way, Eq. C.14 and Eq. C.16 may be developed
for any weight in a hidden layer. Hence, Eq. C.10 and C.16 may be generalized to
all neurons of the MLP:

∂FL
∂wlm,n

= al−1
m × δln, (C.17)
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with δln depending on whether the output layer Lo is considered or not, as illustrated
by Eq. C.9 and Eq. C.15:

δln = {
f ′a(zln)× F ′L(aln) , l = Lo

f ′a(zln)×∑Nl+1
i=1 δl+1

i × wl+1
n,i , l < Lo

(C.18)

Equation C.18 is the basis of the ‘back propagation’ algorithm that is presented in
Alg. 2. Provided that zln, aln and wlm,n are known, the δLon are evaluated for a first
time. Then, δln is propagated backward and layer by layer, up to the input L1.

Algorithm 2 Back propagation
Require: zln, aln and wlm,n
Ensure: δln
l← Lo
while l ≥ 1 do
n← 1
while n ≤ N l do
if l = Lo then
δln ← F ′L(aln)

else
δln ← 0
m← 0
while m ≤ N l+1 do
δln ← δln + δl+1

m × wl+1
n,m

m← m+ 1
end while

end if
δln ← δln × f ′a(zln)
n← n+ 1

end while
l← l − 1

end while

Summary of the training procedure: Given a database containing Ndata pairs
a1/aobs, the training procedure of the model is performed as follow: (1) From an
observation a1/aobs coming from the database, Alg. 1 is performed in order to assess
zln and aln for each neuron of the NN. In particular, running Alg. 1 provides the
model prediction aLon . (2) With aln known for all neurons of the model, the back
propagation algorithm (Alg. 2) is used to compute δln. (3) The gradients are then
computed according to Eq. C.17 and the model weights wlm,n are finally updated
according to Eq. C.5. (4) A new couple a1/aobs is then chosen randomly from the
data base and the procedure is restarted from step 1. Repeating this process for a
sufficient number of observations, the model is expected to converge to an optimal
solution.

Mini-batch descent gradient: Rather than a classical ‘batch gradient descent’
(BGD) that computes the error on the entire dataset to update the parameters, the
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Figure C.3 – Principle of a convolution kernel applied on a portion of a source image
as presented in https://towardsdatascience.com/. The image is defined as a two
dimensional arrangement of pixels. The kernel is a matrix of size 3 × 3 that is
applied to a part of the initial image that have the same size.

presented method upgrade the weights once for each observation. This approach is
referred to as ‘stochastic gradient descent’ (SGD). An intermediate method is the
‘mini-batch gradient descent’ (MBGD) in which a small number of samples defined
as ‘batch’ are treated at the same time. In such a strategy, the loss function is
generally averaged over the batch:

FGL = 1
bs

bs∑
i=1

FL(aLoi , aobsi ) (C.19)

With bs denoting the batch size and FGL referring to a general loss function. Note
that if bs = 1, MBGD is equivalent to SGD while if bs = Ndata (the dataset size),
MGBD is analogous to BGD. Using FGL instead of FL in a MBSD strategy, implies
the updating of the model weights by the FL gradients averaged over the mini-batch:

wlm,n ← wlm,n − α×
bs∑
i=1

∂FL
∂wlm,n

∣∣∣∣∣
i

(C.20)

Training the model with MBSD is performed in several iterations called ‘epochs’.
In an epoch, the entire dataset is randomly divided in Ndata/bs batches. For each
batch, the model is updated according to Eq. C.20. The process is then stopped
according to a criterion on the global error FGL , or when the maximal number of
epochs is reached.

C.2 A few words on Convolutional Neural Networks

MLPs presented in the last section (see Fig. C.2) are fully-connected, which means
each neuron is connected to all neurons of the previous and the following layers.
Dealing with structured data like images or temporal series, Convolutional Neural
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Figure C.4 – Convolutional neural network designed for the recognition of hand-
written numbers provided by [58]. This model may be tested online at http:
//scs.ryerson.ca/~aharley/vis/. Successive convolutions performed on the initial
image are provided by the software.

Networks (CNN) were shown to yield excellent results while involving fewer con-
nections between neighbouring layers. In particular, CNNs imply convolution layers
that are not fully-connected. By structured data, it is meant data in which the
arrangement of the variables contains information. This appears intuitively when
considering pixels composing an image. Instead of computing a neuron outlet by
calculating the weighted sum over all neurons of the previous layer (according to
Eq. C.4), in convolution layers, only a small part of former neurons is considered.
This is done by scanning the preceding layer with a convolution kernel. Specific
kernels are often employed in the image processing area for edges detection, features
detection or smoothing, for example. This explains why CNNs have been widely
used for image recognition [85]. Hence, in this brief introduction to CNNs, the
example of image processing is retained. In a last section, an illustration of how
applying CNNs to electrical pulses is presented.

C.2.1 Convolution kernel

Given a picture of dimension Np
h × Np

w × D, a convolution kernel (or filter) defined
as a squared matrix Nk × Nk × D is applied to groups of neighbouring pixels
having the same size as the filter. The third dimension D equals 1 if the image
is in level of gray, or 3 for a colored image (According to the RGB model), for
instance. Figure. C.3 illustrates how a filter handles a pixel group to generate a
new pixel (denoted by ‘destination pixel’). In this example, D = 1 while Nk = 3.
Considering a MLP, the destination pixel would be linked to all pixels of the source
image, while using a 3×3 kernel, only 9 pixels are accounted for. This allows a
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Figure C.5 – Diagram of a CNN dedicated to image treatments. The first layer
(‘Input data’) takes an image of size Np
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w and two convolution layers are
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Figure C.6 – Diagram of a CNN dedicated to times series. The first layer (‘Input
data’) reads a signal of size Np and two convolution layers are applied prior to two
fully-connected layers. Note that Np represents the number of time steps describing
the signal.

substantial reduction in the number of model weights. Scanning the source image
with the kernel provides a filtered image, also called features map. During the scan,
the kernel is moved on the initial picture with a pixel increment S.

