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Model Problem

@ Poisson problem written in the form:

Vo=f in Q,
o=—-Vu
u=up in 0Qp,
o-n=qy in 0y
@ Required functional spaces

e For the variable o

H(div, Q) = {q e [12(@Q)]%:V.ae L2(Q)}
o For the variable u: L?(Q)
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Discrete variational mixed formulation

O I = {K} partition of the computational domain
@ Finite dimensional approximation subspaces

e V' C H(div,Q) approximation space for &

continuous normal components over element interfaces
o U" C L2() approximation space for u

no continuity constraint
e stability

@ To find (o, u) € (V" x U") such that o - |9, = qn and

a(o, Q)_b(q7u):_/aQUDCI'77 Vq €V

b(a,ap)_/chde Vo e U"
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@ Since Raviart and Thomas 1977

e a variety of VI x U' stable configurations have been proposed
in the literature (Brezzi,Fortin 1991)
@ Most FE codes for real applications are based on
H-conforming schemes

e Implementations of mixed formulations are much more complex

@ Complications increase for:

o higher order finite element schemes

e non-uniform order approximation on unstructured meshes
e curved elements

e variable topologies
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@ Recent efforts on the development and/or implementation of
convenient sets of basis functions for higher order
H(div)-conforming approximations in 3D

Arnold, Falk, Winther, Comput. Methods Appl. Mech.
Engrg., 2009 (Berstein-Bézier,simplices)

Ainsworth, Andriamaro, Davydov, SIAM J. Sci. Comput.
2011 (Berstein-Bézier,simplices)

Fuentes, Keith, Demkowicz, Nagaraj, Mathematics and
Computers in Simulation 2015 (hierarchic, all geometries)
Castro, Devloo, Farias, G, Siqueira, Duran, Comput.
Meth. Appl. Mech. 2016 (hierachic, affine, all geometries
excepting pyramides)

Castro, Devloo, Farias, G, Duran, Jr. Comp. Appl. Math
2016. (hierachic, curved 2D + surfaces)
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Goals

@ Systematic construction of hierarchic high order shape
functions for approximation spaces

V' ¢ Hdiv(Q)
based on curved tetrahedra, hexahedra and prisms

o Different stable space configurations VI x U™ with optimal
h-convergence rates

e configuration with enhanced accuracy in u without increasing
DoF of the static condensed system

o Effect of condensation + parallelization on CPU time using an
hp-adapted curved mesh
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Construction of approximation spaces V' x U': guidelines |

o K: reference master element (tetrahedra, hexahedra or prism)
@ x: K — K : geometric mapping (diffeomorphism)

@ F: @ — ¢, isomorphism mapping scalar functions ¢ of Hl(k) to
scalar functions ¢ of H(K) (induced by x)

e(p) = o(x1(p))

@ 9" : § — q contravariant Piola transformation: isomorphism
mapping vector-valued functions § € H(div, R) to vector-valued
functions q € H(div, K)

q=F [deltJJ(a)}

where J = Vx is the Jacobean of the geometric mapping.
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Construction of approximation spaces VI x U": guidelines

@ Polynomial vector-valued approximation spaces
o M(K) C H(div,K)

e internal functions: vanishing normal components on 0K
o face functions: otherwise

o D(K) c 2(K)
@ Satability: De Rham property
V -M(K) = D(K)

@ Global approximation spaces

V" = {a € H(div, Q); alx = "4, 4 € M(K)}

" ={p € L3(9); vl = Fp, ¢ D(K)}
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Different types of space configurations

P Pk1 D(K) = Pk-1
(BDMy) M(K) = [Pi]?,
only for tetrahedra

P; Py D(K) = P&

(BDMFii1, RTe) | [Pul® & M(K) & [Picia]*:

face functions in [P,]?

all geometries internal functions in [Px1]3 with divergence in Py
D(K) = Pria
P* Pty (new) [Pul® € M(K) S [Pira]*:

face functions in [P4]?

all geometries internal functions in [P 2]3with divergence in Pyy1

@ Castro; Devloo;Farias; Gomes;de Siqueira; Duran. Three dimensional hierarchical mixed finite element
approximations with enhanced primal variable accuracy. Computer Methods in Applied Mechanics and
Engineering, 306: 479-502, 2016. (3D affine uniform meshes)
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Accuracy

L2 - Error estimations

PiPi—1 | PiPi | Py Piia
tetrahedra all
lo—oul | k+1 [k+1] k+1
l|u— up| k k+1| k+2

Flux error
Pressure error
5

10 10° 10 10 10 10" 10° 10° 10* 10° 10°

Number of equations — SC Number of equations - SC
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oriented platform for FE)

Approximation spaces:

Geometric map: Variational statement:

H1
. r_e_ﬁnement I_-|d|v .*"3“" System of differential equations
Curvilinear maps Discontinuous
5 = A Linear and nonlinear
Refinement patterns Reduced approximations

Multiphysics

[ ez ]

Linear algebra:

Finite element tools: In development:
Matrix storage patterns Lo .
Decomposition methods h;t'-afita‘ztlgty Eleglrar“algnellcs gﬂCurl)
Substructuring o nit tes arallel computing
Per Cloud computing

Preconditioning

http://github.com/labmec/neopz
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Hierarchic scalar shape functions in NeoPZ

@ Polynomial space Py restricted to K:
Tetrahedron: total degree k
Cube: maximum degree k in each coordinate
Prism: total degree k in (£o,&1), and maximum degree k in &

@ Hierarchic scalar bases B,’f for Py

’vertex ‘ edge‘ face ‘ volume ‘
,n

3 F,n1,m

K,n1,nz,n3 ‘

L & Jo (¢

L7 XN =

@ P. Devloo, C. Bravo, and E. Rylo. Systematic and generic construction of shape functions for
p-adaptive meshes of multidi ional finite el s. Comput. Methods Appl. Mech. Engrg.,
198:1716 — 1725, 2009.

