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Résumé substantiel en francais

La thrombose veineuse profonde (TVP) constitue I'une des principales causes de
mortalité dans les pays occidentaux, se classant au troisiéme rang des maladies car-
diovasculaires aprés l'infarctus du myocarde et 'accident vasculaire cérébral. Elle
s’inscrit dans un ensemble de maladies plus vaste appelé thrombo-embolie veineuse
(TEV), qui englobe & la fois la TVP et I'embolie pulmonaire. Les conséquences clin-
iques et socio-économiques sont considérables : hospitalisations prolongées, compli-
cations aigués ou chroniques (comme le syndrome post-thrombotique) et cotits de
santé élevés. L’enjeu médical majeur consiste a mieux comprendre la formation des
caillots afin de réduire I'incidence et la gravité de la TEV.

Les valves veineuses jouent un role central dans la genése de la TVP. Présentes
en grand nombre dans le réseau veineux profond des membres inférieurs, notam-
ment au niveau poplité et fémoral, elles assurent un flux unidirectionnel vers le
ceeur. Chaque valve comprend deux feuillets tapissés d’endothélium et entourés de
tissus conjonctifs et musculaires. C’est dans les poches valvulaires (ou sinus) que les
thromboses se forment le plus souvent : ces zones, soumises a des conditions hémody-
namiques complexes, peuvent favoriser la stagnation sanguine ou altérer I'activation
endothéliale. Des études récentes suggeérent que les cellules endothéliales des si-
nus valvulaires, soumises a des régimes d’écoulement changeants, développent une
réponse antithrombotique spécifique, par exemple via I'expression régulée de pro-
téines clés telles que la thrombomoduline (TM) et le facteur von Willebrand (vWf).
Un déséquilibre de cette réponse pourrait faciliter I'initiation du thrombus.

C’est dans ce contexte qu'intervient le projet DYV-MTEV (Dynamique des sacs
valvulaires et complications aigiies et chroniques de la maladie thrombo-embolique
veineuse). Porté par une collaboration entre le CHU de Nimes, le Centre de Biologie
Structurale (CBS) et I'Institut Montpelliérain Alexander Grothendieck (IMAG), ce
programme vise a décrypter le role de I’hémodynamique valvulaire dans la modu-
lation de la réponse endothéliale. Trois approches sont menées en paralléle : (1)
lacquisition et ’analyse d’imagerie clinique (échographie Doppler, IRM) pour car-
actériser le mouvement et le flux au niveau des valves profondes ; (2) des expérimen-
tations in vitro, notamment sur des cellules endothéliales exposées & des contraintes
mécaniques (tension et cisaillement) reproduisant les conditions observées dans les
sinus valvulaires ; (3) la modélisation numérique par interaction fluide-structure
(IFS), permettant de simuler avec précision la dynamique de la valve et 1’écoulement
sanguin local. Les objectifs principaux de cette thése sont d’évaluer qualitativement
la dynamique des valves veineuses et ’hémodynamique associée sous différentes con-
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ditions de flux sanguin, géométries valvulaires et tailles de vaisseaux. Comme décrit
précédemment, les valves veineuses sont des tissus biologiques mis en mouvement
par le flux sanguin. D’un point de vue physique, ce systéme représente une structure
immergée dans un fluide, les deux interagissants de facon dynamique. La méthode
numérique adaptée a la simulation de ce systéme est la méthode d’interaction fluide-
structure (IFS).

Le Chapitre 2 présente la méthodologie de simulation employée pour modéliser la
dynamique de valves veineuses dans un contexte d’interaction fluide-structure (IFS).
Les outils décrits font partie de la suite YALES2BIO, dérivée du solveur YALES2,
reconnue pour son efficacité en calcul paralléle sur maillages non structurés. Pour le
fluide, les équations de Navier-Stokes sont résolues dans un cadre ALE (Arbitrary
Lagrangian-Eulerian), pour permettre de suivre la déformation de la valve. La valve
est traitée comme un solide hyperélastique, soumise a de grandes déformations. Le
modeéle néo-hookéen est utilisé pour caractériser les déformations de la valve. La
résolution s’effectue par éléments finis (FEM), en régime dynamique via le schéma
implicite de Newmark, incluant un amortissement de Rayleigh pour stabiliser la
réponse.

Par la suite, le chapitre aborde les développements spécifiques & la simulation
des valves veineuses. La premiére difficulté réside dans la gestion du contact entre
les feuillets valvulaires, qui se touchent et se séparent au cours du cycle cardiaque.
Une méthode de contact par pénalisation a été implémentée a cet effet. Plutot
que de détecter directement le contact entre les deux feuillets, on exploite ici une
symétrie : chaque feuillet est repoussé par une force pénalisante quand il s’approche
le plan de symétrie. Bien que la pénalisation ne soit pas strictement conservative,
cette approche, simple a implémenter et suffisamment réguliére, garantit la stabilité
numérique de l'algorithme de couplage. Le couplage fluide-structure repose sur
un schéma partitionné semi-implicite de type prédicteur-correcteur : le fluide et
la structure sont résolus successivement par un point fixe, et l'on itére jusqu’a la
convergence a chaque pas de temps. Pour prévenir l'effet de masse ajoutée (trés
fort quand fluide et solide ont la méme densité), on emploie une sous-relaxation
dynamique avec la méthode d’Aitken, qui calcule un facteur d’itération optimal pour
stabiliser et accélérer la convergence. Les champs de forces pariétales du fluide sont
transmises au solide via 'interface CWIPI, de méme que le champ de déplacement
du solide renvoyé vers le fluide. Le mouvement du maillage fluide s’effectue grace a
la méthode pseudo-solide ; la résolution d’un probléme statique sur ce pseudo-solide
fournit un champ de déplacement qui « déforme » le maillage fluide et préserve une
bonne qualité de maillage proche de I'interface. Si la distorsion dépasse un certain
seuil, on recourt au remaillage dynamique via la librairie MMG3D.

Enfin, le chapitre se conclut par la validation de I’ensemble de la chaine de
calcul. Un premier test illustre la méthode de contact (balle creuse rebondissant sur
un plan rigide), confirmant la pertinence de la pénalisation et la conservation quasi
intégrale de 'énergie (selon 'amortissement introduit). Puis, pour la partie IF'S, un
cas bidimensionnel classique (une languette flexible transversale & un écoulement)
met en évidence la précision de la méthode partitionnée et la concordance avec
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des résultats de référence. L’implémentation de tous ces développements (contact,
modéle néo-hookéen et accélération par Aitken) offre ainsi un cadre complet pour
aborder la simulation de valves veineuses soumises & des conditions réalistes de flux
et de déformation.

Le Chapitre 3 présente une étude détaillée sur 'anatomie des valves veineuses,
permettant le développement du modéle in silico de valve utilisé dans ces travaux.
Par le passé, les études se sont concentrées exclusivement sur le régime de défor-
mation par étirement. La pression nécessaire a l'ouverture de la valve est bien
trop grande (100 mmHg) comparée a la pression disponible en position allongée
(20 mmHg). Le régime de déformation résultant d'une réserve de surface, le flambe-
ment, semble étre le bon candidat pour garantir le retour veineux. Le flambe-
ment étant extrémement rapide, il est d’autant plus éprouvant pour les méthodes
numériques.

C’est donc I'hypothése de réserve de surface qui est retenue pour la modélisation
de la valve veineuse. La valve est modélisée comme un solide hyperélastique, avec
un modeéle néo-hookéen. Le couplage fluide-structure est réalisé avec les modalités
présentées dans le paragraphe précédent. L’écoulement sanguin est imposé par un
débit pulsé en entrée, reproduisant une situation de pompe respiratoire en position
allongée. Les principaux outils d’analyse utilisés pour caractériser la dynamique des
valves veineuses et 'hémodynamique associée sont présentés :

e La dynamique des feuillets combinée au ratio d’ouverture.
e Les structures d’écoulement formées en aval des feuillets.
e Le taux de vidange par I’ensemencement uniforme de traceurs dans le sinus.

e Les efforts pariétaux sur les cellules endothéliales.

Les résultats montrent que la valve est capable de s’ouvrir avec un gradient de
pression suffisamment faible (0.3 mmHg) pour permettre le retour veineux. On
observe de fortes recirculations dans le sillage des commissures de la valve. On
remarque que les feuillets prés de leurs commissures ont du mal a s’ouvrir, créant
une zone morte non négligeable. Un régime transitoire se développe en aval de la
valve avec une réorientation de la nappe fluide dans la direction normale, phénomeéne
observé dans la dynamique des jets elliptiques. L’hémodynamique dans le sinus se
caractérise par trois zones d’écoulement différentes : proche de la base de la valve,
les traceurs ont trés peu de mouvement ; proche du bord de fuite, les traceurs sont
évacués rapidement dans une zone de recirculation a l'orée du sinus ; enfin, une
zone intermédiaire ou les traceurs ont un mouvement d’aller-retour. La zone de
stagnation semble dii au peu de mouvement du feuillet a sa base.

Cette étude ouvre sur plusieurs questions concernant le drainage et 1’hémo-
dynamique dans le sinus, notamment sur l'effet de la position de la valve le long
de la cuisse, de la chasse musculaire et de la géométrie de la valve.

Le Chapitre 4 explore ces différentes questions. Concernant la position de la
valve le long de la cuisse, trois différentes positions sont simulées : une valve de
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veine poplitée (6 mm, petit diamétre, v,,q,, = 16 cm/s), une valve de veine fémorale
commune (10 mm, moyen diamétre, v,,, = 20 cm/s) et une valve de veine fémorale
commune (14 mm, grand diamétre, vpq, = 20 cm/s). Les simulations montrent que
la position de la valve le long de la cuisse a un impact significatif sur le drainage du
sinus. Pour le plus petit diameétre on observe un ratio d’ouverture moindre comparé
au moyen et grand diameétre, 33% contre 42%. Ce plus petit ratio d’ouverture
est dit & une ouverture incompléte des feuillets. Le manque d’amplitude du feuillet
s’accompagne d'un manque de mouvement dans le sinus, changeant la dynamique de
sa vidange comparée aux moyen et grand diamétres. Les structures de recirculation
derriére les feuillets sont comparables entre les trois diamétres. On observe un
écoulement stable en aval de la valve de petit diamétre, légérement déstabilisé pour
le moyen diameétre et des lachés tourbillonnaires pour le grand diamétre.

Dans un second temps, I'impact de la chasse musculaire est étudié. La simulation
de chasse musculaire reprend le cas moyen diamétre (10 mm) aprés 2 cycles, en
imposant un plus fort débit en entrée pour le 3¢ cycle (v, = 40 cm/s, observations
cliniques). On observe des lachés tourbillonnaires dans le sillage des feuillets pour
le cas de la chasse musculaire. Les résultats montrent que la chasse musculaire a un
impact significatif sur la dynamique de la vidange du sinus pour le cycle observé.
Le ratio d’ouverture est plus élevé (50%) comparé au cycle sans chasse musculaire
(42%), accompagné d’un vidage plus efficace du sinus.

Enfin, le chapitre se termine par une étude de sensibilité sur la géométrie de la
valve. La géométrie de la valve de grand diamétre (14 mm, v,4, = 20 cm/s) est
modifiée par une légére relaxation de I'angle d’insertion des feuillets accompagnée
d’une élision du bord libre proche des commissures. Les résultats montrent que
la forme des feuillets a un impact significatif sur la dynamique de la valve. La
recirculation a bien lieu a l'intérieur du sinus, ce qui permet un meilleur mélange
et drainage du sinus. Le temps de résidence, estimé en extrapolant la quantité de
traceurs restant le sinus, est beaucoup plus court pour la géométrie modifiée, 10 s
contre 31 s pour la géométrie de référence.

En conclusion, ces travaux de thése ont permis de développer un modeéle numé-
rique de valve veineuse, capable de reproduire la dynamique des valves et 1’hémo-
dynamique associée a une valve avec réserve de surface. Les simulations ont permis
de caractériser la dynamique des valves veineuses et 'hémodynamique associée sous
différentes conditions de flux sanguin, géométries valvulaires et tailles de vaisseaux.
Les résultats montrent que la valve est capable de s’ouvrir avec un gradient de
pression suffisamment faible pour permettre le retour veineux, et que la géométrie
de la valve a le plus d’impact la dynamique et le drainage des sacs valvulaires.

Les perspectives de ces travaux sont nombreuses. Du point de vue biomé-
canique, on peut citer I’application de parois de veines déformables pour reproduire
plus fidélement les conditions de la pompe musculo-squelettique, 1'utilisation de
géomeétries spécifiques de patients ou encore 'effet de la jonction sapheno-fémorale
sur la dynamique de la valve. Du point de vue numérique, on peut envisager une
méthode de contact plus fidéle capable de gérer les contacts feuillet-feuillet.
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Introduction

Chapter overview: This introductory chapter aims to provide the reader with
an overview of the thesis background. This PhD focuses on the study of the
hemodynamics in the vicinity of deep vein valves. The clinical context around
deep vein thrombosis, the mechanisms responsible for the disease and the impli-
cation of vein valves are first presented. The importance of the study of deep
vern valve associated hemodynamics is then highlighted and placed in the con-
text of the project "Dynamique des sacs valvulaires et complications aigiies et
chroniques de la maladie thrombo-embolique veineuse” (DYV-MTEV).
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1.1 Motivations

Cardiovascular diseases, particularly venous thromboembolism (VTE), are a leading
cause of mortality in Western countries [1-3]. Wendelboe and Raskob [3] reported
that the global incidence rate (per 100, 000) and mortality rate for VTE were between
115 to 269 and 9.4 to 32.3, respectively, positioning VTE as the third most common
cardiovascular disease after myocardial infarction and stroke. In the UK, the total
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cost to national public health resources for VTE events was estimated at €950
million in 2005 [4]. More recently, according to Grosse et al. [5], the annual cost of
incident VTE events in the US is estimated to be between 7 and 10 billion dollars
per year. Notably, one in ten hospital-acquired VTEs is preventable [5, 6|. A deeper
understanding of the onset mechanisms of VTE could help reduce the number of
VTE events and associated costs, which are substantial.

VTE encompasses both acute manifestations, such as deep vein thrombosis
(DVT), and chronic conditions, such as post-thrombotic syndrome (PTS). DVT
involves the formation of a thrombus, primarily in the leg, which can dislodge and
lead to pulmonary embolism (PE), a potentially fatal complication. PTS, on the
other hand, results in chronic pain due to residual venous obstruction and/or damage
to the vein wall, causing venous hypertension.

The factors contributing to VTE have been extensively studied. Cohen et al. [4]
noted that three-quarters of DVT-related deaths were caused by hospital-acquired
DVT, often due to immobilization. The mechanisms leading to thrombosis can be
grouped into Virchow’s triad:

e Blood stasis: Blood flow can be reduced or stopped due to clinical conditions,
bed rest, or immobility, enhancing the stagnation of prothrombotic factors.

e Endothelium injury: The endothelium, a layer of cells lining the vein wall,
plays a crucial role in preventing thrombus formation. These cells can be
damaged by surgery or injury, reducing their protective function.

e Hypercoagulability: An abnormal increase in prothrombotic factors is widely
documented as playing a key role in the onset of DVT.

Hemostasis is a complex physiological process that prevents excessive bleeding fol-
lowing vascular injury and maintains blood fluidity within the circulatory system. It
involves a tightly regulated balance between procoagulant and anticoagulant factors.
Upon endothelial activation or damage, the coagulation cascade is initiated, leading
to the formation of a fibrin clot. Two key proteins play crucial roles in this process:
thrombomodulin (TM) and von Willebrand factor (vWf). TM is an integral mem-
brane protein expressed on the surface of endothelial cells, acting as a cofactor for
thrombin-mediated activation of protein C, an anticoagulant that inhibits further
thrombin generation and fibrin formation |7, 8]. Conversely, vWT is a multimeric gly-
coprotein synthesized by endothelial cells and megakaryocytes, essential for platelet
adhesion to the subendothelial matrix and platelet aggregation under high shear
stress conditions [9, 10]. By modulating the expression of TM and vWT, endothelial
cells can influence the coagulation mechanism, promoting either anticoagulant or
procoagulant states depending on mechanical stimuli and pathological conditions.
The formation of a thrombus is thus a complex process involving interactions
between blood flow, the vein wall, and blood components, making it difficult to
predict. Thrombi are predominantly formed at the level of venous valves. Indeed,
in most veins a series of bicuspid (two leaflets) valves are present to ensure the uni-
directionality of the blood flow. They are particularly present in the deep venous
system (popliteal and femoral veins) in greater number in proximity of the ankle,
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and less present in superficial venous system (saphenous vein). Blood clots often
onset in the valvular bags, as demonstrated by Sevitt [11], see Figure 1.1a. Venous
valves, which are passive one-way valves that prevent the backflow of blood and
ensure venous return to the heart, are critical in this process. However, the mech-
anisms leading to thrombus formation in this region remain unclear, with various
hypotheses proposed. Among them, the hemodynamic modulation of the endothe-
lial antithrombotic response in the venous valve sinus could play a decisive role.
Brooks et al. [12] showed, using immunofluorescence in great saphenous veins, that
endothelial cells (ECs) in the valve sinus exhibit greater thromboresistance com-
pared to ECs in the lumen. Recently, the loss of the perivalvular antithrombotic
phenotype in mice, due to a transition to non-oscillatory flow, was demonstrated
by Welsh et al. [13]. This supports the link between blood flow patterns and the
antithrombotic response of ECs near the valve, as emphasized by Welsh et al. [13].
Therefore, the role of the venous valve system, its environment, and the associated
hemodynamics in the onset of DV'T warrants further investigation.

DVT often leads to post-thrombotic syndrome, where the perivalvular endothe-
lium could be damaged by thrombus formation, leading to chronic venous insuffi-
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Saphenous
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(a) (b)

Figure 1.1: (a) Image of a thrombus in a valve sac from a deceased individual,
extracted from [11]. (b) Schematic representation of the veins in the leg.
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ciencies. Valve dysfunction can induce altered hemodynamic patterns, increasing
the risk of DVT recurrence, and the risk of post-thrombotic syndrome (PTS). PTS
results either from valve efficiency loss or chronic vein thrombosis, both resulting
in peripheral venous hypertension. Varicose veins lead to venous reflux and ve-
nous ulcers. Investigating the effect of blood flow pattern modulation on valve
dynamics could provide new insights into the onset of chronic venous insufficien-
cies. Valves are present throughout the cardiovascular system, especially in the
heart and veins. Since cardiac valves have been extensively studied in the literature
lastorino fluid-structure 2008, 14-24|, they provide a valuable reference for
comparison with vein valves. Hence, a brief introduction to the cardiovascular sys-
tem is presented in the next section to provide context on the role of valves within
the system.

1.2 The cardiovascular system

In this section, a general overview of the cardiovascular system, from the heart to
the blood vessels, is presented. Further details are provided on the blood transport
system, particularly focusing on the arteries and veins. The information provided
in this section is primarily extracted from [25].

1.2.1 Generalities

The cardiovascular system is composed of the heart and blood vessels. It operates
as a closed circuit with two distinct, but interconnected, parts: the pulmonary
circulation and the systemic circulation. To function, body tissues and cells require
oxygen, which is delivered by the blood in the systemic circulation. As cells use
oxygen, they produce carbon dioxide, which is also removed by the blood. The
pulmonary system is responsible for gas exchange, where oxygen is absorbed by the
blood, and carbon dioxide is expelled.

The heart is a muscular organ that pumps blood throughout the body. It is
divided into four chambers: the left and right atria, and the left and right ventricles.
The left side of the heart pumps oxygenated blood to the body tissues, while the
right side pumps deoxygenated blood to the lungs. The blood circulation through
the heart is depicted in Figure 1.2. The direction of blood flow within the heart
is regulated by four valves. The composition of these cardiac valves is similar to
artery wall composition and includes endocardium reinforced with connective tissues
such as smooth muscle cells and collagen. Cardiac valves are discussed in detail in
Section 1.3.1.

1.2.2 Blood transport: arteries and veins

The blood vessels comprise arteries, veins, and capillaries. Arteries transport blood
from the heart to the systemic (high pressure) and pulmonary circulations which are
submitted to pulsatile flow, while veins carry blood back to the heart. Therefore,
blood in the arteries of the systemic circulation is oxygen-rich, while blood in the
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Figure 1.2: Detailed view of the cardiac cycle, linked with the heart’s electrical
activity. Extracted from [25]

arteries of the pulmonary circulation is carbon dioxide-rich, and the reverse is true
for the veins. Capillaries, which connect arteries and veins, are the sites of gas
exchange between blood and tissues. As this section focuses on arteries and veins, the
reader is referred to Tuma, Duran, and Ley [26] Microcirculation for a comprehensive
analysis of the capillaries. The walls of arteries and veins share a common three-
layer structure composed of the tunica intima, tunica media, and tunica externa
[27]. Despite this common structure, the composition of each layer differs slightly
between arteries and veins, as presented in Figure 1.3a. The following subsections
provide more detail on these layers.

1.2.2.1 Tunica intima

The tunica intima is composed of the endothelium (the innermost layer) and a con-
nective tissue layer. The endothelium, which is in direct contact with the blood, is
continuous throughout the cardiovascular system, including the heart chambers. It
is a dynamic structure capable of changing its phenotype in response to different
stimuli. The endothelium rests on a basement membrane called the basal lamina,
which provides strong yet permeable support, allowing materials to pass through.
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Communication with the outer layers is essential for the endothelium to regulate
blood flow through vasodilation and vasoconstriction, as well as to facilitate angio-
genesis. The endothelium also plays a crucial role in regulating coagulation and
inflammation. It is actively antithrombogenic, as demonstrated in [12, 13].

Under the microscope, the endothelium in arteries appears wavy due to the
constriction of the smooth muscle cells in the tunica media, while in veins, it appears
smooth Figure 1.3b

1.2.2.2 Tunica media

The tunica media is the middle layer of the artery and vein walls. It consists of
smooth muscle cells, elastic and collagen fibers. The smooth muscle cells control
vasodilation and vasoconstriction of the vessels, thereby regulating blood flow as
needed. The elastic fibers are abundant in the artery media composition in contrast
with the vein media composition. The opposite tendency is observed for collagen
fibers, conferring strength to the vein wall. The tunica media is the thickest layer
in arteries, enabling them to handle high pressures and maintain vessel shape. In
contrast, this layer is much thinner in veins due to the lower blood pressure. In veins,
the presence of the vasa vasorum (vessels of the vessels) and nervi vasorum (nerves
of the vessels) ensures the supply of oxygen and nutrients to the innermost layers of
the vessel wall. These structures are absent in the tunica media of arteries, making
the supply of oxygen and nutrients to the inner layer more challenging, which may
explain why arterial diseases are more common than venous diseases [25].