C.2.2 Convolution Layer

Several kernels and as many features maps are included in a convolution layer. In
Fig. C.4 an initial handwritten image leads to 6 filtered images by the use of six
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kernels, for instance. This CNN was designed and trained to recognize handwritten
numbers [58] and is available (http://scs.ryerson.ca/~aharley/vis/). A number may
be drawn directly on the web page and the CNN renders on live the model prediction.
Moreover, an insight of the successive filterings applied on the image is provided.
When Nft kernels are involved, a convolution layer, leads to an image of dimension
N c
h × N c

w × Nft. In which N c
h = Np

h
−Nk
S , N c

w = Np
w−Nk
S , and Np

h × Np
w is the size

of the source image. This is illustrated in Fig. C.5 in which the ‘input data’ is
filtered in Nft features maps in ‘Convolution Layer 1’. All features map are placed
in parallel (see Fig. C.5), thus implying a three dimensional picture. Generally, all
features maps of a convolution layer arise from kernels of the same size. Hence,
if a convolution layer follows another one, the dimension Dk of its kernels equals
the number of features maps Nft of the preceding layer, as illustrated in Fig. C.5.
Values composing kernels matrices are weights updated during the training step by
proceeding as in Sec. C.1. Hence, the CNN identifies automatically the relevant
filters to render the optimal results, regarding the training database. In summary, a
convolution layer is defined by the number of kernelsNft, the kernels sizeNk, and the
filter increment S. Note that kernels dimensions Dk are not user-defined parameters,
since they depend on the previous layer. Regarding CNNs of Fig. C.4 and Fig. C.5,
it should be noted that the last layers of the model are fully-connected layer (as in
a MLP). Actually, a NN is said CNN if its first hidden layer is a convolutional layer.

C.2.3 CNN for electrical pulses

Images processing was taken as an example in this brief introduction to CNNs.
However, electrical pulses may also be viewed as structured data, but with a sole
dimension Np. Hence the use of CNNs to detect relevant one-dimensional patterns
in an electrical pulse seems appropriate. Dealing with temporal series should imply
one dimensional kernels (see Fig. C.6). Besides, note that the notion of pixel (for
images) is equivalent to the concept of time step when treating temporal signals. The
CNN shown in Fig. C.6 is inspired from Fig. C.5 but is devoted to one-dimensional
time series sequences.
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Numerical Database

As part of this thesis, Neural Networks (NN) were trained on the basis of numerical
data. In this appendix, all simulations performed in the aims of building the nu-
merical databases are reported. Numerical simulation are achieved with the method
presented in Sec. 4.1 and only five parameters are varied in the computations: the
internal viscosity νin, the shear modulus Gs, the reduced volume Q, the streamline
on which the cell is deposited, and the membrane surface Sm. The streamline is
parametrized by ra, defining the point (0, ra, 0) to which it gets through. Having
shown negligible effects on the impedance pulse the remaining parameters are kept
constant in all cases presented in the following. More precisely, the curavature mod-
ulus, the spontaneous curvature and the area modulus are set as: Eb = 6 × 10−19 J,
co = 0 m−1 and Ea= 2.5 × 10−1 N.m−1. All simulated cases are shown in Tab. D.1.

Given the membrane surface Sm, the reduced volume Q tells us the volume
enclosed by the cell. Equivalently, Q specifies Sm if the cell volume is provided.
Hence, a change of Q may be done by a modification of the membrane surface or
the cell volume. In practice, the cell shape is obtained from a discocyte membrane
of given Sm (filled out in Tab. D.1) with an initial reduced volume of 0.65. Provided
Sm and Q, the cell reference volume Vp = Q4

3π
√

Sm
4π

3
is taken as an input by solver

FSIS (see Sec. 2.2) in a preliminary simulation. In this calculation, the ‘volume
conservation’ routine ensures a cell volume of Vp, and the area modulus Ea ensures
a membrane surface of Sm. The final cell shape then results in the competition
between bending and shear resistances. Hence, at the end of the equilibrium shape
calculation, the cell has the expected reduced volume of Q. The computation of
membrane equilibrium shapes with solver FSIS was detailed in [46] and used in [91],
for instance.

As mentioned in Sec. 3.2, a specific fluid grid is required for each considered
streamline (ie. ra). For the sake of convenience, ra is included in [16 µm, 17 µm, 18
µm, 19 µm, 20 µm].
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D.1 Database employed in the detection of RBCs
rotation

In Sec. 5.3, a NN is trained to isolate pulses generated by RBCs rotating in the
aperture from those induced by cells showing a constant orientation. In this mod-
elling, the training procedure makes use of cases 1-85. Reminding that the rotation
experienced by RBCs is closely linked to the followed trajectory, the dataset spreads
over a range of ra covering a substantial part of the aperture. Besides, parameters
νin, Gs, Q and Sm are varied in order to make the model robust with respect to the
RBCs morphology and rheology.

D.2 Database used for the assessement of RBCs
parameters

The purpose of Sec. 6.3 is to build a NN capable of rendering the RBC parameters
from the associated impedance pulse. In that sense, cases 86-382 of Tab. D.1 are
considered. Note that the membrane surface Sm is the same for all this dataset.
That means cell volumes may differ in these different cases, depending on the re-
duced volume Q. The pulse amplitude is proportional to the cell volume, but in
the approach of Sec. 6.3 pulses are scaled with their respective maximum before
being processed by NNs. Hence, variations in Sm (and thus in volume) would not
have impacted the modelling. In Fig. D.1 cases 86-382 are represented on a three
dimensionnal plot according to νin, Gs and Q. The parameter ar is not shown in
the graph, and remind that Sm is constant for all these cases. The first part of this
database (86-318) is regularly sampled as shown by red bold circles, while the sec-
ond part (319-382) is subject to random sampling by the use of a Latin HyperCube
(LHC) method. Briefly, the range covered by the regular sampling (see Fig. D.1) was
split into 63 subsets of equal dimensions. Then, a set of parameters (νin, Gs and Q)
is chosen randomly in each subset, thus leading to 63 cases (319-382 in Tab. D.1).
Parameter ra is drawn randomly in [16 µm, 17 µm, 18 µm, 19 µm, 20 µm].