4
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Hierarchic vector-valued bases for Py = [Pi]’

@ Shape functions of type

~

d = v,
e U — constant vector fields (connected to faces or volume of K)
o ¢ — scalar shape functions in B
@ internal shape functions:
e vanishing normal components over all the faces of K.

o face shape functions: otherwise

BE = {@E'_a! Fhln Fon .-}

face functions

U {ch.f.ﬁ,‘bI{\_';F:m:u_-: @I_f;ir'.n:.n_-! cblfi:ln:.n_-.r!_;. @P;.r!:.r!_-.n_-..‘b!:;..n:.n:.n:g}_

internal functions
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Hierarchic shape functions in . main properties

Face functions Normal components ‘
L N = % in F, vanish in faces # F
oF b = phnyFl = " in F, vanish in faces # F

oF e — pFm,myF. L = pFmm2 in F vanish in faces # F
Internal functions Normal components

Kb — phny kT vanish in all faces

¢55F’”1’”2 = gva”l»”ZvZ.’)T vanish in all faces

¢(Fj’)"1’"2’”3 = ¢F7"1’”27"3v(’j.) vanish in all faces
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Assembly of conforming spaces V' C H(div, Q)

o B hierarchic basis in H(div, K) mapped from B,’j

1
det J

1 .
b=F Jv| = Fdvy
det J

e VI space of piecewise functions: qlk = qX € span Bf

N 1 N
& =F"d = F[—— J®] = F[p Jv] = b
[detJ | =F[p v] = ¢l

@ Normal components on interfaces: only contributions of face functions

K K ay F,a K e,ny F,e,n K
q -n | = D7 apae® 70 4 ST " Br 400" b -n
a€EVE LeEp N

F,ny,no F,ny,n K
D Ve 2B M2
n,n

F

@ Goal: continuity of normal components: is a consequence of
e continuity of scalar shape functions
e continuity of normal components of b
e multiplying coefficients on each side of F sum zero
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Application to the mixed formulation: static condensation

@ Primary variables

e 0. — face bases;
e ug — one scalar value for u in each element;

e Secondary variables

e o; — internal bases;
e u; — the remaining DoF of u

Ai BT | BI Ak o 0
Bi 0 0 B u; _ —fin
Bie 0 0 Bee uo B —fon
Aei BT | BL  Aee o 0

@ Secondary DoF ( o; and u; ) are condensed, to get a
condensed system in terms of primary DoF (o and up)

For a given geometry, condensed systems have the same dimension
for all space configurations
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Test problem: using uniform 3D curved elements

@ Computational domain: Q = {x € R3;1 < ||x|]| < 1}

1
2
@ Exact solution:

u:gftan71 (5 (\/(Xi)2+(y+1)2+(z+i)2§>>

@ Initial hexahedral mesh

e The faces of a cube are projected onto the internal and
external spherical boundaries.

e These curved quadrilaterals are blended by transfinite
interpolation (Coons, 1967) to form 6 hexahedra

@ Initial tetrahedral mesh

e Prismatic elements with triangular faces over the internal and
external spherical boundaries (by quadratic interpolation).
e Each curved prism is subdivided into 3 curved tetrahedra.

@ Direct frontal linear solver.
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Curved hexahedral elements)
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Error versus h (
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Error versus h (tetrahedral elements)

Tetrahedral elements Tetrahedral elements
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MF*= P} Py (continuous) MF** =P}*Pj1 (dashed)
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Effect of static condensation
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Application: flow around a horizontal well

@ BC: u =1 on the outer elliptical belt, u = 0 on the well, no flow on the
top and bottom flat faces

@ P} Py space configuration
@ MacBook: 4 processors and 8GB of memory.

@ Matrix computation and assembly: Pthreads + direct skyline linear solver.

1212 elements

Curved

. elements
horizontal

well
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Initial mesh (thanks to Simwo

@ 19 curved elements: 11 hexahedra + 8 prisms.

@ Trasfinite hexahedra matching the cilindrical well.

Figure 3: Problem 2: initial mesh (left side) and its details (right side).

Figure 4: Problem 2: transfinite hexahedron matching the circular well.
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Refinement procedure

@ Directional mesh refinement towards the well, and transversal
refinement along the well.

@ A basic kpnin is applied all over the mesh.

@ Fix kmax > k for the elements touching the toe and heel circular
ring; for the neighboring elements assign one degree lower.

@ Repeat the procedure until reaching knin.

hp-refinement.
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Amount of flux per unit well length

to do pogo
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Effects of static condensation and parallelization

Effects of static condens
on the CPU t

without static with statl:c
condensation condensation

75% of dof are
condensed

97988 dof 24850 dof

k = 2 and 12 elements on the well
1017

8% of CPU time

90

with static without static
condensation and condensation and
multithreading multithreading
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Current research on related topics

@ Mixed finite element-finite volume method for two-phase flows
in heterogeneous media (O. Durdn PhD Thesis)
e Approximation spaces in H(div, Q) for pyramids

o Multi scale hybrid dual methods combined with high order
H(div)-conforming approximations on the macro-elements for
preconditioning.
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