1.2.2.3 Tunica externa

The tunica externa is the outermost layer of the artery and vein walls. It is composed
of collagen and elastic fibers. The tunica externa protects the vessel and anchors
it to surrounding tissues. It is the thickest layer in veins, which gives the vein wall

VEIN ARTERY

Epithelium of tunica
intima (interna)

Connective tissue

Tunica media

Tunica externa
(adventitia)

Figure 1.3: (a): Layer composition of arteries and veins. (b): Micrograph showing
the different layers of both artery and vein wall. Extracted from [25].
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its flexibility, allowing it to deform under the influence of the calf muscle pump
mechanism.

Having established a global understanding of the cardiovascular system, with a
particular focus on the structural and functional aspects of arteries and veins, we
now turn our attention to the critical role that valves play within this system. The
following section delves into the specific function of valves within the cardiovascular
system and examines the hemodynamics associated with their operation. Under-
standing these mechanisms is essential for appreciating the complexities of blood
flow regulation and the prevention of conditions such as venous thromboembolism.

1.3 Valves in the cardiovascular system and associ-
ated hemodynamics

1.3.1 Cardiac valves

The unidirectional flow of blood within the heart is ensured by the presence of four
valves. A overview of the blood flow in the heart and the disposition of the cardiac
valves is presented in Figure 1.4.

Blood intake into the ventricles is regulated by the mitral and tricuspid valves,
located between the atria and the ventricles on the left and right sides of the heart,
respectively. The mitral valve is a bi-leaflet valve, while the tricuspid valve is a
tri-leaflet valve. Each leaflet of these valves is attached to papillary muscles via
the chordae tendineae, which control the opening and closing of the valves. A key
function of the chordae tendineae is to prevent valve inversion during the systolic
phase, when the valves are subjected to high-pressure conditions while in the closed
position.

Blood outflow is controlled by the aortic and pulmonary valves, each composed
of three leaflets. The aortic valve is situated between the left ventricle and the aorta,
while the pulmonary valve is located between the right ventricle and the pulmonary
artery. The leaflets of these valves are attached to the vessel wall by the sinuses
of Valsalva, which are very stiff and do not deform significantly. These sinuses are
crucial for valve closure, as they fill with blood during the systolic phase, aiding
in the proper closure of the leaflets. The functioning of these two valves is closely
related to that of vein valves. Due to their critical role in heart function and the
potential for severe complications if they malfunction, aortic and pulmonary valves
have been extensively studied in the literature from both clinical [15, 21, 23, 24,
28-34] and numerical perspectives [astorino fluid-structure 2008, 16, 17, 20,
22, 35-41].

The aortic and pulmonary valves also play a key role in preventing the backflow
of blood towards the ventricles during the diastolic phase. As these valves close
under lower pressure conditions than the mitral and tricuspid valves, they do not
require chordae tendineae to prevent inversion. Weind, Ellis, and Boughner [24]
demonstrated the presence of microvessel structures in porcine aortic valves, noting
that microvessels are present only in parts of the cusps with a thickness greater
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than 0.5 mm, primarily at the base of porcine aortic valves. The mean thickness of
human aortic valve cusps is 0.6 mm [23], indicating that the endothelium on aortic
valve cusps receives oxygen and nutrients from their internal microvasculature.
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Figure 1.4: Blood flow in the heart (left) and disposition of the cardiac valves (right).
Extracted from [25]

1.3.2 Comparison with vein valves

Vein valves are present throughout the venous system, predominantly in the lower
limbs. They are bi-leaflet valves located approximately every 4 cm along the deep
veins of the lower limbs [42]. The valves are less spaced in the calf compared to
the thigh veins. A schematic 2D view of a vein valve is depicted in Figure 1.5.
Thrombus formation is primarily located in the venous valve sinus. Similar to the
sinuses of Valsalva in the aortic valve, the valve sinuses in veins are located behind
the leaflets, where they are filled with blood during valve closure. However, the
geometry of venous valves is highly dependent on their location and the individual
patient. Moreover, as the vein wall deforms significantly due to the calf muscle
pump mechanism (detailed in Section 3.1.2), the dynamics of the valves are also
highly dependent on the deformation of the vein wall.

As illustrated in Figure 1.6, research on venous valves has received less interest
in the computational community compared to aortic valve studies. The number of
publications per year on the topic of aortic valves is significantly higher than those
focused on vein valves.

1.3.2.1 Associated blood flow sequences

In veins, valve dynamics are primarily driven by the skeletal muscle pump (more
details in Section 3.1.2). When the leg muscles contract, they compress the deep
venous system between themselves and the bones, resulting in a pressure increase
inside the deep veins. As the pressure is higher in the lower limbs than in the trunk,
blood flows towards the heart, flushing the blood from the valve sinuses. When
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Figure 1.5: Left: Histological description of a vein valve. Right: Vein valve nomen-
clature. ECs: endothelial cells, SMC: smooth muscle cells. Created with Biorender
[43].

the calf muscles relax, pressure in the deep veins drops, causing a reversal in blood
flow direction, which fills the valve sinuses and closes the valves by pushing the
leaflets together. During this phase, endothelial cells (ECs) are subjected to two
mechanical stresses: stretch from the underlying tissues and shear stress from the
blood entering the sinuses. This part of the dynamics is similar to that of the aortic
valve. In the veins of the thorax and abdomen, this cycle is driven by the respiratory
pump. During inhalation, pressure in the thorax drops below that in the abdominal
veins, causing blood to flow from the abdomen to the thorax. The opposite occurs
during exhalation. These mechanisms are typical for a person in a standing position.
When a person is at bed-rest, blood flow is primarily driven by the respiratory pump,
with the calf muscle pump remaining inactive. This leads to reduced blood flow in
the deep veins, which is why patients are at increased risk of deep vein thrombosis
(DVT) during extended periods of bed rest. The skeletal muscle pump is essential
for the opening and closing of vein valves. In the ultrasound images of a femoral
vein valve presented in Figure 1.7, the valves appear to "float" in the flow without
opening or closing, indicating that the blood inside the sinuses is not being renewed.
This stagnation can lead to the concentration of thrombogenic factors and the onset
of thrombus formation if there is no movement for several hours.

In conclusion, vein valves are subjected to various blood flow patterns. A key
question that arises is: How does the blood flow pattern in the vicinity of the valve
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Figure 1.6: Number of publications in the field of cardiac and vein valves in the
computational community (from PubMed [44]). The search terms used were "aortic
valve fluid-structure interaction" and "vein valve fluid-structure interaction".

modulate the antithrombotic response of ECs? This is the main question that the
DYV-MTEV project seeks to answer. The working hypotheses of the project and
the objectives of this work are presented in the next section.

1.4 The DYV-MTEYV project

1.4.1 Working hypotheses of the project

The DYV-MTEV project aims to investigate the role of hemodynamic modulation
and its effect on the anti-thrombotic response of endothelial cells in the perivalvular
region. This project is a collaboration between the CHU of Nimes, the CBS (Cen-
tre de Biologie Structurale in Montpellier), and the IMAG (Institut Montpelliérain
Alexander Grothendieck, University of Montpellier). The project is divided into
three main parts, each led by one of the participating institutions.

The CHU of Nimes is responsible for collecting medical imaging data from pa-
tients under different hemodynamic conditions. The dynamics of the vein valves in
the popliteal and femoral veins are captured using ultrasound imaging. Doppler’s
ultrasound imaging is used to extract maximum velocities and cycle modulation of
the blood flow under various conditions: bed-resting, with calf muscle contraction,
and in a standing position. These data serve as essential inputs for the CBS and
IMAG teams. Additionally, samples of vein valves are collected during surgery and
analyzed by the CBS team.

The CBS is in charge of the experimental part of the project. This work was con-
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Figure 1.7: Ultrasound of a femoral vein valve in the sagittal (left) and transversal
plane (right). The leaflets are indicated with white arrows, the sinus wall is in white
dashed line and the blood flow direction with a red arrow.

ducted during the PhD of Arianna Gianetti [45], with the objective of characterizing
the antithrombotic phenotype of human umbilical vein endothelial cells (HUVECSs)
under stretch, shear stress, or both, through experiments in a microfluidic device.
The first part of this work focuses on a non-destructive protocol employing MRI
and microCT scans to characterize a venous valve geometry. They reveal insights
into the 3D structure of venous valves, particularly the thickening at the valve sinus.
These findings already suggest that stretch plays a pivotal role in the mechanical
conditions encountered by the leaflets, and that the hemodynamics within the sinus
pocket exhibit a level of complexity beyond the traditional understanding. In the
second part of this study, the response of a confluent layer of endothelial cells (ECs)
to in-plane uniaxial cyclic stretching was explored. The activation state of ECs was
monitored, and the expression of key anticoagulant proteins, thrombomodulin (TM)
and von Willebrand factor (vWf) [12, 13], which play pivotal roles in hemostasis and
platelet adhesion, was measured. Various factors, including topography, timescale,
magnitude of stretch, and intermittent stretching, were investigated to unravel the
intricate relationship between mechanical strain and the expression of TM and vWT.
The findings revealed that cell alignment and the development of a thromboresistant
phenotype were induced by uniaxial cyclic stretching, accompanied by an increase
in TM expression. In contrast, the initiation of the coagulation cascade was brought
about by discontinuous stretching which simulating stasis resulting in an elevated
vWT presence on the EC surface.
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Figure 1.8: Immunostained mouse saphenous veins to detect expression of the pro-
thrombotic protein von Willebrand factor (vWF in Figure A) and the antithrombotic
protein thrombomodulin (THBD in Figure B). Relative quantitation of staining in
luminal (L), valve (V) and sinus (S) endothelial cells is shown at right for each
protein. Extracted from [13].

The third part of the project is conducted by the IMAG team as part of this PhD.
The objectives of this thesis and the organization of the manuscript are presented
in the next section.

1.4.2 Objectives of the thesis

The mechanical stresses applied to ECs in vein valves are primarily due to blood
flow and the skeletal muscle pump. The main objectives of this thesis are to quali-
tatively assess the dynamics of vein valves and the associated hemodynamics under
different blood flow conditions, valve geometries, and vessel sizes. As previously
described, venous valves are biological tissues that are moved by blood flow. From a
physical standpoint, this system represents a structure immersed in a fluid, both in-
teracting dynamically. The natural tool to simulate this system is the fluid-structure
interaction (FSI) technique.

Chapter 2 of the thesis is dedicated to the state of the art of FSI methods used
for valve dynamics simulation, followed by a detailed description and validation
of the numerical method employed in this work. Chapter 3 provides an overview
of the current literature on vein valves (including geometry, mechanical features,
and associated blood flow sequences), presents the obtained model geometry, and
describes the simulation sequences used. Chapter 4 presents the results of the FSI
simulations of the vein valve models. The thesis concludes with a discussion of the
findings and perspectives for future work in Chapter 5.



CHAPTER2

Numerical Methods

Chapter overview: The methods used to model the vein valves are detailed
in this chapter. These methods are part of the YALES2BIO solver suite. The
different approaches are introduced step by step, starting with the fluid solver,
followed by the structure solver, and concluding with the coupling solver. The
main achievements of this thesis, as presented in this chapter, include the im-
plementation of a penalty-based algorithm for contact between the leafiets, the
neo-Hookean model for structural deformation, and the Aitken method for cou-
pling acceleration and stabilization. A suitable benchmark is also proposed to
provide a complete validation of the solver in a valve-like configuration.
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2.1 Fluid-structure interaction simulations for vas-
cular system

Computational fluid dynamics (CFD) has been extensively applied in various car-
diovascular problems to estimate hemodynamics, including intracardiac blood flow
[20, 46, 47|, cardiac valves |22, 39, 41, 48-50|, and arterial deformation [51-54]. Sim-
ulating cardiovascular systems requires solving a multiphysics problem, which may
involve fluid dynamics, structural deformation, and electrical conduction. In the
case of cardiac or venous valves, the interaction between blood flow and deformable
structures, such as valve and vein tissues, is crucial. Fluid-structure interaction
(FSI) methods are naturally suited for these kinds of problems. A brief introduction
to the physics at stake in FSI simulations is presented next.

2.1.1 Fluids and solids

In this work, the physics of both fluids and solids are addressed, treating them
as continuous media within the framework of continuum mechanics. Despite this
commonality, their responses to applied stresses diverge fundamentally. For a solid
Q,, the stress at any point depends on the deformation from a reference configura-
tion; that is, stress is a function of how much the material has been stretched or
compressed relative to its original, undeformed state. This relationship is charac-
terized by constitutive laws such as Hooke’s law for elastic materials, where stress
is directly related to strain. In contrast, fluids lack a fixed reference configuration
and continuously deform under applied stress. The stress in a fluid depends on the
rate of deformation, specifically the strain rate tensor, which reflects how quickly
the fluid elements are changing shape. This behavior is described by constitutive
equations like Newton’s law of viscosity, where stress is proportional to the rate of
strain. Consequently, while both fluids and solids are continuous media, their dif-
fering stress-strain relationships necessitate distinct analytical approaches, detailed
hereafter.
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2.1.1.1 The Navier Stokes equations for a Newtonian incompressible
fluid

Let consider a computational domain € filled with a Newtonian incompressible
fluid. The set of differential equations governing the motion of a Newtonian incom-
pressible fluid is known as the Navier-Stokes equations. These equations describe
locally the conservation of momentum and mass for a fluid. The Navier-Stokes equa-
tions are derived from the conservation of mass and momentum, and they are given

by:

dv_ —E‘f‘l/AV—FfU (2.1a)
dt Pf
V-v=0 (2.1b)

where ¢ is the time (> 0), v is the fluid velocity vector, P the pressure, py the fluid
density, v the kinematic viscosity, and f, a volumetric force. From this point, initial
conditions of the fluid velocity must be prescribed within €2¢:

v(x,t =0) = vy(x) (2.2)

The pressure do not need to be prescribed as it is determined by the incompress-
ibility condition (2.1b) (detailed in Section 2.3.2). The Navier-Stokes equations are
supplemented by boundary conditions on the fluid domain 02y, which can be of to

types:

1. Dirichlet boundary conditions, where the fluid velocity is prescribed:
V=yv, (2.3)
where v, is the prescribed velocity at the boundary.

2. Neumann boundary conditions, where the fluid stress is prescribed:

ov
ty = —Pn+ pu— +pVvin (2.4)
on
where t; is the prescribed stress at the boundary, n the outward unit normal
vector, and p the dynamic viscosity.

2.1.1.2 The Equations of Motion for a Linear Elastic Solid

Consider a computational domain €2, occupied by a linear elastic solid. The behavior
of the solid is governed by the equations of continuum mechanics, specifically the
balance of linear momentum and the constitutive relations for linear elasticity. These
equations describe the conservation of momentum and the relationship between
stress and strain within the solid. The equations of motion for a linear elastic solid
are given by:
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d?u
psW =V-o+ fs (25&)
o=C:e (2.5b)
1
e=3 (Vu+Vu') (2.5¢)

Where ¢ is time (¢t > 0), u is the displacement vector, o is the Cauchy stress
tensor, p, is the solid density, f, is a body force per unit volume, C is the fourth-order
elasticity tensor (material stiffness tensor), and e is the linearized strain tensor.

The initial conditions for the solid displacement and velocity must be prescribed
within €),:

u(x,t =0) = uy(x) (2.6a)
du
E(X,t = O) = Vo(X) (26b>

The equations of motion are supplemented by boundary conditions on the solid
domain boundary 0€2,, which can be of two types:

1. Dirichlet boundary conditions, where the displacement is prescribed:
u=u, (2.7)
where u, is the prescribed displacement at the boundary.

2. Neumann boundary conditions, where the traction (stress vector) is prescribed:
o -1n= fb (28)

where f;, is the prescribed force vector applied on the boundary, and n is the
outward unit normal vector to the boundary 0.

2.1.1.3 Coupling of the fluid and solid dynamics

In the context of FSI, the fluid and solid domains are coupled through the interface
I', defined as the common boundary between the fluid and solid domains. The fluid
force deforms the solid and as the solid moves, the fluid domain follows. The fluid-
structure coupling is determined by the following kinematic and dynamic conditions:

vp=u on I (2.9a)
oc-n=t, on I (2.9b)

where vy, is the fluid velocity at the interface, u is the solid velocity at the interface,
o is the solid stress tensor, n is the outward unit normal vector to the interface, and
t, is the traction (force) applied on the interface. The coupling conditions are thus
enforced as a Dirichlet-Neumann problem on the interface I'. The fluid and solid
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motion are solved simultaneously, ensuring that the interface conditions are satisfied
at each time step. The influence of the fluid on the solid and vice versa depends
greatly on the density ratio of the solid to the fluid. For example, in aerodynamics
problems the density ratio is often very low, leading to a weak coupling between the
fluid and the solid. In contrast, in problems like valve dynamics, the density ratio is
close to 1, leading to a strong coupling between the fluid and the solid. Numerically
solving cardiovascular problems requires a robust and stable algorithm to handle the
strong coupling between the fluid and solid. The principal methods used to solve
FSI cardiovascular problems are presented next.

2.1.2 Monolithic Approaches

Monolithic methods for Fluid-Structure Interaction (FSI) represent a comprehensive
approach to solve coupled problems involving fluid and solid mechanics. Unlike par-
titioned methods, which solve the fluid and structure subproblems separately and it-
erate between them, monolithic methods solve the entire system (fluid, structure and
coupling equations) simultaneously. This approach ensures strong coupling between
the fluid and structure, leading to more stable and accurate solutions, especially for
problems with significant interaction effects, such as valve dynamics. Monolithic
methods are particularly advantageous in scenarios where the fluid-structure inter-
face undergoes large deformations or when the fluid and structure have very close
densities, leading to a strong "added mass effect." By formulating the FSI problem
within a unified framework, these methods avoid the convergence issues and stability
problems often encountered in partitioned approaches, making them a robust choice
for complex FSI simulations.

As the work presented in this manuscript only treats of incompressible New-
tonian fluids, solely monolithic methods involving this kind of fluid are described.
Considering the incompressible fluid and structure physics within a single set of
equations leads to solving a large-scale nonlinear and non-SPD system (symmetric
positive definite) which is mathematically challenging. Geometric or algebraic multi-
grid methods have been used either as solvers or as preconditioners associated with
Krylov subspace methods like GMRES (Generalized Minimal Residual) to construct
monolithic methods, see [55-57] and [58-60], respectively. GMRES is an iterative
method that minimizes the residual over a Krylov subspace [61]. Its flexibility and
robustness make GMRES particularly suitable for solving the large, sparse, and
non-SPD linear systems encountered in monolithic FSI approaches. Additionally,
this method can be used with a variety of other preconditioners, such as domain de-
composition [62-64] or LDU-factorization methods. In the context of biomechanics,
these methods are particularly used for cardiovascular problems, such as the electro-
fluid-structure simulation of the cardiac cycle [65, 66], and arterial deformation [67—
69].
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2.1.3 Partitioned Techniques

In partitioned methods, the fluid and structure subproblems are solved separately,
and the solutions are iteratively exchanged between the two domains until con-
vergence is reached. This approach is more flexible and modular than monolithic
methods, as it allows for the use of different solvers well-suited for the fluid and
structure subproblems. Different strategies can by employed to formulate the prob-
lem: body-fitted methods [16, 17, 20, 35, 36, 38, 40, 53, 70-75], non body-fitted
methods [22, 39, 41, 48-50, 76, 77| or meshless methods.

In body-fitted methods, the fluid and structure are solved on non-overlapping
meshes, communicating through the interface. This methodology is particularly
suited to capture flow features close to the interface. To closely follow the movement
of the interface and preserve mesh quality, the mesh needs to move accordingly, which
increases the computational cost. Immersed boundary methods are more flexible
and easier to implement, as the fluid is solved on a fixed mesh and the structure
is immersed in the fluid domain, albeit at the expense of accuracy. These methods
have been applied to a wide range of cardiovascular problems, such as arterial flow
lastorino fluid-structure 2008|, vocal fold vibration [77|, vein and lymphatic
valves |48, 73, 76|, and cardiac valves |22, 39, 41, 48-50]. For a complete overview
of the state of the art on cardiac valve FSI simulation, the reader is referred to the
work of [14] and the references therein.

The stability of FSI methods is greatly dependent on the density ratio of the
solid to the fluid. This echoes with the weak and strong coupling presented in
Section 2.1.1.3. The dynamic equilibrium for a weak coupling problem is easily
obtained, as the fluid and the solid only need one solving on each side to converge.
In contrast, from the inertial coupling of strongly coupled problems arises the added
mass effect [78-87]. The added mass effect can lead to instabilities in the simulation,
such as difficulties in achieving convergence or even non-converging algorithms. To
ensure the convergence of the system, a subiterative procedure is usually required,
often supplemented by stabilization techniques. Different stabilization techniques
are presented hereafter.

2.1.4 Stabilizating iterative procedures

The artificial compressibility method [88-94| considers a pseudo-compressible fluid
by adding a stabilization term to the mass conservation equation:
Py — Ppy

where u the fluid velocity, P the pressure, k the sub-iteration index, C' the arti-
ficial compressibility coefficient, and At the time step. This term vanishes as the
coupling converges towards equilibrium, ensuring the incompressibility condition is
not violated. However, adding a term to the mass conservation equation can lead
to difficulties in solving the fluid linear system.

Robin boundary conditions are mixed Dirichlet-Neumann conditions designed
to stabilize the fluid-structure interface [80, 95-100]. These can be applied either
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on the fluid or the structure interface boundary condition. For example, on the
solid boundary condition Equation (2.9b), the fluid acts as a viscous damper on the
structure through fluid forces. The main idea of the Robin condition is to divide
the fluid force into two parts: the actual force from the fluid onto the solid and the
force due to the solid’s movement. The force due to the solid’s movement is the
added mass term; this part is deducted from the right-hand side of the momentum
balance equation 2.5a and added to the mass term on the left-hand side. This type of
boundary condition is closest to the reality of FSI physics; however, segregating the
actual force and the added mass is not straightforward in the case of fluid governed
by Navier-Stokes equations and requires solving an additional linear system.

The Aitken method is an acceleration technique used to speed up the conver-
gence of a sequence [101-103], and is very popular in FSI partitioned methods 90,
104-109]. This method is of great interest as it does not require heavy implemen-
tation and accelerates or slows down the convergence when needed, stabilizing the
algorithm. For these reasons, the Aitken method was chosen for implementation in
the FSI solver of YALES2BIO, detailed in Section 2.6.5.

2.1.5 Validation Test Cases in the FSI World

FSI algorithms are employed in a wide range of engineering and biomedical problems,
from flexible windmill blades [110] to red blood cell transport [111, 112]. Given
this variety of applications, several benchmarks have emerged. Part of the work
presented here involved finding a suitable benchmark to validate the FSI solver of
YALES2BIO within the framework of vein valves.

In the context of arterial blood flow, Wall et al. [113] introduced the lid-driven
cavity flow with a flexible bottom, later validated in [114, 115], to test their FSI
algorithms in a deformable wall configuration. However, this test case does not
test the ability of FSI algorithms to handle the presence of a deformable body fully
immersed in the fluid, as is the case in the flow-induced vibration of structures.
These configurations are characterized by the alignment of the main direction of the
structure and the flow.