Table D.1 – Numerical database

No νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

1 1.500e-05 2.500e-06 0.650 0.0 134
2 1.500e-05 2.500e-06 0.650 1.5e-05 134
3 1.500e-05 2.500e-06 0.650 1.6e-05 134
4 1.500e-05 2.500e-06 0.650 1.7e-05 134
5 1.500e-05 2.500e-06 0.650 1.8e-05 134
6 1.500e-05 2.500e-06 0.650 1.9e-05 134
7 1.500e-05 2.500e-06 0.650 2.0e-05 134
8 1.800e-05 2.500e-06 0.650 0.0 134
9 1.800e-05 2.500e-06 0.650 5.0e-06 134
10 1.800e-05 2.500e-06 0.650 1.0e-05 134
11 1.800e-05 2.500e-06 0.650 1.25e-05 134
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Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

12 1.800e-05 2.500e-06 0.650 1.5e-05 134
13 1.800e-05 2.500e-06 0.650 1.6e-05 134
14 1.800e-05 2.500e-06 0.650 1.7e-05 134
15 1.800e-05 2.500e-06 0.650 1.8e-05 134
16 1.800e-05 2.500e-06 0.650 1.9e-05 134
17 1.800e-05 2.500e-06 0.650 2.0e-05 134
18 2.100e-05 2.500e-06 0.650 0.0 134
19 2.100e-05 2.500e-06 0.650 1.5e-05 134
20 2.100e-05 2.500e-06 0.650 1.6e-05 134
21 2.100e-05 2.500e-06 0.650 1.7e-05 134
22 2.100e-05 2.500e-06 0.650 1.8e-05 134
23 2.100e-05 2.500e-06 0.650 1.9e-05 134
24 2.100e-05 2.500e-06 0.650 2.0e-05 134
25 1.800e-05 4.000e-05 0.650 0.0 134
26 1.800e-05 4.000e-05 0.650 1.5e-05 134
27 1.800e-05 4.000e-05 0.650 1.6e-05 134
28 1.800e-05 4.000e-05 0.650 1.7e-05 134
29 1.800e-05 4.000e-05 0.650 1.8e-05 134
30 1.800e-05 4.000e-05 0.650 1.9e-05 134
31 1.800e-05 4.000e-05 0.650 2.0e-05 134
32 1.800e-05 1.600e-04 0.650 0.0 134
33 1.800e-05 1.600e-04 0.650 1.5e-05 134
34 1.800e-05 1.600e-04 0.650 1.6e-05 134
35 1.800e-05 1.600e-04 0.650 1.7e-05 134
36 1.800e-05 1.600e-04 0.650 1.8e-05 134
37 1.800e-05 1.600e-04 0.650 1.9e-05 134
38 1.800e-05 1.600e-04 0.650 2.0e-05 134
39 1.800e-05 2.500e-06 0.650 0.0 125
40 1.800e-05 2.500e-06 0.650 1.5e-05 125
41 1.800e-05 2.500e-06 0.650 1.6e-05 125
42 1.800e-05 2.500e-06 0.650 1.7e-05 125
43 1.800e-05 2.500e-06 0.650 1.8e-05 125
44 1.800e-05 2.500e-06 0.650 1.9e-05 125
45 1.800e-05 2.500e-06 0.650 2.0e-05 125
46 1.800e-05 2.500e-06 0.650 0.0 142
47 1.800e-05 2.500e-06 0.650 1.5e-05 142
48 1.800e-05 2.500e-06 0.650 1.6e-05 142
49 1.800e-05 2.500e-06 0.650 1.7e-05 142
50 1.800e-05 2.500e-06 0.650 1.8e-05 142
51 1.800e-05 2.500e-06 0.650 1.9e-05 142
52 1.800e-05 2.500e-06 0.650 2.0e-05 142
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APPENDIX D. NUMERICAL DATABASE

Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

53 1.800e-05 2.500e-06 0.650 23.0e-6 134
54 1.800e-05 2.500e-06 0.650 22.0e-6 134
55 1.800e-05 2.500e-06 0.650 21.0e-6 134
56 1.800e-05 2.500e-06 0.650 14.0e-6 134
57 1.800e-05 2.500e-06 0.650 13.0e-6 134
58 1.800e-05 2.500e-06 0.650 12.0e-6 134
59 1.800e-05 2.500e-06 0.650 11.0e-6 134
60 1.800e-05 2.500e-06 0.750 0.0 134
61 1.800e-05 2.500e-06 0.750 1.5e-05 134
62 1.800e-05 2.500e-06 0.750 1.6e-05 134
63 1.800e-05 2.500e-06 0.750 1.7e-05 134
64 1.800e-05 2.500e-06 0.750 1.8e-05 134
65 1.800e-05 2.500e-06 0.750 1.9e-05 134
66 1.800e-05 2.500e-06 0.750 2.0e-05 134
67 1.800e-05 2.500e-06 0.750 2.1e-05 134
68 1.800e-05 2.500e-06 0.750 2.2e-05 134
69 1.800e-05 2.500e-06 0.750 2.3e-05 134
70 1.800e-05 2.500e-06 0.850 0.0 134
71 1.800e-05 2.500e-06 0.850 1.5e-05 134
72 1.800e-05 2.500e-06 0.850 1.6e-05 134
73 1.800e-05 2.500e-06 0.850 1.7e-05 134
74 1.800e-05 2.500e-06 0.850 1.8e-05 134
75 1.800e-05 2.500e-06 0.850 1.9e-05 134
76 1.800e-05 2.500e-06 0.850 2.0e-05 134
77 1.800e-05 2.500e-06 0.850 2.1e-05 134
78 1.800e-05 2.500e-06 0.850 2.2e-05 134
79 1.800e-05 2.500e-06 0.850 2.3e-05 134
80 1.800e-05 4.000e-05 0.650 23.0e-6 134
81 1.800e-05 4.000e-04 0.650 22.0e-06 134
82 1.800e-05 4.000e-03 0.650 21.0e-05 134
83 1.800e-05 1.600e-04 0.650 23.0e-6 134
84 1.800e-05 1.600e-03 0.650 22.0e-06 134
85 1.800e-05 1.600e-02 0.650 21.0e-05 134
86 1.500e-05 2.500e-06 0.550 1.6e-05 134
87 1.500e-05 2.500e-06 0.550 1.8e-05 134
88 1.500e-05 2.500e-06 0.550 2.0e-05 134
89 1.500e-05 2.500e-06 0.650 1.6e-05 134
90 1.500e-05 2.500e-06 0.650 1.8e-05 134
91 1.500e-05 2.500e-06 0.650 2.0e-05 134
92 1.500e-05 2.500e-06 0.750 1.6e-05 134
93 1.500e-05 2.500e-06 0.750 1.8e-05 134
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APPENDIX D. NUMERICAL DATABASE

Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

94 1.500e-05 2.500e-06 0.750 2.0e-05 134
95 1.500e-05 2.125e-05 0.550 1.6e-05 134
96 1.500e-05 2.125e-05 0.550 1.8e-05 134
97 1.500e-05 2.125e-05 0.550 2.0e-05 134
98 1.500e-05 2.125e-05 0.650 1.6e-05 134
99 1.500e-05 2.125e-05 0.650 1.8e-05 134
100 1.500e-05 2.125e-05 0.650 2.0e-05 134
101 1.500e-05 2.125e-05 0.750 1.6e-05 134
102 1.500e-05 2.125e-05 0.750 1.8e-05 134
103 1.500e-05 2.125e-05 0.750 2.0e-05 134
104 1.500e-05 4.000e-05 0.550 1.6e-05 134
105 1.500e-05 4.000e-05 0.550 1.8e-05 134
106 1.500e-05 4.000e-05 0.550 2.0e-05 134
107 1.500e-05 4.000e-05 0.650 1.6e-05 134
108 1.500e-05 4.000e-05 0.650 1.8e-05 134
109 1.500e-05 4.000e-05 0.650 2.0e-05 134
110 1.500e-05 4.000e-05 0.750 1.6e-05 134
111 1.500e-05 4.000e-05 0.750 1.8e-05 134
112 1.500e-05 4.000e-05 0.750 2.0e-05 134
113 1.800e-05 2.500e-06 0.550 1.6e-05 134
114 1.800e-05 2.500e-06 0.550 1.8e-05 134
115 1.800e-05 2.500e-06 0.550 2.0e-05 134
116 1.800e-05 2.500e-06 0.650 1.6e-05 134
117 1.800e-05 2.500e-06 0.650 1.8e-05 134
118 1.800e-05 2.500e-06 0.650 2.0e-05 134
119 1.800e-05 2.500e-06 0.750 1.6e-05 134
120 1.800e-05 2.500e-06 0.750 1.8e-05 134
121 1.800e-05 2.500e-06 0.750 2.0e-05 134
122 1.800e-05 2.125e-05 0.550 1.6e-05 134
123 1.800e-05 2.125e-05 0.550 1.8e-05 134
124 1.800e-05 2.125e-05 0.550 2.0e-05 134
125 1.800e-05 2.125e-05 0.650 1.6e-05 134
126 1.800e-05 2.125e-05 0.650 1.8e-05 134
127 1.800e-05 2.125e-05 0.650 2.0e-05 134
128 1.800e-05 2.125e-05 0.750 1.6e-05 134
129 1.800e-05 2.125e-05 0.750 1.8e-05 134
130 1.800e-05 2.125e-05 0.750 2.0e-05 134
131 1.800e-05 4.000e-05 0.550 1.6e-05 134
132 1.800e-05 4.000e-05 0.550 1.8e-05 134
133 1.800e-05 4.000e-05 0.550 2.0e-05 134
134 1.800e-05 4.000e-05 0.650 1.6e-05 134
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APPENDIX D. NUMERICAL DATABASE

Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

135 1.800e-05 4.000e-05 0.650 1.8e-05 134
136 1.800e-05 4.000e-05 0.650 2.0e-05 134
137 1.800e-05 4.000e-05 0.750 1.6e-05 134
138 1.800e-05 4.000e-05 0.750 1.8e-05 134
139 1.800e-05 4.000e-05 0.750 2.0e-05 134
140 2.100e-05 2.500e-06 0.550 1.6e-05 134
141 2.100e-05 2.500e-06 0.550 1.8e-05 134
142 2.100e-05 2.500e-06 0.550 2.0e-05 134
143 2.100e-05 2.500e-06 0.650 1.6e-05 134
144 2.100e-05 2.500e-06 0.650 1.8e-05 134
145 2.100e-05 2.500e-06 0.650 2.0e-05 134
146 2.100e-05 2.500e-06 0.750 1.6e-05 134
147 2.100e-05 2.500e-06 0.750 1.8e-05 134
148 2.100e-05 2.500e-06 0.750 2.0e-05 134
149 2.100e-05 2.125e-05 0.550 1.6e-05 134
150 2.100e-05 2.125e-05 0.550 1.8e-05 134
151 2.100e-05 2.125e-05 0.550 2.0e-05 134
152 2.100e-05 2.125e-05 0.650 1.6e-05 134
153 2.100e-05 2.125e-05 0.650 1.8e-05 134
154 2.100e-05 2.125e-05 0.650 2.0e-05 134
155 2.100e-05 2.125e-05 0.750 1.6e-05 134
156 2.100e-05 2.125e-05 0.750 1.8e-05 134
157 2.100e-05 2.125e-05 0.750 2.0e-05 134
158 2.100e-05 4.000e-05 0.550 1.6e-05 134
159 2.100e-05 4.000e-05 0.550 1.8e-05 134
160 2.100e-05 4.000e-05 0.550 2.0e-05 134
161 2.100e-05 4.000e-05 0.650 1.6e-05 134
162 2.100e-05 4.000e-05 0.650 1.8e-05 134
163 2.100e-05 4.000e-05 0.650 2.0e-05 134
164 2.100e-05 4.000e-05 0.750 1.6e-05 134
165 2.100e-05 4.000e-05 0.750 1.8e-05 134
166 2.100e-05 4.000e-05 0.750 2.0e-05 134
167 1.600e-05 8.750e-06 0.583 1.6e-05 134
168 1.600e-05 8.750e-06 0.583 1.7e-05 134
169 1.600e-05 8.750e-06 0.583 1.8e-05 134
170 1.600e-05 8.750e-06 0.583 1.9e-05 134
171 1.600e-05 8.750e-06 0.583 2.0e-05 134
172 1.600e-05 8.750e-06 0.716 1.6e-05 134
173 1.600e-05 8.750e-06 0.716 1.7e-05 134
174 1.600e-05 8.750e-06 0.716 1.8e-05 134
175 1.600e-05 8.750e-06 0.716 1.9e-05 134
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APPENDIX D. NUMERICAL DATABASE

Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

176 1.600e-05 8.750e-06 0.716 2.0e-05 134
177 1.600e-05 3.375e-05 0.583 1.6e-05 134
178 1.600e-05 3.375e-05 0.583 1.7e-05 134
179 1.600e-05 3.375e-05 0.583 1.8e-05 134
180 1.600e-05 3.375e-05 0.583 1.9e-05 134
181 1.600e-05 3.375e-05 0.583 2.0e-05 134
182 1.600e-05 3.375e-05 0.716 1.6e-05 134
183 1.600e-05 3.375e-05 0.716 1.7e-05 134
184 1.600e-05 3.375e-05 0.716 1.8e-05 134
185 1.600e-05 3.375e-05 0.716 1.9e-05 134
186 1.600e-05 3.375e-05 0.716 2.0e-05 134
187 2.000e-05 8.750e-06 0.583 1.6e-05 134
188 2.000e-05 8.750e-06 0.583 1.7e-05 134
189 2.000e-05 8.750e-06 0.583 1.8e-05 134
190 2.000e-05 8.750e-06 0.583 1.9e-05 134
191 2.000e-05 8.750e-06 0.583 2.0e-05 134
192 2.000e-05 8.750e-06 0.716 1.6e-05 134
193 2.000e-05 8.750e-06 0.716 1.7e-05 134
194 2.000e-05 8.750e-06 0.716 1.8e-05 134
195 2.000e-05 8.750e-06 0.716 1.9e-05 134
196 2.000e-05 8.750e-06 0.716 2.0e-05 134
197 2.000e-05 3.375e-05 0.583 1.6e-05 134
198 2.000e-05 3.375e-05 0.583 1.7e-05 134
199 2.000e-05 3.375e-05 0.583 1.8e-05 134
200 2.000e-05 3.375e-05 0.583 1.9e-05 134
201 2.000e-05 3.375e-05 0.583 2.0e-05 134
202 2.000e-05 3.375e-05 0.716 1.6e-05 134
203 2.000e-05 3.375e-05 0.716 1.7e-05 134
204 2.000e-05 3.375e-05 0.716 1.8e-05 134
205 2.000e-05 3.375e-05 0.716 1.9e-05 134
206 2.000e-05 3.375e-05 0.716 2.0e-05 134
207 1.700e-05 1.500e-05 0.616 2.0e-05 134
208 1.700e-05 1.500e-05 0.616 2.0e-05 134
209 1.700e-05 1.500e-05 0.683 2.0e-05 134
210 1.700e-05 1.500e-05 0.683 2.0e-05 134
211 1.700e-05 2.750e-05 0.616 2.0e-05 134
212 1.700e-05 2.750e-05 0.616 2.0e-05 134
213 1.700e-05 2.750e-05 0.683 2.0e-05 134
214 1.700e-05 2.750e-05 0.683 2.0e-05 134
215 1.900e-05 1.500e-05 0.616 2.0e-05 134
216 1.900e-05 1.500e-05 0.616 2.0e-05 134
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APPENDIX D. NUMERICAL DATABASE

Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

217 1.900e-05 1.500e-05 0.683 2.0e-05 134
218 1.900e-05 1.500e-05 0.683 2.0e-05 134
219 1.900e-05 2.750e-05 0.616 2.0e-05 134
220 1.900e-05 2.750e-05 0.616 2.0e-05 134
221 1.900e-05 2.750e-05 0.683 2.0e-05 134
222 1.900e-05 2.750e-05 0.683 2.0e-05 134
223 1.600e-05 8.750e-06 0.650 1.6e-05 134
224 1.600e-05 8.750e-06 0.650 1.8e-05 134
225 1.600e-05 8.750e-06 0.650 2.0e-05 134
226 1.600e-05 2.125e-05 0.583 1.6e-05 134
227 1.600e-05 2.125e-05 0.583 1.8e-05 134
228 1.600e-05 2.125e-05 0.583 2.0e-05 134
229 1.600e-05 2.125e-05 0.650 1.6e-05 134
230 1.600e-05 2.125e-05 0.650 1.8e-05 134
231 1.600e-05 2.125e-05 0.650 2.0e-05 134
232 1.600e-05 2.125e-05 0.716 1.6e-05 134
233 1.600e-05 2.125e-05 0.716 1.8e-05 134
234 1.600e-05 2.125e-05 0.716 2.0e-05 134
235 1.600e-05 3.375e-05 0.650 1.6e-05 134
236 1.600e-05 3.375e-05 0.650 1.8e-05 134
237 1.600e-05 3.375e-05 0.650 2.0e-05 134
238 1.800e-05 8.750e-06 0.583 1.6e-05 134
239 1.800e-05 8.750e-06 0.583 1.8e-05 134
240 1.800e-05 8.750e-06 0.583 2.0e-05 134
241 1.800e-05 8.750e-06 0.650 1.6e-05 134
242 1.800e-05 8.750e-06 0.650 1.8e-05 134
243 1.800e-05 8.750e-06 0.650 2.0e-05 134
244 1.800e-05 8.750e-06 0.716 1.6e-05 134
245 1.800e-05 8.750e-06 0.716 1.8e-05 134
246 1.800e-05 8.750e-06 0.716 2.0e-05 134
247 1.800e-05 2.125e-05 0.583 1.6e-05 134
248 1.800e-05 2.125e-05 0.583 1.8e-05 134
249 1.800e-05 2.125e-05 0.583 2.0e-05 134
250 1.800e-05 2.125e-05 0.650 1.6e-05 134
251 1.800e-05 2.125e-05 0.650 1.8e-05 134
252 1.800e-05 2.125e-05 0.650 2.0e-05 134
253 1.800e-05 2.125e-05 0.716 1.6e-05 134
254 1.800e-05 2.125e-05 0.716 1.8e-05 134
255 1.800e-05 2.125e-05 0.716 2.0e-05 134
256 1.800e-05 3.375e-05 0.583 1.6e-05 134
257 1.800e-05 3.375e-05 0.583 1.8e-05 134
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Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