Within the scope of flow-induced vibration, several numerical benchmarks in-
volve a rigid body with a flexible flap attached to its wake. Multiple forms have
been used, such as in 2D: a square [115-118] or a cylinder [107, 119-121] with the ex-
tensively known and validated FSI2 benchmark, or its extension to 3D in turbulent
cases [120, 122]. The FSI2 benchmark has already been validated with the YALES2
solver in [120]. Closer to valve configurations, 2D benchmarks with a deformable
structure attached perpendicularly to the channel wall and subjected to a normal
flow was first introduced by Baaijens [123] and extensively validated later on [124-
129]. Adaptations of this benchmark to the contact framework have been realized in
[130, 131]. Extensions to 3D are also proposed in [124, 131, 132|. These benchmarks
are particularly suited to test the ability of the FSI solver to handle large deforma-
tions provoked by a normal fluid flow. The validation of the benchmark presented
in [125] is reported in Section 2.6.6.
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2.2 Presentation of the YALES2BIO solver suite

In this work, the YALES2BIO solver [133] suite is used to model the vein valves. This
suite is an extension of the YALES2 solver suite. The YALES2 library (Yet Another
LES Solver) [134] was initially developed to address low-Mach number Navier-Stokes
equations, both in incompressible and variable density contexts, employing Large
Eddy Simulation (LES) and Direct Numerical Simulation (DNS) methods within a
finite-volume framework. YALES2 is capable of handling unstructured meshes and
features adaptive grid refinement while ensuring excellent scalability. This scalability
is achieved through a Double Domain Decomposition (DDD) strategy.

The DDD approach involves a two-step process. First, the mesh is partitioned
into subdomains, each assigned to a different computational core. Next, these sub-
domains are further divided into groups of elements of a predetermined size, known
as element groups (ELGRPs), as depicted in Figure 2.1. This method enables effi-
cient memory usage for cache-aware algorithms and can be leveraged by deflation
algorithms [135] to maximize performance on massively parallel computing systems.

However, implementing DDD necessitates specialized data structures. Each EL-
GRP functions as an independent mesh block, requiring a mechanism to connect
elements at the interfaces of different ELGRPs, even within the same processor. An
internal communicator is employed to manage the data for nodes, pairs, and faces at
these interfaces. Similarly, external communicators handle communications at the
interfaces between different processors. Additionally, a separate structure is used to
manage elements located on boundaries, facilitating their specific treatment. This
architecture is illustrated in Figure 2.1b. While this approach is highly effective, it
introduces complexity when implementing new features within the existing code.

The YALES2BIO solver suite extends the capabilities of YALES2 to the fields
of biomechanics developed at the IMAG. Through the last 13 years, numerous fea-
tures have been added to the code to tackle different biomechanical configurations
(Figure 2.2). In the context of patient-specific CFD simulations of the left ventricle,

proc #2 -
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M) =]
> g
—| : [€ S CPU #2
i > 7
proc #3 cen BIoTp 5 é/
i )
£ g
| £
S |[—p CPU #3
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proc #1 \ [ boundary ][ boundary ] )

(a) (b)

Figure 2.1: On the left, the Double Domain Decomposition (DDD) strategy used in
YALES2. Extracted from [134]
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an Arbitrary Lagrangian-Eulerian (ALE) method has been introduced [136]. An
IBM-based FSI solver have been implemented with macroscopic [22| or microscopic
applications [111, 112, 137, 138|. Noticeable contributions have been made in MRI
quality control with a simulated MRI solver [139, 140| or in the field of airborne
virus transmission [141].
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P
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Figure 2.2: Examples of applications of the YALES2BIO solver suite in different
fields of biomechanics.

2.3 Arbitrary Lagrangian-Eulerian Solver

2.3.1 Prediction Step in the ALE Framework

In this work, the blood is modeled as a Newtonian fluid and follows the Navier-Stokes
equations:

dv Y

& Y AV HE, 211

in py + VAV + (2.11a)
V.ov=0 (2.11D)

where v is the velocity vector, P the pressure, p the fluid density, v the kinematic
viscosity, and f, a volumetric force. To account for the movement of the leaflets,
the Arbitrary Lagrangian-Eulerian (ALE) method is used. Integration of the fluid
governing equations is done on deformable control volumes, while mesh nodes are
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dv
advected as Lagrangian points. The material time derivative T is written as follows:

= — 4+v-Vv (2.12)

Equation (2.11a) has to be modified to take into account the movement of the grid.
The control volumes are swept at the grid velocity w. The ALE formulation of the
Navier-Stokes equations is then:

ot Py

V-v=0 (2.13Db)

The volume swept by the grid is substracted from the left-hand side. The time
advancement scheme used in this work is a four-stage Low Storage Runge-Kutta
method (LSRK4) [142] recast in ALE formalism. It is coupled to Chorin’s projection
method to solve the incompressibility constraint. The full methodology can be found
in [136]. The projection method is broken down into two steps: a prediction step,
which consists of fluid velocity advection and grid movement, followed by a correction
step to enforce the incompressibility condition. The correction step is presented
in the next section. The prediction step consists in integrating Equation (2.13a)
between time ¢, and t,,1 on a node-centered control volume w():

tntl ) tnt1
/ —/ vdwdt+/ / V- (v — w)v) dwdt — RHS
o Ot o tn w(t)

_— (2.14)
Vi1 Vo — v Vi + / / V- ((v—w)v)dwdt = RHS
tn w(t)

where V), is the volume of the control volume at time ¢,,, RHS is the right-hand side
of the Navier-Stokes equation, and RHS = vAv + f,. In the following, the RHS
is omitted for clarity. The four substeps of the Runge-Kutta method are computed
as:

Vo =V,
Vi, AN .
V, =V,— — a Vo ((Viecr = Woy1)vimy)dw for i=1,...,4 (2.15)
Vi Vi w(ts)
Vi1 = V4

where «; are the Runge-Kutta coefficients for each substep, o = [1/4,1/3,1/2,1]
and w, 1. The LSRK4 method is recovered if w = 0 as V,, = V;. In addition, w is
considered constant during the timestep and the mesh nodes are advected at each
substep as follows:

Xp = Xp,
X; = X1 + BiAtw,y for 1=1,...,4 (2.16)

Xnt1 = X4 + BrAtwy
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where 3; are the Runge-Kutta coefficients for the grid velocity substeps, 5 = [1/8,1/24,1/12,1/4].
These coefficients are chosen to place the grid at the midpoint configuration, e.g.:

X; = X, + %Atwnﬂ (2.17)

The grid is at x| 1 at the end of the substeps as confirmed by the summation of
the §; coefficients. Then, a final step is needed with Sy = 1/2 to get the grid at the
correct final position x,, 11 = x,, + Atw,, 1.

The time advancement presented above has to verify the Discrete Geometric
Conservation Law (DGCL) [143, 144]. This condition ensures that the mesh nodes
are advected in a way that the volume swept by the mesh nodes is equal to the
volume change between t,, and ¢;. In other words, the constant velocity solution has
to be preserved even if the grid moves. The DGCL condition in the case of LSRK4
is written as:

V}—Vn:—aiAt/ V- -w,pdw for i=1,...,4. (2.18)
w(ts)

The grid nodal position and the metrics evolve linearly through the timestep. This
means that the integration domain w(t) cannot be equal to V; to satisfy Equa-
tion (2.18). The midpoint configuration is chosen to compute w(t) for each substep
as given by Equation (2.17). The RHS at time ¢; is also computed on the midpoint
mesh configuration. This method ensures that the DGCL is satisfied at each substep
for velocity prediction computation.

2.3.2 Correction Step

At the end of the prediction step, the grid has reached its final position for the
timestep. However, the fluid velocity field is not yet divergence-free. The correction
step is needed to enforce the incompressibility condition. The Chorin projection
method [chorin numerical 1997] is presented by writing Equation (2.13a) with
an explicit Euler scheme:

_ VP, .
Yol = Vn _ —((vp = Wypt1) - V) v, + VAV, + £, — T2 (2.19a)
At Pr
_ VP, ..
Yol “ Vo _ (v, — wni1) - V)V, + RHS — — 2 (2.19b)
At Pf
V‘Pn-‘rl
Vi1 = Vi — At (v, — Wip1) - V) v, + AtRHS — At ,0 2 (2.19¢)
f
VPn+l
Vgl = Vi — At 2 (2.19d)

Py

where v; | correspond to the velocity computed by the prediction step Section 2.3.1.
Equation (2.19d) must satisfy the incompressibility condition Equation (2.13b). By
taking the divergence of Equation (2.19d), the Poisson equation for the pressure is
obtained:

AP, =Ly v (2.20)
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The linear system Equation (2.20) is solved using a Deflated Preconditioned Conju-
gate Gradient (DPCG) method [135]. With this newly obtained pressure field P, "y
the velocity v,,.1 is corrected to obtain the divergence-free velocity:

At
Vil = Vg — p—fVPM% (2.21)
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2.4 Structural Mechanics Solver

This solver has been designed to solve the structural deformations of a solid under-
going finite deformation. The solid responds to the momentum balance equation

from continuum mechanics. Here is presented its discretized version solved with the
Finite Element Method (FEM):

Mii + Cu + Ku = f (2.22)

where d is the displacement vector, M the mass matrix, C the damping matrix, K
the stiffness matrix, and f the external forces. More details are given later.

2.4.1 The Finite Element Method: Interpolation and Inte-
gration

The Finite Element Method (FEM) is a numerical method used to solve partial
differential equations. The main idea is to transform a continuous problem into a
discrete problem, to be solved on a finite number of elements. This method was
developed in parallel by mathematicians and engineers during the nineteenth and
twentieth centuries. The main idea is to divide the domain of the problem into a
finite number of elements and solve the problem on each of these elements. The
solution is then assembled to provide the global solution of the problem. FEM is a
powerful tool for solving complex problems and is widely used for structural analysis.

The method has been introduced and developed in the YALES2 solver suite
during the work of Fabbri [120]. The presentation made in this work focuses only
on the main aspects of the FEM used in the YALES2BIO solver suite. The reader
is referred to the work of [145, 146| for a more complete description of the method.

2.4.1.1 Continuous Field Representation

FEM is based on the discretization of the continuous domain 2 into a finite number
of subdomains. 2 is then approximated by a finite number of nodes x; and elements
¢ which form the mesh. The field of interest, taken as an example, is the structural
displacement. To determine the displacement on this mesh and inside each element,
it is approximated by interpolation functions and field values at the element nodes
u,. The displacement u inside an element is then approximated as u:

ura=> Nyu; (2.23)
a=1

N, are the so-called shape functions. Great care must be taken to choose the shape
functions to provide an appropriate approximation of the displacement. They must
satisfy:

Na<xb> = 5abI (224)
where I is the identity matrix. In this work, only linear elements are used, such

as 3-node triangles and 4-node tetrahedra. The next section presents the shape
functions used in these elements.
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2.4.1.2 Area Coordinates

The shape functions are expressed in terms of the area coordinate system in the
reference frame of the element. This new set of coordinates, L,, Lo, and L3 for a
triangle with vertices 1, 2, 3 (Figure 2.3), follows a linear relation between these and
the Cartesian system:

r = Lyzy + Lows + Lyus (2.25a)
y = Liyy + Loys + L3ys (2.25Db)
l=1Ly+ Ly+ Ls (2.25¢)

At point 1, Ly = 1 and Ly = L3 = 0. They can also be seen as the area formed by
the point Apyz relative to the area of the triangle A;o3, and so on for Ly and L3. In

L1 = O \ 3
L1 = 0'25 .“ (x3ly3)

Figure 2.3: Area coordinate system in a 2D triangle element.

global coordinates, the area coordinates are then:

1

Ajgz = BY [(562 - 931)(?43 — 1) — (-733 - $1)(?J2 - yl)] (2-2(5&)
L, = 2141123 (2 —2p)(y3 — yr) — (23 — 2p)(y2 — yp)] (2.26b)
Ly = 2141123 (x5 — 2p)(y2 — yp) — (x2 — zp)(ys — ypr)] (2.26¢)
Ls=1—L;— Ly (2.26d)

2.4.1.3 Shape Functions

The shape functions are then expressed in terms of the area coordinates. For a
3-node triangle, the shape functions are simply the area coordinates:

Ni=L  Ny=L, N3=Ls (2.27)

Equation (2.25¢) allows us to express L; in terms of Ly and Lz. The shape functions

are then:
N1 = 1—L2—L3 N2:L2 N3:L3 (228)
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These can be easily extended to a 4-node tetrahedron giving the following:
Ny=1—Ly—Ls— Ly Ny = Ly N3 = Lg Ny =1Ly (2.29)

Each individually gives a value of 1 at one node and 0 at the others, and varies lin-
early everywhere. The shape functions are then used to interpolate the displacement
field inside the element.

2.4.1.4 Gaussian Quadrature

The integrals over the element are computed using Gaussian quadrature. The inte-
gral I of a function f over the element in terms of area coordinates is then approx-
imated as:

1 1-L1
I= / / f(Ly, Lo, Ly) dLydLy  with Ly =1 — Ly — Ly (2.30)
0 0

The function f is evaluated at the Gaussian points, and I becomes the sum of f
evaluated at these points:

I=>Y" f(L}, Ly, L)W, (2.31)
=1
where W, are the weights of the quadrature. The number of points n is chosen
according to the order of the quadrature. The placement for the 3-node triangle
and 4-node tetrahedron are given in Table 2.1.

Table 2.1: Gaussian quadrature points, positions, and weights for 3-node triangles
and 4-node tetrahedra. a = (5 —v/5)/20 and 8 = (5 + 3v/5)/20.

3D Tetrahedron
Points Ly Lo L3 Weights

2D Triangle
Points Ly Lo Weights

a 05 05 1/3 ¢ o o o 1A
b a a f 1/24

b 05 0 1/3
c 0 05 1/3 booa foa 1/
' c g a « 1/24

In the following, we shall introduce the main concepts used in the FEM formu-
lation for the structural problem. The biological tissues forming the leaflets and
the vein wall are subjected to large deformations leading to non-linear behavior.
Basics and notations of solid mechanics with a linear elasticity problem are first
presented. Next, we will transition to the non-linear case and its implementation in

the YALES2BIO solver suite.

2.4.2 Linear elasticity

Let’s consider a solid 2 delimited by its boundary I'g (Figure 2.5). In this section
we will present the linear elasticity problem to introduce the FEM formulation of a
structural analysis problem.
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b > ]41

Figure 2.4: Gaussian quadrature points for a 2D triangle.

Figure 2.5: 2D solid €2 and its boundary I'.

2.4.2.1 Coordinates and displacement

Let’s consider a fixed Cartesian coordinate system with associated unit base vectors
e;. The vector of coordinates is then x = x;e; using the Einstein summation conven-
tion. Similarly, the displacement vector is u = w;e;. Is is defined as the difference
between the current position and the initial position of a point in the solid. In
the following, all quantities will be expressed by their components in the Cartesian
coordinate system.

2.4.2.2 Strain-displacement relation

The following convention will often be used for the derivatives:

8Ui
3xj "
The strain tensor ¢ is defined as the symmetric part of the displacement field gradi-

ent:

1
€ij = 5 (uij + uji) (2.32)
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This relation provides valid measures of the deformation of the solid as long as the
deformation is small, in other words:

el <1 and  [Jwlll < Jleg]] (2.33)

where w;; is a small rotation, defined as the antisymmetric part of the displacement
field gradient:

1
wij = 5 (uig — ;) (2.34)

The displacement gradient can be expressed in terms of the strain tensor and the
rotation tensor:

ui,j = gij —+ Wij (235)

2.4.2.3 Balance of momentum and constitutive relation: strong form

Newton’s second law of motion for a continuous medium is expressed as the momen-
tum balance equation:

pul + Oij5 = bz (236)

where 0;; is the stress tensor, p the density and b; the body forces. ii; corresponds to
the second time derivative of the displacement or the acceleration. The stress tensor
in the following is symmetric, meaning that o,; = 0. The constitutive relation
between the stress and the strain is given by Hooke’s law:

0ij(t) = Cijren(t) (2.37)

where Cjjp are elastic moduli of the material. As Equation (2.37) is linear, the
elastic moduli are constant and do not depend on the strain. The stress varies
linearly with the strain, meaning we can drop the explicit inclusion of time.

2.4.2.4 Boundary conditions

Two types of boundary conditions are used here. The first type is a Dirichlet bound-
ary condition, where the displacement is imposed on a part of the boundary I'y:

All quantities noted with a bar are imposed values. The second type is a Neumann
boundary condition, where the traction is imposed on I'y:

ti = 04N, = Ez (239)
where n; is the normal vector to the boundary. Later, this boundary condition will

be extended to the fluid forces applied on the solid where a tangential component
due to shear stress is added.
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2.4.2.5 Matrix notations

In the following we will often use the matrix form of the equations seen above to
simplify the notation. In the three-dimensionnal case, the stress and strain tensor
can be expressed as a 6 x 1 vector:

T .
o = [011 O22 033 012 023 031} with ;5 = 0y
T ' (2.40)
g = [511 €929 £33 2812 2623 2631} with €ij = &ji
The strain-displacement relation in matrix notation becomes:
e =Bu (2.41)
where B is the 3D strain operator given by:
- 9 -
— 0 0 i 0 i
81’1 a (952 8 81’3
B"=|0 — 0 — — 0 (2.42)
) 81’1 al’3
0 2 5 9 9
| 0xs3 Oxy Oz

This operator is used to write the linear momentum equation in Cartesian coordi-
nates under its matrix form:
pii+B'o=b (2.43)

The constitutive relation in matrix form is then:
o = De (2.44)

where D is the 6 x 6 elasticity matrix, representing the elastic moduli of the material.
It is a symmetric matrix. For an isotropic linear material:

E

D=ara=w

o © O OO O

o O O T <]

(1-2v)/2]

(2.45)
where E is the Young’s modulus and v the Poisson’s ratio. They are specific to
the material taken into consideration. The linear momentum equation can then be

written as:

pii + B'DBu = b (2.46)

2.4.2.6 FEM formulation of the linear problem

The ideas developed in Section 2.4.1 lead to discretize €2 by a finite number of
elements:

Qr Q=) 0 (2.47)
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as well as its boundary I'g:
To~Tq=) T (2.48)

Q° and I'; are the interior and the boundary elements. The objective now is to
express the linear momentum equation 2.46 on the approximated domain {2 and its
boundary I'g. Using the Galerkin method the problem becomes:

Geqméeq:Z[/

e

-y [ / 5uTtdFet] =0 (2.49)
et Det
=> "G +> G =0
e et

where du is the virtual displacement, G and G: are terms within the domain Q° of
each element or those which belong to the traction boundary surface I'; respectively.
The first term of Equation (2.49) is the inertial force, the second term is the internal
force, the third term is the volumetric force and the last the external load. The
problem is then to find the displacement field u that satisfies the variational form in
Equation (2.49). The displacement field is then approximated by the shape functions
as in Equation (2.23):

su’ piidQ° + / su' BTDBudQf — / (5udeQe}

e e e

n

u(x, i) 2 =Y Ny(x)i,(t) = N(x)u(t) (2.50)

a=1

where 1, are the nodal displacements and IN(x) is the matrix of shape functions.
This expression can be written in terms of area coordinates with L the area coordi-

nates vector:
u(L,t) ~ i = N(L)a(¢) (2.51)

The virtual displacement is then approximated in the same way:

Ju(x,t) A ou =Y  Ny(x)6i,(t) = N(x)di(t) (2.52)

a=1

We also need the displacement gradient as it appears in Equation (2.49), meaning
that we have to compute the shape function gradient. The shape functions gradient
relation is then in matrix form:

ON, ON,
=gt 2.53
oL ox ( )
where:
N, N, T T T
aNa a,ly 8Na a,r1 a 1,11 2,11 3,L1
=< Nor, ¢ s =S Nogy ¢, J= = TiL, Too, T3L,| (2.54)
0L ’ ox k oL k ' '
Na,L3 Na,zg T1,L3 T2,L3 T3,Lg
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J is the Jacobian matrix of the transformation from the area coordinates to the
Cartesian coordinates. Using Equation (2.50) in Equation (2.41), the strain tensor
can be expressed as:

e=Bux ) (BN,)i, =) B, =B, By ..]{%}=Bia (2.55)

a

where B, = BN, the strain operator at each node of the element:

Newy O 0 Newy, 0 Ny,
Bi=| 0 Nuw 0 Nyuy Nuww 0 (2.56)
O 0 Na7z3 0 Na,a;z Na,zl

G and G, terms from Equation (2.49) can be formulated for a single element:

e e

G _6ﬁT[ N7TpNdQa + / B"DBdQa — / NdeQB]

o (2.57)

G, =—ou” / NTEdrs
FE

t

The physical meaning of each term of Equation (2.57) are:

1. NTdeQﬁ is the inertial force acting on the element. N7 pNdQ is the
Qe Qe
mass matrix of the element and will be noted M¢.

2. / BTDBdAQ1 is the internal force acting on the element as well. / B"DBAQ

e

is the stifflness matrix of the element and will be noted K¢.

3. / N7bdI'g, is the external force acting on the element boundaries. It is the

equivalent of the traction force acting on the element boundaries.

The sum over all the elements is performed to obtain the discrete linear momentum
equation. The global mass and stiffness matrices are then obtained by assembling
the mass and stiffness matrices of each element. Concerning the virtual displace-
ment du’, as they are completely arbitrary in this case, one can drop then. The
global linear momentum equation becomes the following set of ordinary differential

equations: .
Mu+ Ku=f (2.58)

M=) M, K= K°, f=> f° (2.59)

Equation (2.58) is the non-viscous formulation of the balance momentum Equa-
tion (2.22). From this point, we will introduce the non-linear elasticity problem and
its FEM formulation in the next section.

where:
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2.4.3 Geometrically non-linear Problem

2.4.3.1 Reference and Current Frame

In Section 2.4.2; the stress depends only on the deformation from the initial state
of the solid €2, which is referred to as the reference configuration. Additionally,
shape functions were computed and integrated in the reference configuration. In the
non-linear case, the deformation is large, and the stress depends on the deformation
from the current configuration of the solid, denoted as w. The two configurations
are illustrated in Figure 2.6.

P(X,t)
~

T

Figure 2.6: Reference and current configuration of the solid.

2.4.3.2 Deformation Gradient

In the following, uppercase letters will refer to the reference configuration, and
lowercase letters will refer to the current configuration. To change from the reference
coordinates to the current coordinates, the displacement vector is used:

x = (X, 1) = X + u(X, ?) (2.60)

® (X, t) is the deformation of the solid from the reference configuration to the current
configuration. The deformation gradient tensor F' is then defined as:

ox

where Vu is the displacement gradient tensor. F contains information about both
the strain and the rigid motion of the solid. The strain is defined as the deformation
excluding the rigid motion. The strain gradient tensor C is then defined as:

C=F'F=1Id+ Vu+ Vu’ + Vu’Vu (2.62)

To eliminate Id, we define the Green-Lagrange strain tensor E as:
1 1
E = 5(c —1d) = 5(Vu + Vu® + Vu’Vu) (2.63)

Comparing Equation (2.63) to the small strain tensor in Equation (2.32), we observe
that the Green-Lagrange strain tensor is an extension of the small strain tensor to



34

Chapter 2. Numerical Methods

the large deformation case, incorporating the non-linear term Vu’Vu. The non-
linear 3D strain operator B, becomes, using Equation (2.56):

B, =B, +B)* (2.64)
where:
Ul,lNa,l U2,1Na,1 U3,1Na,1
U1,2Na,2 U2,2Na,2 U3,2Na,2
BNL U1,3Na,3 U2,3Na,3 U3,3Na,3 9
0 = ( .65)

u1,1Ng 2 + 11 2Ng 1
U1 2Ng3 + 113Ny 2

| u1,3Na,1 + 11,1 Na 3

U21Ng 2 + U2 2N 1
Uz 2Ng3 + U2 3Ny 2
U23Ng 1 + u21Ng 3

u3,1Ng 2 + U3 2N 1
uz2Ng 3 + u33Ng 2

u33Na,1 + u31Na 3|

2.4.3.3 Hyperelastic Material

In the hyperelastic framework, stress is expressed as the derivative of a strain energy
density function W with respect to the Green strain tensor E:

oW oW oC oW
~ OE  9COE ~0C
where S is the second Piola-Kirchhoff stress tensor, or the stress tensor in the ref-
erence configuration. The strain energy density function W depends on the Green-

Lagrange strain tensor E and measures the energy stored in the solid due to defor-
mation. The constitutive relation between stress and strain is then:

4 PW
0C1,0CKky,

where Cj iy is the fourth-order elasticity tensor and has the same form as the
elasticity matrix D in Equation (2.45). To express the relation between the stress S
and the pure strain C, derivatives of W are necessary. Instead of deriving directly
with respect to C, the first, second, and third invariants of the isochoric strain tensor
C = J7?/3C are used, where J is the determinant of the deformation gradient. The
invariants of C are defined as:

jl = J_2/3tI'(C)

S (2.66)

Sty =CrxrErr with Crygxp = (2.67)

A 1
I, = J*‘*/i”5 [tr(C)? — tr(C?)] (2.68)
I3 = det(C) = J?
We will use J as the third invariant. The derivatives with respect to Cj; are:
- o, T
GC[J ‘]_2/351J
I 1
oL, = J74/3—(6[J11 — C[J) (269)
9Cr, 21
oJ 5JC;}
LOC 5




2.4. Structural Mechanics Solver 35

W can then be expressed as a function of the invariants: W = W(fl, I, J). The
stress tensor S is then expressed as:

g_o| W oL, oW 9l, OW 9J
oI, 0Cry 91, 0Cr; — 9J 9Cy,
_8_W_
ol (2.70)
=2 [JQ/?’(SU J’4/31((5”[1 —C1y) 1Jc;,l} oW
2 2 Ol
ow
L 0J |
The elasticity tensor terms are expressed as:
1
Crixr =4 [J2/351J J3 (161 — Cry) §J01Jl}
T OW PW 9P ]
o1,>  0LOL, 06L,0J TPk
% 8A2WA 62}42/ afW J_4/3(I15KL — Ck1)
oW *W 9PW §JC;(1L
| 0Jol, 0JOoL, OJ* |
1
[aw a_W} T3 8150k — 5(5IK5JL + 51L5JK))
oL 0 J(Cr}Cick — 2Cikes)
with: )
Crxe = 5 [CrcCir + Cr O] (2.72)

The strain energy density function W is required to compute all the components
listed above. The elasticity tensor C; g will be denoted as D to maintain the
notation introduced in Section 2.4.2.6. In this work, a neo-Hookean material model
is used:

W =G, -3)+K(J?*—1) (2.73)

where G is the shear modulus, and K is the bulk modulus. The shear and bulk
moduli are related to the Young’s modulus F and the Poisson’s ratio v by:

E
2(1+v)

E
3(1—2v)

G —

(2.74)

To understand what a geometrically non-linear problem implies computationally, we
will now describe the FEM formulation of the stationary non-linear problem.
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2.4.3.4 Stationary Non-linear Problem

The linear momentum equation in Equation (2.58) in the stationary case is taken
as a starting point to express the stationary non-linear problem. With the inertial
term dropped, Equation (2.58) is simplified to:

Ku=f (2.75)

In the non-linear case, the stress term Ku depends on the deformation of €. In the
reference frame Equation (2.75) becomes:

/ B7SdQ =f (2.76)
Q

This problem can be seen as a function to minimize. Therefore, the residual of
Equation (2.76) is introduced:

Y(u)=f—-Ku (2.77)

and the Newton-Raphson method is used. This requires computation of the first-
order Taylor expansion of Equation (2.77) which is expressed as:

_ 2L AN
¥(uth) ~ w(u') + (—) ou=0 (2.78)
Ju
where u“™ is the solution at the (i + 1) iteration, u’ is the solution at the ™

iteration, and du is the increment of the solution. Solving one Newton-Raphson
iteration is equivalent to solving the following linear system:

¥(u') = — <(g—f)i5u (2.79)

To solve this equation, the derivative of the residual with respect to the displace-
ment field is needed. The derivative of the residual is defined as the tangent stiffness
matrix Kt with the iteration subscript ¢+ dropped:

ow
Kp=——— 2.80
T Ou (2.80a)
o BT f
Kr = / B DBdQ + / B gan- & (2.80b)
KT = KM + KG + KL (280C)

The first term in Equation (2.80b) is the material stiffness matrix Ky, and the
third term is the load stiffness matrix Kj,. The material stiffness matrix has the
same form as the stiffness matrix in Equation (2.57). D is computed at every
Newton iteration as it is the second derivative of the neo-Hookean strain energy
density function W. The second term is the geometric stiffness matrix Kg which
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arises from the nonlinear form of the strain-displacement equations. Its expression
can be easily constructed from the indicial form:
b oB”
K= —SdQ= = {/ NaSNbdQ} x Id (2.81)
o Ou Q

The third term, the load stiffness matrix K, arises from forces dependent on bound-
ary deformation, e.g. following forces like pressure. The computation of this term
typically results in an asymmetric matrix [146, p. 174], which complicates solv-
ing the linear system using a Preconditioned Conjugate Gradient (PCG) method.
Therefore, since forces f are updated at each Newton iteration, the load stiffness
matrix can be dropped. The process is repeated until the convergence criterion e,
is reached, i.e., [T || < €.

2.4.4 Transient Non-linear Problem

In this section, we define the complete set of equations for the transient non-linear
problem. Since the problem depends on time, a time discretization must be defined.
The Newmark scheme is employed to discretize the problem in time, and we will
discuss how it modifies the Newton-Raphson iteration computation. In the following,
tildes are omitted for the sake of notational simplicity.

2.4.4.1 Generalities

Equation (2.58) is again taken as basis to express the transient problem in the non-
linear case. Numerical damping is introduced into the equation to stabilize the
system. Rayleigh damping is used [147, 148|, and the equation becomes:

Mi+Ca+Ku=f (2.82)
where C is the damping matrix, defined as:
C=a,M+xK (2.83)

Here, a,,, and o, are the mass and stiffness damping coefficients, respectively. These
are user-defined parameters. Since K exhibits non-linear behavior, the damping
matrix varies in time. Various strategies can be employed to compute the damping
matrix: it can be computed at the beginning of the simulation and either kept
constant, updated at each time step, or updated at each Newton-Raphson iteration.
In this work, the second strategy is used.

2.4.4.2 Newmark Scheme

The Newmark scheme is widely used to discretize dynamic problems in time. It
belongs to a family of implicit time integration methods. The Newmark scheme
expresses the velocity 1,1 and acceleration i, as:

ﬁn+1 = a1 (un+1 — un) + (l4fln + (l5ﬁn (284&)

ﬁn+1 = ag(un+1 — un) -+ azﬁn -+ a3ﬁn (284b)
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where:

aAt?’ a 2 \«
1) 1 1

—_— Ao = ——— Aq =
oAt T aAt” T 24
Here, o and § are the Newmark parameters, where 6 controls numerical dissipation.
To ensure unconditional stability, the following condition must be satisfied:

apg = ! a4:é—1, a5:g(é—2>
(2.85)

ap =

5> 1,
-2
1 /1 2 (2.86)
> — | = .
a_4(2+5>

In this work, we follow the ANSYS implementation of the Newmark scheme by
introducing the amplitude decay factor ~:

1
(5—5""}/,

11\ (2.87)
Q 4<2—|—),
v > 0.

When v = 0, the Newmark scheme becomes the average acceleration method, mean-
ing no numerical damping is applied.
We can now express the transient non-linear problem. The non-linear momentum

equation in Equation (2.82) leads to the residual ¥!_:

= — Mii,y — Cigy — Kugy. (2.88)

In Equations (2.84a) and (2.84b), the term u,y; — u, appears, which inside a
Newton-Raphson iteration becomes the increment of the solution éu. In 1, and
i,,+1 expressions (Equation (2.84)), only the first term depends on the increment of
displacement u,,.1 —u,,. Therefore the derivative of the residual with respect to the
displacement (see Equation (2.79)) can be expressed as:

ow\" ‘ |
— (8_11) = Krzr + Clo].\/.[Z + alcl (289)

The linear system to solve at each Newton-Raphson iteration becomes:
(K + agM'’ + 0, C’) du’ = ¥}, ;. (2.90)

The methodology used to solve the solid transient non-linear problem has been
provided. During this work, only linear tetrahedra have been used. Initially,
quadratic tetrahedra were tested, but showed poor stability in FSI simulations. Ac-
cording to Zhang et al. [149], this instability was due to the original formulation of
the shape functions of these elements, which could not handle high mesh distortion.

The contact procedure used in this work is then presented.
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2.5 Contact methodology

2.5.1 Contact model

Leaflets are deformable bodies facing one another as described in Section 1.3.2. Dur-
ing opening and closing phases, contact may occur, and if it is not handle properly,
leaflets can overlap one another in the simulation. With IBM methods, this prob-
lem does not affect the global stability of the method as the fluid interacts with the
structures through source terms. However, in an FSI body-fitted method, as used in
this work, the interface has to be defined at all time during the simulation. Overlap-
ping in this case, as the elements in between cannot be suppressed, causes the fluid
mesh elements to turn inside out. Numerically this corresponds to switching the
ordering convention of the element nodes, causing miscalculation. To prevent this
to happen, a contact method has to be employed. Different methods to compute
contact between deformable bodies exist. Contact algorithms mainly work with a
slave body contacting a master body. The penalty method consists in computing a
contact force as a function of the penetration of the slave body into the master body
[150-152]. The force is then applied to the nodes of the slave and master bodies.
On one hand the penalty method is trivial to implement, and the resulting contact
force is smooth, helping stabilization of the computation. On the other hand, the
penalty method is not conservative, as the calculated contact force does not accu-
rately reflect the true interaction forces. This can result in unrealistic behavior of the
system if the penalty parameter is not carefully calibrated. The Lagrange multipli-
ers method introduces additional degrees of freedom to enforce contact constraints
between the slave and master bodies without penetration [153]. The Lagrange mul-
tiplier technique does not approximate the contact force but computes it directly by
solving a system of equations that represent the contact constraints. This approach
ensures the contact force remains physically realistic and adheres to the principle
of conservation, as it directly enforces the no-penetration condition. The Lagrange
multiplier method is more robust for problems where high accuracy in the contact
force is necessary, such as in the analysis of friction, wear, and lubrication in tribo-
logical systems. However, its implementation is more complex and computationally
demanding due to the need to solve an augmented system of equations that includes
both the original equations of motion and the contact constraints. The reader is
referred to [154, 155| for extensive reviews of contact methods.

The penalty method has been chosen in this work for different reasons. First
is the simplicity of implementation. Second is the fact that the penalty method
gives a smooth contact force leading to the minimization of discontinuities. The
penalty method chosen for implementation does not compute directly the contact
between the two leaflets. Instead, the symmetry of the leaflets is used to compute
the contact between a deformable body and a rigid plane, which is the symmetry
plane in between the leaflets (see Figure 3.8). The contact force computation is

defined as:
Fmal‘ x
felre) = =5 (1 + tanh (6u)> n (2.91)

w
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and represented in Figure 2.7. ~, is the distance from the plane, 7y the offset

P
Fmax

1 ’-)/x

0 2.1074

Figure 2.7: Contact force as a function of the distance from the symmetry plane.

from the wall where to activate contact, n is the contact plane outward normal,
Fur = 200 Pa the maximal contact surfacic force, w the activation width of the
contact force. Even if the contact force is chosen to be as smooth as possible to avoid
discontinuities, w needs to remain small so as not to overestimate the contact force
and F},,, needs to be large enough to force the structure to deform. If it is too small
the structure will penetrate too much without deforming and the amount of energy
restituted will be too high as it will be shown in Section 2.5.2. To meet all these
agreements, the timestep has to be adapted to ensure stability of the computation.
In other words, the timestep has to be small enough to ensure the increase of contact
force is handled correctly by the solver. This leads to the following condition on the
timestep:

[, )|

where o, is a user-defined parameter, Ap,; the length of the pair connected to the
node, (7y,,n) the distance from the symmetry plane and (11,,n) the velocity com-
ponent normal to the symmetry plane. The timestep is then adapted to the small-
est value between the timestep computed with the contact force and the smallest
timestep form the other stability conditions At,,q..

At = min (acApairw Atmam) (2.92)

2.5.2 Validation of the contact method: 3D bouncing ball

2.5.2.1 Presentation of the case

The bounce of a ball has been studied in the literature from both the experimental
and numerical point of view. Hubbard and Stronge [156] have studied the ball
during contact by filming from the bottom the ball bounce on a transparent glass
plate. The contact region is at first flattened and after a critical deformation, the
ball surface is snapped through as illustrated in Figure 2.9. On the numerical side,
some authors showed interest in the contact of a rigid ball submitted to gravity over
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a wall surrounded by fluid. The choice has been made for this work to concentrate
on the simplest case, considering only structural deformation and contact forces on
the bounce of a hollow ball on a rigid surface. The configuration is described in
Figure 2.8. The internal and external radius are R = 0.009 m and R = 0.01 m and
the material density equals p = 1050 kg/ m”. The ball is deformable and modelled
as neo-Hookean hyperelastic material. The Young modulus and Poisson ratio of the
ball are 100 kPa and 0.4. This set of parameter is chosen as a step towards the valve
FSI simulation to ensure the contact is handled properly. The ball is subjected to
gravity ¢ = —9.81 m/ s* and is moving normal to the contact plane. The ball is
dropped from a height A = 0.05 m and bounces over a rigid plane. The adaptive
timestep parameters are a. = 0.01 and At,,,, = 0.001 s. Concerning the Newmark
decay factor ~, the value of 0.15 has been chosen in this case.

A R =0.01m

h=10.05m

Planc Figure 2.9: Ball snap-through on a rigid
surface.

Figure 2.8: Case configuration.

2.5.2.2 Results and discussion

The results of the bouncing ball are presented in Figure 2.11 and compared to both
the results of Hubbard and Stronge [156] for the snap-through and a video of a
tennis ball shown for reference. The results are in good qualitative agreement with
the literature. The snap-through is well captured and the dynamics of the ball is
well represented. This can be seen on Figure 2.11 on column 2 where the computed
contact force is exhibited. As the ball is still not too much smashed in the wall,
the contact remains moderate. After reaching the critical state of deformation, the
contact region is pushed back inside the ball, corresponding on the views where the
contact force acts on the ball as a ring. Next to lay out the dynamics of the ball, the
vertical velocity is plotted in column 3. On the top 4 images, one can see the first
phase of the bounce where the ball is compressed and the contact force increases.
After reaching the peak of deformation, the ball is pushed back as on the bottom 4
images. The dynamics of the tennis ball is well represented in the video showing at
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first a compression wave followed by an expansion wave which matches the dynamics
found in the simulation.

The total energy of the system has been computed to ensure consistency of the
method. The total energy of the system is defined as:

1
E:/ép\|ﬁ||§d9+/WdQ+mgz (2.93)
Q Q

where each term are respectively the kinetic energy, the strain energy and the po-
tential energy of the ball. The total energy of the system is plotted in Figure 2.10
and shows a good conservation of the energy. The energy is not perfectly conserved
during the bounce as the decay factor 7 is not zero. This can be seen after each
bounce where the remaining strain energy is dissipated.

0.0005 A

0.0004 A

0.0003 A
= —— Kinetic Energy
. ~—— Strain Energy
&0 .
o —— Potential Energy
W 0.0002 - —— Total Energy

0.0001 A

0.0000

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

Figure 2.10: Plot of the total energy of the system with each component as a function
of time.
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0 0.001 -1.2 12
Contact Force [N] Vertical velocity [m.s!]

Figure 2.11: Illustration of the bouncing ball dynamics. From left to right: images
from Hubbard and Stronge [156], view from the bottom of the ball showing the
contact force (present simulation), view from the side of the ball showing the vertical
velocity (presented simulation), images extracted from YouTube video https://
www . youtube. com/watch?v=1yTOhxplVBg.


https://www.youtube.com/watch?v=1yT0hxplVBg
https://www.youtube.com/watch?v=1yT0hxplVBg
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2.6 FSI method

The FSI method used in this work is a body-fitted partitioned semi-implicit predictor-
corrector coupling scheme, developed in [120], accelerated with Aitken’s method.

2.6.1 Fluid mesh movement: Pseudo-solid method

As an FSI body-fitted method is of use here, the fluid domain has to follow the
leaflets” movement, and the deformation of the fluid grid has to be computed. The
grid is then considered as a linear elastic material, where the displacement of the
nodes inside the domain obeys the static equilibrium equation written in FEM for-
malism (detailed in Section 2.4.1):

KPP u?® = f7° (2.94)

where KP?° is the stiffness matrix of the pseudo-solid grid, u”® the displacement
vector of the pseudo-solid grid and f*® the internal forces. This method is called the
pseudo-solid method (hence the superscript ps). This equation is solved using the
algorithm presented in Section 2.4.2.6 with imposed displacement at the boundaries
of the domain. u”’ is then used to update the grid velocity w,.1:

ps  _ 1iDS
un+1 un

Wy = (2.95)

where n corresponds to the temporal iteration index. The grid deformation needs to
follow the displacement of the interface. Close to the interface, the grid deformation
has to preserve a good quality of the mesh to capture precisely the forces of the fluid
onto the structure. But far from the interface, the grid has to handle the deformation
of the structure. As the grid deformation is dependent on its elements’ stiffness, e.g.
the Young modulus, the grid has to have different stiffness as a function of the
distance from the interface. The pseudo-Young modulus of the grid is then adjusted
with the following equations as a function of the distance from the interface R:

’E<R < Rmin) = 100E;,;

Rmin - Rmax)(Eint - Emzn)
Roae — Roin (2.96)

E(Rmzn <R< Rmax) = Eint - (

E(R > Rmam) = Em'm
Eint = Eminyr

\

Where the pseudo-Young modulus ratio y,., R, and R,,,, the minimal and maximal
distance from the interface, are user-defined parameters. The Young modulus of the
elements close to the interface is 100 times higher than the elements in the rest of
the domain. This preserves the quality of the mesh close to the interface and allows
the grid to deform with the structure. The transition zone is set between R,,;, and
R0z, this is where the elements will deform to handle the structure deformation.
At this point, the grid deformation can be computed, but the quality of some
elements may be degraded. To keep the quality of the mesh as good as possible, the
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pseudo-Young modulus of elements already strongly distorted has to be adjusted to
strengthen them. The pseudo-Young modulus is then scaled by the distortion rate
of the elements:

[Eint — E(t0)][(Sk(tn) — Sk(to)]
Skmaz — Sk(to)

where Si(t,,) is the skewness of the elements at the current time step, Sk e =
0.91 the maximal skewness allowed and E(t;) the pseudo-Young modulus at the
beginning of the simulation. Sy, is defined as:

V;‘ef - ‘/c
‘/ref

Bltnss, S(t)) = +E(t)  (297)

Sk = (2.98)
V¢ is the volume of the current element and V,..; the volume of the equivalent perfect
element (the one that fits in the circumscribed sphere as the original element, see
the principle in 2D in Figure 2.12a).

4.9e+04 4.9e+05

I
(b)

Figure 2.12: (a) 2D representation of the skewness of a triangle (red) and its refer-
ence triangle (blue). (b) Pseudo-Young modulus of the validation case presented in
Section 2.6.6.

2.6.2 Dynamic mesh adaptation

As described previously, in the context of biomechanical FSI simulations, mesh
movement on one boundary of the domain at least is prescribed. For this purpose,
the mesh movement algorithm has been presented in Section 2.6.1. However, the
mesh movement algorithm may not be always able to preserve the mesh quality;
in this case, a complete new mesh has to be generated i.e. with Dynamic Mesh
Adaptation (DMA). Such a method has been implemented in YALES2 using MMG,
the sequential anisotropic mesh adaptation library for tetrahedral (3D) and triangle
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element (2D) [157, 158]. The parallel strategy proposed by Benard et al. [159] is
used. The advantages of DMA have already been explored in a variety of config-
urations, including simulations of multiphase flows [160, 161] and moving bodies
[162]|. Performing mesh adaptation at every timestep would be too computationally
expensive. A maximum criterion of the mesh distortion is then defined to trigger the
mesh adaptation. This criterion is based on the skewness of the elements defined in
Equation (2.98). At each timestep, the maximum skewness among all the elements
is computed, and the mesh adaptation is triggered if the skewness of the elements is
greater than a user-defined threshold. If the adaptation loop is triggered, the grid
is adapted successively to reduce the skewness until the desired skewness is reached,
and all data are interpolated onto the new grid. The size of the cells is preserved
thanks to a metric field computed on the previous mesh.

2.6.3 Coupling equations and boundary conditions

In the following, the fluid domain is denoted 2y and the solid domain €2,. The
interface between the fluid and the solid is denoted I';. The fluid and mesh velocities
are respectively v and w, and the solid displacement u. The force acting on the
solid is f. At the interface the following conditions hold:

Vn+1 — Wn+1 - l.ln+1 (299&)

ovy,
£t :/ (M :; - _pn+1n> dl’; (2.99Db)
I n

where I'; is an element of the interface I';, i is the dynamic viscosity, p,.+1 the
pressure at the interface and n the normal direction to I'; pointing outward of the
solid domain. This leads to a Dirichlet-Neumann boundary condition at the fluid-
structure interface. Data transfer through the interface is done thanks to the CWIPI

library [163, 164]. The density ratio P5 i1 the cases considered in this works equals

!
1, which implies using a semi-implicit coupling scheme, presented hereafter.