258 1.800e-05 3.375e-05 0.583 2.0e-05 134
259 1.800e-05 3.375e-05 0.650 1.6e-05 134
260 1.800e-05 3.375e-05 0.650 1.8e-05 134
261 1.800e-05 3.375e-05 0.650 2.0e-05 134
262 1.800e-05 3.375e-05 0.716 1.6e-05 134
263 1.800e-05 3.375e-05 0.716 1.8e-05 134
264 1.800e-05 3.375e-05 0.716 2.0e-05 134
265 2.000e-05 8.750e-06 0.650 1.6e-05 134
266 2.000e-05 8.750e-06 0.650 1.8e-05 134
267 2.000e-05 8.750e-06 0.650 2.0e-05 134
268 2.000e-05 2.125e-05 0.583 1.6e-05 134
269 2.000e-05 2.125e-05 0.583 1.8e-05 134
270 2.000e-05 2.125e-05 0.583 2.0e-05 134
271 2.000e-05 2.125e-05 0.650 1.6e-05 134
272 2.000e-05 2.125e-05 0.650 1.8e-05 134
273 2.000e-05 2.125e-05 0.650 2.0e-05 134
274 2.000e-05 2.125e-05 0.716 1.6e-05 134
275 2.000e-05 2.125e-05 0.716 1.8e-05 134
276 2.000e-05 2.125e-05 0.716 2.0e-05 134
277 2.000e-05 3.375e-05 0.650 1.6e-05 134
278 2.000e-05 3.375e-05 0.650 1.8e-05 134
279 2.000e-05 3.375e-05 0.650 2.0e-05 134
280 1.700e-05 1.500e-05 0.616 17.0e-6 134
281 1.700e-05 1.500e-05 0.650 17.0e-6 134
282 1.700e-05 1.500e-05 0.650 19.0e-6 134
283 1.700e-05 2.125e-05 0.616 17.0e-6 134
284 1.700e-05 2.125e-05 0.616 19.0e-6 134
285 1.700e-05 2.125e-05 0.650 17.0e-6 134
286 1.700e-05 2.125e-05 0.650 19.0e-6 134
287 1.700e-05 2.125e-05 0.683 17.0e-6 134
288 1.700e-05 2.125e-05 0.683 19.0e-6 134
289 1.700e-05 2.750e-05 0.650 17.0e-6 134
290 1.700e-05 2.750e-05 0.650 19.0e-6 134
291 1.800e-05 1.500e-05 0.616 17.0e-6 134
292 1.800e-05 1.500e-05 0.616 19.0e-6 134
293 1.800e-05 1.500e-05 0.650 17.0e-6 134
294 1.800e-05 1.500e-05 0.650 19.0e-6 134
295 1.800e-05 1.500e-05 0.683 17.0e-6 134
296 1.800e-05 1.500e-05 0.683 19.0e-6 134
297 1.800e-05 2.125e-05 0.616 17.0e-6 134
298 1.800e-05 2.125e-05 0.616 19.0e-6 134
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Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

299 1.800e-05 2.125e-05 0.650 17.0e-6 134
300 1.800e-05 2.125e-05 0.650 19.0e-6 134
301 1.800e-05 2.125e-05 0.683 17.0e-6 134
302 1.800e-05 2.125e-05 0.683 19.0e-6 134
303 1.800e-05 2.750e-05 0.616 17.0e-6 134
304 1.800e-05 2.750e-05 0.616 19.0e-6 134
305 1.800e-05 2.750e-05 0.650 17.0e-6 134
306 1.800e-05 2.750e-05 0.650 19.0e-6 134
307 1.800e-05 2.750e-05 0.683 17.0e-6 134
308 1.800e-05 2.750e-05 0.683 19.0e-6 134
309 1.900e-05 1.500e-05 0.650 17.0e-6 134
310 1.900e-05 1.500e-05 0.650 19.0e-6 134
311 1.900e-05 2.125e-05 0.616 17.0e-6 134
312 1.900e-05 2.125e-05 0.616 19.0e-6 134
313 1.900e-05 2.125e-05 0.650 17.0e-6 134
314 1.900e-05 2.125e-05 0.650 19.0e-6 134
315 1.900e-05 2.125e-05 0.683 17.0e-6 134
316 1.900e-05 2.125e-05 0.683 19.0e-6 134
317 1.900e-05 2.750e-05 0.650 17.0e-6 134
318 1.900e-05 2.750e-05 0.650 19.0e-6 134
319 1.590e-05 6.004e-06 0.551 2.0e-05 134
320 1.650e-05 8.650e-06 0.601 2.0e-05 134
321 1.548e-05 1.021e-05 0.697 1.7e-05 134
322 1.544e-05 1.174e-05 0.724 1.6e-05 134
323 1.515e-05 1.910e-05 0.557 2.0e-05 134
324 1.561e-05 1.464e-05 0.634 1.9e-05 134
325 1.502e-05 1.905e-05 0.698 1.8e-05 134
326 1.519e-05 2.046e-05 0.725 1.6e-05 134
327 1.562e-05 2.400e-05 0.591 2.0e-05 134
328 1.623e-05 2.422e-05 0.613 2.0e-05 134
329 1.599e-05 2.599e-05 0.673 1.8e-05 134
330 1.567e-05 2.949e-05 0.717 2.0e-05 134
331 1.592e-05 3.402e-05 0.577 1.7e-05 134
332 1.532e-05 3.991e-05 0.631 1.6e-05 134
333 1.649e-05 3.518e-05 0.660 2.0e-05 134
334 1.537e-05 3.121e-05 0.715 1.6e-05 134
335 1.744e-05 8.919e-06 0.568 1.8e-05 134
336 1.746e-05 8.901e-06 0.622 2.0e-05 134
337 1.658e-05 1.046e-05 0.668 1.8e-05 134
338 1.747e-05 1.153e-05 0.723 1.7e-05 134
339 1.655e-05 1.236e-05 0.561 1.8e-05 134
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Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