2.6.4 Coupling algorithm

The coupling algorithm used in this work is a semi-implicit predictor-corrector
scheme. The fluid and solid problems are solved separately with the methods pre-
sented in Section 2.3 and Section 2.4, respectively. It can be split into the following
steps:

1. Iteration n + 1 starts with A¢; computation from the stability condition of
the Runge-Kutta method used by the fluid solver. As the solid solver uses a
Newmark scheme, which is unconditionally stable (see Section 2.4.4.2), At is
sent to the solid solver to impose At, = Aty.

*
n

2. The solid displacement u;,_; is estimated with a first-order extrapolation:

u, ., = u, + Atq, (2.100)
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10.

11.

. uy,_, is transferred to the fluid with the CWIPI library.

. Fluid mesh displacement is solved with the method explained in Section 2.6.1.

u,_, is used as a boundary condition. The fluid mesh velocity w,; is com-
puted to perform the fluid velocity prediction v, ., (Equation (2.15)).

. Vy is corrected with Chorin’s projection method (Equation (2.19d)). The

new pressure field is computed with Equation (2.20) to correct the velocity
vF .1 (Equation (2.21)).

. The fluid force £, ; is then transferred to the solid by the CWIPI library.

The displacement ui 41 in the solid is solved using the method detailed in
Section 2.4.

. The solid and fluid problems have been solved at least once at this point. The

dynamic equilibrium of the FSI system is checked for consistency with the
following:

ko k=1
||un+1 5 un+1|| S €s (2101&)
[ sy
ontl  ntll < (2.101b)
i — £l =7

where €; and € are chosen convergence tolerances for the fluid and solid prob-
lems respectively, d, is the solid thickness. If the convergence criterion is
reached, the algorithm starts next time iteration.

Otherwise, the solid displacement is under-relaxed on the interface I';:

G, =aoul | + (1 - a)uf] (2.102)

where « is the dynamic under-relaxation factor computed with the Aitken
method, further presented in Section 2.6.5.

ﬁfl 41 is transferred to the fluid boundary with the CWIPI library.

A new field of w,, 1 is obtained with the pseudo-solid solver.

With the initial velocity prediction v, ; and the updated w,, ., a new pressure field
can be computed, and the algorithm goes back to step 5. Step 5 to 11 are repeated
until the convergence is reached. Then the algorithm is then ready for the next time
iteration. The whole procedure is detailed in Figure 2.13.

2.6.5 Acceleration with Aitken’s method

Aitken developed his delta-squared method in 1937 to accelerate the rate conver-
gence of a series [102]. His method was extended to the vector case by Irons and
Tuck [103]. It has been proven very efficient in the acceleration of the convergence
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Figure 2.13: FSI coupling algorithm.

of strong coupling FSI algorithms by Mok [109] and is now commonly used in the
field [90, 104, 106-108|. In this work we retain the formulation of the method as
presented in [109]. It consists in evaluating the Aitken’s acceleration factor x4 at
each FSI subiteration as:

fFi<Auk+1 — Allk, Allk>dS

2.103
T Bwe — Awds (2:105)

Vi1 = Yk + (7 — 1)

where Augyq = uft] —uf, . The convergence under-relaxation equals then ay, =
1 — Y%+1. The solid displacement is then corrected with the Aitken’s acceleration

factor:

o1 =it + el —ulf ) (2.104)

2.6.6 Validation of the FSI method

The benchmark used to validate the method is extracted from Boilevin-Kayl, Fer-
nandez, and Gerbeau [125] a slightly modified version of the benchmark proposed
in [40, 126, 127] which originated from [123]. This case is of primary interest in the
context of valve simulations as the main directions of the solid and the fluid flow are
orthogonal, as in biological valves. It consists of a straight beam inside a channel,
analogous to a blood vessel, a flow parallel to the channel (and orthogonal to the
beam). A sketch of the case is depicted in Figure 2.14. The dimension of the channel
and beam are (I x h) = (0.08 m x 0.00805 m) and (e x hy) = (0.000212 m x 0.007 m),
respectively. The beam base is located at [; = 0.019788 m from the inlet.
 is the axial coordinate. The fluid density is 100,000 kg - m™> as well as the solid
density. The kinematic viscosity equals 1 x 107 m?-s~!. A no-slip boundary condi-
tion is imposed at the bottom wall and a symmetry condition at the top boundary.
The velocity at the inlet is imposed as a Dirichlet condition, with the following
profile:

v, (t) = 500(1.1 4 sin 27t)y(h — y) (2.105)
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Figure 2.14: Benchmark schematic illustration

The solid is modeled as a neo-Hookean material with Young modulus £ = 5.7 MPa
and Poisson ratio v = 0.4. It is embedded at point Ay. Point A; marks the beam
tip. At the initial time, the fluid is at rest and the solid is in its reference, stress-free,
position. In this configuration, the channel height is 2h = 1.61 c¢m and the bulk
velocity is 6.8 cm - 571, leading to a Reynolds number of 110.

We compare the result obtained with the present body-fitted method to the
results of Boilevin-Kayl, Fernandez, and Gerbeau [125]. The axial and radial dis-
placement of point A; are drawn in Figure 2.15, showing a good agreement with
the results from Boilevin-Kayl, Fernandez, and Gerbeau [125]. The dynamics of
the beam is reproduced accurately. To illustrate the dynamics of the system, snap-
shots of the fluid velocity magnitude around the beam and the fluid traction at the
interface can be found in Figure 2.16.
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Figure 2.15: Displacement of point A; against time
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Figure 2.16: On the left: snapshots of the fluid velocity magnitude at different times,
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interface



CHAPTERS3

Analysis of Vein Valve Dynamics and
Associated Hemodynamics

Chapter overview: This chapter introduces the anatomy and physiology of ve-
nous valves, offering an overview of their geometry, composition, and blood flow
dynamaics within the deep venous system. We provide a review of recent numer-
ical studies on venous valves. The geometric model of the femoral venous valve
developed in this work, based on the surface reserve hypothesis, is described in de-
tail. This is followed by a comprehensive structural analysis and a fluid-structure
interaction (FSI) simulation of the valve under respiratory pump conditions.
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3.1 Vein valves in the lower limbs

3.1.1 General anatomy

The venous system is divided into two main components: the superficial and deep
veins. The superficial veins are located within the subcutaneous tissues and comprise
the great and small saphenous veins (GSV and SSV), along with their tributaries,
which extend from the foot to the mid-thigh. These veins collect deoxygenated blood
from the muscles, which is then transferred to the deep veins, located between the
muscles and bones, either via perforating veins or the sapheno-femoral junction.

The deep venous system in the legs is composed of four groups, extending from
the pelvis to the foot: the iliac, femoral, popliteal, and tibial veins. Valves are
found in all of these systems except the iliac [27]. As hospital-acquired deep vein
thrombosis (DVT) primarily occurs in the popliteal and femoral systems, or near
the sapheno-femoral junction, this study focuses on these specific regions.
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Figure 3.1: Main veins serving the lower limbs. The veins circled in red will are the
one of interest in this work. Extracted from [25].

In the context of the DYV-MTEV project, the CHU of Nimes provided an ex vivo
sample of a great saphenous vein to the CBS team for analysis. The vein valve was
obtained from a patient who had undergone surgical artery bypass with autologous
vein graft and was subsequently imaged using magnetic resonance imaging (MRI)
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and micro-computed tomography (Micro-CT) techniques in collaboration with the
BioNanolmaging Foundry in Montpellier. The imaging techniques employed per-
mitted the generation of a three-dimensional reconstruction of the vein valve with
high resolution (50 pm/px for the MRI and 20 pm/px for the Micro-CT scan). The
anatomy of great saphenous vein valves is analogous to that of deep veins, render-
ing them a suitable model for studying deep vein valves, which are only accessible
through extensive surgeries like amputations.

The MRI data and key measurements are displayed in Figures 3.2 and 3.3, re-
spectively. The average diameter of the vein is approximately 6 mm, calculated
from the average vein perimeter (Figure 3.3.A, 20 mm), with an increase at the
valve location. A comparison of the eighth and ninth MRI slices in Figure 3.2.A of
Giannetti [45] reveals that the leaflet is not visible at the midpoint of the tip in the
ninth slice. This indicates that the midpoint of the leaflet lies between 3.5 mm and
4 mm from the bottom of the valve.

The sinus length increases asymptotically towards the half perimeter of the vein,
approximately 10 mm (Figure 3.3.B), with a similar trend observed for the leaflet
(towards the vein diameter, 6 mm). The thickness of the leaflet decreases from
300 pm at the base to 200 pm at the tip, exhibiting a 50% increase in thickness at
the base (Figure 3.3.C).

The final measurement to be considered is that of the valve leaflet length in
comparison to its theoretical length. If we assume that the perimeter of the vein is
a circle and that the sinus length is the corresponding arc on this circle, then the
theoretical leaflet length is the straight line connecting the endpoints of the arc. A
visual representation of the "ideal" valve configuration is provided in Figure 3.2.D.
This measurement serves as a useful indicator of leaflet surface reserve. Two distinct
regimes were identified: the measured leaflet length was observed to be shorter than
the theoretical length in the region of the sinus base, and longer in the region of
the leaflet tip. The maximum surface reserve is observed at the tip, where the
measured length exceeds the theoretical length by approximately 10%. At a critical
height of approximately 1.5 mm, the measured length exceeds the theoretical length,
indicating the presence of additional extension or surplus length in this section.
Figure 3.3.D (left) depicts the ratio between the theoretical and measured length
for each z-cut derived from the MRI scan. It should be noted that in the region
closer to the leaflet tip, the sinus and leaflet exhibit a greater degree of folding,
which may increase the likelihood of measurement error. However, this potential
source of error was not quantified in the study by Giannetti [45]. Additionally, the
thickening of the leaflet near its insertion was also observed by [165] and referenced
therein.

In a recent publication, [28| reported a mean vein diameter of 8 mm for four
valves. Other studies have yielded higher mean values for the common femoral vein,
with measurements ranging from 11.8 mm [166] to 14.3 mm during the Valsalva
maneuver, and up to 16.4 mm in an upright position [167]. The Valsalva maneuver
involves forced expiration against a closed glottis, which increases both intra-thoracic
and venous pressure.

With regard to the GSV diameter in women, the mean was found to be 6.5 mm
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Figure 3.2: (A) Z-normal slices from the MRI acquisition of the valve region, and (B)
schematic representation of the cut positions along the z-axis from the bottom of the
sacs (1) to the leaflet tips (9). (C) Photograph of the preserved GSV valve used in
the study. (D) Schematic representation of the post-processed MRI measurements.
The sinus is indicated in blue, the projected leaflet in the Z-plane in red, and the
theoretical leaflet projection in the Z-plane in black (the straight line between the
insertion points). Courtesy of Giannetti [45].

by [168], while [169] reported diameters between 5 and 6 mm. Accordingly, for the
veins studied throughout this work, the diameter ranges from 5 to 14 mm. According
to [170], the mean diameter of the popliteal vein is 6.08 mm. The thickness of vein
walls varies from 300 to 1000 pm, as reported in [171-173]. Leaflet thickness also
varies significantly, with 100 gm commonly used in bioprosthetic valves [28, 174].
In a study of the popliteal vein, [175] found leaflet thicknesses of 350 um in young
adults and 590 um in elderly subjects. It should be noted that there was an increased
standard deviation with age. In their study of a bioprosthetic femoral vein valve,
Pavcenik et al. [176] reported a leaflet thickness of 30 pm.

A key question is to determine the shape of the leaflet insertion on the sinus.
Caggiati [165] described the insertion as "shaped like a double horseshoe with the
convex sides arranged distally". However, no physiological representation of the
insertion was provided until the work by Hofferberth et al. [28], who designed a
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Figure 3.3: Key measurements for each z-cut from the MRI acquisition of the pre-
served saphenous vein valve. (A) Vein perimeter, with the average indicated by
the dashed line. (B) Measurements for the sinus and leaflet lengths. (C) Leaflet
thickness, with the average (dashed line). (D) Leaflet length and theoretical length,
with their ratio plotted on the right. The blue, red, and black lines represent the
sinus, leaflet, and theoretical lengths, respectively. Courtesy of Giannetti [45].

novel bioprosthetic replacement cardiac valve inspired by venous valves. Due to
their high compliance, vein valves are excellent candidate of study for bioprosthetic
valve design. Such valves can be implanted in pediatric patients without the need for
future surgeries |18, 28|. Hofferberth et al. [28] studied four cryopreserved femoral
veins were analyzed, and two key parameters were retained to characterize venous
valve dimensions (see Figure 3.4):

h
d, = — 3.1
d (3.1)

®, (3.2)

P2
where ®, and ®; are the valve and leaflet ratios, respectively. ®, was found to be
2, while ®; was 0.5. The variable h represents the valve height, d the vein diameter,
and hy/p the leaflet mid-height. The blue line in Figure 3.4 represents the leaflet
insertion, projected onto the vein wall as a quarter ellipse with major axis 4R and
minor axis R, where R is the vein radius. The red line illustrates the position of the
leaflet tip. It is worth noting that the leaflets fully contact the vein wall once the
valve is cut open and unrolled, as observed by Hofferberth et al. [28].

The mechanical properties of vein valves were first studied in the 1980s by Ack-
royd, Pattison, and Browse [177], who conducted an analysis of the ultimate tensile
strength and strain of preserved human superficial femoral vein valves at different
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Figure 3.4: Key dimensions and geometrical description of a vein valve and its
leaflets. The blue line represents the leaflet insertion (horseshoe shape), and the red
line represents the leaflet’s free edge. Extracted from [28|.

locations. The ultimate tensile strength of the valve leaflets was found between 8
and 10 MPa, significantly higher than that of the vein wall (4.5 to 5.5 MPa in the
circumferential direction and 3 MPa in the axial direction [177]), with an associated
strain of 35%. There has been a recent increase in interest in vein valve mechanics.
In recent studies such as Huang and Lu [178], Lu and Huang [179], and Benson
and Huang [180] bovine jugular vein valves were characterized. As demonstrated
in [178, 179], these valves exhibit pronounced mechanical anisotropy and non-linear
behavior, with a 3:1 stiffness ratio between the circumferential and radial directions.
This finding was later confirmed by Benson and Huang [180]. In a notable contri-
bution to the field, Holzapfel [181] developed a non-linear material model for aortic
valve leaflets. This model splits the energy strain density function into isotropic and
orthothropic contributions, following neo-Hookean and Fung-type models, respec-
tively. Subsequently, the methodology was later adapted by Herrera, Fortuny, and
Marimoén [182] for application to femoral vein walls.

3.1.2 Blood flow in the deep venous system

In the supine position, the venous waveform is primarily controlled by the respiratory
pump [183]. During inspiration, the decrease in thoracic cavity pressure activates
venous return from the lower limbs. The opposite phenomenon arises during ex-
halation. The pressure at the ankle in the supine position is 20 mmHg, which is
sufficient to ensure optimal blood return. The pressure gradient is oriented toward
the foot, with blood flowing in the opposite direction of the pressure gradient.

In contrast, while standing, the pressure ranges from 90 to 120 mmHg [184] be-
cause of gravity. Giving that the average distance between valves in deep veins is
approximately 4 cm [42] and the average leg length for men is 81 cm [185|, approxi-
mately 20 valves must be traversed by the blood. To ensure efficient venous return,
the pressure drop across each valve must be less than 1 mmHg. It is therefore essen-
tial that the design, positioning and associated blood flow of the valves are carefully
considered.

The calf muscle pump mechanism plays a crucial role in facilitating blood circu-
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lation in the leg venous system, as evidenced by studies such as those conducted by
Lurie [186] and Tauraginskii et al. [187]|. The gastrocnemius muscle (GCM), which
is responsible for foot extension, and the anterior tibial muscle (ATM), which is
responsible for foot flexion, are the primary muscles involved. This mechanism is
primarily engaged during walking and comprises two phases: stance and swing. This
is illustrated in Figure 3.5. During the stance phase, the foot makes contact with the
ground, beginning with heel strike, when the GCM is relaxed. As the center of mass
shifts forward, the GCM contracts, resulting in a pressure peak ranging from 128 to
148 mmHg, depending on the walking pace [187|. The GCM contraction continues
until the foot lifts off the ground. During the swing phase, the GCM relaxes while
the ATM contracts to flex the ankle. The minimum venous pressure, corresponding
to the GCM relaxation, varies from 17 mmHg at a quicker pace to 29 mmHg at a
slower pace, indicating more frequent GCM relaxation and contraction during faster
walking.

The physiological mechanisms that regulate venous blood flow in the legs have
been delineated, including the associated pressure values and waveforms. The sub-
sequent inquiry pertains to the typical velocities and flow rates in the perivalvular
area, which have been the subject of extensive investigation. This topic has been
explored in several studies [42, 166, 170, 186, 188-192|. In [188], the objective was to
identify potential indicators of iliac vein obstruction or deep vein thrombosis (DVT)
in the thigh, utilizing the waveform as a diagnostic tool in the common femoral vein
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Figure 3.5: Schematic representation of the calf muscle pump and associated pres-
sure waveform. Extracted from [187].
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Figure 3.6: Doppler ultrasound of the femoral vein valve highlighting respiratory
pump and flush velocity waveforms. Courtesy of A. Perez-Martin from the CHU of
Nimes.

(CFV). A monophasic waveform is characteristic of normal blood flow in the CFV,
whereas continuous flow is observed in veins with proximal obstruction.

Furthermore, as indicated in Section 1.4.1, medical imaging of venous valves has
been provided by the CHU of Nimes, as illustrated in Figure 3.6. The Doppler
ultrasound images of a femoral vein valve reveal two distinct phases. The initial
phase aligns with respiratory pump cycles, while the subsequent phase is attributable
to the voluntary contraction of the GCM to induce a flush. The average velocity
during the respiratory pump cycle in the femoral vein ranges from 6 to 14 cm/s
at rest, 23 cm/s during the Valsalva maneuver [166] and 40 cm/s with a GCM
contraction (see Figure 3.6). In the case of the popliteal vein, Kalayci et al. [170]
reported an average velocity of 16 cm/s for a 6 mm diameter vein, with an associated
flow rate of 100 mL /min.

With regard to flow structures in the vicinity of the valves, the only assess-
ment of hemodynamics in the great saphenous vein (GSV) at the ankle has been
conducted by [192], as presented in Figure 3.7 which illustrates ultrasound images
of the perivalvular region. The time-varying hemodynamics in the vicinity of the
valve suggests the formation of a vortex at the leaflet tips, which contrasts with the
findings of [190], who reported the presence of a vortex inside the sinus.

Another crucial parameter for assessing the performance of bioprosthetic valves
in comparison to natural valves is the effective orifice area (EOA). The EOA is de-
fined as the ratio of the cross-sectional area of the distal vein to the cross-sectional
area of the valve [19, 193, 194]. However, direct measurement of this ratio is chal-
lenging. To address this issue, [19] approximated the EOA as the ratio of distal
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velocity to velocity between the leaflets:

EOA _ Vdistal (33)

Vyalve

The locations of vg;stq; and v,ae are indicated in Figure 3.7a.c. This approximation
is valid if the flow profile at the valve location is parabolic. Nevertheless, as will
be discussed in the following section, the flow profile in the vicinity of the valve is
markedly non-parabolic, making this formulation questionable.

(a)

Figure 3.7: (a) Ultrasound images of a valve in the GSV at the ankle, in cross-
sectional and sagittal views for fully open (a, c¢) and fully closed configurations (b,
d). The contact plane between the leaflets in the closed position is visible in (b).
(b) The velocity field in the perivalvular area at different times shows the formation
of a vortex at the leaflet tips. Extracted from [192].

The following section presents an overview of the numerical studies conducted
on venous valves in recent years.

3.1.3 In silico simulations of vein valves

In recent decades, there has been a growing interest in numerical studies on vein
valves. Computational fluid dynamics (CFD) simulations have been used to eval-
uate the hemodynamics of paired valve systems [195] and 2D replicas of microchip
valves [196]. In [197], a system of two ball valves was employed to emulate a vein
valve, with the latter being simulated through a body-fitted fluid-structure interac-
tion (FSI) method. However, the rigidity of the valves in [195, 196] precluded the
possibility of examining variable flow conditions. Moreover, the pressure dynamics
and hemodynamics of a ball valve are not representative of the physiological valve
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geometry. A characterization and comparison of bi-, tri-, and quad-cuspid valves was
conducted in [15]. However, this study focused solely on the structural deformation
of the leaflets and did not provide information on the associated hemodynamics.

In order to model the physical processes involved in valve dynamics more accu-
rately, FSI methods have increasingly been used to simulate the behavior of vein
valves. A variety of hypotheses have been proposed regarding the structural com-
ponents of the system. Some studies have focused exclusively on leaflet deformation
[36, 37, 75, 198-203|. Some studies incorporate both leaflet and vein wall deforma-
tions |73, 74, 76, 204-215].

A number of studies have employed two-dimensional models with either rigid
walls [75, 198-201] or deformable walls |73, 212-215]. These studies were conducted
to examine the effects of vessel geometry, leaflet geometry, or elasticity on hemostasis
within the sinus. While two-dimensional approaches offer valuable insights into the
simulation of vein valves, it is essential to recognize that real venous valves are
three-dimensional and exhibit complex flow patterns. This necessitates the use of
three-dimensional modeling to accurately represent the intricate dynamics of these
structures.

To address these limitations, 3D vein valve models have been developed with
various leaflet and sinus geometries. Some studies have elected to exclude the sinus
from their models [36, 37, 50, 74, 202, 203, 205, 207|]. Nevertheless, a common
assumption across these studies is that the leaflets exhibit curvature in a single di-
rection. Consequently, the leaflets deform through stretching, necessitating either
a considerable force to open or highly extensible leaflets. In both instances, the
requisite strain to attain the optimal effective orifice area (EOA) is approximately
25%, which is close to the ultimate strain capacity of leaflet tissues, as evidenced by
Ackroyd, Pattison, and Browse [177]. The pressure necessary to induce such defor-
mation, assuming an ultimate tensile strength of 8 MPa (Section 3.1.1) and based
on Hooke’s law, would be approximately 2300 mmHg—approximately 20 times the
systolic pressure in the aorta. This observation is incompatible with the hypothesis
that valve opening is primarily driven by tissue stretching. This is the reason why
an alternative scenario is considered in this thesis: that the valve opens thanks to
surface reserve rather than tissue stretching, with the leaflets exhibiting a 3D curva-
ture. The following section presents the geometric model derived from the literature
review, followed by a structural simulation study.

3.1.4 Presentation of the leaflet model

It is important to note that there is currently no consensus regarding the shape,
dimensions, stress-free shape, or mechanical properties of vein valves. In a recent
study by Hofferberth et al. [28]|, a geometrical characterization of venous bi-leaflet
valves was provided. These features have been used to construct the model depicted
in Figure 3.8. The valve model was developed using FreeCAD computer-aided design
software, with the vein diameter set to 14 mm. The valve was positioned in a closed
state, which represents its stress-free configuration. The ratios ®, and ®; were set
to 1 and 0.5, respectively (see Equation (3.1)).
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Flow directj

Figure 3.8: Description of the geometry of the leaflets used throughout this work.
The blue lines represent leaflet insertion points, while the red lines illustrate the
curvature of the leaflets.

With regard to the ratio of vein diameter to vein length, it was assumed that
veins are dilated in vivo due to the presence of blood. The 2:1 ratio was determined
by measuring the valve in a flat, unrolled configuration, which differs significantly
from its in situ configuration. Accordingly, a lower value for ®, was selected to
account for the dilation. The leaflet thickness was maintained at a constant value
of 100 gm. The blue line in Figure 3.8 represents the insertion points of the leaflets
on the vein wall. This line was constructed in accordance with the methodology
outlined in Section 3.1.1, representing the projection of a quarter ellipse (with a
minor radius of 7 mm and a major radius of 14 mm) onto the vein wall.

The red lines in Figure 3.8 illustrate the leaflet curvature in three dimensions,
which contributes to the surface reserve. To quantify this curvature, the ratio of
valve leaflet length to the theoretical length was employed (see Section 3.1.1). The
surface reserve ratio was approximately 10% along the y-axis, which is consistent
with the findings of Giannetti [45].

3.2 Structural analysis of the vein valve

3.2.1 Numerical set-up

The deformation of the leaflets was addressed through the application of the finite
element method (FEM) structural solver within YALES2 (see Section 2.4). The
computational mesh was generated using GMSH meshing software and consists of
isotropic first-order tetrahedral elements with four nodes. Two mesh sizes, 200
and 300 micrometers, were employed to assess spatial convergence. A neo-Hookean
material model with parameters £ = 0.1 MPa and v = 0.4 was employed. The
leaflets were subjected to a pressure load on their luminal side, which simulates the
fluid load that would be experienced in fluid-structure interaction (FSI) simulations.
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The leaflets were fully clamped at their insertion points along the vein wall. The
total pressure load applied was 5 Pa, which corresponds to a velocity of 10 cm.s™ !,
with a loading time of 5 s. The simulations were conducted in a time-resolved
manner using the Newmark method, with damping parameters set to a,, = 1x107°

and a; = 1 x 1073, The time step for the simulations was set to 1 x 107 s.

3.2.2 Leaflets undergoing a pressure load

The results are presented in Figure 3.9, where the energy stored by the leaflets is
plotted against the displacement of the tip midpoint (Figure 3.9a). The energy
storage exhibits a markedly nonlinear relationship with displacement, manifesting
three discernible regimes of energy storage. Each regime was associated with a
distinct configuration of the leaflets (Figures 3.9b and 3.9¢). In phase I, the curvature
of the leaflets had not yet undergone inversion in any direction, while in phase III
the curvature was fully inverted. Phase II served as a transitional phase, during
which buckling occurs in one direction only.

As the displacement of the tip midpoint can be used to quantify the effective
orifice area (EOA), it can be seen that the majority of the EOA was achieved
during phase II. However, this configuration lacked sufficient stability to withstand
high pressures, resulting in a transition to the final configuration (phase III). The
pressure threshold for transitioning from phase II to phase III was approximately
1.5 Pa. In contrast, the transition from phase I to phase II is continuous.

The final configuration permitted greater energy storage with less deformation
than the preceding phases. Furthermore, the dynamics of energy storage and pres-
sure threshold transitions were analogous for both mesh sizes, indicating that spa-
tial convergence was achieved for this geometry. Consequently, the coarser mesh
(300 pm) was selected for subsequent FSI simulations due to its adequate capture
of leaflet dynamics and reduced computational cost.

3.3 Venous valve dynamics under realistic blood flow
conditions

3.3.1 Numerical simulation set-up

This study presents a three-dimensional venous valve simulation using the FSI
method, with an inflow rate corresponding to supine position. This configuration
represents a femoral vein valve with radius R = 5 mm. The leaflet model (Fig-
ure 3.10) was integrated into a fluid domain, as presented in Figure 3.10, for the FSI
simulation. The sinus length is equal to one diameter, and its depth is 1.2 times the
radius. In this scenario, the movement of the vein wall is considered to be negligible
based on Doppler ultrasound observations of patients in a supine position. This is
consistent with the fact that vein wall movement is restricted by surrounding tissues.
Therefore, only the deformation of the leaflets is solved, while the sinus and vein
walls are considered to be rigid.
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Figure 3.9: The above graph represents the energy stored by the leaflets relative
to the displacement of the middle point of the free edge. Below, the corresponding
leaflet shapes are illustrated for each phase (I, II, III).
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Figure 3.10: Fluid and structural configuration. The inlet is located on the left, and
the outlet on the right. Arrows indicate the flow direction.

The leaflets are modeled as a neo-Hookean material with Young’s modulus E =
0.1 MPa and Poisson coefficient » = 0.4. A no-slip condition was imposed to both
the vein wall and the leaflets. The blood is treated as an incompressible Newtonian
fluid with density p; = 1050 kg.m ™~ and dynamic viscosity 3.3 x 1072 Pa.s. The flow
rate is 315 mL.s™', which is consistent with the findings of Kalayci et al. [170]. To
match the observations in Section 3.1.2, the following temporal and spatial profile
has been used for the velocity at the inlet:

Vazial (T, 1) = Umae(1 — 172/ R)(1.01 — | cos®(nt/T)|) (3.4)

with period T = 1 s and peak velocity Umes = 0.2 m.s™'. This temporal profile

replicates a short respiratory pump cycle (see Figure 3.10), and the spatial profile
is parabolic. The Reynolds number at v,,,, is 300, and the associated Womersley
number is 2.8. Six cycles were simulated, and the valve dynamics stabilized after the
first cycle. To ensure that the influence of initial conditions is negligible, the third
cycle was used for analysis. The labeling of the planes used in subsequent analyses
is illustrated in Figure 3.10c.

3.3.2 Global description of the valve dynamics

The overall dynamics of the valve cycle is presented in Figure 3.11. The top-left
graph depicts the pressure loss across the valve, which is calculated as the pressure
difference between two points: one situated three diameters downstream from the
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valve and the other one diameter upstream. The maximum pressure loss across
the valve is Ap, mae = 40 Pa (0.3 mmHg), which corresponds to a bulk velocity of
0.27 m.s~'. Once the valve is opened, the pressure loss stabilizes at approximately
25 Pa (0.20 m.s™1).

Based on the mean leg length of 0.89 m [216] and the average valve spacing of
4 cm, there are approximately 23 valves per leg. The maximum total pressure loss
from the foot to the hip would therefore be 23 X Ap, maee = 920 Pa = 6.9 mmHg,
which is low enough to ensure efficient blood return to the heart. The valve exhibits
sufficient pressure sensitivity to open with minimal pressure loss, which is notably
lower than the 13.7 kPa (103 mmHg) required for full opening of a valve model
without surface reserve, as previously demonstrated in |76].

The low pressure loss also results in reduced mechanical stress in the leaflets
(Figure 3.12, top row), in comparison to the ultimate tensile strength found in [177].
Moreover, the leaflets experience minimal deformation, with a maximum strain of
3%, as illustrated in Figure 3.12, bottom row.
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Figure 3.11: Top-left: Pressure loss through the valve at its center, with probes
located 40 mm apart (one distal and one proximal to the valve). Top-right: Velocity
at 3 diameters downstream of the valve. Bottom-left: Effective opening area of the
valve. Bottom-right: Displacement of the mid-point of one leaflet tip. Each cycle is
plotted in a different color.

3.3.3 Effective Opening Area (EOA) estimation

The bottom-left graph in Figure 3.11 displays the effective opening area (EOA) of the
valve, a pivotal metric that gauges the valve’s capacity to permit blood flow. This
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Figure 3.12: Snapshots of the leaflets during the 3" cycle at t = 2.60 s. The
top row shows the material stress field (i.e., 2" Piola-Kirchhoff stress, Equa-
tion (2.66)), and the bottom row shows the field of the Green-Lagrange strain tensor
trace(Equation (2.63)).

indicates the extent of valve blockage. In this study, two methods were employed
for the estimation of the EOA. The initial method entails approximating the valve’s
cross-sectional area as an ellipse. The major axis is defined as the radius of the
vein, denoted as R. The minor axis is defined as the radial displacement of the mid-
tip point on the leaflet, represented by wumia,r (see Figure 3.11, bottom-right). The
cross-sectional area of the valve therefore given by the formula mR,iq,, while the
cross-sectional area of the vein is 7R?. The EOA is then approximated as the ratio
of the mid-point displacement to the radius, expressed as umiqa,r/R. The second
method, which is illustrated in Figure 3.13a and Figure 3.13b, employs Paraview
software. A 2D projection view was used to determine both the inlet and valve’s

(a) (b)

Figure 3.13: Images of the cross-sectional areas of the inlet (a) and valve (b) used
to calculate the effective opening area (EOA).
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cross-sectional areas. The inlet area, colored in black (Figure 3.13a) over a white
background, was calculated by enumerating the number of black pixels within the
image. Similarly, for the valve area, the valve was colored in white on top of the
inlet black cross-sectional area masking the parts of the inlet. The true EOA was
calculated as the ratio of the number of black pixels corresponding to the valve area
to the number of black pixels corresponding to the inlet area.

The first method, with a maximum radial displacement of 2.5 mm, yielded an
EOA of 50%. However, the second method yielded a maximum EOA of 42%, indicat-
ing that the initial method overestimated the EOA by nearly 20%. This discrepancy
indicates that approximating the valve cross-section as an ellipse may not be very
accurate. Accordingly, the second method (real EOA) was employed for the remain-
der of this study. The 42% EOA found here is lower than the 65% reported by Lurie
et al. The maximum EOA is observed at 0.35 s into the cycle and remains at approx-
imately 40% until the closing phase begins. The minimal EOA, which is below 5%,
is observed at 0.04 s. The transition from the minimum EOA to 40% (the opening
phase) occurs in approximately 0.2 s, whereas the closing phase takes around 0.35 s.
A similar pattern was observed in the validation test case discussed in Section 2.6.6.
The temporal profile used for the inlet results in a continuous blood flow through
the valve as it closes, exerting a resistive force on the leaflets. This resistance results
in a slower rate of closure than opening. The same dynamics are observed for the
mid-tip radial displacement (Figure 3.11, bottom-right). It is notable that the valve
never reaches a fully closed state, which may have implications for the movement of
blood in the sacs. It would be beneficial to test the different inflow temporal profile
in order to better understand this hypothesis.

In regard to the EOA formulation presented in Equation (3.3), the calculated
value of 67% exceeds the actual EOA. Hence, Equation (3.3) is not a suitable esti-
mation of the EOA.

3.3.4 Proximal hemodynamics

The hemodynamics within the valve is illustrated in Figures 3.14, 3.15, and 3.16.
Figure 3.14 illustrates the flow dynamics within the sinus at the onset of cycle
3, showcasing the pathlines of massless particles seeded using the aforementioned
methodology (rendered in Paraview). Three distinct regions and associated regimes
were identified.

1- In the lower portion of the sinus, the particles remain in proximity to their
initial injection locations. Such particles are not advected by the flow and
remain trapped in this region.

2- In the vicinity of the leaflet tips, the particles are initially propelled away from
the sinus and towards a stagnation point, designated as point A in Figure 3.14a.
From this point, a portion of the particles reverse their direction of flow and
enter the bags, while the remainder flow into the wake of the valve commissures
and then towards the commissures. Subsequently, the particles return to the
sinus, forming a vortex ring-like structure. This flow pattern is illustrated in
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Figure 3.14a. For particles injected at the onset of cycle 3, those advected into
this structure ultimately exit the sinus after several cycles.

3- In the intermediate zone, the particles follow the movement of the leaflets,
oscillating back and forth. During their residence within the sinus, the particles
display a noteworthy degree of movement. This region serves as a buffer zone
between the other two regions.

To provide additional support for this description, a video of the pathlines is
available for viewing at https://youtu.be/z4Ttjdw8WUY. The presence of Region 1
is attributed to the limited movement of the leaflets near the base, which depends

Time: 2.00 Time: 2.20
Time: 2.40 Time: 2.60
Time: 2.80 Time: 3.00

Figure 3.14: (a) Seeded tracers at t = 2 s inside the sinus (beginning of cycle 3, ¢; in
Figure 3.11). Snapshots (b, t3) through (f, ¢s): Pathlines during cycle 3 at various
instants. Sagittal (top) and frontal planes (bottom) are displayed for each instant.


https://youtu.be/z4Ttjdw8WUY
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on the geometric model. This may be due to either the leaflet geometry or the
assumption of a rigid vein wall. It is recommended that the angle between the
leaflet base and the vein wall be either relaxed or that the deformation of the vein
wall be accounted for.

The downstream blood flow is depicted in the sagittal and frontal plane in Fig-
ures 3.15 and 3.16 t, respectively. The axial velocity snapshots of the sagittal and
frontal planes of the valve (Figure 3.15, left, and Figure 3.16, left) illustrate several
elements of the complex flow structure discussed earlier. Backward flow is observed
in the wake of the leaflet commissures (Figure 3.16¢) and behind the leaflet tips (Fig-
ure 3.15¢). The presence of these backward-flow regions gives rise to the formation
of shear layers, as illustrated in the vorticity maps (Figure 3.15, right, and Fig-
ure 3.16, right). In the sagittal plane, the flow expands behind the leaflet tips, while
in the frontal plane, it is confined toward the center of the vein. The interaction of
these phenomena results into a 90° reorientation of the flow in the cross-section of
the vein. Accordingly, the subsequent valve must accommodate this reorientation in
order to maintain the proper flow direction, as observed in the studies referenced in
this paper, namely, those by Lurie and Kistner [191] and Chen et al. [74]. However,
the absence of helical flow calls into question the hypothesis proposed by |74, 191].
Further analysis of helicity is necessary to fully assess this point.

The wall shear stress (WSS) on the sinus wall is illustrated in Figure 3.17. As the
WSS distributions on the sinus side of the leaflets and the sinus wall are similar, only
the latter is displayed. The maximum WSS is reached during the valve’s opening
and closing phases, with values of approximately 0.1 Pa across most regions except
the base of the sacs. This value is markedly lower than the WSS observed in the
lumen, which can reach up to 11 Pa. Upon reaching its maximum opening, the valve
exhibits a WSS in the sinus region drops below 0.02 Pa. Once the fluid has reached
a steady state, namely after 0.4 s of the cycle, a region of low WSS emerges, situated
approximately half a diameter downstream of the leaflets. This region of low WSS
corresponds to the vortex ring structure observed in the pathlines (Figure 3.17d,
point A).
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Figure 3.15: Sagittal plane snapshots of the axial velocity (left) and the norm of
the out-of-plane vorticity (right) from ¢; to ¢5 (top to bottom). Red indicates flow
toward the heart, blue indicates backward flow. The outlet is located far after the

right edge of each image.
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Figure 3.16: Frontal plane snapshots of the axial velocity (left) and the norm of
the out-of-plane vorticity (right) from ¢; to ¢5 (top to bottom). Red indicates flow
toward the heart, blue indicates backward flow. The outlet is located far after the
right edge of each image.
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Figure 3.17: Wall shear stress magnitude on the perivalvular vein wall from ¢; to ts.

3.3.5 Residence time inside the valvular bags

In the context of DVT, the residence time of blood within the sinus is a critical
parameter. The residence time is defined as the time required for a particle to leave
the sinus after being injected. To this end, massless particles are seeded uniformly
within the sinus at the onset of each cycle. Subsequently, the percentage of particles
remaining in the sinus at each instant is calculated. The results are presented
in Figure 3.18a. The particle dynamics within the sinus demonstrates an inverse
relationship with the valve. During the opening phase, the percentage of particles
in the sinus decreases until it reaches a plateau. Thereafter, it increases to a local
maximum during the closing phase (noted L; on Figure 3.18a). Viy drain at the end
of the cycles decreases from one cycle to the next, which values are used to model
the residence time. As it seems to follow an exponential decrease, Vi drain is plotted
in logarithmic scale in Figure 3.18b. Subsequently, the residence time is estimated
by a logarithmic fit on the 4 last values of Vi, grain at the end of each cycle. For
instance, the requisite number of cycles to drain 95% and 99% of the particles is 42

and 68, respectively. In other words, 5% of the particles remain in the sinus for 42 s,
and 1% for 68 s.

Table 3.1: Ratio of the successive local maximums of the percentage of particles in
the sinus for each seed.

Injection E g & E E %
J L() Ll L2 L3 L4 L5
Cycle 1 0.6973 | 0.8973 | 0.9235 | 0.9313 | 0.9432 | 0.9437
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Figure 3.18: (a) Plot of the percentage of particles in the sinus with respect to time.
The injection is done uniformly in space at the start of the simulation. The values
at the end of each cycle are marked with the red stars. (b) Logarithmic plot of the
percentage of particles in the sinus. The blue curve plots the logarithmic fit made
with the 4 last values.

3.3.6 Discussion

In conclusion, a novel 3D model of a vein valve has been developed based on the
surface reserve hypothesis. A preliminary structural analysis of the leaflets was
conducted to gain insight into their dynamic behavior under controlled mechanical
loads. The pressure sensitivity required for opening was found to be sufficiently low
to accommodate physiological conditions. Subsequently, a case study was presented
in which a femoral vein valve was subjected to a short respiratory pump inflow. This
valve exhibited good pressure sensitivity, ensuring opening with minimal pressure
loss, in contrast to stretch-opening models that have been previously described in
the literature. The EOA of the present model remains lower than the physiological
values found in the literature, indicating that the model’s geometry should be refined
or that an alternative inflow profile should be tested.

Additionally, this study demonstrated the formation of a vortex ring-like struc-
ture in the downstream region of the leaflets, accompanied by a 90°reorientation of
the flow in the transverse plane. The hypothesis that helical flow is responsible for
this reorientation was rejected.

Two significant issues were identified: incomplete closure of the leaflets and mini-
mal particle movement at the base of the sacs, impeding the efficient drainage process
in this geometry. Further research should be conducted to ascertain whether these
behaviors are influenced by the inflow temporal profile, the location of the valve
(e.g., diameter) or the geometry of the leaflets. The following chapter will address
these concerns and introduce further studies based on the findings presented here.
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CHAPTER4

F'SI simulations of veins valves

Chapter overview: In this chapter, three studies of the hemodynamics of ve-
nous valves will be carried out, guided by the following questions:

e How are valve dynamics modulated by the geometric and hemo-
dynamic conditions along the deep venous system of the leg? In
Section 4.1, three sizes of venous diameter are considered to mimic blood
flow in a popliteal, femoral and common femoral vein valve. The geometry
of the leaflets is the same as shown in Section 3.2. The dynamics of the
leaflets, the development of the blood flow and the wall shear stress on the
stnus wall are compared.

e Does a higher inlet blood flow renew the blood in the sinuses, as
n a calf muscle pump configuration? Section 4.2 present one of the
cases of Section 4.1 submitted to a calf muscle pump inlet blood flow to
assess its effect on valve dynamics and sinusoidal flow, compared with the
supine position blood flow.

e In a system of consecutive valves, does the blood flow from the
first valve influence the dynamics of the second wvalve? A case
of venous valves in series corresponding to common femoral vein valves is
presented in Section 4.3. First, the dynamics of the first valve are compared
with the corresponding single valve case. Finally, the flow and dynamics of
the two valves are analyzed to assess the effect of having a series of valves.
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4.1 Vein valves: associated hemodynamics along the
lower limb

4.1.1 Presentation of the cases’ geometry

The objective of this study is to examine the impact of hemodynamics on the deep
venous system, with a particular focus on the segment extending from the knee to
the hip. This encompasses an evaluation of flow development, flow characteristics,
and wall shear stress within the venous sinus.

Three cases are considered in this study. The PV case represents the popliteal
valve, the F'V case represents the femoral valve, and the CFV case represents the
common femoral valve. Please refer to Figure 3.1 for details of the various case
locations in the deep venous system (circled in red). The geometry employed in
each case is that described in Section 3.3, which pertains to venous valve dynamics
under realistic blood flow conditions. The diameter of the vein is 6 mm, 10 mm,
and 14 mm for the PV, FV, and CFV cases, respectively (see Section 3.1.1 for
details on the physiological vein size). The thickness of the leaflets is 70 pm for
the PV and FV cases, and 100 pm for the CFV case. The length and depth of
the sinus are fixed at one and one-and-a-half vein diameters, respectively. Further
details regarding the geometry can be found in Table 4.1. The dimensions have been
selected to assess the impact of vessel size through two distinct approaches: firstly,
by varying the diameter while maintaining the same leaflet thickness (PV and FV
cases), and secondly, by maintaining the same ratio of leaflet thickness to diameter
(FV and CFV cases). This methodology is designed to fully characterize the valve
dynamics and the flow within the sinus in relation to vessel diameter, which values
are discussed in Section 3.1.1.
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Table 4.1: Characteristics of each case.

Case Parameters Popliteal | Femoral | Common Femoral
Case Denominations PV FV CFV
Diameter (mm) 6 10 14

Leaflet Thickness (pm) 70 70 100

Sinus Length (mm) 6 10 14

Sinus Depth (mm) 7.2 12 16.8

To define the velocity-time profile in terms of the normalized time within each
cycle, we introduce t. as the time modulo the breathing period Ty.cqsn = 1.2 s of
the cycle, i.e., t. =t mod Tjyearn. This means that t. resets to zero at the start of
each new cycle and varies within the interval [0, Ty eqtn). The velocity profile is then
given by:

(4.1)

o(t) = Umax (1 — |c0s” (te/Tros)|)  for te < Tops =1,
1o for t. > Trys.

Here, vy represents the maximum velocity (see Table 4.2). During T,,s = 1 the
blood flows through the inlet of the domain, then the blood flow is stopped for the
rest of the cycle (i.e. 0.2 s). This profile is similar to that presented in Section 3.3.1
but extended for 0.2 s after the cosine with a null inlet velocity.

4.1.2 Computational set-ups

The simulations are based on several simplifications and assumptions. The vein wall
is assumed to be rigid, and the thickness of the leaflets is maintained at a constant
value. The leaflets are positioned in a closed configuration, which is assumed to
be stress-free. Each case parameters employed in the simulations are detailed in
Table 4.2.