340 1.796e-05 1.925e-05 0.610 1.8e-05 134
341 1.653e-05 1.573e-05 0.669 1.7e-05 134
342 1.680e-05 1.422e-05 0.720 1.8e-05 134
343 1.681e-05 2.307e-05 0.578 1.8e-05 134
344 1.656e-05 2.330e-05 0.610 2.0e-05 134
345 1.688e-05 2.534e-05 0.656 2.0e-05 134
346 1.653e-05 2.371e-05 0.706 1.9e-05 134
347 1.749e-05 3.886e-05 0.594 1.7e-05 134
348 1.790e-05 3.072e-05 0.621 1.7e-05 134
349 1.692e-05 3.675e-05 0.665 2.0e-05 134
350 1.718e-05 3.265e-05 0.708 2.0e-05 134
351 1.835e-05 9.450e-06 0.600 1.6e-05 134
352 1.839e-05 1.161e-05 0.613 1.6e-05 134
353 1.877e-05 5.642e-06 0.665 2.0e-05 134
354 1.849e-05 4.686e-06 0.707 1.8e-05 134
355 1.913e-05 1.431e-05 0.558 1.8e-05 134
356 1.911e-05 1.293e-05 0.602 1.8e-05 134
357 1.865e-05 1.534e-05 0.693 1.9e-05 134
358 1.930e-05 2.055e-05 0.738 1.8e-05 134
359 1.869e-05 2.638e-05 0.587 2.0e-05 134
360 1.946e-05 3.018e-05 0.650 1.7e-05 134
361 1.923e-05 2.624e-05 0.680 2.0e-05 134
362 1.927e-05 2.634e-05 0.743 1.7e-05 134
363 1.826e-05 3.321e-05 0.590 2.0e-05 134
364 1.922e-05 3.145e-05 0.608 1.7e-05 134
365 1.927e-05 3.511e-05 0.664 1.9e-05 134
366 1.906e-05 3.913e-05 0.705 1.7e-05 134
367 2.067e-05 3.003e-06 0.558 1.9e-05 134
368 2.065e-05 6.120e-06 0.631 1.8e-05 134
369 2.099e-05 3.652e-06 0.692 1.8e-05 134
370 1.958e-05 6.020e-06 0.725 1.8e-05 134
371 2.058e-05 1.591e-05 0.567 1.7e-05 134
372 1.988e-05 1.672e-05 0.615 1.7e-05 134
373 1.966e-05 1.202e-05 0.666 2.0e-05 134
374 2.082e-05 1.819e-05 0.747 1.7e-05 134
375 2.021e-05 2.865e-05 0.589 1.8e-05 134
376 2.041e-05 2.875e-05 0.641 1.6e-05 134
377 2.020e-05 2.701e-05 0.681 1.7e-05 134
378 2.029e-05 2.896e-05 0.718 1.8e-05 134
379 2.009e-05 3.605e-05 0.562 1.8e-05 134
380 2.096e-05 3.632e-05 0.644 2.0e-05 134
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Table D.1 – Numerical database
NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

381 2.064e-05 3.834e-05 0.651 1.8e-05 134
382 1.966e-05 3.781e-05 0.726 1.7e-05 134
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Figure D.1 – Three-dimensional plot of the Numerical database considered in mod-
els of Sec. 6.3. This database is related to cases 86-382 of Tab. D.1. A part of the
database was performed in a random manner using a Latin Hyper Cube (LHC) pro-
cedure (shown in black triangles). The remaining part is made up of computations
regularly spaced (shown in red bold points). The regular and the LHC samplings
refer to cases 86-318 and 319-382, respectively.
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Notations related to pulses
In the framework of this thesis, experimental tension pulses (∆U) and numerical
resistive pulses (∆R) are dealt with. It is proposed to scale pulses from both sources
with the aim of making them relative to the cells volumes, thus ∆U∗ and ∆R∗ were
introduced. Several metrics computed from electrical prints are used (W, P, R) and
equivalents for scaled pulses are required (Wr, Pr). This scaling procedure is es-
sential for providing comparisons between predictions arising from simulations with
data from experiments (see Chap. 3 and Chap. 4). Besides, this convention underlies
the normality defined in Chap. 6, which is independent from the differences of cells
volumes from a blood sample to another. This appendix summarizes notations and
metrics related to both experimental and numerical pulses.

E.1 Numerical pulses

Let consider a RBC of given parameters whose dynamics and electrical print ∆R for
a specific trajectory are simulated. The maximum (in ohms) of the electrical print is
denoted by ∆Rm. Considering the same RBC (same parameters) but undergoing a
centred trajectory yields a ‘bell-shaped’ signature, for which the maximum is referred
as ∆Rm|bs (see top row of Fig. E.1). Then, the dimensionless numerical pulse ∆R∗
is defined by scaling ∆R with ∆Rm|bs. ‘Bell-shaped’ signatures are assumed to be
a robust measurement of the cells volumes. It should be noted that assessing ∆R∗
requires two simulations unless the considered particle path is centred, and ∆Rm =
∆Rm|bs.

For the case of a resistive pulse, W demands a resistive threshold (thresh), so as
P (see expressions in Fig. E.1). In contrast,Wr and Pr require dimensionless thresh-
olds (thresh′) that are relative to ∆Rm|bs. In this respect, Wr, Pr and ∆R∗ are
dimensionless quantities that are relative to the cell volume (assessed by ∆Rm|bs).

E.2 Experimental pulses

Experimental pulses are measured as tension variations ∆U . With a notation sim-
ilar to numerical data, the maximum of an experimental tension pulse is denoted
by ∆Um. Considering an entire experimental acquisition in which cells of different
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Figure E.1 – Notations related to numerical resistive pulses (∆R). ∆R∗ is obtained
by scaling the pulse with the maximum of the electrical signature obtained with the
same cell, but following a centred trajectory (∆Rm|bs). Metrics W and P involve a
threshold (see thresh) that expresses in ohms. In contrast, Wr and Pr depends on
a dimensionless threshold (see thresh′). Hence they are relative to ∆Rm|bs.

sizes are monitored, the mean cell volume (MCV) is measured by ∆Um|bs, the aver-
aged maximum of bell-shaped signatures within the whole acquisition (see Fig. E.2).
Methods for isolating such type of pulses are proposed in Chap. 5. Hence, defining
∆U∗ = ∆U/∆Um|bs provides experimental pulses relative to the MCV.