The computational time is comparable for the PV and FV cases, but the CFV
case is more computationally expensive. The PV and FV cases were executed on
192 cores (80 for the solid, 112 for the fluid) of the ADASTRA HPC cluster of
GENCI/CINES for 1.2 s of physical time, resulting in a total runtime of 24 h. The
CFV case requires 36 h to run on the same configuration for 1.2 s of physical time.
The computational time can be broken down into three main components: approx-
imately 30% of the computational resources are allocated to solving the structural
problem, 30% to solving the mesh movement, and 20% to 30% to the dynamic mesh
adaptation. The high cost of solving the solid problem, which is also a pseudo-solid
problem due to the mesh movement, is attributed to the preconditioning of the lin-
ear solver. A straightforward Jacobi preconditioning technique is employed. The
method demonstrates excellent results when the linear system matrix is diagonally
dominant. Nevertheless, substantial sparse matrices with non-diagonally dominant
structures frequently emerge from structural problems, which constrains the efficacy
of the Jacobi preconditioning technique. The implementation of an enhanced pre-
conditioning technique for the structural linear solver would markedly reduce the
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Table 4.2: Physical, mesh, and numerical parameters for each case.

Physical parameters

Fluid
Diameter (m) 0006 [ 001 | 0014
Density py (kg-m™>) 1050
Viscosity v (m*-s 1) 3.3x10°°
Bulk velocity (m- s ') 0.16 0.2 0.2
Reynolds number 150 320 450
Solid
Density ps (kg-m™>) 1050
Young’s modulus E (MPa) 0.1
Poisson’s ratio v (-) 0.1

Mesh parameters

Fluid
Ay close to the leaflets (um) 50 70 100
A, away (wm) 150 210 300
Solid
Ay (pm) 70 70 100
Numerical parameters
Fluid
Time integration LSRK4 (2.15)
Mesh movement Pseudo Solid (2.6.1)
Rpnin,ps (mm) 0.100 0.140 0.200
Rmamypg (mm) 0.50 1.05 1.50
Solid
Time integration Newmark (2.4.4.2)
Decay factor ~ 0.0
Contact Penalty method (3.3.1)
Fomas.contact (Pa) 200 200 200
Sogsct (1) 25 50 50
Lactivation (1m) 50 50 100
Material model Neo-Hookean (2.73)
Coupling

Subiterating procedure

Aitken (2.6.5)
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computational expense.

4.1.3 The different valves’ dynamics
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Figure 4.1: Leaflet dynamics at different times of the third cycle. In each time
snapshot, the top views are in the sagittal plane, and the bottom views are taken
from three-quarters downstream of the valve. The corresponding instants of the
snapshots are indicated by the grey dashed lines in Figure 4.2a.

The dynamics of the leaflets display disparate behaviors across the three cases.
Valve positions in the third cycle (which is sufficient to obtain results independent of
the initial conditions, see Section 3.3.2) are presented in Figure 4.1. In the PV case,
the leaflets only partially open, corresponding to phase II as described in Section 3.2,
while in the FV and CFV cases, the leaflets undergo complete buckling, reaching



80 Chapter 4. FSI simulations of veins valves

phase III (Figure 4.1d). It is noteworthy that in the FV case, the leaflets open from
their tips, whereas in the CF'V case, the opening occurs at the base (see Figures 4.1b
and 4.1c). These dynamics are further illustrated in Figure 4.2a. The effective orifice
area (EOA) differs between the three cases, with the PV case achieving 32%, while
both the FV and CFV cases reach 42% observed at 0.35 s and 0.45 s in the third
cycle, respectively. Note that the leaflets start their movement at an earlier time in
the FV and CFV cases compared to the PV case. The closing phase of the PV case
appears to exhibit a high degree of symmetry with the opening phase, whereas the
FV and CFV cases display distinct characteristics during the closing process. The
distinct dynamics of closing obtained for the three cases are attributed to added-
mass effect but the added-mass have not been quantified in this study.

To compare the pressure loss between cases, and as the absolute pressure loss
scales with the distal dynamic pressure, Figure 4.2b illustrates the dimensionless
pressure loss across the valve. The maximum pressure loss to the distal dynamic
pressure is observed in the PV case, which is consistent with the reduced EOA
observed for this case. The PV valve leads to a higher . In terms of absolute pressure,
40 Pa is the maximum observed in the CFV case, which remains sufficiently low to
ensure the return of blood to the heart under physiological conditions. It is evident
that the pressure dynamics of the PV case differs significantly from those of the FV
and CFV cases. The PV case demonstrates only a plateau phase, whereas the FV
and CFV cases exhibit a first pressure peak around 2.6 s. Subsequently, the pressure
declines to a plateau phase for the FV and CFV cases from 2.8 s to 3.1 s, followed
by an inversion of the pressure gradient, which aligns with the blood deceleration
phase.
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Figure 4.2: (a) Effective orifice area of the third cycle for the three cases. The
gray dashed lines represent the instants of the images presented in Figure 4.1. (b)
Dimensionless pressure loss across the valve during the third cycle for each case.
The pressure loss is the difference between the pressure at the center one diameter
upstream and three diameters downstream of the valve.
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4.1.4 Velocity fields and flow patterns

The development of blood flow in the wake of the valves is illustrated in the velocity
images in Figures 4.3, 4.4, and 4.5. The maximum velocity at the end of the sinus,
centered on the cross-section, reaches 0.306, 0.308, and 0.290 m/s for the PV, FV,
and CFV cases, respectively, occurring at teyce = 0.6 s in each case. As illustrated
in Figure 4.3, the flow develops more rapidly in the PV case compared to the FV
and CFV cases. The same type of flow structure is observed behind the leaflets
in all cases, as previously presented in Section 3.3.4. Mixing layers are initiated
following the commissures of the leaflets, evolving into two distinct recirculations,
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Figure 4.3: Transversal plane snapshots of the axial component of the velocity at
different instants ((c) during opening, (d) plateau, (e) closing, and (f) closed phase).
Red indicates flow towards the heart; blue indicates backflow.
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Figure 4.4: Axial velocity and vorticity in the sagittal plane snapshots during open-
ing (a; b), plateau (c; d), and closing (e; f). Red indicates flow towards the heart;
blue indicates backflow. The vorticity scale is adapted to each case; the snapshots
illustrate the flow structure only.
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as illustrated in Figure 4.5. These mixing layers extend towards the center of the
vein, with stable layers observed in the PV case and instabilities and vortex shedding
arising in the F'V and CFV cases, as depicted in Figure 4.5b. Similarly, the axial
velocity profile of each case (with the probe situated at a distance of three valve
diameters downstream from the center of the valve) also exhibits a comparable
trend, as illustrated in Figure 4.6.

Two vortices emerge at the leaflet tips, resulting in an expansion of the flow
towards the wall in this direction, as illustrated in Figure 4.4c. The confluence of
these phenomena gives rise to the reorientation of the blood flow subsequent to the
valve [186]. This adaptation is designed to minimize the impact of the valve on the
blood flow, as suggested by Lurie [186]. Nevertheless, no helical flow is discerned
in the wake of the valves. A spectral analysis of the velocity signals presented in
Figure 4.6 was conducted to identify the frequency of the vortex shedding in the
wake of the valves. The dimensionless frequencies are given as the Strouhal number,
defined as St = fD/Ujet, where D is the diameter of the vein and vy is the mean
inlet velocity. No vortex shedding was detected for the PV case, while the FV and
CFV cases exhibit vortex shedding with associated Strouhal numbers Stpy = 1.66
and Stcpy = 1.98, which are comparable to the values reported in vessel stenosis
studies [217, 218|, ranging from 0.93 to 2.63. The vortices mainly detach from the
leaflets’ commissures and are oriented in the normal direction of the frontal plane.
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Figure 4.6: Dimensionless axial velocity at the center of the valve, three diameters
in the proximal direction. The third cycle is displayed here.

4.1.5 Flow in the valve bags

To complete the analysis of the hemodynamics within the valvular sacs, massless
tracers were seeded in the sinus region. Initially, the sinus region was isolated to
serve as an injector. The proximal limit of the sinus was established at the initial
position of the midpoint of the leaflet tips. The tracers were then released at the
beginning of the simulation and were advected by the flow. The results are presented
in Figure 4.7. During the opening phase, particles situated in proximity to the leaflet
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tips are removed from the sinus. A vortex ring is formed in the wake of the leaflet

3.60s

Time: 3.60

Time: 3.60

Figure 4.7: Pathlines of the particles seeded in the sinus at the outset of the third
cycle for each case (top to bottom: PV, FV, and CFV cases, respectively).
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tips and is located outside the sinus. Only those particles situated near the proximal
outlet plane of the sinus exhibit a notable displacement from their initial positions.
Conversely, the particles located towards the base of the sacs display markedly static
behavior. This observation suggests that the renewal of the blood accumulated in the
depth of the sinus is a challenging process, particularly within this specific geometry.
The present study indicates that the larger the vein, the more efficient it is to flush
the sinus as confirmed by the percentage of volume drained (see Table 4.3). The
subsequent section will investigate the impact of the calf muscle pump on the valve
dynamics and the flow within the sinus.

Table 4.3: Percentage of volume drained per cycle for each case. The particles are
seeded in the sinus at t = 0 s.

Case | Cycle 1 | Cycle 2 | Cycle 3 | Complete
PV 29.6 8.3 6.2 44.2
FV 30.4 10.1 6.9 474
CFV 30.5 15.5 8.4 54.5

Furthermore, the wall shear stress (WSS) dynamics exhibit notable differences
across the various cases. The WSS is scaled with v/D in order to be comparable
across cases. The scaled WSS maps on the parietal side of the leaflets exhibit a
similar pattern to those observed on the sinus wall; therefore, only the sinus wall
maps are presented in Figure 4.8. Each case displays a distinctive WSS pattern
on the sinus wall. In the PV case, where the leaflets do not undergo complete
buckling, the scaled WSS is observed to be lower than in the FV and CFV cases.
The maximum and minimum WSS values for the F'V and CFV cases are comparable,
but the leaflet dynamics exert a significant influence on WSS dynamics on the sinus
wall. In the CFV case, the presence of WSS persists for a longer period during
the opening phase than in the FV case. In contrast, for the PV case, WSS is only
present during the closing phase. Once the flow is fully developed, a low WSS zone
is observed just after the end of the sinus. This takes the form of a point in the
popliteal vein case and a semi-lunar shape in the other two cases.

4.1.6 Discussion

This study investigated the hemodynamics associated with venous valves along the
lower limb, specifically focusing on the popliteal (PV), femoral (FV), and common
femoral (CFV) veins. By analyzing valves of varying diameters and leaflet thick-
nesses, the impact of vessel size on valve dynamics, flow characteristics, and wall
shear stress within the venous sinus was assessed.

The valve dynamics exhibited significant differences across the cases. In the PV
case, the leaflets only partially opened (phase II behavior), whereas in the FV and
CFV cases, the leaflets underwent complete buckling (phase IIT). This disparity is
attributed to the scaling strategies employed: maintaining constant leaflet thickness
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Figure 4.8: Maps of the wall shear stress (WSS) scale by v/D on the sinus wall at
different times of the cycle. The color bar is in logarithmic scale.

(PV and FV cases) versus a constant ratio of leaflet thickness to diameter (FV
and CFV cases). Larger veins allowed for greater leaflet mobility due to increased
fluid forces overcoming structural resistance. Consequently, the effective orifice area
(EOA) was higher in the FV and CFV cases (42%) compared to the PV case (32%),
indicating more efficient blood flow in larger veins.

Analyzing the pressure loss across the valves revealed that the maximum pressure
loss occurred in the CFV case (40 Pa), yet remained within physiological limits to
ensure adequate venous return. The distinct pressure profiles—such as the plateau
phase in the PV case versus the pressure peaks in the FV and CFV cases—highlight
the influence of vessel diameter on hemodynamic behavior during valve opening and
closing.



88 Chapter 4. FSI simulations of veins valves

The study of velocity fields and flow patterns demonstrated that while the flow
downstream of the PV was fully developed under pulsatile conditions, vortex shed-
ding was prominent in the FV and CFV cases. Vortices detached from the leaflets’
commissures and were oriented normal to the frontal plane, a phenomenon more
pronounced in larger vessels due to higher Reynolds numbers and increased flow
instabilities. These flow patterns are crucial as they can affect shear stress distribu-
tions and may have implications for areas prone to thrombosis.

The flow within the bags was investigated using particle pathlines, which in-
dicated minimal movement of particles near the base of the sinus across all cases,
suggesting potential zones of stagnation. However, the FV and CFV cases showed
slightly enhanced sinus flushing compared to the PV case, implying that larger ves-
sel diameters may improve blood renewal within the sinus and reduce the risk of
thrombosis associated with prolonged residence times.

The wall shear stress (WSS) dynamics varied notably among the cases. The
PV case exhibited lower WSS on the sinus wall, likely due to less vigorous leaflet
motion and reduced flow within the sinus. In contrast, the FV and CFV cases
showed higher WSS values influenced by dynamic leaflet movements and increased
flow velocities. Understanding WSS patterns is essential, as regions of low shear
stress are associated with endothelial dysfunction and thrombosis.

Overall, the findings underscore the significant role of vessel diameter and leaflet
scaling in venous valve function. Larger veins with fully buckling leaflets not only
facilitate more efficient blood flow but also exhibit dynamic flow patterns that may
influence vascular health. These insights are vital for advancing the understanding
of venous hemodynamics and could inform the design of therapeutic interventions
for venous disorders. The case presented in the next section explores the effects of
varying inflow conditions, such as those induced by the calf muscle pump, on valve
dynamics and sinus residence times.
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4.2 Calf muscle pump: towards sinus drainage?

4.2.1 Typical inflow in calf muscle pump configuration

The primary aim of this study is to assess valve dynamics within the context of calf
muscle contraction. Specifically, this study aims to replicate the contraction flow
observed via echo-Doppler measurements performed at CHU Nimes. A particular
focus is placed on flow enhancement and its influence on drainage in the sinus
region. The case under consideration is a femoral valve, with geometry identical to
that described in Section 3.3. The diameter of the valve is set to 10 mm, and the
leaflet thickness is uniformly 70 pm. The sinus length is one diameter, and the sinus
depth is 1.2 times the radius.

The physical parameters used in the simulation include a fluid and solid density
of 1050 kg/m? and a fluid dynamic viscosity of 3.3 x 10™® Pa.s. The solid is modeled
as a neo-Hookean material with a Young’s modulus of 1x10° Pa and a Poisson’s ratio
of 0.45. The inflow profile has a period of 1.2 s and follows a radial parabolic profile,
peaking at 0.4 m/s. The time-dependent profile is described by Equation (4.2) in the
same fashion as the breathing cycle mimicking profile (Equation (4.1)). This profile
is compared with the previously established profile, as illustrated in Figure 4.9a.
The corresponding Reynolds number is 600, which is twice that of the FV case.

max (1 — cos?(mt)) fort <1s,
o(t) = {g (1 — cos*(nt)) for <1s (4.2)
ort>1s.
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Figure 4.9: (a) Comparison of the inflow velocity profiles for the calf muscle pump
(blue) and the resting inflow (red). (b) Qualitative comparison of the inflow velocity
profile of the contraction simulation. The first two cycles are taken from the FV case
presented in Section 3.3, and the third utilizes the calf muscle contraction inflow.
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4.2.2 Computational set-up

With the goal of replicating calf muscle contractions, the computational setup has
been adapted from the FV case described in Section 4.1. This ensures that the
dynamics of the calf muscle pump can be compared directly with the resting config-
uration. The numerical and mesh parameters are identical to those used in the FV
case and can be found in Table 4.2.

The initial solution for this calf muscle pump (FV-CMP) case is taken from the
FV case at the end of cycle two. The contraction phase corresponds to the third
cycle and is compared with the third cycle of the FV case, which serves as the
reference. The computational time for 1.2 s of physical time is the same as for the
CFV case presented in Section 4.1.2.

4.2.3 General valve dynamics

The leaflet dynamics observed for the FV-CMP are quite similar to those of the FV
case, with complete buckling observed, reaching phase III (see Section 3.2). The
resulting EOA and associated variation are plotted in Figure 4.10. The maximum
effective orifice area (EOA) recorded for the FV-CMP case is 52%, observed at
0.5 s, which is 10% higher than the reference case. The opening time to reach the
maximum EOA is 0.45 s, which is faster than the closing time (0.6 s). However, at
the outset of the opening and the end of the closing phase, the EOA for each case
follows a similar trend. The gain in opening area is mainly due to the higher inlet
Reynolds number in the FV-CMP case than the F'V case.

The closing is slower than the opening, but not as much as observed in the CFV
case, where the leaflets were significantly slowed down by added-mass effect. Having
established the differences in leaflet dynamics, we now turn to how these movements
influence blood flow patterns and velocity fields in the sinus region.
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Figure 4.10: Effective Opening Area (EOA) for the reference case FV and the FV-
CMP case.
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4.2.4 Velocity fields

The pressure loss through the valve is represented in Figure 4.11 (left and center
graphs), for the FV-CMP and FV cases. The maximum absolute pressure loss is
obtained as expected for the FV-CMP; however, the FV-CMP case is more efficient
in utilizing the available pressure from the incoming blood flow, which is consistent
with the findings presented in Section 3.3.2. The blood flow develops to a maximum
velocity of 47 cm.s™!, observed at the centerline downstream of the sinus. The axial
velocity at the center of the valve, three diameters in the proximal direction, is
plotted in Figure 4.11. More instabilities are observed in the FV-CMP, which is
consistent with the higher inlet Reynolds number. Vortex shedding is also observed
in the FV-CMP case, and the associated Strouhal number is 0.88, which is lower
than that of the F'V case. The vortices detach in the same manner as in the FV
case, behind the leaflets’ commissures, and are oriented in the normal direction of
the frontal plane.
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Figure 4.11: Left: Pressure loss across the valve during the third cycle for the F'V-
CMP and FV cases. The pressure loss is the difference between the pressure at
the center one diameter upstream and three diameters downstream of the valve.
Center: Pressure loss scaled by the maximum dynamic pressure applied on the inlet
boundary. Right: Axial velocity at the center of the valve, three diameters in the
proximal direction, for the FV-CMP and FV cases.

To analyze the flow inside the valvular sacs, massless tracers were also seeded
within the sinus. The results are plotted in Figure 4.12. The pathlines in the FV-
CMP and FV cases reveal similar vortex structures. In both cases, a vortex ring
forms behind the leaflets’ tips, with particles following distinct paths depending on
their initial position in the sinus. The particles injected close to the midpoint of the
tip come back into the sinus close to the wall, and the particles injected near the
valve commissures travel back into the wake of their respective valve commissure.
Significantly more particle movement in the sinus is recorded during the closing
phase in the FV-CMP configuration. The buffer region, discussed in Section 3.3.4,
goes deeper in the sacs in the FV-CMP. This suggests that the FV-CMP is more
efficient at moving and mixing the blood within the sinus than the bed-resting
configuration. In both cases, the particles located near the bottom of the sacs, even
if they move during the cycle, remain close to their initial positions.
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4.2.5 Towards a reduced residence time

An important indicator of sinus drainage is the time red blood cells (RBCs) and
platelets spend inside the sinus, i.e., the residence time. An estimation of the resi-
dence time was initially developed for arteries [219], which involves the oscillatory
shear rate and the shear stress acting on the arterial wall, 7,,. Estimating the wall
shear stress requires having a fully resolved boundary layer, which can be numeri-

Time: 3.60

Time: 3.60

Figure 4.12: Pathlines of particles seeded at time t = 2.40 s for the reference F'V case
(a) and the FV-CMP case (b). The particles are massless tracers seeded uniformly
in the sinus at the outset of the third cycle.
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cally very costly. To overcome this limitation, the residence time can be estimated
using tracers, i.e., massless particles seeded in the sinus and advected by the fluid.
The percentage of particles still present at the end of the cycle gives a close estima-
tion of the volume remaining after each cycle. The resulting graph is presented in
Figure 4.13. As expected, the volume-to-drain curves differ for the third cycle. An
estimation of the residence time was calculated using a geometric sequence based on
the percentage of particles remaining in the sinus after each cycle (see Section 3.3.5).
The associated geometric sequence has the following parameters: first term 0.595
and ratio 0.799 for the FV-CMP case, and 0.595 and 0.885 for the F'V case. The
residence time of 1% of the fluid initially present in the sinus is 25 s for the FV-CMP
case, compared to 43 s for the F'V case. The time required to flush the majority of
the sinus is much lower in the FV-CMP configuration. Accordingly, the calf muscle
contraction is more efficient at flushing the sinus than the bed-resting configuration.
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Figure 4.13: Percentage of the volume to drain. The particles are seeded at time
t = 0.0 s, i.e., at the beginning of the FV case simulation.

4.2.6 Discussion

This study investigated the hemodynamics of venous valves under the influence of
the calf muscle pump (FV-CMP), aiming to understand how enhanced inflow due
to muscle contraction affects valve dynamics and sinus drainage. By replicating the
contraction flow observed via echo-Doppler measurements, the FV-CMP configu-
ration was compared to a resting femoral vein (FV) case to assess the impact on
various hemodynamic parameters.

The FV-CMP case exhibited similar leaflet behavior to the FV case, with com-
plete buckling reaching phase III. However, the FV-CMP valve achieved a higher
maximum effective orifice area (EOA) of 52%, a 10% increase over the FV case.
This enhanced opening is primarily attributed to the higher inlet Reynolds number,
which exerts greater dynamic pressure on the leaflets. The valve in the FV-CMP
case opened more rapidly, reaching maximum EOA in 0.45 s, and closed more slowly
(0.6 ).
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The flow downstream of the FV-CMP valve led to vortex shedding, characterized
by a Strouhal number of 0.88, which is lower than that of the F'V case. The vortices
detached from the leaflets’ commissures, maintaining a similar detachment mech-
anism as in the FV case but potentially with a higher intensity due to the higher
flow velocity. The pathlines of massless tracers seeded in the sinus demonstrated
that the FV-CMP facilitated greater particle movement. This indicates improved
mixing and reduced areas of stagnation within the sinus, which are critical for pre-
venting thrombus formation. Additionally, a substantial reduction of the residence
time underscores the effectiveness of the FV-CMP in promoting sinus drainage. The
geometric sequences used to model the drainage process highlighted a lower ratio in
the FV-CMP case (0.799) versus the FV case (0.885), indicating a faster decay of
residual volume over successive cycles.

Overall, our findings suggest that the FV-CMP enhances valve performance by
increasing the EOA, promoting faster valve opening, and facilitating sinus drainage
through enhanced flow dynamics. The increased flow velocity and associated in-
stabilities contribute to improved mixing within the sinus, potentially reducing the
risk of thrombus formation due to prolonged blood stasis. However, despite these
improvements, particles near the bottom of the sacs remained close to their ini-
tial positions in both configurations, indicating that certain regions may still be
susceptible to stagnation.