Calculating W and P for an experimental pulse requires a threshold (thresh)
expressed in volts (see expressions in Fig. E.2). In contrast, Wr and Pr require
dimensionless thresholds (thresh′) that are relative to ∆Um|bs. In this respect, Wr,
Pr and ∆U∗ are dimensionless quantities that are relative to the MCV (assessed by
∆Um|bs).

E.3 Width ratio metric

The metric R introduced in Chap. 5 expresses as:

R = W(pu ×∆Rm)
W(pd ×∆Rm) × 100, (E.1)

or
R = W(pu ×∆Um)

W(pd ×∆Um) × 100, (E.2)
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Figure E.2 – Notations related to experimental tension pulses (∆U). ∆U∗ is ob-
tained by scaling the pulse with the maximum of the ‘bell-shaped’ signatures arising
from the acquisition (∆Um|bs). ‘Bell-shaped’ pulses are extracted by employing the
filtering methods introduced in Chap. 5 (the R-based filter is shown as an illustra-
tion). Metrics W and P involve a threshold (see thresh) that expresses in volts.
In contrast, Wr and Pr depends on a dimensionless threshold (see thresh′). Hence
they are relative to ∆Um|bs.

depending on whether a resistive or experimental pulse is considered, respectively.
Parameters pu and pd are dimensionless user-defined parameters. It should be noted
that R involves computing two pulse widths (W) that are relative to the maximum
(∆Rm or ∆Um). Hence, the calculation of R is independent from the cell volume
and the source from which the pulse arises (viz. experiments or simulations).
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Abstract
In Coulter counters, cells counting and volumetry is achieved by monitoring their electrical print when they

flow through a polarized micro-orifice. However, the volume measurement may be impaired when the trajectory
of the cell is in the vicinity of the aperture edges due to complex dynamics and deformations of the cell.

In this thesis, numerical simulations of the dynamics and electrical signature of red blood cells (RBCs) in a
Coulter counter are presented, accounting for the deformability of the cells. In particular, a specific numerical
pipeline is developed to overcome the challenge of the multi-scale nature of the problem. It consists in segmenting
the whole computation of the cell dynamics and electrical response in a series of dedicated computations, with
a saving of one order of magnitude in computational time. This numerical pipeline is used with rigid spheres
and deformable red blood cells in an industrial Coulter counter geometry and compared with experimental mea-
surements. The simulations not only reproduce electrical signatures typical of those measured experimentally,
but also provide an understanding of the key mechanisms at play in the complex signatures induced by RBCs
following a near-wall trajectory.

Based on this new understanding provided by numerical simulations, a filtering strategy is introduced,
which allows the filtering of pulses induced by near-wall paths which are irrelevant for the cells sizing. The
method is shown to retrieve the expected symmetrical distribution of RBCs and provides results comparable to
hydrodynamical focusing, a more intricate implementation of the Coulter principle. Such a result paves the way
for a robust assessment of haematological parameters with a cheaper and simpler implementation, compared to
hydrofocused devices.

The impact of the cell morphology and rheology on the electrical print is evidenced for near-wall trajectories.
Indeed, by altering the cell deformability and sphericity, the electrical pulses are proven to differ from predefined
normality of measurements. Furthermore, neural network modellings are performed in the aims of assessing
such RBC properties. Among the proposed processing, classification of normal, stiffened and spherical RBCs is
provided. Finally, the inverse problem of numerical simulations is achieved, thus allowing the evaluation of the
mechanical parameters of RBCs.

Keywords : Computational Fluid dynamics ; Fluid-Structure Interaction, Red Blood Cells ; Coulter counter ;
Impedance Measurements ; Neural Networks

Résumé
Le comptage et la volumétrie des cellules sanguines est réalisé par l’analyse des signatures électriques pro-

venant de leur passage dans un micro-orifice polarisé. Cependant, les mesures peuvent être altérées par des
dynamiques et déformations complexes de la cellule lorsque la trajectoire empruntée est proche des parois de
l’orifice.

Dans cette thèse, des dynamiques de Globules Rouges (GRs) dans un compteur Coulter et les signatures
électriques correspondantes sont simulées. La prise en compte de la déformabilité des GRs implique de se
confronter au caractère multi-échelle de ce type de configuration. Une méthode est proposée pour contourner
cette difficulté de modélisation. En particulier, le calcul de la dynamique et de la perturbation électrique est
fractionné en une séquence de simulations spécifiques, et le coût de calcul est réduit d’un ordre de grandeur. La
méthode proposée est utilisée pour simuler des signaux de sphères rigides et de GRs, et les résultats sont validés
par comparaisons avec des données expérimentales. L’association des signaux expérimentaux à des dynamiques
de GRs dans l’orifice fournit une compréhension inédite des mécanismes en jeu dans les signatures complexes
observées lorsque la cellule emprunte une trajectoire proche-paroi.

Cette connaissance nouvelle des signatures a permis l’élaboration d’une nouvelle approche de tri permettant
d’isoler les pulses associées aux passages en bord, non adaptés pour la volumétrie des cellules. La méthode
introduite retrouve la distribution symétrique attendue pour le volume des GRs et donne des résultats compa-
rables à la focalisation hydrodynamique, une implémentation plus complexe du principe Coulter. Les résultats
ainsi obtenus ouvrent la voie à une mesure des paramètres hématologiques plus précise tout en conservant la
simplicité et le coût modéré d’un système classique.

L’impact des paramètres morphologiques et rhéologiques des cellules sur les signatures correspondants à des
passages proche paroi est illustré. En modifiant la déformabilité et la sphéricité des GRs dans une approche ex-
périmentale, les mesures diffèrent d’une normalité préétablie. De plus, des modélisations par réseaux de neurones
sont réalisées dans le but d’accéder aux propriétés du GR à partir du pulse électrique. Parmi les traitements
proposés, une classification des GRs normaux, rigides et sphériques est réalisée. Enfin, la modélisation du pro-
blème inverse des simulations numériques est effectuée afin d’évaluer de manière quantitative les paramètres
mécaniques des GRs.

Mots-clefs : Mécanique des fluides numérique ; Interaction Fluide-Structure ; Globules Rouges ; Compteur
Coulter ; Mesures d’impédance ; Réseaux de neurones
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