Several important considerations emerge from this study. First, the influence of
geometry on valve performance necessitates further investigation. While a consistent
geometry is maintained to isolate the effect of inflow velocity, variations in sinus
depth, leaflet curvature, and valve placement could further optimize sinus drainage.
For instance, modifying the sinus or leaflet shape might enhance flow recirculation
patterns, improving the clearance of stagnant blood near the sac bottoms. Second,
the downstream effects of the observed vortex shedding on subsequent valves are
not fully understood. The vortices generated in the FV-CMP case could impact the
hemodynamics of downstream valves, potentially influencing their performance and
the overall efficiency of venous return. Understanding these interactions is crucial,
especially in veins where valves are closely spaced. The case presented in the next
section will address these issues.
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4.3 Dynamics of consecutive valves

This study aims to achieve two objectives. First, the interaction of two valves in
series and the associated hemodynamic markers are presented. The differences in
flow features and residence time in the sinus region are of particular interest. The
first and second valves will be referred to as V1 and V2, respectively. However, a
new geometry is used for V1 and V2; thus, a comparison with the reference CFV
case is made with V1 to assess the efficiency of the new geometry.

4.3.1 A relaxed insertion angle

The case presented here is a common femoral vein (CFV) with a 14 mm diameter
containing two consecutive valves. The CFV case presented in Section 4.1 is taken
as a reference. The original geometry had a 90° angle at the agger, which likely
counteracts the flow development and may provoke blockage. This can also be a
source of instability development. To mitigate this issue, the angle at the agger has
been relaxed by 10.2°, as illustrated in Figure 4.14. The midpoint of the leaflets’ tip
has been lowered in the distal direction, as well as the valve’s commissures. The first
modification provides more surface reserve, and the second prevents the leaflets from
staying too close to one another near the commissures. The sinus dimensions are
the same as those described in Section 4.1.1. The leaflet thickness is set at 100 pm.
The inflow waveform and flow rate are also consistent with the previous case.

The physical parameters used in the simulation are similar to the CFV case (see
Table 4.2). The time profile is the one described in Equation (4.1).

Blood flow

Present

Figure 4.14: Comparison of the modified (blue) and reference (gray) geometry. (A)
focus on the angle relaxation at the bottom of the valve. (B; C) comparison views
from the sinus. The original tip shape from (C) is reported in (B) to exhibit the
modifications (lowered mid-point tip and relaxed insertion angle). (D; E) view from
3 quarter. The natural direction of blood flow is indicated with the red arrow to
help visualization.
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4.3.2 Numerical parameters

Apart from the mesh that has to be generated onto the new geometry, the rest of
the computational setup remains consistent with that used in the CFV case (see
Table 4.2). The mesh parameters are as follows: the size is 140 pm in a 5-element
layer near the leaflets, 210 pm at the wall, and 280 pm in the rest of the domain. For
the pseudo-solid parameters, R, ps and Ry,q. ps are set to 420 pm and 2.1 mm,
respectively.

In this configuration, the computational time for 1.2 s of physical duration in-
creases to 96 h on 384 cores of the ADASTRA HPC cluster of GENCI/CINES
(compared to 36 h on 192 cores for the CFV case). The partitioning is the same as
presented in Section 4.1.2, with a slightly higher cost due to mesh movement (35%).

4.3.3 Hemodynamics in a series of valves

The resulting hemodynamic patterns followed by the particles seeded in the sinus (at
the outset of the third cycle) are illustrated in Figure 4.15. In the snapshots taken
at maximum inlet velocity, the particles display two distinct movement patterns:

e CFYV case: Only the particles close to the outlet plane of the sacs are advected
towards the sagittal plane to leave the sinus near the midpoint of the leaflet
tip. These particles enter back into the sinus either close to the sinus wall
centerline or near the valve commissure. This pattern takes time to develop
and reaches its full extent at the end of the cycle.

e V1 case: The particles are advected away from the sagittal plane towards the
valve commissures, unveiling two symmetrical recirculations within the sinus.
Comparing Figure 4.15a and Figure 4.15b, the flow structures develop faster
in the V1 case.

In addition, significantly more movement, especially at the bottom of the sacs, is
observed in the V1 case (Figure 4.15d).

The valves” EOA dynamics are depicted in Figure 4.18a. While a maximum
EOA of 42% is observed for the CFV, V1, and V2 valves, the dynamics of the valves
in series differ from the CFV case. The V1 and V2 valves open and close quicker
than the CFV valve, with the V2 valve closing slightly faster than V1. The opening
remains quicker than the closing for the valves in series. Some oscillations appear
on the V2 valve plateau, which are due to the flow perturbed by the V1 valve. To
support these observations, the dynamics of the V1 and CFV valves are compared
in Figure 4.16. The snapshots show that the V1 valve opens more close to the valve
commissures than the CFV valve (Figure 4.16¢ and Figure 4.16d). The V1 valve
also closes faster than the CFV valve (Figure 4.16e). The V2 valve is not presented
here, but the dynamics are similar to the V1 valve.

The velocity fields and the Q-criterion for the valves in series are displayed in
Figure 4.17, exhibiting vortex shedding only downstream of V2. More precisely, V2
vortex shedding initiates once the perturbed flow from V1 reaches V2. The axial
velocity taken at the center of the valve 3 diameter downstream of the valve, plotted
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in Figure 4.18b, witnesses the perturbations of the flow in the wake of the V2 valve
by the presence of the V1 valve. The corresponding Strouhal is 1.56 for this vortex
shedding, which is of the same order as the PV and CFV case.

The pressure loss through the different valves is plotted in Figure 4.18b. The
dynamics of the pressure loss through each valve in series is similar to the CFV one.
The peak pressure loss is the same for the valves in series, reaching 36 Pa at 2.6
seconds (0.2 s after the outset of the third cycle), which is lower than the CFV case.
After peak inlet velocity is reached (2.9 s), the pressure loss stabilizes for all valves
at 15 Pa for the V2 and CFV valves against 25 Pa for the V1 valve. The minimum
reverse pressure loss equals —25 Pa for the V2 and CFV valve and —12 Pa for the
V1. The opening of the CFV geometry is more costly than the new geometry while
maintaining the opened position seems to be more costly for the V1 valve compared
to V2 and CFV. The higher reverse pressure loss would markedly help the faster
closing of the V2 valve compared to the V1 valve.

Regarding the 90° orientation of the blood flow after the second valve, it is not
as clear as in the reference case. In the frontal plane, the mixing layers behind the
wake of each valve commissure develop towards the center of the vein. However, in
the sagittal plane, no noticeable extension of the flow sheet towards the vein wall is
detected. From what was observed in the previous paragraph, 90° orientation of the
blood flow after the first valve is not necessary to reduce the pressure loss through
the second valve.
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Figure 4.15: Pathlines of particles seeded at the outset of the third cycle for the CFV (a,
c) case and V1 (b, d). (a) and (b) are at time ¢ = 2.90 s, i.e., at maximum inlet velocity.
(c) and (d) are at time ¢ = 3.60 s, the outset of the third cycle.
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Figure 4.16: Snapshots of the V1 valve compared to the CFV valve at different times.
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Figure 4.17: Snapshot of the velocity field of each valve in the frontal (a) and the
sagittal plane (b) and the Q-criterion (bottom) in the frontal (c¢) and sagittal (b)
planes at t = 3.10 s.
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Figure 4.18: (a) Plot of the effective opening area (EOA) for the CFV case, V1, and V2
valves. (b) Left: pressure loss across the valve of the third cycle for the V1, V2 and CFV
valves. The pressure loss is the difference between the pressure at the center one diameter
upstream and 3 diameter downstream of the valve. Right: axial velocity at the center of
the valve 3 diameter in the proximal direction for the V1, V2 and CFV valves.
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4.3.4 Effect on the residence time

The residence time was calculated using a geometric sequence based on the percent-
age of particles remaining in the sinus after each cycle. This method provides a
reliable estimate of the duration of blood residence in the sinus region, thus facili-
tating the assessment of the efficacy of drainage in different configurations. To this
effect, the massless particles are seeded uniformly within the sinus at time ¢t = 0 s.
The temporal variation of the percentage of blood initially present in the sinus that
remains to be drained is plotted in Figure 4.19. A significant difference is observed
from the next cycle after the injection of particles: only 27% and 23% remain for
V1 and V2, respectively, compared to 69% for the reference case. From this point of
view, the new geometry has more than twice the drainage efficiency of the reference
one in one cycle. The residence times obtained are 11, 9, and 31 seconds for the V1,
V2, and CFV valves, respectively. The blood initially present within the sinus of
the CFV case remains three times longer than in the new geometry. Moreover, the
residence time is reduced in the V2 valve compared to the V1 valve. This suggests
that the blood is more efficiently drained in the second valve than in the first one.

Injected at t = 0.0 s

100
—— CFV
s1
= 751
=, — $2
Z 501
2
o~
251
0.0 0.5 1.0 1.5 2.0 25 3.0 35

Time [s]

Figure 4.19: Plot of the percentage of the volume to drain with regard to time. The
particles are seeded at time ¢ = 0.0 s.

4.3.5 Discussion

The present study investigates the impact of a relaxed insertion angle on the hemo-
dynamics of consecutive venous valves, comparing a new geometric configuration to
a reference case. By relaxing the angle at the agger by 10.2° and adjusting the posi-
tions of the leaflets’” tips and commissures, the modified geometry aims to enhance
flow development and mitigate potential blockages and instabilities observed in the
original design.

This analysis reveals that these geometric modifications significantly improve
the hemodynamic performance of the valves. In Section 4.3.3, the particles within
the sinus of the first valve (V1) exhibit more pronounced and faster-developing flow
structures compared to the CFV reference case. This enhanced movement, especially
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at the bottom of the sacs (Figure 4.15d), suggests improved mixing and potential
reduction in areas of stagnation, which are critical factors in thrombosis prevention.

The analysis of the Figure 4.18a indicates that both V1 and V2 valves open and
close more rapidly than the CFV valve. The quicker valve dynamics, with the V2
valve closing slightly faster than V1, may contribute to more efficient blood flow
and reduced residence times. The observed oscillations on the V2 valve plateau
are attributed to flow perturbations from the upstream V1 valve, highlighting the
complex interactions in valves arranged in series.

Vortex shedding was observed only downstream of V2, initiated by the perturbed
flow from V1. This finding underscores the influence of upstream valve dynamics
on downstream flow patterns. The absence of a clear 90° orientation of blood flow
after the second valve, as opposed to the reference case, suggests that the modified
geometry alters differently the development of mixing layers, particularly in the
sagittal plane.

The most significant improvement is noted in the Residence Time within the
sinus region (Section 4.3.4). The new geometry demonstrates more than twice the
drainage efficiency of the reference case within one cycle. The residence times for V1
and V2 are substantially reduced to 11 and 9 seconds, respectively, compared to 31
seconds for the CFV valve. This reduction indicates that blood is more efficiently
drained in the modified geometry, particularly in the second valve, which is crucial
for minimizing the risk of thrombosis associated with prolonged blood stasis.

Along with the enhanced flow dynamics and reduced residence times, the peak
pressure loss across the valves is lower in the new geometry compared to the reference
case. This observation confirms the improved efficiency of the modified design while
maintaining a physiological pressure gradient to ensure proper blood circulation.

In summary, the modifications introduced in the valve geometry—mnamely, the
relaxed insertion angle and adjusted leaflet positions—have led to significant im-
provements in hemodynamic performance. The enhanced flow structures, quicker
valve dynamics, and reduced residence times contribute to more efficient blood flow
and potentially lower the risk of thrombotic events. These findings highlight the
importance of geometric considerations in the onset of deep vein thrombosis.
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CHAPTERD

Discussion

5.1 Conclusion

In light of the significant global burden of venous thromboembolism (VTE), there
is a pressing need for the qualitative and quantitative assessment of venous valve
function. Given that the majority of VTE cases are hospital-acquired, it is imper-
ative to gain a deeper understanding of the biomechanical behaviour of the venous
valve in order to enhance the diagnosis and treatment of VTE. Cardiovascular valves
are coupled physical systems comprising biological tissues that interact with blood
flow, either mechanically or chemically. Thrombus formation is frequently observed
in the valves of the deep venous system of the lower extremity. The endothelium is
responsible for preventing blood clotting; however, prolonged bed rest can disrupt
its functions. It is established that the anticoagulant phenotypes of endothelial cells
(ECs) are sensitive to the mechanical forces to which they are subjected.

The development of in silico models of venous valves represents a promising
avenue for investigating the interaction of endothelial cells (ECs) with blood flow.
FSI methods are inherently well-suited to simulating the interaction between blood
flow and the venous valve. However, to gain insight into relevant haemodynamic
markers such as wall shear stress (WSS), flow patterns, or pressure distribution
within the valve, it is essential to select an appropriate FSI method. These methods
have been employed in a diverse array of applications, spanning from heart valves
to red blood cell transport. They have demonstrated their capacity to offer insights
into the biomechanical behaviour of the venous valve and its interaction with blood
flow.

In silico models of venous valves have been developed, which propose the defor-
mation of valve geometries under strain. This assumption facilitates the design of
the leaflets, yet it does not replicate the intricate behaviour of the valve under phys-
iological conditions. Either the pressure required to open the valve is considerable,
as evidenced by Buxton and Clarke [76], or the stiffness must be reduced under
physiological conditions. As demonstrated by Hofferberth et al. [28], in vivo ve-
nous valves, when cut open and unfolded, display complete unfolding of the leaflets
onto the vein wall, indicating an excess of surface area. To the best of the author’s
knowledge, no in silico model has been developed to investigate surface reserve.

The objective of the present study was to develop an in silico model of a venous
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valve to assess the biomechanical behaviour of a valve with surface reserve. It forms
part of the DY-MTEV project, which aims to provide new insights into venous
thromboembolism with a particular focus on endothelial cells (ECs). The project is
divided into three work packages: the medical imaging of valve dynamics and blood
flow at the CHU of Nimes; the in vitro experiments on ECs at the CBS; and the in
silico valve model at IMAG (Chapter 1).

The FSI solver, developed by Fabbri et al. [110], serves as the foundation for the
methodology employed throughout this thesis. A neo-Hookean material type was
incorporated into the structural solver to address the shortcomings of the existing
Saint-Venant-Kirchhoff approach. The originally designed constant under-relaxation
technique was then enhanced through the incorporation of the Aitken dynamic relax-
ation method. Furthermore, a contact penalty algorithm was introduced to prevent
the leaflets from interpenetrating. All methods have been validated on extensively
studied benchmarks, and the results are in good agreement with the existing litera-
ture (Chapter 2).

The newly validated methods were subsequently applied to the novel valve ge-
ometry design, which was created based on a comprehensive literature review. A
structural analysis was conducted to evaluate the various configurations and defor-
mations inherent to the design. The results demonstrate that the valve is capable of
opening under physiological conditions. Subsequently, the initial FSI simulation of
the valve with surface reserve was conducted. The typical low characteristics of the
venous valve were observed, including the formation of recirculations in the wake
of the valve commissures and leaflets, which resulted in a significant reorientation
of the flow further downstream. The pressure gradient required to open the valve
under supine flow conditions is sufficiently low to ensure adequate venous return
from the foot to the heart. In addition, a novel methodology for estimation of the
residence time has been put forth, establishing that 1% of the blood initially present
within the sinus resides for 68 s (Chapter 3).

Subsequently, the valve model was employed to examine haemodynamic modifi-
cations along the lower limb deep vein system. Three cases were constructed with
the objective of reproducing the flow conditions in a popliteal, femoral and com-
mon femoral vein valve. The inflow parameters were modified to align with the
specific location of each valve, resulting in a range of Reynolds numbers from 150
to 420. The observed dynamics of the leaflets were specific to each case. The flow
patterns immediately downstream of the valve were found to be comparable for
each case, with the formation of a vortex ring at the tip of the leaflets. However,
downstream, different flow patterns were observed, ranging from highly stable and
developed steady flow to transient flow with complex vortex structures (from low to
high Reynolds). The wall shear stress distribution on the sinus wall demonstrated
varying dynamics during the opening and closing phases, but was comparable once
the flow was established. Higher values were observed in the femoral and common
femoral vein valve configurations (Chapter 4.1).

The impact of a calf muscle pump was examined by modifying the inflow pa-
rameters of the femoral valve configuration. The valve was subjected to a sinusoidal
inflow condition, with a maximum velocity that was twice that observed in the
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supine inflow. As might be expected, the observed EOA is higher than that ob-
served in the supine inflow condition. Given that the Reynolds number is twice that
of the reference case, the flow pattern is analogous to that observed in the common
femoral vein valve configuration. Concerning residence time, it is evident that the
residence time is inherently shorter in the calf muscle pump condition (Chapter 4.2).

Finally, the question of the effect of geometry on valve haemodynamics was
addressed, along with the haemodynamics in a paired valve system. A new design,
based on the dimensions of the common femoral vein, was proposed as a means
of overcoming the limitations of the original design. The valve was subjected to
the same inflow conditions as those experienced by the common femoral vein valve
configuration. The dynamics of the leaflets are comparable to those observed in
the configuration of the common femoral vein. A novel recirculation pattern was
observed in the sinus. No vortex ring is formed at the tip of the leaflets; rather,
the blood enters the sinus through the centre. This movement is further enhanced
during the closing phase, resulting in significantly more efficient sinus emptying. The
residence time has been reduced by a factor of three in comparison to the original
common femoral vein valve configuration (see Chapter 4.3).

The development of a biomechanically oriented fluid-structure interaction solver
and its application in the context of venous valve dynamics has been a fruitful
endeavour. Despite the inherent limitations of the model, the results enlight the
dependence of sinus drainage to geometric consideration, offering new insights into
the onset of thrombotic events.

5.2 Perspectives

The utilisation of a flexible wall for the vein may prove an effective strategy for
achieving the physiological conditions of a venous valve. In particular, at the valve
agger, a deformable vein wall may facilitate the deformation of the leaflets in close
proximity to the wall. In the context of the calf muscle pump, the vein wall could
be made to move in order to reproduce the effect of muscle contraction.

In the context of systems comprising serial venous valves, the application of
periodic conditions may prove beneficial. The use of periodic conditions has the
potential to reduce the computational cost by acting on several levers. The first
step is to reduce the computational domain, which will result in a smaller number
of elements in the mesh. This will facilitate the mesh movement procedure. The
exclusion of a second valve would also be advantageous for the structural solver.
The physical time required to reach a fully developed flow and flush out the initial
conditions would also be reduced.

The venous valve geometry remains very simplified compared to a patient-specific
geometry. Reproducing the valve geometry from medical imaging would be a good
step towards a more realistic model. The valve geometry could be extracted from
medical imaging and the leaflets segmented to create a 3D model. The valve could
then be subjected to the same inflow conditions as used in this work. The results
could be compared to assess the relevance of the model.

In addition to patient geometry, further study of venous valves in the vicinity of
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bifurcations may prove beneficial. For instance, a broad range of sapheno-femoral
junction configurations can be observed in patients. It would be beneficial to assess
the impact of branching on valve functionality in order to gain insight into the
initiation of thrombus formation within the valve bags. Certain patterns may be
more susceptible to thrombus formation, and this should be taken into account.

As previously stated in the FEM method presentation, this work has employed
four-node tetrahedral elements (linear), despite the availability of 10-node tetrahe-
dral elements (quadratic). The project commenced with the use of these elements,
but they were subsequently discarded. The results they produced were not in line
with expectations and introduced instability issues in FSI simulations. Zhang et al.
[149] argued that the original formulation of the shape functions for those elements
is not well suited to non-linear solid mechanics. Such an approach may result in a
non-SPD mass matrix, which could potentially lead to the preconditioned gradient
linear solver crashing. They have put forward a revised formulation of the shape
functions to address this issue. The use of 10-node tetrahedral elements would en-
able us to refine the mesh and enhance the precision of the results. Similarly, the
use of shell elements for the valve leaflets would be beneficial. The leaflets are thin
structures, so using shell elements would enable us to reduce the number of elements
without compromising accuracy.

As outlined in the computational setup sections, the computational resources
required to run the simulations can be significant. The majority of the expenditure
is attributed to the structural linear solver. Improved preconditioning is the most
effective way to reduce the time spent on the structural linear solver. There are a
number of options to consider, including the use of the PETSC library [220-222]. It
would be beneficial to devote particular attention to the monolithic FSI literature.
As the matrix of the linear solver obtained in the monolithic formulation is highly
non-SPD, they have developed robust preconditioning methods, including multigrid
and algebraic approaches.

It should be noted that, despite not being discussed in this work, the F'SI method
is still highly susceptible to pressure spikes caused by the interpolation of velocity
made after dynamic mesh adaptation. This is in line with the findings presented
in [120]. The Aitken dynamic relaxation method has enhanced the stability of
the system, but the stability limit remains very close. Furthermore, this issue is
compounded in the cases treated here, due to the necessity for intensive remeshing
when the valve is in proximity to the closed position. One potential solution to
this issue is to utilise alternative boundary conditions at the interface, which could
help to mitigate the pressure peaks. The Robin conditions are a combined Dirichlet
and Neumann condition designed to handle FSI cases with a significant added-mass
effect. By subtracting part of the fluid traction from the right-hand side of the
structural linear system and adding it to the mass matrix, we can stabilise the
coupling. Another potential solution is the use of pseudo-compressibility. Pseudo-
compressibility is a method used to stabilise the pressure field in incompressible
flow. This approach introduces a compressibility term into the continuity equation.
Further work could concentrate on utilising pseudo-compressibility to stabilise the
FSI coupling in the iterations following a remeshing process.
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Résumé

L’objectif principal est de mieux comprendre I’hémodynamique des valves veineuses,
ainsi que leurs implications potentielles dans les maladies telles que la thrombose
veineuse profonde. Un modéle de valve veineuse basé sur I’hypothése d’une réserve
de surface a été développé. Une analyse structurale compléte des feuillets de la
valve est proposée pour étudier les déformations sous contraintes mécaniques. Des
simulations numériques d’interaction fluide-structure (IF'S) ont ensuite été réalisées
pour reproduire les conditions de flux sanguin en situation de pompe respiratoire en
position allongée. Les résultats montrent que la sensibilité de la valve a la pression
permet une ouverture avec une perte de pression faible. La position le long de la
cuisse ainsi qu'une géométrie modifiée ont été identifiés comme principaux acteurs
influant sur le drainage du sinus. Les résultats obtenus ouvrent des perspectives pour
améliorer la compréhension de 'hémodynamique des valves veineuses et comprendre
les mécanismes impliqués dans les pathologies veineuses.

Mots clés: thrombose veineuse, YALES2BIO, interaction fluide structure, effort
pariétal

Abstract

The main objective is to better understand the hemodynamics of venous valves, and
their potential implications in diseases such as deep vein thrombosis. A venous valve
model based on the surface reserve hypothesis has been developed. A first compre-
hensive structural analysis of the valve leaflets is proposed to study deformations
under mechanical stress. Numerical simulations of fluid-structure interaction (FSI)
were then carried out to reproduce blood flow conditions in a respiratory pump situ-
ation in the supine position. The results show that the valve’s sensitivity to pressure
enables it to open with little pressure loss. Position along the thigh and modified ge-
ometry were identified as the main factors influencing drainage. These results open
up new avenues for improving our understanding of venous valve hemodynamics and
the mechanisms involved in venous pathologies.

Keywords: deep vein thrombosis, YALES2BIO, fluid-structure interaction, wall
shear stress
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